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ABSTRACT 
As oil and gas industry is developing towards deeper ocean 

area, the length and flexibility of ocean risers become larger, 

which may induce larger-amplitude displacement of flexible 

riser response due to lower structural stiffness against 

environmental and operational loads. Moreover, suffering not 

only the external fluid loads coming from environmental ocean 

wave and current, these risers also convey internal flow. In other 

words, the dynamic characteristics and response of the flow-

conveying riser face great challenge, such as bucking, 

divergence and flutter, because of the fluid-solid coupling of the 

internal hydrodynamics and riser structural dynamics.  

In this study the dynamic characteristics and stability of a 

flexible riser, under consideration of its internal flow and, 

particularly, non-uniform axial tension, are examined through 

our FEM numerical simulations. First, the governing equations 

and FEM models of a flexible riser with axially-varying tension 

and internal flow are developed. Then the dynamic 

characteristics, including the coupled frequency and modal 

shape, are presented, as considering the speed of internal speed 

changes. At last, the dynamic response and corresponding 

stability behaviors are discussed and compared with the cases of 

riser with uniform tension. Our FEM results show that the 

stability and response are quite different from riser with uniform 

tension. And, the time-spatial evolution of riser displacement 
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exhibit a strong wave propagation phenomenon where travelling 

wave are observed.   

Keywords: Fluid-conveying riser; Non-uniform tension; 

dynamic characteristics and stability; Fluid-solid coupling 

NOMENCLATURE 
x    longitudinal coordinate 

y transverse displacement 

L  length of the riser 

s  inner perimeter of riser 

EI  bending stiffness 

V  flow velocity 

𝑚𝑓  mass per unit length with fluid 

  𝑚𝑟 mass per unit length of riser 

g   gravitational acceleration 

T  tension 

Q   shear force 

F  transverse force 

ℳ bending moment 

  𝛺   circular frequency of oscillation 

t    time 

𝜉  dimensionless longitudinal coordinate 

  𝜂  dimensionless transverse displacement 

  𝜏  dimensionless time 

u  dimensionless velocity 

ζ dimensionless tension 
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  𝛽  mass ratio 

  𝛾 dimensionless gravity 

  𝜔  dimensionless circular frequency 

  M  mass matrix 

U displacement vector 

C damping matrix 

K stiffness matrix 

INTRODUCTION 

The riser and pipeline with internal flow are widely used in 

marine engineering, nuclear industry and oil exploitation. The 

dynamics of them is a typical fluid-solid coupling issue, the 

stability and response of which principally depend on the 

properties of internal flow and riser structure, such as internal 

flow velocity, structural bending stiffness, axial tension and mass 

density. By now, there have been a large number of studies on 

the stability issue of the risers with internal flow[1-5], where the 

structural parameters are uniformly distributed along riser 

length, or riser tension keeps axially-constant. And, few reports 

have been seen on dynamic response of a riser with internal flow. 

However, for a flexible riser in deep water, the influence of the 

structural weight could not be negligible with the increasing 

structural length. Therefore, structure parameter, e.g. axial 

tension, would be no longer uniform along axial length. We may 

say it is more challenging to study the stability, and even, the 

response of a flexible riser with axially-varying structural 

parameters. 

The dynamic behaviors of riser and pipeline, considered as 

Euler or Timoshenko beam, with internal flow have been studied 

fine in history. Early in 1855, Brillouin observed the self-excited 

vibrations of cantilever pipes. The first published study of 

dynamic behaviors of the pipes with internal flow was given by 

Bourrières[1], where the equation of motion was obtained and 

analyzed carefully to come to a famous conclusion of stability. 

