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Space-time energy spectra describe the distribution of energy density over space and
timescales, which are fundamental to studying dynamic coupling at spatial and temporal
scales and turbulence-generated noise. The present paper develops a dynamic autore-
gressive (DAR) random forcing model for space-time energy spectra in turbulent shear
flows. This model includes the two essential mechanisms of statistical decorrelation:
the convection proposed by Taylor’s model and the random sweeping proposed by the
Kraichnan-Tennekes model. The new development is that DAR random forcing is in-
troduced to represent the random sweeping effect. The resulting model can correctly
reproduce the convection velocity and spectral bandwidths, while a white-in-time random
forcing model makes erroneous predictions on spectral bandwidths. The DAR model is
further combined with linear stochastic estimation (LSE) to reconstruct the near-wall ve-
locity fluctuations of the desired space-time energy spectra. Direct numerical simulation of
turbulent channel flows is used to validate the DAR model and evaluate the Werner-Wengle
wall model and the LSE approach. Both the wall model and LSE incorrectly estimate the
spectral bandwidths.
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I. INTRODUCTION

The goal of the present paper is to develop a stochastic dynamical model for space-time energy
spectra in turbulent shear flows. A space-time energy spectrum characterizes the energy distribution
of velocity fluctuations over spatial and temporal lengthscales [1]. This spectrum can be used to
study the spatiotemporal dynamics of turbulent flows and investigate the underlying mechanism of
dominating coherent structures [2,3]. Space-time energy spectra are usually estimated from exper-
imental measurements [4,5] and numerical simulations [6,7]. To understand the space-time energy
spectrum thus obtained, we need to develop a simple stochastic model with dynamics consistent with
the Navier-Stokes equations. It is our hope that the simple model not only reproduces the space-time
energy spectra for theoretical studies but also provides the spatiotemporal velocity fluctuations at
unresolved scales for the time-accurate large-eddy simulation of turbulence-generated noise and
particle-laden turbulence.

Space-time energy spectra can be expressed by the Fourier transformation of the two-time
correlations of Fourier modes of velocity fluctuations with respect to time separations. The tem-
poral correlations of velocity modes are dominated mainly by the effects of the nonlinear terms
in the Navier-Stokes equations: convection of velocity fluctuations by large-scale velocities and
the self-interaction of velocity fluctuations. Large-scale convection can be represented by the
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convection-dominating equation that originates from Taylor’s hypothesis [8]. The interactions of
velocity fluctuations cause energy transfers between different Fourier modes [9,10] and temporal
decorrelations of Fourier modes [11]. The energy transfer can be modeled by eddy viscosity, and
the temporal decorrelation can be modeled by the random sweeping hypothesis [12,13]. Therefore,
a dynamic model for space-time energy spectra should include the coupling effects of large-scale
convection, eddy viscosity and random sweeping.

The random sweeping hypothesis [12,13] proposes a random convection equation for space-
time energy spectra in isotropic and homogeneous turbulence, which implies that the temporal
decorrelation of velocity fluctuations is dominated by random convection velocities at large scales.
This model is combined with Taylor’s hypothesis to yield the space-time energy spectra in turbulent
channel flows [7,14]. However, in the application of the random sweeping model to numerical
simulation, a large sample size of random convection velocities is needed to generate an ensemble
of velocity fluctuations. This incurs tremendous computational costs. An alternative is to use an
external random forcing to stochastically perturb small-scale motions. In comparison with the
random sweeping hypothesis, the random forcing approach is more tractable in both theoretical
studies and numerical simulations. In this paper, we develop a dynamical model for the temporal
correlation of Fourier modes, which uses random forcing to represent random sweeping.

The random forcing approach has been used to represent the nonlinear part of the Navier-Stokes
equations for velocity fluctuations. White-in-time random forcing was introduced into the linearized
Navier-Stokes equations about a mean velocity profile to investigate the energy amplification and
characteristics of coherent structures [15–20]. In particular, the resolvent operator is developed
to uncover elements of the coherent structures of wall turbulence [21–23]. The random forcing
approach has also been used to study space-time energy spectra. Farrell and Ioannou [24] used
the linearized Navier-Stokes equations with white-in-time random forcing to estimate space-time
energy spectra, which characterize the coherent structures observed from experimental measure-
ments. Zare et al. [25] introduced colored-in-time random forcing to replace the white-in-time
random forcing in the linearized Navier-Stokes operator. The obtained results provide the temporal
energy spectra at fixed wave numbers. Their model was further shown to be equivalent to the
modified linearized Navier-Stokes operator with white-in-time random forcing. Morra et al. [26]
used white-in-time and colored-in-time random forcing in a resolvent-based model for estimating
space-time energy spectra in turbulent channel flows. This model with colored-in-time random
forcing was found to correctly estimate the temporal energy spectra at fixed wave numbers and
the cross-spectra in the wall-normal direction, especially at the characteristic length scales of
buffer-layer and large-scale motions. Towne et al. [27] proposed determining the random forcing in
the resolvent operator from the available velocity fluctuations at the outer layer and then applying
the obtained random forcing to the resolvent operator at the inner layer. This method has been used
to predict space-time energy spectra with several refinements [28]. The input-output analysis [29]
provides a framework to investigate the space-time dynamics of fluctuations around a laminar or
turbulent base flow, where input is either white-in-time or colored-in-time.

In this paper, we show that white-in-time random forcing leads to divergent bandwidths of
space-time energy spectra. A space-time energy spectrum is characterized primarily by its first-
and second-order moments [30]. The first-order moments conditioned at a given frequency or wave
number determine the convection velocities. The second-order conditional moments determine the
spectral bandwidths, which measure the well-known spectral broadening effects in turbulent flows.
In fact, a divergent spectral bandwidth implies a vanishing Taylor microscale in time. To correctly
reproduce the spectral bandwidths, we develop a dynamic autoregressive (DAR) forcing to represent
random forcing. The DAR forcing is dependent on the previous states of both velocity fluctuations
and random forcing. As a result, the dynamic models subject to the DAR forcing, which is called
the DAR model in the present paper, can reproduce the space-time energy spectra with the desired
convection velocities and spectral bandwidths. In the DAR model, the inputs are spatial energy
spectra, convection velocity, and streamwise and spanwise sweeping velocities; the output is the
space-time energy spectra. In other words, the DAR model with the known spatial energy spectra
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and three constant characteristic velocities can reproduce the unknown space-time energy spectra,
which have the exact first two-order conditional moments at given wave numbers. Furthermore, the
DAR model yields the correct scaling of marginal distributions of space-time energy spectra such
as the temporal energy spectra.

This paper is organized as follows. In Sec. II, Taylor’s model with white-in-time random forcing
is shown to yield divergent spectral bandwidths, where the fundamental concepts and necessary
notations for space-time energy spectra used in the present paper are provided. In Sec. III, we use the
Werner-Wengle (WW) wall model and the linear stochastic estimation (LSE) approach to estimate
space-time energy spectra and find that both of them incorrectly estimate the spectral bandwidths.
In Sec. IV, the DAR model is developed for space-time energy spectra. In Sec. V, datasets from the
direct numerical simulation (DNS) of turbulent channel flows are used to verify the DAR model. In
Sec. VI, conclusions and future work on the DAR model are presented.

