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The compressibility effect in isothermal hypersonic boundary layer is studied with direct
numerical simulation (DNS) using Helmholtz decomposition. The dilatational components
of the diagonal Reynolds stress are enhanced by the cold wall condition in the near-wall
region. The outward (Q1) and ejection (Q2) events are mainly located in the expansion
region, while the inward (Q3) and sweep (Q4) events are primarily situated in the com-
pression region near the wall. It is found that the cold wall condition can enhance the
inward (Q3) event mainly in the compression region and enhance the ejection (Q2) event
mainly in the expansion region near the wall. In particular, the cold wall can significantly
enhance the positive streamwise solenoidal fluctuating velocity and negative wall-normal
dilatational fluctuating velocity events. Moreover, the cold wall condition enhances the
positive correlation of streamwise velocity fluctuation and fluctuating temperature, and
suppresses the negative correlation of wall-normal velocity fluctuation and fluctuating
temperature in the near-wall region, while it slightly weakens the negative correlation of
streamwise velocity fluctuation and fluctuating temperature and the positive correlation
of wall-normal velocity fluctuation and fluctuating temperature far from the wall. It is
also found that the dilatational components of correlations are dominated in the near-wall
region, while the solenoidal components govern the correlations far from the wall. Most
of the interactions among mean and fluctuating fields of kinetic and internal energy are
governed by the solenoidal components, except for the terms associated with the pressure,
which are governed by the dilatational components.

DOI: 10.1103/PhysRevFluids.6.054609

I. INTRODUCTION

The properties and mechanisms of supersonic and hypersonic turbulent boundary layers attract
significant attention for their extraordinary importance in the aerospace industry [1–3]. Due to the
prominent influence of compressibility, supersonic and hypersonic turbulent boundary layers are
more complicated than the incompressible turbulent boundary layer [4–31]. The compressibility
effect due to the existence of the eddy shocklets embedded in turbulence is remarkably significant
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in supersonic and hypersonic turbulent boundary layers, and its influence should be carefully
investigated.

A significant difference between supersonic and hypersonic turbulent boundary layers is the
wall temperature condition. If the aircraft flies at the supersonic speed, the wall temperature is
essentially considered as adiabatic, while for the aircraft at hypersonic speed, the wall temperature
is remarkably lower than the adiabatic wall temperature, which is mainly caused by the considerable
radiative cooling and internal heat transfer. The mechanism of the adiabatic supersonic boundary
layer has been investigated by other researchers [7–9,15–19,25]. However, due to the inherently
large computational cost and occurrence of strong shock waves, the structures and statistics of
the isothermal hypersonic boundary layer are rarely investigated, which is very important in the
design of supersonic aircrafts. Only a small number of works have paid attention to the properties
of the isothermal hypersonic boundary layer [4,6,22,24]. Duan et al. [4] carried out direct numerical
simulation (DNS) of the isothermal hypersonic turbulent boundary layer at Mach number 5, with
the ratio of the wall-to-edge temperature Tw/Tδ ranging from 1.0 to 5.4. They found that many of
the scaling relations used to describe adiabatic compressible boundary layer statistics, including
Morkovin’s scaling, Walz’s equation, and the strong Reynolds analogy (SRA), are also satisfied
in nonadiabatic cases. They showed that compressibility effect is enhanced by wall cooling but
remains insignificant. Chu et al. [24] performed DNS of hypersonic turbulent boundary layer at
Mach number 4.9 with the ratio of wall temperature to recovery temperature from 0.5 to 1.5. They
studied many fundamental properties relevant to the influence of wall temperature on Morkovin’s
scaling, the SRA, and coherent vortical structures. They found that the cold wall temperature has
negligible influence on these scaling relations. Liang and Li [22] performed DNS of hypersonic
turbulent boundary layer at Mach number 8 with an extreme cold wall condition. They assessed the
wall temperature effect on the mean velocity profile, Walz’s equation, the SRA, and turbulent energy
budget. They found that the high Mach number with cold wall induces strong compressibility effect.
Zhang et al. [6] presented a direct numerical simulation database of spatially evolving turbulent
boundary layers with Mach number ranging from 2.5 to 14 and wall-to-recovery temperature from
0.18 to 1.0. They inspected the Morkovin’s scaling, SRA, and thermodynamic fluctuations as well
as the Reynolds stress budget.

Previous investigations on hypersonic turbulent boundary layer with isothermal boundary con-
dition [4,6,22,24] were focused on statistical relation of flow fields, including the van Driest
transformation for mean velocity, Walz’s relation, Morkovin’s scaling, and the strong Reynolds
analogy (SRA), which are proved to be valid when the free-stream Mach number M ≈ 5 and partly
valid for M = 8. It is crucial to further investigate the influence of the isothermal wall condition on
the genuine compressibility effect in the hypersonic boundary layer.

Helmholtz decomposition of the velocity field is a straightforward way to explore the compress-
ibility effect of flow fields. Helmholtz decomposition has been used in the analysis of compressible
isotropic turbulence [32–40], homogenous shear flows [41–44], and turbulent channel flows [45].
Helmholtz decomposition has also been applied in the supersonic turbulent boundary layer [16],
where the dilatational component has been ignored. In this paper, Helmholtz decomposition is
introduced to evaluate the compressibility effect in the isothermal hypersonic turbulent boundary
layer.

The rest of the paper is organized as follows. The governing equations and numerical methodol-
ogy are described in Sec. II. Flow statistics are demonstrated in Sec. III. Properties of turbulent shear
stress are studied in Sec. IV. Correlations between velocity fluctuations and fluctuating temperature
are presented in Sec. V. The kinetic and internal energy budgets are illustrated in Sec, VI. Finally,
summary and conclusion are made in Sec. VII.

II. GOVERNING EQUATIONS AND NUMERICAL METHODOLOGY

A set of reference scales are introduced to normalize the variables in the hypersonic turbulent
boundary layer [22,32–34,38]. The reference density ρ∞, viscosity μ∞, thermal conductivity κ∞,
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length L∞, freestream velocity U∞, pressure p∞ = ρ∞U 2
∞, freestream temperature T∞, and energy

per unit volume ρ∞U 2
∞ are utilized. Thus, there are three nondimensional governing parameters: the

Reynolds number Re = ρ∞U∞L∞/μ∞, the Mach number M = U∞/c∞, and the Prandtl number
Pr = μ∞Cp/κ∞. The parameter α is defined as α = PrRe(γ − 1)M2, where Pr is assumed to be
equal to 0.7. γ = Cp/Cv is the ratio of specific heat at constant pressure Cp to that at constant
volume Cv , which is assumed to be equal to 1.4.