Considering a riser conveying fluid is not “closed” systems but 

“open” systems, Benjamin[2] studied the articulated riser via 

Lagrange method to obtain the instability forms of riser with 

different boundary conditions and extension of Hamilton’s 

principle that apply to “open” systems. The articulated pipes is 

conserved structures the major instability form of which is 

buckling instability, while the cantilever beam is non-

conservative structure the major instability form of which is 

flutter. Holmes[3] has proved that a beam supported at both ends 

does not have the flutter instability. Gregory and Païdoussis[4-5] 

tested and verified the flutter instability of cantilever pipes via 

theory, calculation and experiment. Païdoussis and Issid[6] 

established the motion equation of normal pipes with internal 

flow considering the effect of Kelvin-Voigt constitutive law, 

tension, gravity, etc. Païdoussis and Laithier[7] studied the 

vibration question of the pipes with internal flow using 

Timoshenko beam model, by using the variational method to 

solve the equation of motion, it was found that the shear effect 

reduces the eigen-frequencies and critical flow velocities of the 

cantilever pipe. Païdoussis and Laithier[8] established two 

Hamiltonian expressions of the Timoshenko beam for 

transportation fluid. Païdoussis, Luu and Laithier[9] studied the 

dynamic questions of finite length pipes with internal flow by 

using the Timoshenko beam theory and potential flow theory and 

proposed a refined mechanics model, it is found that for short 

risers clamped at both ends, the eigenfrequency increases. 

Pramila and Laukkanen[10] studied the dynamics and stability 

of a Timoshenko tube for short fluid transportation using finite 

element method (FEM), and they obtained similar conclusion 

with [9]. Chen studied the problems of in-plane[11-12] and out-

of-plane[13] vibration of curved beams, the results showed that 

in-plane vibration and out-of-plane vibration are independent. 

Dai[14] studied the transportation question of the cantilever pipe 

consisting of two different materials. When a material with 

greater stiffness is located at the fixed end, its characteristic 

frequency is greater than that the material with less stiffness is 

located at the fixed end. Meng[15] studied the dynamic 

behaviors of marine riser undergoing both internal and external 

flow using Euler-Bernoulli beam theory and finite element 

method. Montoya-Hernández[16] studied the dynamic behaviors 

of multiphase flow with solid, liquid and gas in marine riser 

transportation, where multiphase flow model is simplified to a 

homogenous model by using weights method. Dai[17] derived 

the nonlinear dynamic equation of a riser with both ends under 

the action of internal and external flow based on the Hamilton’s 

principle and the Galerkin discretization method.  

By now, most of the current researches focus on structures 

with axially-uniform properties. In practices, for a flexible riser 

in deep water, its structure parameter, e.g. axial tension, is no 

longer uniform along riser length. And, by know, few reports 

have been seen on dynamic response, rather than stability 

problem, of a riser with internal flow. In this study, the dynamic 

characteristics, i.e. the natural modal shape and frequency along 

with the dynamic response of a riser with axially-varying tension 

are examined. As a comparison, the results of a simplified model, 

a uniform riser, are also calculated. Our numerical results show 

that the dynamic behaviours, i.e. the modal shapes and dynamic 

responses are significantly different from the riser with uniform 

tension. 

1 Models of Fluid Conveying Riser with Axially-Varying 
Tension 

1.1 Governing Equation 

The equation of motion of a vertical riser conveying fluid is 

derived by using differential element method and the Newton’s 

second law. For the fluid element in Fig.1(a), we can obtain the 

equilibrium equation by using Newton’s second law: 

−A
𝜕𝑝

𝜕𝑥
− 𝑞𝑠 + 𝑚𝑓𝑔 + 𝐹

𝜕𝑦

𝜕𝑥
= 0 (1) 

F + A
𝜕

𝜕𝑥
(𝑝

𝜕𝑦

𝜕𝑥
) + 𝑞𝑠

𝜕𝑦

𝜕𝑥
+ 𝑚𝑓 (

𝜕

𝜕𝑡
+ 𝑉

𝜕

𝜕𝑥
)

