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A strain rate dependent 
thermo‑elasto‑plastic constitutive 
model for crystalline metallic 
materials
Cen Chen1* & TzuChiang Wang1,2

The strain rate and temperature effects on the deformation behavior of crystalline metal materials 
have always been a research hotspot. In this paper, a strain rate dependent thermo‑elasto‑plastic 
constitutive model was established to investigate the deformation behavior of crystalline metal 
materials. Firstly, the deformation gradient was re‑decomposed into three parts: thermal part, 
elastic part and plastic part. Then, the thermal strain was introduced into the total strain and the 
thermo‑elastic constitutive equation was established. For the plastic behavior, a new relation 
between stress and plastic strain was proposed to describe the strain rate and temperature effects 
on the flow stress and work‑hardening. The stress–strain curves were calculated over wide ranges 
of strain rates  (10–6–6000  s−1) and temperatures (233–730 K) for three kinds of crystalline metal 
materials with different crystal structure: oxygen free high conductivity copper for face centered cubic 
metals, Tantalum for body centered cubic metals and Ti–6Al–4V alloy for two phase crystal metals. 
The comparisons between the calculation and experimental results reveal that the present model 
describes the deformation behavior of crystalline metal materials well. Also, it is concise and efficient 
for the practical application.

The strain rate and temperature effects on the deformation behavior of crystalline metal materials have been 
investigated deeply for many  years1–3. The experimental results show that the yield stress increases with the strain 
rate rising and decreases with the temperature rising for crystalline  metals4–11. While, the working-hardening 
reduces with the increase of strain rate and temperature for many crystalline metals, such as Ti–6Al–4V and 
 tantalum12,13. It is also found that the plastic behaviors of crystalline metals display a non-linearly dependent 
on the strain rate and temperature. To describe the deformation behavior of crystalline metals at different 
strain rates and temperatures, many constitutive models had been established in the past years. Simple uniaxial 
stress–strain model and one-dimensional stress wave propagation model had been proposed initially to describe 
the temperature and strain rate effects on the flow  stress14,15. Then, some phenomenological models had been 
developed sequentially. Amongst these theoretical research, Johnson–Cook (JC)2, Zerilli–Armstrong (ZA)16,17 
and Khan–Huang–Liang (KHL)18 models have been well accepted due to their predictive ability for the visco-
plastic behavior of crystalline metals under wide ranges of strain rate and temperature. The JC model was intro-
duced to build a constitutive equation for the strain rate sensitivity and softening effect on the work-hardening 
behavior at different temperatures for crystalline  metals2. The ZA model used the dislocation mechanics concept 
for different face centered cubic (fcc) and body centered cubic (bcc) materials over different strain rates between 
room temperature and 0.6 Tm (Tm: melt temperature). The KHL model was developed to describe the viscoplastic 
hardening behavior of polycrystalline materials and had successfully described the work-hardening behavior 
of copper (Cu) under cyclic shear straining and biaxial tension–torsion18. Although these models mentioned 
above describe the strain rate and temperature effects on the flow softening and strain hardening behaviors, 
there are still some limitations for them. For example, the strain rate and temperature effects on the flow stress 
are uncoupled in the JC model which is not in line with the case of most crystalline metals; the ZA model is not 
effective to predict the plastic behavior at temperatures above 0.6 Tm and lower strain rate, and it considers two 
different forms for fcc and bcc materials.
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Also, the experimental results showed that the temperature effect on the elastic behavior should not be 
ignored due to the free thermal expansion of lattice and the thermal vibration of  atoms19. Since that the thermal 
vibration of atoms can only be revealed by the form of heat energy and the structural deformation is explicitly 
modeled at the continuum level, the thermal vibration was not considered simultaneously with the structural 
deformation in the phenomenological models. Therefore, the focus of these phenomenological models was on 
the description of work-hardening and flow stress at different strains, strain rates, and temperatures. Although 
the atomistic models can describe the thermal vibration and the structural deformation can be reflected by the 
total atomic  motion20, the normal vibration frequency should be recomputed when the elastic strain changes, 
which results in a low calculation  efficiency21.