II. TAYLOR’S MODEL WITH WHITE-IN-TIME RANDOM FORCING

We start by using the spatial Fourier modes to calculate space-time energy spectra, with the
necessary notations used in the rest of the present paper, and then show that Taylor’s model with
white-in-time random forcing has divergent spectral bandwidths.

Consider the spatial Fourier mode of streamwise velocity fluctuations û(k, t ; y) at a given wall-
normal location y. Here, the wave-number vector is k = (kx, kz ), with kx and kz being the streamwise
and spanwise wave numbers, respectively. In the following sections, our study focuses on a fixed
wall-normal location y. For convenience, the wall-normal location y is not explicitly expressed in
the physical variables. For example, û(k, t ; y) is simply denoted as û(k, t ).

A two-time correlation �(k, τ ) of velocity Fourier mode û(k, t ) is defined by

�(k, τ )

�(k)
= 〈û∗(k, t )û(k, t + τ )〉

〈û∗(k, t )û(k, t )〉 . (1)

Here, �(k) is the spatial energy spectrum of velocity fluctuations, and τ is the time separation. The
Fourier transform of �(k, τ ) is made with respect to τ , which yields

�(k, ω) = 1

2π

∫
�(k, τ )eiωτ dτ . (2)

Note that different independent variables are used to distinguish different energy spectra, such as
�(k, ω) for space-time energy spectra, �(k) for spatial energy spectra and �(ω) for temporal
energy spectra. Similarly, û(k, ω) and û(k, t ) denote the space-time Fourier mode and spatial
Fourier mode, respectively.

We consider Taylor’s model with white-in-time random forcing

∂ û(k, t )

∂t
= −ikxUcû(k, t ) + σ̂ (k, t ) (3)

and

σ̂ (k, t ) = −c(k)û(k, t ) + D(k)ξ̂ (k, t ), (4)

where Uc is the convection velocity. In addition, ξ̂ (k, t ) is a complex white-in-time random forcing:
its real part ξ̂r (k, t ) and imaginary part ξ̂i(k, t ) are independent, which are given by

〈ξ̂r (k, t )ξ̂r (k′, t ′)〉 = 〈ξ̂i(k, t )ξ̂i(k′, t ′)〉 = δ(k − k′)δ(t − t ′). (5)

Noting ξ̂ (k, t ) = ξ̂r (k, t ) + iξ̂i(k, t ), we have 〈ξ̂ ∗(k, t )ξ̂ (k′, t ′)〉 = 2δ(k − k′)δ(t − t ′) in which the
coefficient of the variance of the random forcing ξ̂ (k, t ) is 2. D(k) is the amplitude of the random
forcing, and c(k) is a damping coefficient. In Eq. (3), the first term represents the convection effect,
while the second term represents an external force. The external force consists of white-in-time
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random forcing and damping forcing. The system with random forcing and damping forcing will
maintain a statistically stationary state.

The solution to Eqs. (3) and (4) is

û(k, t ) = D(k)e−ikxUct
∫ t

−∞
ξ̂ (k, s)eikxUcse−c(k)(t−s)ds, (6)

from which we obtain

〈û∗(k, t )û(k′, t + τ )〉 = D(k)D(k′)δ(k − k′)
c(k)

e−c(k)|τ |−ikxUcτ . (7)

The space-time energy spectra and spatial energy spectra are then found to be

�(k, ω) = �(k)
c(k)

π [(ω − kxUc)2 + c2(k)]
(8)

and

�(k) =
∫

�(k, ω)dω = D2(k)

c(k)
. (9)

Here, the spatial energy spectra are defined as [31]

�(k)δ(k − k′) = 〈û∗(k, t )û(k′, t )〉. (10)

It should be noted that the relations between the space-time energy spectra and spatial energy spectra
can be found in Zare et al. [32].

We now calculate the first- and second-order conditional moments of the space-time energy
spectra at a given wave number

ωc(k) =
∫

ω�(k, ω)dω

�(k)
= kxUc (11)

and

B(k) =
∫

(ω − ωc)2�(k, ω)dω

�(k)
= c(k)

π

∫
(ω − kxUc)2

(ω − kxUc)2 + c2(k)
dω = ∞. (12)

The first expression in Eq. (11) defines the conditional mean frequencies, while the first expression
in Eq. (12) defines the spectral bandwidths. The mean frequencies are often used to estimate the
wave-number-dependent convection velocity, such that cu(k) = ωc(k)/kx [33]. Equation (11) shows
that the white-in-time random forcing model reproduces the mean frequency, which matches the
wavenumber through the convection velocity. However, the integration in the second expression of
Eq. (12) is divergent.

As a result, it can be concluded from Eqs. (9) and (12) that, although the space-time energy spec-
tra from Taylor’s model with white-in-time forcing contain finite energy, their spectral bandwidths
are divergent.

According to Eq. (3), we can obtain

〈|σ̂ (k, t )|2〉
〈|û(k, t )|2〉 = 〈|∂t û|2〉

〈|û|2〉 + (kxUc)2 + ikxUc
〈û∂t û∗〉
〈|û|2〉 − ikxUc

〈û∗∂t û〉
〈|û|2〉 . (13)

Using the definitions of the mean frequency and spectral bandwidth, we can find

〈û∗(k, t )∂t û(k, t )〉
〈|û(k, t )|2〉 = −iωc(k) (14)

and

〈|∂t û(k, t )|2〉
〈|û(k, t )|2〉 = B(k) + ω2

c (k). (15)
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The substitution of Eqs. (14) and (15) into Eq. (13) leads to

〈|σ̂ (k, t )|2〉
〈|û(k, t )|2〉 = B(k) + [ωc(k) − kxUc]2. (16)

Therefore, in the case of ωc(k) = kxUc, the ratio of input and output variances is the spectral
bandwidth. This implies that 〈|σ̂ (k, t )|2〉 is divergent if and only if B(k) is infinite.

The Taylor microscale λT (k) of temporal correlations of velocity modes in Eqs. (3) and (4) can
be expressed in terms of the spectral bandwidths

λT (k) =
√

2〈û∗(k, t )û(k, t )〉
〈∂t û∗(k, t )∂t û(k, t )〉 =

√
2

B(k) + ω2
c (k)

. (17)

Therefore, the divergent spectral bandwidths imply vanishing Taylor microscales. This contradicts
to the nonvanishing Taylor microscales in turbulent shear flows.

III. WALL MODEL AND LSE

We use the WW wall model [34] and the spectral LSE approach [35] to estimate space-time
energy spectra and compare the obtained results with the DNS results of turbulent channel flows.
It is inferred that both of them incorrectly estimate the spectral bandwidths since they do not have
sufficient velocity fluctuations. We present numerical evidence to confirm this inference.