2
𝑦 = 0      (2) 

where y is the transverse displacement, V is the flow velocity, q 

is the shear stress on the internal surface of the riser, s is the inner 

perimeter of the riser, and mf is the mass of the internal fluid per 

unit length. Similarly, for the riser element (Fig.1(b)) we have 
𝜕𝑇

𝜕𝑥
+ 𝑞𝑠 + 𝑚𝑟𝑔 − 𝐹

𝜕𝑦

𝜕𝑥
= 0 (3) 
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𝜕𝑄

𝜕𝑥
+ 𝐹 +

𝜕

𝜕𝑥
(𝑇

𝜕𝑦

𝜕𝑥
) + 𝑞𝑠

𝜕𝑦

𝜕𝑥
− 𝑚𝑟

𝜕2𝑦

𝜕𝑡2
= 0  (4) 

𝑄 = −
𝜕ℳ

𝜕𝑥
= −𝐸𝐼

𝜕3𝑦

𝜕𝑥3
(5) 

where, F is the transverse force per unit length between riser wall 

and fluid. ℳ is the bending moment, and EI is the bending 

stiffness. mr is the mass of riser body per unit length. Then we 

can get the governing equation of fluid-solid dynamics of a 

vertical riser conveying fluid as 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4
+ [𝑚𝑓𝑉2 − (𝑚𝑓 + 𝑚𝑟)g(L − x)]

𝜕2𝑦

𝜕𝑥2
− 2𝑚𝑓𝑉

𝜕2𝑦

𝜕𝑥𝜕𝑡

+(𝑚𝑓 + 𝑚𝑟)𝑔
𝜕𝑦

𝜕𝑥
+ (𝑚𝑓 + 𝑚𝑟)

𝜕2𝑦

𝜕𝑡2 = 0  (6) 

where, g is the gravitational acceleration. By comparison with 

the equation of motion of a beam with variable tension: 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4 + 𝑇(𝑥)
𝜕2𝑦

𝜕𝑥2 +
𝑑𝑇

𝑑𝑥

𝜕𝑦

𝜕𝑥
+ 𝑚𝑟

𝜕2𝑦

𝜕𝑡2 = 0  (7) 

Here, the second and the fourth term on the left side of Eq.(1), 

which essentially describe the effect of fluid centrifugal force 

and fluid&structural gravity respectively, can be expressed in 

terms of a axially-varying tension as follow 

𝑇(𝑥) = 𝑚𝑓𝑉2 − (𝑚𝑓 + 𝑚𝑟)𝑔(𝐿 − 𝑥)          (8)

where T(x) represents a compressive effect when it is plus, while 

it represents tension effect when it is minus. We can see that the 

axial tension T(x) is linearly-varying along the riser length as 

shown in Fig.2. 

FIGURE 1: (a) FLUID ELEMENT (b) RISER ELEMENT 

FIGURE 2: SCHEMATIC OF THE FLUID CONVEYING RISER 

Defining the dimensionless quantities: 

𝜉 =
𝑥

𝐿
, 𝜂 =

𝑦

𝐿
, 𝜏 = (

𝐸𝐼

𝑚𝑓+𝑚𝑟
)

1

2 𝑡

𝐿2 , 𝑢 = (
𝑚𝑓

𝐸𝐼
)

1

2
𝐿𝑉    𝛽 =

𝑚𝑓

𝑚𝑓+𝑚𝑟
,

𝛾 =
(𝑚𝑓+𝑚𝑟)𝐿3

𝐸𝐼
𝑔, 𝜁 =

𝑇𝐿2

𝜋2𝐸𝐼
(9) 

Equation (6) can be rewritten in the dimensionless form: 
𝜕4𝜂

𝜕𝜉4 + [𝑢2 − 𝛾(1 − 𝜉)]
𝜕2  𝜂

𝜕𝜉2 − 2𝛽
1

2𝑢
𝜕2𝜂

𝜕𝜉𝜕𝜏
+ 𝛾

𝜕𝜂

𝜕𝜉
+

𝜕2𝜂

𝜕𝜏2 = 0 (10) 

Regarding the motion of the riser is a periodic vibration, motions 

of the form 𝜂 = 𝑌(𝜉)𝑒𝑖𝜔𝜏  are considered. The dimensionless 

frequency 𝜔  can be expressed by the dimensional radian 

frequency Ω as 

𝜔 = (
𝑚𝑓+𝑚𝑟

𝐸𝐼
)