Hence, a desirable constitutive model should be widely applicable and capable to describe the thermo-elasto-
plastic deformation behavior under different temperatures and strain rates. Then, the flexibility of determining 
calculated parameters from a limited set of experimental data and the accuracy of the calculation results for 
different material under static and/or dynamic are also important factors in judging the success of a new model. 
In this paper, a strain rate dependent thermo-elasto-plastic constitutive model was proposed based on a new 
decomposition of deformation gradient. The stress–strain curves were calculated for Oxygen Free High Conduc-
tivity (OFHC) fcc Cu, bcc Tantalum (Ta) and two phase Ti–6Al–4V alloy from 233 to 730 K at different strain 
rates. The comparison between the calculation and experimental results shows that the present model describes 
the thermo-elasto-plastic deformation at different strain rates and temperatures accurately. And it is easily to 
applied in different crystalline metal materials.

Methods
New decomposition of deformation gradient. Different from the kinematical theory, which decom-
posed the deformation gradients into plastic and elastic  parts22–24, the deformation gradient F in the present 
model was re-decomposed in to thermal, elastic and plastic parts, which is written as

where Fp is the plastic deformation gradient, Fe is the elastic deformation gradient, and F∗ is the thermal defor-
mation gradient caused by the free thermal expansion. The whole deformation process is described in four 
configurations. Firstly, the undeformed state at 273 K is defined as the initial configuration (Fig. 1a). Secondly, 

(1)F = FpFeF∗,
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Figure 1.  Decomposition of deformation configuration: (a) initial configuration; (b) first intermediate 
configuration; (c) second intermediate configuration; (d) current configuration.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8859  | https://doi.org/10.1038/s41598-021-88333-1

www.nature.com/scientificreports/

the first intermediate configuration is defined at the state after free thermal expansions at T K (Fig. 1b). Then, 
the second intermediate configuration is defined at the state after elastic deformation at T K (Fig. 1c). Lastly, the 
current configuration is the state after plastic deformation at T K (Fig. 1d).

Decomposition of total strain. Based on the new decomposition of deformation gradient, the total strain 
tensor is expressed as

The deformation gradients F∗ and Fe can be written as F∗ = R
∗
U

∗ and Fe = R
e
U

e , where R∗ and Re are the 
rotation tensors, U∗ and U e are the symmetrical stretch tensors. Assuming that R∗ = I , Re = I , the total strain 
tensor takes form as

Considering that the thermal strain tensor E∗ and the elastic strain tensor Ee are usually small enough during 
the deformation process, the total strain tensor is written  as25

Equation (4) is a new expression for the total strain tensor consisting of thermal, elastic and plastic parts, and 
more details about the new decomposition of deformation Gradient and total strain were displayed in our early 
 work25. Although the deformation gradient can be decomposed as F = F

∗
F
e
F
p or F = F

e
F
p
F
∗ , the decompo-

sition F = F
p
F
e
F
∗ is better than the others since it can get a brief mathematical expression for total strain as 

Eq. (4) and it is more aligned with the actual deformation process.

Thermal strain. The thermal strain tensor E∗ for the crystalline metal materials is expressed as

The thermal strain εT at temperature T is obtained  by26

where T0 = 273 K, the coefficient of thermal expansion α can be obtained easily by the experimental  results27 or 
theoretical  method28.

Thermo‑elastic constitutive equation for single crystals. The second Piola–Kirchhoff stress is writ-
ten as

where V* is the volume at the first intermediate configuration in Fig. 1b, UE is the elastic strain energy in the 
unit volume.

Then, the constitutive equation that expressed by the rate of the second Piola–Kirchhoff stress and the rate 
of Green strain is

The thermo-elastic stiffness tensor for single crystals is

Also, the Cauchy stress is written as

where V is the volume at the second intermediate configuration in Fig. 1c, and J = V
V∗.
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(8)Ṡ =
1

V∗

[

∂U2
E(E

e)

∂Ee∂Ee

]

: Ė
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: (Ė − Ė
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Thermo‑elastic stiffness for polycrystalline metal materials. Assuming that the Polycrystalline 
material is the aggregate of randomly oriented single crystals, and the orientation of single crystal is specified by 
the Euler angles (θ ,ϕ,ψ)25,29. Then, the thermo-elastic stiffness for the polycrystalline material is calculated by 
the stiffness of single crystal with various directions, which is expressed as

where Ri j is the component of rotation tensor R by the Euler  angles29, Csig
mnpq is the component of thermo-elastic 

stiffness tensor for the single crystals in Eq. (9), and f (θ, ϕ, ψ) is the orientation distribution function for single 
crystals. More details for calculating the thermo-elastic stiffness of polycrystalline were display in our early 
 work25.