A. WW wall model

We use the DNS dataset [30,36] of turbulent channel flows to evaluate the predictions of the WW
wall model on space-time energy spectra: the velocities in the outer layer are used to generate the
near-wall velocity fluctuations. It is then shown that the WW wall model significantly underpredicts
the spectral bandwidths.

Consider the streamwise velocity component U (x, y, z, t ) in turbulent channel flows, where x,
y, and z denote the streamwise, wall-normal, and spanwise directions, respectively. The velocity
fluctuations can be calculated through

u(x, y, z, t ) = U (x, y, z, t ) − 〈U (x, y, z, t )〉, (18)

where the angular bracket 〈〉 denotes the ensemble averaging which is performed in time and in the
streamwise and spanwise directions due to homogeneity.

The WW wall model assumes that an instantaneous near-wall velocity profile is the piecewise
combination of linear and power functions, given by

U (x, y, z, t )

uτ (x, z, t )
=

{ yuτ

ν
,

yuτ

ν
� 11.8,

A
( yuτ

ν

)B
,

yuτ

ν
> 11.8,

(19)

where uτ (x, z, t ) is the local and instantaneous friction velocity, ν is the kinematic viscosity,
A = 8.3, and B = 1/7. In the present test, the velocity UO at y+

O = 92 in the outer layer of turbulent
channel flows at Reτ = 550 is taken to calculate the friction velocity in terms of the second
expression of Eq. (19)

uτ =
(

UOνB

AyB
O

)1/(B+1)

. (20)

Here, and throughout this paper, the superscript “+” indicates normalization with wall units. The
velocity UW at y+

W = 5 in the near-wall region is then obtained according to the first expression
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(a) (b)

FIG. 1. Comparison of the space-time energy spectra obtained from the DNS and the WW wall model for
the streamwise velocity fluctuations in turbulent channel flows at Reτ = 550. (a) Contours obtained from the
DNS at y+

W = 5 (colored shades with solid lines) and the WW wall model at y+
W = 5 (dashed lines). (b) Contours

obtained from the DNS at y+
O = 92 (colored shades with solid lines) and the WW wall model at y+

W = 5 (dashed
lines).

of Eq. (19)

UW = yW

ν

(
UOνB

AyB
O

)2/(B+1)

. (21)

The obtained velocity UW is used to calculate the mean velocity, the r.m.s. of velocity fluctuations,
and space-time energy spectra. The mean velocities normalized by the bulk velocity Ub, 〈UW 〉/Ub,
obtained from DNS and the WW wall model are 0.26 and 0.29, respectively, which are very similar.
However, the r.m.s. of velocity fluctuations

√
〈u2

W 〉/Ub from the WW wall model and the DNS
are 0.055 and 0.097, respectively. The first is much smaller than the second since the wall model
suppresses the velocity fluctuations.

Figure 1(a) plots the isocontours of the space-time energy spectra at y+
W = 5 obtained from the

WW wall model and the DNS. The preferences of isospectra from the WW wall models are more
upwardly skewed than those from the DNS. The bandwidths of the cuts either in the wave number
or frequency directions from the WW wall model are narrower than those from the DNS. Notably,
Fig. 1(b) shows that the results from the WW wall model at y+

W = 5 are closer to the DNS results
at y+

O = 92. To confirm these observations, Figs. 2(a) and 2(b) plot the convection velocities cu(kx )
and spectral bandwidths B(kx ), respectively. The results from the WW wall model at y+

W = 5 are
closer to the DNS results at y+

O = 92 than those at y+
W = 5. That is, the WW wall model takes the

convection velocities and spectral bandwidths at the outer layers. In fact, the space-time energy
spectra in the near-wall region cannot be fully determined by the flows in the outer layers, which
motivates us to develop a new model for space-time energy spectra.

B. Linear stochastic estimation

Baars et al. [35] used the spectral LSE approach to estimate the large-scale motions in the near-
wall region from the flow fields in the outer layer. In the present subsection, the velocity fields thus
obtained are used to calculate the space-time energy spectra and compared with the DNS results of
turbulent channel flows [30,36].

In the LSE approach, the large-scale velocities ûL(k, t ; y+
W ) are estimated as follows:

ûL(k, t ; y+
W ) = α(k)û(k, t ; y+

O ), (22)
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(a) (b)

FIG. 2. (a) Wave-number-dependent convection velocities and (b) spectral bandwidths for the streamwise
velocity fluctuations in turbulent channel flows at Reτ = 550. The results from the DNS at y+

W = 5 are denoted
by red solid lines, the results from the DNS at y+

O = 92 are denoted by blue dashed lines and the results from
the WW model at y+

W = 5 are denoted by green dash-dotted lines.

where û(k, t ; y+
O ) denotes the velocity at location y+

O in the outer layer. The coefficient α(k) is
determined by

α(k) = 〈û∗(k, t ; y+
O )û(k, t ; y+

W )〉
〈û∗(k, t ; y+

O )û(k, t ; y+
O )〉 , (23)

where the ensemble averaging is performed in time. Consequently, we calculate the spatial energy
spectra

�L(k; y+
W ) = |α(k)|2�(k; y+

O ) (24)

and the space-time energy spectra

�L(k, ω; y+
W ) = |α(k)|2�(k, ω; y+

O ). (25)

The velocity UO at y+
O = 92 in the outer layer of turbulent channel flows at Reτ = 550 is used to

estimate the large-scale velocities ûL(k, t ; y+
W ) at y+

W = 5 by the LSE method. Figure 3(a) compares
the space-time energy spectra obtained from LSE and DNS. Evidently, the isocontours of the space-
time energy spectra obtained are farther in the interior of those obtained from DNS. Therefore,
the LSE results are significantly smaller than the DNS results. This is because the LSE results
reproduce the large-scale motions but lack the small-scale motions. Figures 3(b) and 3(c) plot the
convection velocities and spectral bandwidths, respectively. Similar to the result of the WW model,
the convection velocities from the LSE at y+

W = 5 are closer to the DNS results at y+
O = 92 than

those at y+
W = 5. In addition, the LSE also incorrectly estimates the spectral bandwidths at y+

W = 5.

IV. DAR FORCING MODEL

We will introduce DAR forcing to a simple stochastic model in the present paper, and the simple
stochastic model is chosen as Taylor’s model. The DAR forcing can also be introduced to the
linearized Navier-Stokes operators.