The following dimensionless Navier-Stokes equations in conservation form are solved numeri-
cally [32–34,38]:

∂ρ

∂t
+ ∂ (ρu j )

∂x j
= 0, (1)

∂ (ρui )

∂t
+ ∂[ρuiu j + pδi j]

∂x j
= 1

Re

∂σi j

∂x j
, (2)

∂E

∂t
+ ∂[(E + p)u j]

∂x j
= 1

α

∂

∂x j

(
κ

∂T

∂x j

)
+ 1

Re

∂ (σi jui )

∂x j
, (3)

p = ρT/
(
γ M2), (4)

where ρ is the density, p is the pressure, ui is the velocity component, and T is the temperature. The
viscous stress σi j is defined as

σi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μθδi j, (5)

where θ = ∂uk
∂xk

is the velocity divergence. The total energy per unit volume E is

E = p

γ − 1
+ 1

2
ρ(u ju j ). (6)

The convection terms are approximated by the seventh-order weighted essentially nonoscillatory
scheme [46], and the viscous terms are discretized by the eighth-order central difference scheme.
The third-TVD type Runge-Kutta method is utilized for time advancing [22].

In this study, f represents the Reynolds average (spanwise and time average) of f , and the

fluctuating counterpart of the Reynolds average is defined as f ′ = f − f . Moreover, f̃ = ρ f
ρ̄

denotes

the Favre average of f . The fluctuating counterpart is f ′′ = f − f̃ .
The DNS is carried out using the OPENCFD code developed by Li et al., which has been widely

used and validated in compressible transitional and turbulent wall-bounded flows [22,23,31,47]).
The spatially evolving turbulent boundary layer is simulated with the following boundary condi-
tions: the inflow and outflow boundary conditions, a wall boundary condition, an upper far-field
boundary condition, and a periodic boundary condition in the spanwise direction. To be specific, a
time-independent laminar compressible boundary-layer similarity solution is imposed at the inflow
boundary. A region of wall blowing and suction is implemented at 4.5 � x � 5 to induce the
laminar-to-turbulent transition. The blowing and suction disturbance is applied on the wall-normal
velocity component on the wall, and the specific form is expressed as follows [15,48,49]:

v(x, z, t )|wall = AU∞ f (x)g(z)h(t ), xa � x � xb. (7)

Here A is the amplitude of the disturbance and A = 0.04 and 0.08 in M8T1 and M8T2, respectively.
U∞ is the freestream streamwise velocity. xa = 4.5 and xb = 5.0 are the beginning and the end of
the blowing and suction zone, respectively. Moreover,

f (x) = 4 sin θ (1 − cos θ )/
√

27, θ = 2π (x − xa)/(xb − xa), (8)
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TABLE I. Summary of computational parameters for the DNS study. The computational domains Lx , Ly,
and Lz are nondimensionalized by 1 inch [15].

Case M∞ Re∞ Tw/T∞ Tw/Tr Lx × Ly × Lz

M8T1 8 2 × 106 1.9 0.15 19 × 0.7 × 0.35
M8T2 8 5 × 106 10.03 0.80 41 × 0.7 × 0.6

Case Nx × Ny × Nz �x+ �y+
w �z+

M8T1 9000 × 200 × 1280 11.2 0.5 4.5
M8T2 12 500 × 200 × 640 12.2 0.5 4.6

g(z) =
lmax∑
l=1

Zl sin [2π l (z/Lz + φl )],
lmax∑
l=1

Zl = 1, Zl = 1.25Zl+1, (9)

h(t ) =
mmax∑
m=1

Tm sin [2πm(βt + φm)],
mmax∑
m=1

Tm = 1, Tm = 1.25Tm+1. (10)

Here Lz is the size of the spanwise domain, and lmax = 10, mmax = 5, and β = 1.57 and 0.5,
respectively. φl and φm are the phase difference and taken as random numbers ranging between
0 and 1.

For the outflow boundary condition, all the flow fields are extrapolated from the interior points
to the outflow boundary points except the pressure in the subsonic region of the boundary layer.
The pressure in the subsonic region is set equal to the value of the first grid point where the flow
is supersonic. In order to inhibit the reflection of disturbance due to the numerical treatment of the
outflow boundary condition, a progressively coarse grid is implemented in the streamwise direction
near the outflow boundary condition [15]. Moreover, the nonslip condition is applied for the wall
boundary, and the nonreflecting boundary condition is imposed for the upper boundary [15]. Further
descriptions of the boundary conditions can be found in Refs. [15,22].

A cold wall case and a less cold wall case, which are denoted as M8T1 and M8T2, respectively,
are calculated and analyzed in the present study. The fundamental parameters of the database
are listed in Table I. Here M∞ = U∞/c∞ and Re∞ = ρ∞U∞L∞/μ∞ are the freestream Mach
number and Reynolds number, respectively. Tw is the wall temperature. T∞ is the freestream
temperature, which is assumed to be T∞ = 169.44 K. The wall temperatures in M8T1 and
M8T2 are Tw/T∞ = 1.9 and 10.03, respectively. The recovery temperature Tr is defined as Tr =
T∞{1 + r[(γ − 1)/2]M2

∞} with recovery factor r = 0.9 [4]. The computational domains Lx, Ly, and
Lz are nondimensionalized by L∞ = 1 inch [15]. x, y, and z are the streamwise, wall-normal, and
spanwise directions, respectively. δν = μw/(ρwuτ ) is the viscous length scale. uτ = √

τw/ρw is
the friction velocity, and τw = (μ∂U

∂y )y=0 is the wall shear stress. �x+ = �x/δν is the normalized
spacing of streamwise direction. �y+

w = �yw/δν is the normalized spacing of the first point off
the wall. �z+ = �z/δν is the normalized spacing of the spanwise direction. ρw is the density
on the wall. μw and ρw are the Reynolds average of the viscosity and density on the wall,
respectively. Validation of the accuracy of the current numerical simulations is shown in the
Appendix.