Plastic constitutive equation. In the previous  studies30–33, the power law is adopted to describe the plas-
tic behavior of metallic materials. In the present work, a new relation between the stress and plastic strain is 
proposed to reflect the strain rate and temperature effects on the plastic behavior. After exceeding the yield point, 
the stress at the given temperature and strain rate is expressed as

where m is strain-hardening index (0 ≤ m ≤ 1); B and n are material parameters that relate to yield strength; ε̇r is 
reference strain rate. f (T , ε̇) reflects the temperature and strain rate effects on the flow stress and work-hardening, 
which is expressed as

where, A, C, P1, P2, γ and β are the material parameters. Tr is the reference temperature.
Then, the relation between stress and plastic strain is written as

Determination of parameters. At yield point, εp = 0, the yield stress for a given strain rate and tempera-
ture can be obtained by Eq. (12) as follow:

Then, the stress is written as

Equation (16) is reduced to

By the stress–strain curve, the yield stress can be obtained easily. Then, using the plot of ln(σ − σys) VS ln εp , 
the value of f (T , ε̇) is found from the interception with the vertical axis and m is from the slope. Lastly, the other 
parameters are calculated easily by the mathematical software Matlab when the values of yield stress and f (T , ε̇) 
are obtained at the given strain rate and temperature.

Results
Applications of the present model as well as comparisons to the experimental data for OFHC  Cu34,35,  Ta12,36 and 
Ti–6Al–4V  alloy13,37 metals are illustrated in this section. The OFHC Cu, as an important fcc metal, is widely used 
in the industry due to its high ductility combined with low volatility, high thermal and electrical conductivity. Ta 
is a bcc metal that has generated a lot of interest in industry due to its density, strength and ductility over wide 
ranges of strain rates and temperatures. Ti–6Al–4V alloy, as the most widely used Ti alloy, has been applied in 
aero-engine, gas turbines and other applications due to their high strength to weight ratio, ductility, and ability to 
withstand high temperatures and resist corrosion. It consists of hcp α-grains, with a dispersion of stabilized bcc β 
phase around grain boundaries at room temperature. And α phase transforms to β phase at 873  K13. The Cu, Ta 
and Ti–6Al–4V alloy are used here as the applications for the present model to show the temperature and strain 
rate effects on the elastic deformation, flow stress and work-hardening for metal with different crystal structure.

We calculated the stress–strain curves of these three kinds of materials at different temperatures and strain 
rates. For Cu, the stress-plastic strain curves have been calculated from 294 to 730 K with strain rate from 0.0004 
to 6000  s−134,35. For Ta, the temperature is from 298 to 589 K, and the strain rate is from  10–6 to 0.53  s−112,36. 
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And for Ti–6Al–4V alloy, the strain rate is from  10–5 to 2700  s−1, and the temperature is from 233 to 598  K13,37. 
The calculated parameters were displayed in the Table 1. The reference strain rate ε̇r is 1  s−1, and the reference 
temperature Tr is 298 K.

The calculation and experiment results are displayed in the Figs. 2, 3 and 4. The results display that the yield 
stress and work-hardening behavior exhibit a high sensitivity to strain rate and temperature for Cu, Ta and 
Ti–6Al–4V alloy. It is found that the yield stress decreases with temperature rising but increases with strain 
rate rising. At the same time, the work-hardening decreases with the increasing of temperature and strain rate. 
For the example of Ta, at the strain rate of 0.0053  s−1, the yield stress decreases from 135 to 105 MPa when the 
temperature increases from 422 to 589 K; at 298 K, the yield stress increases from 110 to 280 MPa when the 
strain rate increases from  10–6 to  10–1  s−1. Then, for Ti–6Al–4V alloy, the working-hardening decreases when 

Table 1.  Material parameters for the present constitutive model.

A/MPa B m n C P1 P2 γ β

OFHC Cu 1456.11 0.09 0.38 0.00 101.92 − 3.75 ×  10–8 − 1.00 − 0.49 − 5.71 ×  10–5

Ta 350.41 2.05 0.30 0.21 0.69 0.060 − 0.81 − 3.50 0.058

Ti–6Al–4V alloy 75.23 0.88 0.60 0.062 519.51 − 8.89 ×  10–7 − 0.97 − 0.60 7.42 ×  10–4

Figure 2.  Comparison of stress–plastic strain curves for OFHC Cu between the calculated and experimental 
results at different temperatures and strain rates.
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the temperature increases from 223 to 422 K at strain rate of  10–3  s−1; at 298 K, it also decreases when the strain 
rate increases from  10–5 to 1900  s−1.  