A. Taylor’s model with DAR forcing

The dynamic decorrelation in turbulent shear flows is mainly determined by convection, random
sweeping, and distortion. The convection effects can be represented by Taylor’s model, while ran-
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(a)

(c)

(b)

FIG. 3. Comparisons of the (a) space-time energy spectra, (b) convection velocities, and (c) spectral
bandwidths obtained from the DNS and LSE for the streamwise velocity fluctuations in turbulent channel
flows at Reτ = 550. (a) The contours from the DNS at y+

W = 5 are denoted as colored shades with solid lines
and the results from LSE at y+

W = 5 are denoted as dashed lines. (b,c) The results from the DNS at y+
W = 5

are denoted by red solid lines, the results from the DNS at y+
O = 92 are denoted by blue dashed lines and the

results from the LSE at y+
W = 5 are denoted by green dash-dotted lines.

dom sweeping can be represented by the Kraichnan-Tennekes model [12,13]. In this subsection, we
introduce DAR forcing to represent distortion. The linear combination of the three representations
suggests the following stochastic differential equation (SDE) with random forcing:

∂υ̂(k, t )

∂t
= −ikxUcυ̂(k, t ) + σ̂ (k, t ), (26)

where υ̂(k, t ) is the velocity field generated in the presence of a random advection field v and v is a
random sweeping velocity that satisfies a Gaussian distribution of zero mean and is constant in both
space and time. The first term in the right-hand side (r.h.s.) of Eq. (26) serves as the convection with
a constant convection velocity Uc. The second term in Eq. (26) consists of the three components

σ̂ (k, t ) = σ̂1(k, t ) + σ̂2(k, t ) + σ̂3(k, t ). (27)

The three components are determined by

σ̂1(k, t ) = −i(k · v)υ̂(k, t ), (28)
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∂σ̂2(k, t )

∂t
= −ikxUcσ̂2(k, t ) − c(k)σ̂2(k, t ) + D(k)ξ̂ (k, t ), (29)

σ̂3(k, t ) = −γ (k)υ̂(k, t ). (30)

Here, σ̂1(k, t ) is random sweeping, σ̂2(k, t ) denotes external random forcing and σ̂3(k, t ) is the
dissipation. In addition, γ (k) is the dissipation coefficient; c(k) is the damping coefficient; ξ̂ (k, t )
is the white-in-time random forcing given by Eq. (5), with its intensity D(k).

The most salient feature of Eq. (29) is the external random forcing that is determined mainly
by the convection and white-in-time random forcing. Dissipation and damping are introduced to
maintain statistically stationary states. Equation (27) can also be considered a generalization of the
previous models: it becomes Taylor’s model if σ̂ (k, t ) is zero and it is the Kraichnan-Tennekes
model [12,13] if Uc, σ̂2(k, t ), and σ̂3(k, t ) are zero. Wilczek and Narita’s model [37] is recovered if
σ̂2(k, t ) and σ̂3(k, t ) vanish.

The evolution of the first term σ̂1(k, t ) in Eq. (27) can be determined from Eqs. (27), (28), and
(30):

∂σ̂1(k, t )

∂t
= −ikxUcσ̂1(k, t ) − [(k · v)2 − iγ (k)(k · v)]υ̂(k, t ) − i(k · v)σ̂2(k, t ). (31)

The evolution of the second term σ̂2(k, t ) in Eq. (27) can be obtained by substituting Eqs. (28) and
(30) into Eq. (29):

∂σ̂2(k, t )

∂t
= − ikxUcσ̂2(k, t ) − c(k)σ̂ (k, t ) − ic(k)(k · v)υ̂(k, t )

− γ (k)c(k)υ̂(k, t ) + D(k)ξ̂ (k, t ). (32)

The evolution of the third term in Eq. (27) can be derived from Eqs. (26) and (30):

∂σ̂3(k, t )

∂t
= −ikxUcσ̂3(k, t ) − γ (k)σ̂ (k, t ). (33)

Note that in Eqs. (26), (28), (30), (31), and (32), υ̂(k, t ) is the velocity field generated in the
presence of an advection field v constant in both space and time, which is not physically realistic.
To generate the realistic velocity field û(k, t ), we add Eqs. (31), (32), and (33) and then take the
ensemble averaging of the resultant summation with respect to the random sweeping velocity, which
gives the DAR model for the realistic velocity field û(k, t ):

∂ û(k, t )

∂t
= − ikxUcû(k, t ) + σ̂ (k, t ), (34a)

∂σ̂ (k, t )

∂t
= − ikxUcσ̂ (k, t ) − b(k)û(k, t ) − 2q(k)σ̂ (k, t ) + 2

√
b(k)q(k)ϕ(k)ξ̂ (k, t ), (34b)

where b(k) = 〈(k · v)2〉 + γ (k)c(k), q(k) = [c(k) + γ (k)]/2, and ϕ(k) = D2(k)/[4b(k)q(k)].
The parameter ϕ(k) is used to identify the amplitude of the white-in-time random forcing.
The dissipation coefficient γ (k) is ignorable if random sweeping is dominant over dissipation,
〈(k · v)2〉 � γ (k)c(k), which implies

b(k) ≈ 〈(k · v)2〉 = k2
xV 2

x + k2
z V 2

z . (35)

Here, Vx is the streamwise sweeping velocity, and Vz is the spanwise sweeping velocity.
The Kraichnan-Tennekes random sweeping hypothesis implies that small-scale motions are

swept by large-scale motions with little distortion [12,13]. The large-scale motions are thought
to be a sweeping velocity and represented by a Gaussian random field, constant in space and time.
As a result, the space-time energy spectra can be obtained over an ensemble of realizations of
the Gaussian random field. In this paper, the ensemble average of the Gaussian random field is
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taken, which leads to the crucial term b(k). This makes the DAR model theoretically tractable and
numerically implementable.

Equations (34a) and (34b) describe the DAR model. The time derivative of the external random
forcing is determined by convection, random sweeping and white-in-time noise. As a result, the
velocity modes are dependent on their past states. Therefore, the DAR model is an autoregressive
process.

If q(k) = √
b(k), the solution of the DAR model can be found as

û(k, t ) = 2
√

b3/2(k)ϕ(k)e−ikxUct
∫ t

−∞
ξ̂ (k, s)eikxUcs(t − s)e−√

b(k)(t−s)ds. (36)

From Eq. (36), we obtain

〈û∗(k, t )û(k′, t + τ )〉 = 2ϕ(k)δ(k − k′)[1 +
√

b(k)|τ |]e−√
b(k)|τ |−ikxUcτ . (37)

Taking the time separation τ as zero in Eq. (37), we obtain the following equation for determining
the parameter ϕ(k):

ϕ(k) = �(k)/2. (38)

Therefore, ϕ(k) is proportional to the spatial energy spectrum of the desired velocity û(k, t ). The
result in Eq. (37) directly yields the temporal correlations of velocity modes

�(k, τ ) = �(k)(1 +
√

b(k)|τ |)e−√
b(k)|τ |−ikxUcτ (39)

and the space-time energy spectra

�(k, ω) = �(k)
2b3/2(k)

π [(ω − kxUc)2 + b(k)]
2 . (40)

There are two other solutions to the DAR model. If q(k) <
√

b(k), we find the temporal
correlations of velocity modes

�(k, τ ) = �(k)
q sin(

√
b − q2|τ |) +

√
b − q2 cos(

√
b − q2|τ |)√

b − q2
e−q|τ |−ikxUcτ . (41)

If q(k) >
√

b(k), we find the temporal correlations of velocity modes

�(k, τ ) = �(k)

2
√

q2 − b
[(q +

√
q2 − b)e−(q−

√
q2−b)|τ | − (q −

√
q2 − b)e−(q+

√
q2−b)|τ |]e−ikxUcτ .