Data in a small streamwise window of [xa − 0.5δ, xa + 0.5δ] extracted from the fully developed
region of the DNS are used for the following analysis. Here xa = 14 and 30 for M8T1 and M8T2,
respectively, δ = 0.13 and 0.28 for M8T1 and M8T2, respectively. The flow statistics analyzed in
the following sections are calculated in the streamwise window of [xa − 0.5δ, xa + 0.5δ]. It is noted
that the size of the streamwise window is similar with Ref. [6]. One hundred flow-field snapshots
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TABLE II. Global flow properties determined by the fully developed region of hypersonic boundary layer.

Case Re∞ Reτ Reθ Reδ2

M8T1 2 × 106 2444 1.02 × 104 6018
M8T2 5 × 106 1386 3.22 × 104 6563

spanning a time interval of approximately 44δ/U∞ for M8T1 and 20δ/U∞ for M8T2 are used for
analysis.

On basis of Helmholtz decomposition, the velocity field (u) can be decomposed into a solenoidal
(us) and a dilatational (ud ) component (u = us + ud ), which satisfies ∇ · us = 0 and ∇ × ud = 0,
respectively. The two components can be obtained from the velocity field u by solving Poisson
equations of the vector potential A and scalar potential ϕ,

∇2A = −∇ × u, ∇2ϕ = ∇ · u. (11)

Accordingly, the solenoidal and dilatational components can be obtained by

us = ∇ × A, ud = ∇ϕ. (12)

With the wall boundary conditions given by Ref. [50],

∂ϕ

∂y
= 0,

∂Ay

∂y
= 0, Ax = Az = 0, (13)

the vector potential A is unique [16,45,50]. A mirror symmetry is applied on the data in a pretty large
streamwise window of [xa − 4δ, xa + 4δ] to generate an artificial periodic condition in streamwise
direction. It is noted that the artificial periodic condition barely has any influence on the flow statis-
tics of the data in a small streamwise window of [xa − 0.5δ, xa + 0.5δ]. If the streamwise window
is further increased to [xa − 8δ, xa + 8δ], the flow statistics of the data in [xa − 0.5δ, xa + 0.5δ] is
unchanged. Then the Poisson equations (11) are discretized spectrally in the streamwise (x) and
spanwise (z) directions, and by sixth-order central difference in the wall-normal (y) direction.

The velocity field can be divided into u = Ũ + u′′, where Ũ is the Favre average of velocity field
and u′′ is the fluctuating counterpart. Moreover, the fluctuating counterpart can be decomposed into
a solenoidal (u′′

s ) and a dilatational (u′′
d ) component.

Several relevant Reynolds numbers are important in the compressible boundary layer. The
friction Reynolds number Reτ = ρwuτ δ/μw is defined as the ratio of the boundary layer thickness
and the viscous length scale. The Reynolds number based on the momentum thickness θ and the
wall viscosity, Reδ2 = ρ∞u∞θ/μw, is defined as the ratio of the highest momentum to the wall shear
stress. Here the momentum thickness θ is defined as

θ =
∫ δ

0

ρU

ρ∞U∞

(
1 − U

U∞

)
dy, (14)

where ρ and U are the Reynolds average of density ρ and streamwise velocity u, respectively. ρ∞
and U∞ are the freestream density and streamwise velocity, respectively. δ is the boundary layer
thickness. Reθ = ρ∞u∞θ/μ∞ is the Reynolds number based on the momentum thickness θ . The
above global flow properties calculated from the fully developed region of the DNS are listed in
Table II.

III. FLOW STATISTICS

The van Driest transformed velocity, U +
V D, is defined as [51]

U +
V D =

∫ U +

0
(ρ/ρw )1/2dU +, (15)
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(a) (b)

(c) (d)

FIG. 1. (a) The van Driest transformed velocity. (b) The diagonal components of the normalized Reynolds
stress R+

uu, R+
vv , and R+

ww along the wall-normal direction. (c) The turbulent shear stress −R+
uv and the r.m.s. value

of the normalized tensor (M+
uv )rms along the wall-normal direction. (d) The r.m.s. values of the off-diagonal

components of the normalized tensor (M+
uv )rms, (M+

uw )rms, and (M+
vw )rms along the wall-normal direction.

where ρ is the Reynolds average of density and ρw is the Reynolds average of density on the wall.
U + is defined as U + = U/uτ . The van Driest transformed velocity U +

V D is plotted in Fig. 1(a). It
is found that U +

V D satisfies the law of wall U + = y+ in both M8T1 and M8T2, while the range
of the law of the wall is smaller in M8T1 mainly due to the cold wall condition. Moreover,
the log law U +

V D = 1
κ

lny+ + C is also satisfied in M8T1 and M8T2, where κ ≈ 0.41 is similar
to the incompressible values [11], while the additive constant C is slightly larger than that in
incompressible boundary layer. The additive constant C in M8T1 is larger than that in M8T2, which
is consistent with the observation found in Ref. [24].

The normalized tensor M+
i j is defined as M+

i j = ρu′′
i u′′

j

τw
. The average of the normalized tensor

M+
i j , i.e., the normalized Reynolds stress, is denoted as R+

i j = 〈ρ〉ũ′′
i u′′

j

τw
, and the r.m.s. value of

the normalized tensor M+
i j is defined as (M+

i j )rms =
√

〈(M+
i j − R+

i j )
2〉. The diagonal components

of the normalized Reynolds stress R+
uu, R+

vv , and R+
ww along wall-normal direction are plotted

in Fig. 1(b). It is found that the peak of R+
uu is much larger than the peaks of R+

vv and R+
ww,

indicating a strong intensity of the streamwise velocity fluctuation. Moreover, it is demonstrated
that the peak of R+

uu in M8T1 is significantly larger than that in M8T2, while the peaks of R+
vv

and R+
ww in M8T1 are slightly smaller than those in M8T2, indicating that the peak of streamwise
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velocity fluctuation increases with strong compressibility, while the peaks of wall-normal and
spanwise velocity fluctuations slightly decrease with strong compressibility, which is consistent
with observations made in Refs. [5,6,14,45]. The decrease of wall-normal and spanwise velocity
fluctuations and the increase of streamwise velocity fluctuation with the cold wall give rise to the
reduced mixing in the wall-normal and spanwise directions. Consequently, the energy transfer by
eddies along spanwise direction are decreased, leading to more coherent structures with the cold
wall. The turbulent shear stress −R+

uv and the r.m.s. value of the normalized tensor (M+
uv )rms along

the wall-normal direction are plotted in Fig. 1(c). It is found that (M+
uv )rms is much larger than

−R+
uv , indicating the cancellation of strong negative and weak positive values of the normalized

tensor M+
uv . The other two off-diagonal components of the normalized Reynolds stress R+

uw and
R+

vw are zero due to homogeneity of spanwise velocity (not reported here). The r.m.s. values of
the off-diagonal components of the normalized tensor (M+

uv )rms, (M+
uw )rms, and (M+

uw )rms along the
wall-normal direction are shown in Fig. 1(d). It is found that M+

uw has the strongest fluctuating
intensity and M+

vw has the weakest fluctuating intensity. The peak of (M+
uw )rms is closest to the wall,

and that of (M+
vw )rms is farthest from the wall.