The comparisons between calculated and experimental results also reflect that the present model describes 
the deformation behavior of different metal materials over wide ranges of temperatures and strain rates well. For 
metallic materials at higher strain rate, the fluctuation would appear around the yield point in the stress–strain 
curve. In the experiment, the amplitude of the fluctuation could change with test method, type of machine, 
testing environment and so on. The raising or lowering of stress at higher strain rate is not an inherent deforma-
tion behavior for materials. For a macroscopical constitutive model, the calculated stress–strain curve is usual 
smooth and continuous. Hence, the fluctuation of stress for BCC Ta at strain rate of  10–1  s−1 and  10–2  s−1 was not 
reflected by the present model.

Discussion
The present model was established based on the new decomposition of deformation gradient. Firstly, the free 
thermal expansion of lattice was considered in the total deformation process and the thermal strain was intro-
duced into the total strain. The thermal strain can be calculated easily based on the Eqs. (5) and (6). Then, the 
thermo-elastic constitutive equations for single crystals and polycrystalline metals were established. The elastic 
stiffness at different temperatures would be obtained by Eqs. (9) and (11). Hence, the present model, which 
couples the thermal vibration and the structural deformation together, is more concise and efficient than the 
atomistic  models20 since that there is no need to compute the normal vibration frequency and the thermal effect 
is reflected by the thermal expansion of lattice.

Figure 3.  Comparison of stress–strain curves for Ta between the calculated and experimental results at 
different temperatures and strain rates.
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For the plastic deformation behavior, the new relation between the stress and plastic strain is expressed by 
Eq. (14) with nine parameters. Although the number of parameters in the present model is a little more than 
JC and KHL models, the computational process of the present model is as simple as these two models. And the 
material parameters could be obtained easily by Matlab based on the stress–strain curves of experiments. More 
importantly, Eq. (14) can describe the strain rate and temperature effect on the plastic behavior of crystalline 
metallic materials accurately. Firstly, the strain-hardening index m is less than 1 and keeps the same when the 
strain rate and temperature change, which reveals that the work-hardening rate decreases with strain in the defor-
mation process. Then, the parameter γ is less than zero, which reveals that the yield stress and working-hardening 
decrease with temperature. Lastly, since the parameters A, B, C and n are greater than or equal to 0, the P1, P2 and 
β would reflect the increase or decrease with strain rate in yield stress and working-hardening, which makes the 
present model able to describe the deformation behavior of crystalline metallic materials with various structure.

Therefore, the present model is better than JC and ZA models because the JC model is not appropriate for 
the material that the work-hardening decreases with increasing strain  rate13 and the ZA model considers two 
different forms for fcc and bcc  materials38. Comparing with KHL model, the advantage of the present model is 
the coupling of structural deformation and thermal vibration by the new decomposition of deformation gradient.

In the future work, considering that the deformation behavior of crystalline metallic materials is closely 
related to the microstructure evolution, the strain rate and temperature effects on the microscopic deformation 
mechanisms will be investigated combining with experimental results. Based on the present work, the change 
law of dislocation density with test temperature and strain rate will be analyzed by the microscopic observa-
tion results, and then it will be introduced into the relationship between the stress and plastic strain. A new 
constitutive model based on the microscopic deformation mechanisms will be established to not only describe 

Figure 4.  Comparison of stress–plastic strain curves for Ti–6Al–4V alloy between the calculated and 
experimental results at different temperatures and strain rates.
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the deformation behavior but also reveal the microscopic deformation mechanism for metallic materials. And 
the relationship between the macroscopical deformation behavior and microscopic mechanism will be revealed 
furtherly.

Conclusion
The strain rate dependent thermo-elasto-plastic constitutive model in the present work was proposed to describe 
the effects of temperature and strain rate on the deformation behavior for crystalline metallic materials. The effect 
of free thermal expansion is introduced into this model by the new decomposition of the deformation gradient. 
The thermo-elastic constitutive equations of single crystal and polycrystal were established firstly, and then a new 
relation between the stress and plastic strain was proposed to describe the temperature and strain rate effects on 
the yield stress, as well as the work-hardening behavior of metallic materials. The present constitutive model gave 
an excellent correlation with the experimental data of different crystalline metallic materials over wide ranges of 
strain rates and temperatures. And it has good universality and high efficiency for crystalline metal materials.
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