(42)

The temporal correlation in Eq. (41) with Uc = 0 does not decay monotonically but oscillates, which
is inconsistent with the monotonic Gaussian decay predicted by the random sweeping model. The
correlation in Eq. (42) with Uc = 0 is the bi-exponential form, which decays too slowly compared
with Gaussian decay. Therefore, q(k) = √

b(k) and the corresponding temporal correlation in
Eq. (39) are taken to be consistent with the random sweeping model.

Equation (39) implies the exponential decay of the temporal correlations, especially for large
time separations, while the algebraic factor modifies the small separations. Equation (40) shows
that the convection velocity characterizes the Doppler shift effect and, most importantly, that random
sweeping characterizes the Doppler broadening effect [7]. This can be further confirmed from the
conditional mean frequencies and bandwidths of space-time energy spectra, given by

ωc(k) =
∫

ω�(k, ω)dω

�(k)
= kxUc (43)
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and

B(k) =
∫

(ω − ωc)2�(k, ω)dω

�(k)
= b(k). (44)

Therefore, the DAR model exactly reproduces the mean frequencies and spectral bandwidths.
The DAR model can also produce the same scaling of the temporal energy spectra as Kol-

mogorov’s theory. If Kolmogorov scaling is taken for spatial energy spectra, such as �(kx ) ∝
|kx|−5/3, and b(k) is approximately taken as k2

xV 2
x , then

�(ω) =
∫

�(k, ω)dk ∼
∫

�(kx )
|kx|3[

(ω − kxUc)2 + k2
xV 2

x

]2 dkx

∼ |ω|−5/3
∫ |β|4/3[

(1 − βUc)2 + β2V 2
x

]2 dβ ∼ |ω|−5/3, (45)

where the transformation of the integral variable, β = kx/ω, is used in the third expression of
Eq. (45).

It is illuminating to compare the DAR forcing with the white-in-time and colored-in-time random
forcing as follows.

(i) The first term σ̂1(k, t ) in the DAR forcing represents the random sweeping effect in turbulent
flows. The white-in-time forcing excludes the random sweeping effect.

(ii) The second term σ̂2(k, t ) in the DAR forcing is the filtered white-in-time random forcing,
which is similar to the filter parametrization proposed by Zare et al. [25].

(iii) In the DAR model, no white-in-time random forcing is directly imposed on the velocity
component û(k, t ). It is shown that white-in-time random forcing leads to divergent spectral
bandwidths.

In the DAR model, Taylor’s model is used to account for convection. As a result, the linear
part of the DAR model is the simplest form of the linearized NS equations. The derivative of the
external forcing is governed by random sweeping, damping, and white-in-time noise. Therefore, the
governing equations for the state variable (streamwise velocities) are second-order autoregressive
processes. It is noted that the state variables in the present paper are not directly dependent on
white-in-time noise, which avoids divergent spectral bandwidths. It is shown that the colored-in-time
noise proposed by Zare et al. [25] for the linearized NS equations is equivalent to the modified
linearized NS equations with white-in-time noise. However, input-output analysis has the flexibility
for different external forces and provides a general and useful framework to study wall-bounded
turbulence [29].

Zare et al. [25], Morra et al. [26], and Towne et al. [27] used the linearized NS equations to
predict two-point velocity correlations in the wall-normal direction. This implies that if the DAR
forcing is applied to the linearized NS equations and the resolvent operator, it is possible that the
DAR model may reproduce not only the space-time velocity fields and space-time energy spectra
at different wall-normal positions, but also the space-time two-point velocity correlations in the
wall-normal direction. However, the present paper is limited to Taylor’s model.

B. Determination of the parameters in the DAR model

The propagation velocity and bandwidths of temporal spectra conditioned at fixed wave num-
bers are used to determine the following parameters in the DAR model: convection velocity Uc,
streamwise sweeping velocity Vx, and spanwise sweeping velocity Vz.

The convection velocity can be determined by space-time correlations

Uc = −∂2
rτ R(r, τ )

∂2
rrR(r, τ )

∣∣∣∣
r=0 τ=0

, (46)
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where the space-time correlations are defined as

R(r, τ ) = 〈u(x, y, z, t )u(x + r, y, z, t + τ )〉
=

∫∫
�(kx, ω)ei(kxr−ωτ )dkxdω. (47)

Here, R(r, τ ) denotes the space-time correlation of streamwise velocity fluctuations at the wall-
normal location y, �(kx, ω) denotes the corresponding space-time energy spectra and 〈〉 denotes
the ensemble averaging with respect to the streamwise coordinate x, spanwise coordinate z, and
time t . However, the dependence of the energy spectra and correlation function on the wall-normal
coordinate y is not explicitly indicated in the present subsection.

The substitution of Eq. (47) into Eq. (46) gives

Uc =
∫

cu(kx )k2
x �(kx )dkx∫

k2
x �(kx )dkx

, (48)

where

cu(kx ) = ωc(kx )

kx
, (49)

and

ωc(kx ) =
∫

ω�(kx, ω)dω

�(kx )
. (50)

In this case, cu(kx ) is the convection velocity of Fourier mode û(kx, t ; y), and ωc(kx ) is the mean
frequency of space-time energy spectra �(kx, ω) at a given wave number kx. Equation (48) is the
same as the definition given by Del Álamo and Jiménez [33].

We now calculate the bandwidths of the frequency spectra for a fixed wave number kx

B(kx ) =
∫

[ω − ωc(kx )]2�(kx, ω)dω

�(kx )

=
∫

(ω − kxUc)2�(kx, ω)dω

�(kx )

=
∫∫

(ω − kxUc)2�(kx, kz, ω)dkzdω

�(kx )

= k2
xV 2

x + V 2
z

∫
k2

z �(kx, kz )dkz∫
�(kx, kz )dkz

. (51)

In the above derivation, the mean frequency in the first equation is replaced by Eq. (50); the
space-time energy spectra �(kx, ω) in the second equation are replaced by

∫
�(kx, kz, ω)dkz; and

the space-time energy spectra in the third equation are replaced by the DAR model. Taking the
wave number kx as zero in Eq. (51), we obtain the following equation for determining the spanwise
sweeping velocity Vz:

V 2
z = B(kx )

∫
�(kx, kz )dkz∫

k2
z �(kx, kz )dkz

∣∣∣∣
kx=0

. (52)

We further calculate the weighted average of spectral bandwidths∫
B(kx )�(kx )dkx∫

k2
x �(kx )dkx

= V 2
x + V 2

z

∫
k2

z �(kz )dkz∫
k2

x �(kx )dkx
, (53)
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in which the spectral bandwidth B(kx ) is replaced by Eq. (51). Equation (53) is used to determine
the streamwise sweeping velocity Vx

V 2
x =

∫
B(kx )�(kx )dkx∫

k2
x �(kx )dkx

− V 2
z

∫
k2

z �(kz )dkz∫
k2

x �(kx )dkx
. (54)

The random sweeping velocity in the elliptic approximation (EA) model [38,39] for space-time
correlations can be expressed as

V 2
EA =

∫
B(kx )�(kx )dkx∫

k2
x �(kx )dkx

+
{∫

c2
u(kx )k2

x �(kx )dkx∫
k2

x �(kx )dkx
−

[∫
cu(kx )k2

x �(kx )dkx∫
k2

x �(kx )dkx

]2
}

. (55)

The first term in the r.h.s. of Eq. (55) represents the contribution of the spectral bandwidths to the
random sweeping velocity in the EA model. The second term represents the contribution of the
different velocity modes to the random sweeping velocity in the EA model, which becomes zero if
the convection velocities of different velocity modes are independent of wave numbers. Therefore,
Eq. (55) justifies that Eq. (53) is reasonable to determine the random sweeping velocity.