The normalized vorticity fluctuation is defined as ω′′ +
i = ω′′

i /(uτ /δν ), and the normalized di-
latation fluctuation is expressed as θ ′′ + = θ ′′/(uτ /δν ). Distributions of the normalized vorticity

fluctuations 〈(ω′′ +
x )2〉1/2

, 〈(ω′′ +
y )2〉1/2

, and 〈(ω′′ +
z )2〉1/2

along the wall-normal direction are plotted
in Fig. 2(a). The streamwise and spanwise vorticity fluctuations ω′′ +

x and ω′′ +
z have the strongest

intensities in the near-wall region, while the wall-normal vorticity fluctuation ω′′ +
y has the peak in

the buffer layer. The intensity of the spanwise vorticity fluctuation ω′′ +
z is larger than other two

components, which is similar to those found in Refs. [6,14,45]. Distribution of the normalized

dilatation fluctuation 〈(θ ′′ +)2〉1/2
along the wall-normal direction is plotted in Fig. 2(b). It is found

that 〈(θ ′′ +)2〉1/2
in M8T1 is much larger than that in M8T2, illustrating that the cold wall condition

enhances the compressibility in the near-wall region. Probability density functions (PDFs) of the
normalized dilatation fluctuation θ ′′ + along the wall-normal direction in M8T1 and M8T2 are shown
in Fig. 2(c) and 2(d), respectively. It is found that PDF of the normalized dilatation θ ′′ + spans widest
near the wall and becomes narrow far from the wall. Furthermore, it is shown that PDF of θ ′′ + in
M8T2 is nearly symmetric in the near-wall region, while negative skewness appears in the PDF
of θ ′′ + in M8T1, indicating that the cold wall condition enhances the compression motion in the
near-wall region.

On the basis of Helmholtz decomposition, the normalized tensor M+
i j can be decomposed into

M+
i j = ρu′′

i u′′
j

τw

= ρu′′
s,iu

′′
s, j

τw

+ ρu′′
d,iu

′′
d, j

τw

+ ρu′′
s,iu

′′
d, j

τw

+ ρu′′
d,iu

′′
s, j

τw

≡ M+
is, js

+ M+
id , jd

+ M+
is, jd

+ M+
id , js

. (16)

Thus, the normalized Reynolds stress R+
i j can be decomposed into

R+
i j = 〈ρ〉ũ′′

i u′′
j

τw

= 〈ρ〉 ˜u′′
s,iu

′′
s, j

τw

+
〈ρ〉 ˜u′′

d,iu
′′
d, j

τw

+
〈ρ〉 ˜u′′

s,iu
′′
d, j

τw

+ 〈ρ〉 ˜u′′
d,iu

′′
s, j

τw

≡ R+
is, js

+ R+
id , jd

+ R+
is, jd

+ R+
id , js

. (17)

Here R+
is, js

(M+
is, js

) and R+
id , jd

(M+
id , jd

) are related to the variance of the solenoidal and dilatational
velocity fields, respectively, and R+

is, jd
(M+

is, jd
) and R+

id , js
(M+

id , js
) are associated with the covariance

between the solenoidal and dilatational velocity fields. The decomposed components of the diagonal
Reynolds stress along the wall-normal direction are depicted in Figs. 3(a), 3(b), and 3(c). The
solenoidal variance components of the diagonal Reynolds stress R+

usus
, R+

vsvs
, and R+

wsws
are dominant

in the diagonal Reynolds stress R+
uu, R+

vv , and R+
ww. The intensities of dilatational components are

much smaller than solenoidal components. It is noticed that R+
ud ud

, R+
vd vd

, and R+
wd wd

are much
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(a) (b)

(c) (d)

FIG. 2. (a) and (b) Distributions of (a) the normalized vorticity fluctuations 〈(ω′′ +
x )2〉1/2

, 〈(ω′′ +
y )2〉1/2

,

and 〈(ω′′ +
z )2〉1/2

and (b) the normalized dilatation fluctuation 〈(θ ′′ +)2〉1/2
along the wall-normal direction.

(c) and (d) PDF of the normalized dilatation fluctuation θ ′′ + along the wall-normal direction in (c) M8T1
and (d) M8T2.

larger in M8T1 than those in M8T2, indicating that the cold wall temperature can enhance the
compressibility in the near-wall region. The dilatational variance components of the streamwise and
spanwise Reynolds stress R+

ud ud
and R+

wd wd
attain peaks in the near-wall region, while the wall-normal

component R+
vd vd

achieves its crest in the buffer layer. It is also found that R+
vd vd

is larger than R+
vsvs

near the wall in M8T1, which is consistent with observations in Ref. [45]. This mainly accounts
for the different asymptotic wall scaling, where v′′

s ∼ y2 [52] due to incompressibility while v′′
d ∼ y

[3]. Accordingly, it is concluded that the cold wall condition enhances the compressibility in the
near-wall region through increasing the streamwise and spanwise dilatational components near the
wall and increasing the wall-normal dilatational component in the buffer layer. Moreover, u′′

s and
w′′

s are negatively correlated with u′′
d and w′′

d , respectively, near the wall, and the negative correlation
is enhanced by the cold wall. The r.m.s. values of 2M+

usud
, 2M+

vsvd
, and 2M+

wswd
along wall-normal

direction are shown in Fig. 3(d). The r.m.s. values of 2M+
usud

, 2M+
vsvd

, and 2M+
wswd

are much larger
than the average values, implying the cancellation between positive and negative values of 2M+

usud
,

2M+
vsvd

, and 2M+
wswd

.
The decompositions of the normalized tensor M+

uv and the normalized turbulent shear stress
R+

uv are also investigated. The average and r.m.s. values of the decomposed components of the
normalized tensor M+

uv are shown in Fig. 4. As expected, the solenoidal component R+
usvs

dominates
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(a) (b)