1

2
𝐿2Ω (11) 

1.2 FEM Approach 

The riser is uniformly divided into n two-node Euler beam 

elements. For representativeness and simplicity, only the 

translation displacements in x-y plane [𝑢𝑖, 𝑣𝑖] and one rotation

degree θi around z axis, of per node, are considered. Then the 

governing equation of the riser with many DOFs (degrees of 

freedom) can be written as follow： 

   𝑀�̈� + 𝐶�̇� + 𝐾𝑈 = 0                (12) 
where M is the mass matrix including the fluid mass and the 

structure mass. C is the damping matrix considering the 

interaction between fluid and structure. K is the stiffness matrix. 

U is the displacement vector. The displacement vector of the 

beam element is: 

𝑈𝑖 = [𝑢𝑖 , 𝑣𝑖 , 𝜃𝑖,𝑢𝑖+1, 𝑣𝑖+1, 𝜃𝑖+1,]  𝑖 = 1, … , 𝑛      (13)

In Eq.(1), the third term of the left-side represents the 

Coriolis force which is usually considered as damping effect to 

system. The damping matrix of the element is calculated as 

follows: 

𝐶𝑒 = 2𝑚𝑓𝑉 ∙ 𝑁′ 𝜕𝑁

𝜕𝑥
(14) 

where N is the shape function matrix of the beam element, and 

the damping matrix C of the whole structure can be obtained by 

assembling the damping matrix Ce of all elements. 

To solve the riser’s governing equation (12), an in-house 

code was implemented[18,19], and the Newmark method is 

employed here to adjust the distribution of the structural 

acceleration and velocity in the code. The interpolation functions 

of the displacement and acceleration are written as: 

2

[(1 ) ]

1
[( ) ]

2

t t t t t t

t t t t t t t

U U U U t

U U U t U U t

 

 

 

 

    

      
(15) 

where the values of α and β are respectively 1/6 and 1/2 at every 

time step during the dynamic response. 

1.3 Model Parameters 

In this study the dynamic characteristics, i.e. the natural 

modal shape and frequency along with the dynamic response of 

a vertical riser with axially-varying tension are examined under 

different internal flow velocities. The results of the simplified 

model (riser with uniform tension) are also calculated as a 

comparison. The two analyzed models, with different axial 

tension conditions, are shown in Fig.1. Ttop represents the top 

tension, and Tbottom represents the bottom tension. The risers are 

simply supported at top and bottom ends, and its main structural 

and fluid parameters are presented in Table 1. 
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The axial tension of the vertical riser consist of the pre-

tension T0 and the tension caused by the structural gravity. In 

Case 1, the actual gravity distribution along riser length is 

considered, and the axial tension component caused by the riser 

gravity gradually decreases along the length (x-axis direction) of 

the riser, as shown in Eq.(8). In case 2, as a simplified model, the 

part of the axial tension caused by the gravity is assumed as a 

uniform tension, which equal to the average value the structural 

gravity, i.e. 0.5G. And, G is the gravity of the riser (including 

internal flow, G=(mf+mr)gL). 

TABLE 1. PARAMETERS OF THE RISER 
Parameter Value 

Outside diameter 205.0mm 

Inner diameter 150.0mm 

Length 400.0m 

Mass of riser per unit length 30.0kg/m 

Tensile stiffness 1.536e9N 

Mass of fluid per unit length 17.67kg/m 

Bending stiffness 6.19e5Nm2 

Pretension T0 1, 000.0N 

2 Numerical Results and Discussions 

The dynamic characteristics of a vertical riser with different 

internal flow velocities is calculated through our model, and the 

influence of the axially-varying tension on the modal shape of 

the riser will be analyzed. Furthermore, the responses of the 

vertical riser caused by the periodic motion of the top-end point 

are presented, and the influences of the flow velocity and axial 

tension variation on the displacement response and its temporal-

spatial evolution of the riser will be studied. 