C. Reconstruction of near-wall velocity fields and energy spectra

The DAR model in combination with LSE can be used to generate the near-wall velocity fields
using the outer-layer velocity fields in turbulent channel flows. The DAR model generates velocity
fluctuations in the near-wall region, while LSE provides large-scale velocities in the same regions.
Their linear combination can produce near-wall velocities with the correct spectral bandwidths.

The near-wall velocity fields are assumed to be the sum of two parts, given by

û(k, t ; yW ) = ûL(k, t ; yW ) + ûR(k, t ; yW ), (56)

where the LSE part ûL(k, t ; yW ) represents the large-scale part and the remaining part ûR(k, t ; yW )
is generated from the DAR model. The LSE part ûL and the remaining part ûR are independent since
ûR is generated from ξ̂ . ξ̂ is independently generated in the simulation and thus independent of ûL

even for different time. Thus, we have

〈ûL∗(k, t ; yW )ûR(k, t ; yW )〉 = 〈ûL∗(k, t ; yW )〉〈ûR(k, t ; yW )〉 = 0 (57)

and

〈ûL∗(k, ω; yW )ûR(k, ω; yW )〉 = 〈ûL∗(k, ω; yW )〉〈ûR(k, ω; yW )〉 = 0. (58)

Therefore, the spatial energy spectra and the space-time energy spectra obtained from the DAR
model in combination with LSE are given by

�(k; yW ) = �L(k; yW ) + �R(k; yW ) (59)

and

�(k, ω; yW ) = �L(k, ω; yW ) + �R(k, ω; yW ), (60)

where �L denotes the energy spectra obtained from LSE and �R denotes those from the DAR
model.

The detailed procedure for estimating the near-wall velocity fields is described as follows.
(i) LSE is used to estimate the large-scale velocities ûL(k, t ; yW ) at the near-wall location yW

from the outer-layer velocities û(k, t ; yO) at the location yO

ûL(k, t ; yW ) = α(k)û(k, t ; yO), (61)

and

α(k) = 〈û∗(k, t ; yO)û(k, t ; yW )〉
〈û∗(k, t ; yO)û(k, t ; yO)〉 . (62)
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Then, the spatial energy spectra �L(k; yW ) and the space-time energy spectra �L(k, ω; yW ) of the
large-scale part can be obtained by Eqs. (24) and (25).

(ii) The DAR model is used to generate the remaining part ûR(k, t ; yW ) of the near-wall velocity
fluctuations, where the parameters ϕ(k), Uc, Vx, and Vz are determined from the energy spectra,
�R(k; yW ) and �R(k, ω; yW ), of the remaining part by using Eq. (38) and the method in Sec. IV B.
The remaining energy spectra �R(k; yW ) and �R(k, ω; yW ) are calculated from

�R(k; yW ) = �(k; yW ) − �L(k; yW ), (63)

�R(k, ω; yW ) = �(k, ω; yW ) − �L(k, ω; yW ). (64)

It should be emphasized that because the DAR model is performed to generate only the remaining
part of the near-wall velocity fields, it is necessary to use the remaining energy spectra �R(k; yW )
and �R(k, ω; yW ) to estimate the parameters. It is noted that the superscript ‘‘R” is omitted for
brevity in Eq. (38) and Sec. IV B.

(iii) The near-wall velocities are the sum of these two parts, as indicated in Eq. (56), and the
velocity fields can be obtained by the Fourier transform of û(k, t ; yW )

u(x, z, t ; yW ) =
∫∫

û(k, t ; yW )ei(kxx+kzz)dkxdkz. (65)

Consequently, the space-time energy spectra are given by Eq. (60), and the temporal correlations of
the Fourier modes are given by

�(k, τ ; yW ) = �L(k, τ ; yW ) + �R(k, τ ; yW ). (66)

Then, �(kx, ω; yW ) and �(kx, τ ; yW ) can be obtained by integrating �(k, ω; yW ) and �(k, τ ; yW ),
respectively, with respect to the spanwise wave number kz:

�(kx, ω; yW ) =
∫

�(k, ω; yW )dkz, (67)

�(kx, τ ; yW ) =
∫

�(k, τ ; yW )dkz. (68)

Finally, the space-time correlation can be obtained by the Fourier transform of �(kx, τ ; yW ):

R(r, τ ; yW ) =
∫

�(kx, τ ; yW )eikxrdkx. (69)

V. NUMERICAL RESULTS

Two DNS datasets of the turbulent channel flows at Reτ ≡ uτ h/ν = 550 and Reτ = 180 are used
to validate the DAR model, where uτ is the friction velocity, h is the channel half-height and ν is the
kinematic viscosity. A pseudospectral method with a 3/2 de-aliasing rule is performed to numeri-
cally solve the Navier-Stokes equations. Periodic boundary conditions are used in the streamwise
and spanwise directions, and no-slip boundary conditions are applied at the walls. For the DNS
at Reτ = 550, the computational domain is 8πh × 2h × 3πh in the streamwise (x), wall-normal
(y), and spanwise (z) directions, respectively, in which there are 1536 × 256 × 1152 grid points.
The time step is taken as �t = 1.25 × 10−3h/Ub (�t+ ≈ 0.037), where Ub is the bulk velocity. The
instantaneous flow fields are stored every eight steps during a period of 20.48h/Ub in the statistically
stationary state. For the DNS at Reτ = 180, the computational domain is 2πh × 2h × πh in the
streamwise, wall-normal, and spanwise directions, respectively, in which there are 128 × 128 × 128
grid points. The time step is taken as �t = 1 × 10−3h/Ub (�t+ ≈ 0.011). The instantaneous flow
fields are stored every ten steps during a period of 163.84h/Ub in the statistically stationary
state. The Navier-Stokes solver and the dataset have been validated and used in previous studies
[30,36,40].
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TABLE I. Parameters in the DAR model. The convection velocity Uc is normalized by the bulk velocity
Ub, and the streamwise sweeping velocity Vx and spanwise sweeping velocity Vz are normalized by the friction
velocity uτ .