(c) (d)

FIG. 3. (a) R+
usus

, R+
vsvs

, and R+
wsws

along wall-normal direction. (b) R+
ud ud

, R+
vd vd

, and R+
wd wd

along the wall-
normal direction. (c) 2R+

usud
, 2R+

vsvd
, and 2R+

wswd
along the wall-normal direction. (d) The r.m.s. values of 2M+

usud
,

2M+
vsvd

, and 2M+
wswd

along the wall-normal direction.

in the normalized turbulent shear stress R+
uv . The dilatational component R+

ud vd
in M8T1 is much

larger than that in M8T2 near the wall, indicating the stronger compressibility with the cold wall
condition. The terms −R+

usvs
and −R+

ud vd
are positive along the wall-normal direction, while the

terms −R+
usvd

and −R+
ud vs

are negative. R+
usvd

is an order larger than R+
ud vs

, which is due to the largest
intensity of u′′

s . The above observations are consistent with those in Ref. [45]. Moreover, the cold
wall enhances the correlation of u′′

s and v′′
d , while has negligible influence on the correlation of u′′

d
and v′′

s . Accordingly, the increase of R+
usvd

is mainly due to the enhancement of the intensity of v′′
d

caused by the stronger compressibility with the cold wall. It is also found that the r.m.s. values of
M+

ud vd
, M+

usvd
, and M+

ud vs
are much larger than the average values, indicating strong cancellation of

positive and negative values.
The instantaneous velocity fields of u′′, v′′, u′′

s , v′′
s , u′′

d , and v′′
d in a wall-parallel plane at y+ =

10 in M8T1 and M8T2 are shown in Figs. 5 and 6, respectively. u′′ exhibits the streaks, while
v′′ has a more spotty appearance due to ejection and sweep events. It is shown that the observed
streaks in M8T1 become thicker and more elongated compared with those in M8T2, indicating
that the cold wall increases the streamwise coherency of near-wall streaks. Moreover, the spanwise
spacing of streaks also increases with the cold wall. These observations are consistent with Ref. [4].
Furthermore, the spotty appearance due to ejection and sweep events becomes weaker in M8T1,
indicating the reduced mixing in the wall-normal direction with the cold wall. These observations
are consistent with above observations [shown in Fig. 1(b)] and previous findings [5,6,14,45] that
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(c) (d)

(a) (b)

FIG. 4. The average and r.m.s. values of the decomposed components of the normalized shear second-
moment fluctuating velocities tensor M+

uv: (a) −R+
usvs

and (M+
usvs

)rms, (b) −R+
ud vd

and (M+
ud vd

)rms, (c) −R+
usvd

and
(M+

usvd
)rms, and (d) −R+

ud vs
and (M+

ud vs
)rms along the wall-normal direction.

the wall-normal and spanwise velocity fluctuations decrease and the streamwise velocity fluctuation
increases with the cold wall. u′′

s and v′′
s recover the streaks in u′′ and the spotty appearance in v′′,

respectively. u′′
d and v′′

d reveal spanwise ripples traveling like streamwise wave packets from left to
right. These observations are consistent with Ref. [45]. It is also found that the intensities of u′′

d and
v′′

d in M8T1 are much larger than those in M8T2, mainly due to the effect of the cold wall condition.

IV. INVESTIGATION OF THE TURBULENT SHEAR STRESS

The normalized tensor M+
uv as well as the normalized turbulent shear stress R+

uv should be
investigated meticulously due to their direct relevance in the kinetic energy budget.

Quadrant analysis is introduced to further explore the statistical behavior of the normalized tensor
M+

uv as well as the normalized turbulent shear stress R+
uv . On the basis of quadrant analysis, four

quadrants are created by the streamwise and wall-normal velocity fluctuations, and the instanta-
neous turbulent shear stress located in these four quadrants are called four events [53]: (1) Q1:
u′′ > 0, v′′ > 0; (2) Q2: u′′ < 0, v′′ > 0; (3) Q3: u′′ < 0, v′′ < 0; and (4) Q4: u′′ > 0, v′′ < 0. The
Q2 and Q4 events represent the ejection and sweep events, which are gradient-type motions and
make the largest contributions to the turbulent shear stress. The Q2 event describes the motion that
the near-wall low-speed streaks rise and break up under the effect of rolling vortex pairs, while
the Q4 event implies the high-speed streaks in the outer layer sweep down to the near-wall fluid.
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(c) (d)

(a) (b)

(e) (f)

FIG. 5. Instantaneous fields of (a) u′′, (b) v′′, (c) u′′
s , (d) v′′

s , (e) u′′
d , and (f) v′′

d in a wall-parallel plane at
y+ = 10 in M8T1. δ is the boundary layer thickness.

The Q1 and Q3 events denote the outward and inward interactions, which are countergradient-type
motions [53]. Quadrant contributions to the turbulent shear stress along the wall-normal direction in
M8T1 and M8T2 are depicted in Fig. 7. It is shown that in M8T2, the Q4 (sweep) event contributes
considerably more to the mean turbulent shear stress than the Q2 (ejection) event near the wall,
whereas the trend reverses far from the wall. The Q1 (outward) event and Q3 (inward) event have
similar contributions to the mean turbulent shear stress. These observations are consistent with
incompressible wall-bounded flow [53]. However, the behaviors of these four events in M8T1 have
a significant difference. The Q2 (ejection) event always contributes more to the mean turbulent shear
stress than the Q4 (sweep) event, implying that the cold wall condition enhances the Q2 (ejection)
event in the near-wall region. Furthermore, the magnitude of the Q3 (inward) event is larger than the
Q1 (outward) event near the wall. It is also found that the magnitudes of these four events in M8T1
are larger than those in M8T2 in the near-wall region, while the magnitudes of four events in these
two cases are similar far from the wall. Accordingly, it is concluded that the cold wall condition
can enhance all four events in the near-wall region, and the increase of the Q2 (ejection) and Q3
(inward) events are larger than the Q1 (outward) and Q4 (sweep) events.