2.1 Model Verification 

To verify our numerical model, the first mode frequencies 

of the riser under different axial tension are calculated and 

compared with the theoretical results. The riser frequencies are 

shown in Table 2, and the velocities and frequencies are all 

dimensionless. It can be seen that the calculated frequencies 

agree well with the theoretical ones (the difference is less than 

1.0%). 

TABLE 2. COMPARISON OF THE RISER FREQUENCIES 
Dimensionless 

tension 
Numerical Theoretical Difference% 

0.0 9.870 9.870 0.000 

0.2 8.829 8.828 0.015 

0.4 7.648 7.645 0.037 

0.6 6.247 6.242 0.082 

0.8 4.423 4.414 0.220 

2.2 Inherent Dynamic Characteristics 

Figure 3 shows the plots of the natural frequency versus the 

internal flow velocity. It is seen that, owing to the axially-varying 

tension, the frequency becomes smaller than the riser with 

uniform tension, e.g. by 20.7% and 18.7% for the first two modes 

as u=0. The frequency difference increases with increasing flow 

velocity. With the increase of the internal flow velocity, the 

frequency gradually decreases. And the first frequency drops 

very close to zero, or the riser losses its stability when the 

dimensionless velocity u approaches to about 68. But the 

frequencies of the uniform axial tension model do not change 

obviously, see Table 3. This is mainly because that, with 

increasing flow velocity, the tension at the bottom end of the riser 

in Case 1 becomes much smaller than Case 2. In other words, the 

critical velocity of the riser with axially-varying tension gets 

smaller, that should be paid careful attention during stability 

analysis of a riser in deep water. 

(a) 

(b) 

FIGURE 3: RISER FREQUENCY UNDER DIMENSIONLESS 

FLOW VELOCITY IN RANGE OF 0-70 (a) CASE 1 (b) CASE 2 
The comparisons of the first three modal shapes, at different 

flow velocities, are shown in Fig.4. Interestingly, the modal 

shape is no longer symmetric/anti-symmetric to the central point 

of the riser. In other words, the modal wave length gets smaller 

while the wave amplitude gets larger, owing to the axially-

varying tension. And, the maximum modal amplitude moves 

toward the position with smaller axial tension. 

TABLE 3. FREQUENCY OF THE FLUID CONVEYING RISER 

u 
Case 1 (𝝎) Case 2 (𝝎) 

Mode 1 Mode 2 Mode3 Mode 1 Mode 2 Mode 3 

0 425.361 868.446 1314.352 513.537 1027.604 1542.729 

5 424.744 867.300 1312.677 513.185 1026.898 1541.847 

10 422.892 863.685 1307.563 512.215 1024.959 1538.849 

15 419.806 857.600 1298.922 510.539 1021.696 1533.911 

20 415.309 849.047 1286.665 508.247 1017.023 1527.033 

25 409.313 837.673 1270.617 505.249 1011.027 1518.127 

30 401.730 823.212 1250.337 501.545 1003.708 1507.194 
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(a) (b) 

(c) (d) 

(e)                      (f) 

FIGURE 4: COMPARISON OF THE FIRST THREE MODAL 

SHAPES (a) THE FIRST MODE AT u=0 (b) THE FIRST MODE AT 

u=64 (c) THE SECOND MODE AT u=0 (d) THE SECOND MODE 

AT u=64 (e) THE THIRD MODE AT u=0 (f) THE THIRD MODE AT 

u=64 

To explain the change of modal wave length along riser 

length, we can observe the expression of natural frequency 𝛺𝑖

of a riser with axial tension T, which is written as  

Ω𝑖 = (
𝑖𝜋

𝐿
)

2

√
𝐸𝐼

𝜌
(1 −

𝑇𝐿2

𝑖2𝜋2𝐸𝐼
)  (16) 

So we have the equivalent stiffness (𝐸𝐼)𝑒 as: 

(𝐸𝐼)𝑒 = 𝐸𝐼 (1 −
𝑇(𝑥)𝐿2

𝑖2𝜋2𝐸𝐼
) (17) 

Then we can obtain the corresponding wave velocity 

( ) ( )e r fc EI m m        (18) 

Observing Eq.(17), it is seen that when T is compression, the 

equivalent stiffness gets smaller, and vice versa. From the top-

end to bottom-end, the equivalent stiffness of the riser with 

axially-varying tension decreases because the axial tension 

gradually gets larger (the compression effect gets smaller). 