Case Uc/Ub Vx/uτ Vz/uτ

y+ = 270 (Reτ = 550) 1.02 1.43 0.924
y+ = 5 (Reτ = 550) 0.484 2.84 0.599
y+ = 5 (Reτ = 180) 0.612 2.42 0.598

The spatial Fourier mode is calculated by

û(kx, t ; y, z) = 1

Lx

∫ Lx

0
u(x, t ; y, z) exp(−ikxx)dx, (70)

where Lx is the domain size in the streamwise direction. The space-time Fourier mode is calculated
by

ũ(kx, ω; y, z) = 1√
T

∫ T
0 w(t )2dt

∫ T

0
w(t )û(kx, t ; y, z)eiωt dt . (71)

Here, w(t ) is the Hanning window, and T is the temporal interval length taken as T = 20.48h/Ub

at Reτ = 550 and T = 10.24h/Ub at Reτ = 180. The space-time energy spectrum is calculated by

�(kx, ω; y) = 〈ũ∗(kx, ω; y, z)ũ(kx, ω; y, z)〉
�kx�ω

, (72)

where �kx = 2π/Lx, �ω = 2π/T , and the ensemble average is performed in time and in the
spanwise direction.

The DAR model without LSE is applied at y+ = 270 in the outer layer at Reτ = 550. In this
case, the parameters in the DAR model are taken as shown in the first line of Table I. Figure 4
compares the contours of the space-time energy spectra and the temporal spectra for three different

� �

�

�

(a) (b)

FIG. 4. Comparison of the space-time energy spectra obtained from the DNS and the DAR model for the
streamwise velocity fluctuations at y+ = 270 in turbulent channel flows at Reτ = 550. (a) Contours obtained
from the DNS (colored shades with solid lines) and the DAR model (dashed lines with dots). (b) Cuts through
space-time energy spectra at three different wave numbers obtained from the DNS (colored solid lines) and the
DAR model (dashed lines).
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(a) (b)

FIG. 5. (a) Wave-number-dependent convection velocities and (b) spectral bandwidths for the streamwise
velocity fluctuations at y+ = 270 in turbulent channel flows at Reτ = 550. The results from the DNS are
denoted by red solid lines, and the results from the DAR model are denoted by green dash-dotted lines.

wave numbers from the DAR model and the DNS. Figure 5 compares the wave-number-dependent
convection velocities and spectral bandwidths obtained from the DAR model and the DNS. Figure 6
plots the line and shade contours of the space-time correlations and the spatial correlations for fixed
delay times. All the results in Figs. 4, 5, and 6 from the present model are in agreement with those
of DNS, indicating that the DAR model alone can correctly reproduce the space-time energy spectra
of velocity fluctuations in the outer layer.

To correctly characterize the space-time energy spectra in the inner layer, especially the wave-
number-dependent convection velocities, LSE should be used to determine the large-scale motions.
For the case of y+

W = 5 at Reτ = 550, the velocities at y+
O = 92 are used to perform the LSE. For the

case of y+
W = 5 at Reτ = 180, the velocities at y+

O = 80 are used to perform the LSE. The parameters
in the DAR model for the two cases are shown in Table I. In addition to these outer-layer locations,

�

0.9

0.7

0.5

0.3

�

�

�

�

�

(a) (b)

FIG. 6. Comparison of the space-time correlations obtained from the DNS and the DAR model for
streamwise velocity fluctuations at y+ = 270 in turbulent channel flows at Reτ = 550. (a) Contours obtained
from the DNS (colored shades with solid lines) and the DAR model (dashed lines with dots). (b) Cuts through
space-time correlations at three different temporal separations obtained from the DNS (colored solid lines) and
the DAR model (dashed lines with dots).
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(a) (b)

(c) (d)

FIG. 7. Temporal evolutions of the streamwise velocity fluctuations at y+
W = 5 in turbulent channel flows

at Reτ = 550. (a) The DNS results. (b) The LSE results. (c) The results from the DAR model. (d) The results
from the DAR model with LSE.

we also take y+
O = 44 and y+

O = 270 for Reτ = 550 and y+
O = 46 and y+

O = 180 for Reτ = 180 as
the outer-layer locations. When different outer-layer locations are taken, the parameters in the DAR
model are only slightly changed, and the results obtained, including the space-time energy spectra,
wave-number-dependent convection velocities and spectral bandwidths, are very similar and not
shown in this paper.

Figure 7 plots the temporal evolutions of the spatial distributions of the streamwise velocity
components at y+

W = 5 obtained by the DNS, LSE, DAR model and the combination of the DAR
model with LSE. The LSE results lack velocity fluctuations, and the preference angles of the velocity
contours obtained from LSE are significantly smaller than those from the DNS. Noting that the
horizontal axis represents the spatial direction and the vertical axis represents time, this observation
is consistent with the result that the convection velocities obtained by LSE are larger than those
of DNS. The DAR results look similar to the DNS results but exhibit fewer large-scale structures.
The velocity contours obtained from the combined DAR and LSE model are in good agreement
with those from the DNS. In particular, the preference directions of velocity contours in the DAR

FIG. 8. Scatter plot of the normalized temporal derivatives −(h/U 2
b )∂t u vs. the normalized spatial deriva-

tives (h/Ub)∂xu for y+
W = 5 at Reτ = 550. (a) The DNS result. (b) The result from the DAR model with LSE.
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� � � �
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�

(a) (b)

(c) (d)

FIG. 9. Comparison of the space-time energy spectra obtained from the DNS and the DAR model with
LSE for the streamwise velocity fluctuations at y+

W = 5 in turbulent channel flows. (a) Reτ = 550. Contours
obtained from the DNS (colored shades with solid lines) and the combination model (dashed lines with
dots). (b) Reτ = 180. Contours obtained from the DNS (colored shades with solid lines) and the combination
model (dashed lines with dots). (c) Reτ = 550. Cuts through space-time energy spectra at three different wave
numbers obtained from the DNS (colored solid lines) and the combination model (dashed lines). (d) Reτ = 180.
Cuts through space-time energy spectra at three different wave numbers obtained from the DNS (colored solid
lines) and the combination model (dashed lines).

model with LSE and the DNS are in good agreement. This implies that the present model reproduces
the convection velocities of the DNS results. However, the patches of the same contour shades in
Figs. 7(a) and 7(d) have different locations since the phases of the velocity fluctuations from the
present model are not exactly the same as those from the DNS.

Figure 8 shows the scatter diagrams of the spatial and temporal derivatives of the streamwise
velocity components obtained from the DNS and the DAR model with LSE. The scattered point
clouds from the present model have the same preference direction, which again confirms that the
model reproduces the convection velocities in the DNS. Moreover, although there are no sufficiently
scattered points at the edge of the cloud given by the present model, its shape is similar to that of the
DNS results. This observation indicates that the space-time distribution of the streamwise velocity
components generated by the present model is a good approximation to the DNS results.