Joint PDFs of normalized streamwise fluctuation u′′/u′′
rms and normalized wall-normal fluctuation

v′′/v′′
rms at four wall-normal locations y+ = 10, 30, 50, and 150 (shown by dash-dot lines in Fig. 7)

054609-11



XU, WANG, WAN, YU, LI, AND CHEN

(c) (d)

(a) (b)

(e) (f)

FIG. 6. Instantaneous fields of (a) u′′, (b) v′′, (c) u′′
s , (d) v′′

s , (e) u′′
d , and (f) v′′

d in a wall-parallel plane at
y+ = 10 in M8T2. δ is the boundary layer thickness.

(a) (b)

FIG. 7. Quadrant contributions to the turbulent shear stress along the wall-normal direction in (a) M8T1
and (b) M8T2. The dash-dot lines from left to right represent position y+ = 10, 30, 50, and 150, respectively.
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(a) (b)

(c) (d)

FIG. 8. Joint PDF of normalized streamwise fluctuation u′′/u′′
rms and normalized wall-normal fluctuation

v′′/v′′
rms at (a) y+ = 10, (b) y+ = 30, (c) y+ = 50, and (d) y+ = 150. The contour levels 0.001, 0.01, 0.1, are

shown.

are plotted in Fig. 8. It is found that joint PDFs at y+ = 150 are much wider in the second and
fourth quadrants, and the second and fourth quadrants give the main contributions to the turbulent
shear stress (shown by the yellow dash-dot line in Fig. 7), which indicates that Q2 (ejection) and Q4
(sweep) events are dominant far from the wall. In the near-wall region (y+ = 10), the Q3 (inward)
event in M8T1 is much larger than that in M8T2, indicating that the cold wall condition enhances the
inward event. This phenomenon is consistent with previous observation [Figs. 2(c) and 2(d)] that the
cold wall enhances the compression motion near the wall. As the wall-normal location y+ increases,
joint PDFs of u′′/u′′

rms and v′′/v′′
rms become more similar between M8T1 and M8T2, implying that

the influence of the cold wall condition on the distribution of the normalized turbulent shear stress
R+

uv is focused on the near-wall region.
Quadrant contributions to the turbulent shear stress along the wall-normal direction conditioned

on the normalized dilatation θ ′′+ are depicted in Fig. 9 to demonstrate the effect of compressibility
on the normalized turbulent shear stress R+

uv . It is found that the Q1 (outward) and Q2 (ejection)
events are mainly located in the expansion region, while the Q3 (inward) and Q4 (sweep) events are
primarily situated in the compression region near the wall. However, the distributions of these four
events in compression and expansion regions are similar far from the wall. Joint PDFs of normalized
streamwise fluctuation u′′/u′′

rms and normalized wall-normal fluctuation v′′/v′′
rms conditioned on the

normalized dilatation θ ′′+ at y+ = 10, 150 are shown in Fig. 10. It is shown that the joint PDF
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(a) (b)

(c) (d)

FIG. 9. Quadrant contributions to the turbulent shear stress along wall-normal direction conditioned on the
normalized dilatation θ ′′+. (a) θ ′′+ > 0 in M8T1; (b) θ ′′+ > 0 in M8T2; (c) θ ′′+ < 0 in M8T1; (d) θ ′′+ < 0 in
M8T2. The dash-dot lines from left to right represent position y+ = 10, 30, 50, and 150, respectively.

of M8T1 in Fig. 10(a) is mainly located in the first and second quadrants, while the joint PDF of
M8T1 in Fig. 10(b) is primarily located in the third and fourth quadrants, which indicates that in
M8T1, the positive v′′ events are dominant in the expansion region, while the negative v′′ events are
primary in the compression region near the wall (y+ = 10). However, the joint PDFs in compression
and expansion regions are similar far from the wall (y+ = 150), indicating that the compressibility
effect on these four events is mainly in the near-wall region. It is also found that the joint PDFs of
M8T2 are similar between the compression and expansion regions, indicating that the compression
and expansion motions have a subtle influence on the distributions of four events in M8T2 due to
weak compressibility compared with M8T1.

Conditional average 〈M+
uv|θ ′′+〉 of the tensor M+

uv along the wall-normal direction is shown
in Fig. 11. The dash-dot lines from left to right represent position y+ = 10, 30, 50, and 150,
respectively. The data in the large magnitude of normalized dilatation |θ ′′+| are quite scattered due
to lack of samples. It is revealed that the compressibility effect on 〈M+

uv|θ ′′+〉 is more prominent
in M8T1 than in M8T2. In M8T1, it is found that strong positive values of 〈M+

uv|θ ′′+〉 appear in
the compression region for 5 < y+ < 30, due to the fact that the Q3 (inward) event plays a central
role in the compression region. Strong negative values of 〈M+

uv|θ ′′+〉 exist in the expansion region
for 10 < y+ < 100, since the Q2 (ejection) event is dominant in the expansion region. At y+ > 50,
strong negative 〈M+

uv|θ ′′+〉 accumulates in the weak compression region, which can be attributed

054609-14



COMPRESSIBILITY EFFECT IN HYPERSONIC BOUNDARY …

(a) (b)

(c) (d)

FIG. 10. Joint PDF of normalized streamwise fluctuation u′′/u′′
rms and normalized wall-normal fluctuation

v′′/v′′
rms conditioned on the normalized dilatation θ ′′+. (a) θ ′′+ > 0 at y+ = 10; (b) θ ′′+ < 0 at y+ = 10;

(c) θ ′′+ > 0 at y+ = 150; (d) θ ′′+ < 0 at y+ = 150. The contour levels 0.001, 0.01, 0.05 are shown.