Therefore, the wave velocity gets smaller during propagation 

along the riser length due to the decreasing equivalent stiffness, 

and the maximum modal amplitude moves toward the position 

with smaller axial tension (bottom end). 

2.3 Dynamic Responses 

In this section, the dynamic response of the riser caused by 

top-end motion is analysed at different flow velocities. The top-

end frequency is selected as the 3th bending frequency of the 

riser, and the motion amplitude is 10m. 

For the riser with axially-varying tension, the root mean 

square (RMS) of displacements under different internal flow 

velocities are presented in Fig. 5a. It can be seen that with the 

increase of velocity, the displacement response of the riser 

increases gradually, because the axial compression caused by 

internal flow results in a decrease of the riser stiffness. In 

addition, it can be seen that the maximum displacement occurs 

near the area close to the bottom-end where the tension is smaller. 

And, owing to the decreasing tension, the displacement response 

of the top-end could be amplified during its propagating along 

riser length.  

(a) 

(b) 

FIGURE 5: THE RMS CURVE OF RISER DISPLACEMENT WITH 

DIMENSIONLESS FLOW VELOCITIES u=0, 21, 43 AND 64 (a) 

CASE 1 (b) CASE 2 
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As a comparison, the response of the riser under uniform 

axial tension is shown in Fig.5b. On the contrary, the response of 

the riser with uniform axial tension gradually decreases along the 

length of the riser.  

Considering axially-varying tension, the temporal and spatial 

evolutions of the riser displacement are presented in Fig.6. 

Obvious wave propagation characteristics can be seen in Fig.6. 

Generally, there exists three standing waves over the whole 

length, and the wavelength gets significantly smaller during 

propagation along the riser length. With the increase of internal 

flow velocity, the wavelength of the first standing wave increases, 

and the peak position of the third wave moves down to the 

bottom-end. This phenomenon is consistent with the RMS result 

shown in Fig.5a. 

(a) 

(b) 

(c) 

FIGURE 6: TEMPORAL-SPATIAL EVOLUTION OF RISER 

DISPLACEMENT FOR CASE 1 (a) u=0 (b) u=43 (c) u=64 

As a comparison, the wavelength and position have no 

obvious change for case of the riser with uniform tension, as 

shown in Fig.7. It is also noted that the displacement amplitude 

is larger, up to 19.7%, than the uniform tension riser owing to the 

axially-varying tension. 

(a) 

(b) 

(c) 

FIGURE 7: TEMPORAL-SPATIAL EVOLUTION OF RISER 

DISPLACEMENT FOR CASE 2 (a) u=0 (b) u=43 (c) u=64 

3 CONCLUSION 

In this study the dynamic characteristics, stability and 

response of a fluid conveying riser, under consideration of non-

uniform axial tension, are examined through our FEM numerical 

simulations. The influences of axially-varying tension on the 

frequency, modal shape and dynamic response are presented. 

Our numerical results show that: 
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The non-uniform tension has significant impacts on the 

dynamic characteristics and response of the riser. Owing to the 

axially-varying tension, the frequency is smaller than the riser 

with uniform tension, e.g. by 20.7% and 18.7% for the first two 

modes as u=0. The modal wave length gets smaller while the 

wave amplitude gets larger, and the maximum modal amplitude 

moves toward the position with smaller axial tension. The 

critical velocity of the riser with axially-varying tension gets 

smaller, that should be paid careful attention during stability 

analysis of a riser in deep water. The displacement response of 

the top-end could be amplified during its propagating along riser 

length. The maximum displacement occurs near the area close to 

the bottom-end, and the displacement amplitude is larger, up to 

19.7%, than the uniform tension model.
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