Figures 9(a) and 9(b) compare the contours of the space-time energy spectra from the DAR model
with LSE and the DNS at Reτ = 550 and Reτ = 180, respectively. The results from the present
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�

�

FIG. 10. The Hellinger distance between the model and the DNS results at Reτ = 550 and Reτ = 180.

model are in agreement with those from the DNS. Figures 9(c) and 9(d) compare the temporal
spectra for three different wave numbers from the DNS and the present model. The curves at Reτ =
550 are in better agreement than those at Reτ = 180. This indicates that the present model becomes
better at larger Reynolds numbers.

The differences of the space-time energy spectra between the model and the DNS can be
quantified using the Hellinger distance [36], defined as

dH (kx ) =
⎡
⎣∫ (√

�model(kx, ω)

�model(kx )
−

√
�DNS(kx, ω)

�DNS(kx )

)2

dω

⎤
⎦

1/2

. (73)

The Hellinger distance dH = 0 if and only if �model = �DNS and reaches a maximum of
√

2 if �model

and �DNS are significantly different. Figure 10 plots the Hellinger distance between the model and
the DNS results at Reτ = 550 and Reτ = 180. As shown, the values of the Hellinger distance are
small compared with the maximum

√
2, indicating the performance of the DAR model with LSE.

Furthermore, the Hellinger distance at Reτ = 550 is smaller than that at Reτ = 180, which implies
a better performance of the model at larger Reynolds numbers.

Figure 11 compares the wave-number-dependent convection velocities and spectral bandwidths
at y+

W = 5 obtained from the DNS at Reτ = 550 with the results from the DAR model with LSE.
We also plot the DNS results at y+

O = 92, which is used for LSE. Both the convection velocities and
spectral bandwidths from the present model are in agreement with those of the DNS. Figure 12 plots
similar results at Reτ = 180 as Fig. 11. Again, the wave-number-dependent convection velocities
and spectral bandwidths from the present model are in agreement with the results from the DNS.
Therefore, although there are some differences in the low-level contours of the energy spectra and
the tails of the frequency spectra between the present model and the DNS, as shown in Figs. 9(b)
and 9(d), the present model can reproduce the first- and second-order moments of the space-time
energy spectra of the streamwise velocities conditional at given wave numbers.

Figure 13 plots the line and shade contours of the space-time correlations and the spatial
correlations for fixed delay times. The results at Reτ = 550 are shown in Figs. 13(a) and 13(c),
while the results at Reτ = 180 are shown in Figs. 13(b) and 13(d). The contours of the space-time
correlation obtained from the model exhibit ellipses, which is consistent with the EA model [38,39].
Although there are some differences in the isocorrelation lines at small levels, the isocorrelation
lines at large levels obtained from the model are similar to the DNS results.
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(a) (b)

FIG. 11. (a) Wave-number-dependent convection velocities and (b) spectral bandwidths for the streamwise
velocity fluctuations in turbulent channel flows at Reτ = 550. The results from the DNS at y+

W = 5 are denoted
by red solid lines, the results from the DNS at y+

O = 92 are denoted by blue dashed lines, and the results from
the DAR model with LSE at y+

W = 5 are denoted by green dash-dotted lines.

VI. CONCLUSION

We developed a dynamic stochastic model for space-time energy spectra in turbulent shear flows.
This model incorporates a DAR force into Taylor’s model, where this force includes the random
sweeping effect and thus depends on the past states. It is shown that the incorporation of a white-
in-time random force into Taylor’s model results in a divergent spectral bandwidth, while Taylor’s
model alone incorrectly predicts the vanishing spectral bandwidths. However, the present DAR
model reproduces the desired convection velocities and spectral bandwidths. In particular, it predicts
the correct scaling exponents of the temporal energy spectra.

We compare the space-time energy spectra obtained from the WW wall model and the LSE
approach with the DNS results of turbulent channel flows. The WW wall model notably over-
estimates the convection velocities and significantly underestimates the spectral bandwidths. The

(a) (b)

FIG. 12. (a) Wave-number-dependent convection velocities and (b) spectral bandwidths for the streamwise
velocity fluctuations in turbulent channel flows at Reτ = 180. The results from the DNS at y+

W = 5 are denoted
by red solid lines, the results from the DNS at y+

O = 80 are denoted by blue dashed lines and the results from
the DAR model with LSE at y+

W = 5 are denoted by green dash-dotted lines.
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FIG. 13. Comparison of the space-time correlations obtained from the DNS and the DAR model with LSE
for streamwise velocity fluctuations at y+

W = 5 in turbulent channel flows. (a) Reτ = 550. Contours obtained
from the DNS (colored shades with solid lines) and the DAR model with LSE (dashed lines with dots). (b)
Reτ = 180. Contours obtained from the DNS (colored shades with solid lines) and the DAR model with
LSE (dashed lines with dots). (c) Reτ = 550. Cuts through space-time correlations at three different temporal
separations obtained from the DNS (colored solid lines) and the DAR model with LSE (dashed lines with dots).
(d) Reτ = 180. Cuts through space-time correlations at three different temporal separations obtained from the
DNS (colored solid lines) and the DAR model with LSE (dashed lines with dots).

LSE approach also incorrectly estimates the convection velocities and spectral bandwidths. The
predictions of the WW wall model and the LSE approach on the spectral bandwidths are erroneous
because they do not contain sufficient turbulent fluctuations. However, the LSE approach can pro-
vide large-scale motions in the near-wall region and thus serve as a suitable input of the DAR model.

The DAR model in combination with LSE can correctly reproduce the space-time energy
spectra in the near-wall region, while the DAR model alone can correctly reproduce the space-time
energy spectra of velocity fluctuations in the logarithmic region. This provides the possibility of
incorporating the DAR model into wall-modeled large-eddy simulations. It is numerically shown
that the contours of space-time energy spectra obtained from the DAR model are in agreement with
the DNS results. Moreover, the DAR model can reproduce the convection velocities and spectral
bandwidths in the DNS. In addition, we explain how to determine the parameters in the DAR model.
We note that DAR is a data-refined physical model that consists of Taylor’s model with dynamic
autoregressive external forcing. It can reproduce the space-time energy spectra in the sense that

054602-21



TING WU AND GUOWEI HE

the first- and second-order conditional moments are in good agreement with the DNS results. It
is expected that the DAR model can be used as an alternative to white-in-time random forcing in
turbulence modeling.

The statistical decorrelation of velocity fluctuations in turbulent shear flows is dominated by the
convection of small scales by large-scale velocities and small-scale interactions. The convection
of small scales by large scales is typically represented by Taylor’s hypothesis. The small-scale
interaction exhibits two effects: the energy transfers between different scales and the distortion
of small eddies by themselves. The energy transfer is conventionally represented by eddy viscosity.
The distortion of small eddies is represented by random sweeping. The DAR model represents the
three effects by using Taylor’s model and DAR forcing so that it can reproduce the space-time energy
spectra. In the present study, Taylor’s model is used as a prototype. This model can be replaced by
other models, such as the resolvent operator and linearized Navier-Stokes equations, to study the
space-time dynamics of coherent structures.
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