(a) (b)

FIG. 11. The average of the tensor M+
uv conditioned on the normalized dilatation 〈M+

uv|θ ′′+〉 along the wall-
normal direction in (a) M8T1 and (b) M8T2. The dash-dot lines from left to right represent position y+ =
10, 30, 50, and 150, respectively.
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to the domination of the Q2 (ejection) event and the Q4 (sweep) event in this region. Relative
large negative values of the conditional average of M+

uv exist in the large magnitude of normalized
dilatation, implying that the Q2 (ejection) event and Q4 (sweep) event are highly correlated with
the strong expansion region and strong compression region, respectively. Nevertheless, in M8T2,
strong negative 〈M+

uv|θ ′′+〉 gathers in the weak compression region at 10 < y+ < 100, due to the
strong Q2 (ejection) event and Q4 (sweep) event in this region. Other regions reveal the almost
balance between positive and negative M+

uv , indicating a weak correlation between dilatation and
M+

uv with high wall temperature. Accordingly, it is concluded that the effect of wall temperature
has significant influence on 〈M+

uv|θ ′′+〉 only near the wall. In the near-wall region, wall temperature
significantly affects four events. The compression motion is closely associated with the Q3 (inward)
event, pumping low-speed fluid toward the wall. The expansion motion is highly associated with
the Q2 (ejection) event, which has the main contribution to the negative values of Ruv . It is also
found that the range of the normalized dilatation θ ′′+ is much wider in M8T1 compared with

that in M8T2, and the r.m.s. of the normalized dilatation 〈(θ ′′ +)2〉1/2
is much larger in M8T1

than that in M8T2 near the wall [shown in Fig. 2(b)], indicating a stronger compressibility in
M8T1. Accordingly, the above observations suggest that the cold wall drastically increases the
compressibility near the wall and also enhances the Q3 (inward) event in compression region and
Q2 (ejection) event in the expansion region. However, in the far-wall region, the Q2 (ejection) and
Q4 (sweep) events dominate, which results in the negative values of Ruv . The local compressibility
has a subtle influence on the distribution of four events far from the wall.

On the basis of Helmholtz decomposition, the joint PDFs of four decomposed components of the
tensor M+

uv at four wall-normal locations, y+ = 10, 30, 50, and 150, are depicted in Figs. 12–15,
and the conditional averages of these decomposed components are plotted in Figs. 16 and 17.

Compared with Figs. 8 and 12, it is found that the joint PDF of u′′
s /u′′

s,rms and v′′
s /v′′

s,rms and the
joint PDF of u′′/u′′

rms and v′′/v′′
rms are similar in M8T1 and M8T2 except for the near-wall region

(y+ = 10) in M8T1, where a wider Q4 distribution and a narrower Q3 distribution appear in joint
PDF of u′′

s /u′′
s,rms and v′′

s /v′′
s,rms, which shows the dominance of the Q2 and Q4 events in the joint

PDF of u′′
s /u′′

s,rms and v′′
s /v′′

s,rms in M8T1. The joint PDFs of u′′
s /u′′

s,rms and v′′
s /v′′

s,rms in M8T1 and
M8T2 become more and more similar as y+ increases, implying that the influence of the cold wall
condition on the distribution of M+

usvs
is negligibly small far from the wall. Compared with Figs. 11

and 16(a) and 16(b), it is found that the negative values of 〈M+
uv|θ ′′+〉 in the weak compression

region at y+ > 50 in M8T1 and 10 < y+ < 100 in M8T2 are mainly contributed by the Q2 event
and Q4 event of the solenoidal component M+

usvs
. Furthermore, in M8T1, the weak positive values

of 〈M+
usvs

|θ ′′+〉 appear in the compression region at y+ < 20, due to the weak positive correlation of
u′′

s and v′′
s . Expansion motions at 10 < y+ < 100 have the main contribution to the negative values

of 〈M+
uv|θ ′′+〉, which is induced by a negative correlation of u′′

s and v′′
s . Compared with 〈M+

usvs
|θ ′′+〉

in M8T1 and M8T2, the wall temperature has negligible influence on 〈M+
usvs

|θ ′′+〉. The Q2 and Q4
events dominate far from the wall and are rarely influenced by local compressibility. In the near-wall
region, the positive and negative values of M+

usvs
are almost balanced.

It is shown in Fig. 13 that strong positive skewness of v′′
d appears in M8T2, while a weak negative

skewness of v′′
d exists in M8T1. The u′′

d exhibits weak negative skewness in M8T1 and M8T2,
and the distributions of u′′

d in both cases are similar. These observations indicate that the cold wall
condition has a strong influence on the dilatational wall-normal fluctuation v′′

d , which enhances
the negative values of the dilatational wall-normal fluctuation v′′

d , but has negligible effect on the
dilatational streamwise fluctuation u′′

d . It is depicted in Figs. 16(c) and 16(d) that in M8T1, relatively
strong negative values of 〈M+

ud vd
|θ ′′+〉 appear in the compression region at y+ < 10, induced by the

strong negative correlation between u′′
d and v′′

d . Relatively strong positive values of 〈M+
ud vd

|θ ′′+〉
appear in the expansion region at 10 < y+ < 50, due to the strong positive correlation between
u′′

d and v′′
d . At the far-wall region, the magnitudes of u′′

d and v′′
d are very small, giving rise to that
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(a) (b)

(c) (d)

FIG. 12. Joint PDF of normalized streamwise solenoidal fluctuation u′′
s /u′′

s,rms and normalized wall-normal
solenoidal fluctuation v′′

s /v
′′
s,rms at (a) y+ = 10, (b) y+ = 30, (c) y+ = 50, and (d) y+ = 150. The contour levels

0.001, 0.01, 0.1 are shown.

〈M+
ud vd

|θ ′′+〉 is nearly zero. In M8T2, 〈M+
ud vd

|θ ′′+〉 is very small in the full region mainly due to
weak compressibility.

It is depicted in Fig. 14 that the joint PDF of u′′
s /u′′

s,rms and v′′
d/v′′

d,rms shows no evidence of
correlation for negative u′′

s events, but exhibits strong positive correlation between positive u′′
s and

positive v′′
d in M8T2. However, in M8T1, the behavior is totally different. A wider distribution

of PDF of v′′
d/v′′

d,rms exists in the negative u′′
s events near the wall in M8T1, indicating a strong

positive correlation between negative u′′
s and v′′

d . It is also found that stronger negative u′′
s events

appear in M8T2 and stronger positive u′′
s events exist in M8T1 near the wall, implying that the

cold wall condition enhances the positive u′′
s events and suppresses the negative u′′

s events. It is
shown in Figs. 17(a) and 17(b) that in M8T1, strong positive values of 〈M+

usvd
|θ ′′+〉 appear in the

compression region at 5 < y+ < 30 and strong negative values of 〈M+
usvd

|θ ′′+〉 exist in the expansion
region at 10 < y+ < 50, which are the main contributions of the positive values of 〈M+

uv|θ ′′+〉 in the
compression region and the negative values of 〈M+

uv|θ ′′+〉 in the expansion region, respectively. The
positive values of 〈M+

usvd
|θ ′′+〉 in the compression region are mainly caused by the Q3 event, and the

negative values of 〈M+
usvd

|θ ′′+〉 in the expansion region are mainly due to the Q2 event. In M8T2,
weak positive values appear in the strong compression region. Compared with 〈M+

usvd
|θ ′′+〉 in M8T1

and M8T2, wall temperature has a significant influence on distribution of four events of u′′
s and v′′

d
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(a) (b)

(c) (d)

FIG. 13. Joint PDF of normalized streamwise dilatational fluctuation u′′
d/u′′

d,rms and normalized wall-normal
dilatational fluctuation v′′

d/v
′′
d,rms at (a) y+ = 10, (b) y+ = 30, (c) y+ = 50, and (d) y+ = 150. The contour levels

0.001, 0.01, 0.1 are shown.

near the wall. The cold wall drastically enhances Q3 event in the compression region and Q2 event
in the expansion region. The term 〈M+

usvd
|θ ′′+〉 is the main reason for the difference of 〈M+

uv|θ ′′+〉 in
M8T1 and M8T2 near the wall. However, in the far-wall region, 〈M+

usvd
|θ ′′+〉 is almost zero in both

M8T1 and M8T2, mainly due to weak compressibility in this region.
It is shown in Fig. 15 that the joint PDFs of u′′

d/u′′
d,rms and v′′

s /v′′
s,rms in M8T1 and M8T2 are

similar except for a slightly larger distribution at large negative v′′
s events in M8T1, indicating that

the cold wall condition has negligible influence on the u′′
d and v′′

s . It is depicted in Figs. 17(c) and
17(d) that the cold wall has a negligible effect on 〈M+

ud vs
|θ ′′+〉, which is consistent with the fact that

R+
ud vs

is nearly independent of the wall temperature. Moreover, 〈M+
ud vs

|θ ′′+〉 gives rare contribution
to 〈M+

uv|θ ′′+〉.
Consequently, it is concluded that among four decomposed components, 〈M+

usvs
|θ ′′+〉 and

〈M+
usvd

|θ ′′+〉 are the main contributions to 〈M+
uv|θ ′′+〉. 〈M+

usvs
|θ ′′+〉 is nearly independent of the wall

temperature and gives the main contribution to 〈M+
uv|θ ′′+〉 far from the wall. On the other hand,

M+
usvd

is drastically affected by wall temperature and dominant in 〈M+
uv|θ ′′+〉 near the wall. Other two

components give little contribution to 〈M+
uv|θ ′′+〉. The cold wall can drastically enhance 〈M+

ud vd
|θ ′′+〉

near the wall, while 〈M+
ud vs

|θ ′′+〉 is nearly irrelevant with the wall temperature.
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(a) (b)

(c) (d)

FIG. 14. Joint PDF of normalized streamwise solenoidal fluctuation u′′
s /u′′

s,rms and normalized wall-normal
dilatational fluctuation v′′

d/v
′′
d,rms at (a) y+ = 10, (b) y+ = 30, (c) y+ = 50, and (d) y+ = 150. The contour levels

0.001, 0.01, 0.1 are shown.

V. CORRELATIONS BETWEEN VELOCITY FLUCTUATIONS
AND FLUCTUATING TEMPERATURE

The correlations between streamwise, wall-normal velocity fluctuations u′′, v′′, and fluctuating
temperature T ′ are often investigated to examine the SRA. The correlation coefficients between
streamwise, wall-normal velocity fluctuations u′′, v′′, and fluctuating temperature T ′ are defined as

Cu′′T ′ ≡ 〈u′′T ′〉(〈u′′2〉〈T ′2〉)1/2 , Cv′′T ′ ≡ 〈v′′T ′〉(〈v′′2〉〈T ′2〉)1/2 (18)

On the basis of Helmholtz decomposition, the correlation coefficients Cu′′T ′ and Cv′′T ′ can be
decomposed into solenoidal and dilatational components, which can be expressed as

Cu′′T ′ = 〈u′′
s T ′〉

(〈u′′2〉〈T ′2〉)1/2
+ 〈u′′

d T ′〉
(〈u′′2〉〈T ′2〉)1/2

≡ C∗
u′′

s T ′ + C∗
u′′

d T ′ (19)

Cv′′T ′ = 〈v′′
s T ′〉

(〈v′′2〉〈T ′2〉)1/2
+ 〈v′′

d T ′〉
(〈v′′2〉〈T ′2〉)1/2

≡ C∗
v′′

s T ′ + C∗
v′′

d T ′ . (20)

The correlation coefficients Cu′′T ′ , Cv′′T ′ and their decomposed components along wall-normal
direction are plotted in Fig. 18. It is revealed that the intersection points of Cu′′T ′ and Cv′′T ′ with
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(a) (b)

(c) (d)

FIG. 15. Joint PDF of normalized streamwise dilatational fluctuation u′′
d/u′′

d,rms and normalized wall-normal
solenoidal fluctuation v′′

s /v
′′
s,rms at (a) y+ = 10, (b) y+ = 30, (c) y+ = 50, and (d) y+ = 150. The contour levels

0.001, 0.01, 0.1 are shown.

C = 0 move farther away from the wall as the wall temperature decreases, which is consistent with
Ref. [4]. This partially due to the farther location of the maximum mean temperature 〈T 〉 [4], as is
shown in the inset of Fig. 18(a). The strong correlation of u′′ and T ′ near the wall is found in M8T1,
while u′′ and T ′ in M8T2 are slightly positively correlated in the near-wall region. It is shown that
the cold wall drastically enhances the positive correlation between u′′ and T ′ near the wall. As the
wall-normal distance increases, Cu′′T ′ becomes negative. The value of Cu′′T ′ tends to be nearly −0.67
far from the wall, similar to the results reported in Refs. [4,13,21]. However, Cu′′T ′ far from the wall
in M8T1 is slightly larger than that in M8T2, indicating that the cold wall slightly weakens the
negative correlation of u′′ and T ′ far from the wall. The strong positive correlation between u′′ and
T ′ in M8T1 is mainly caused by the dilatational component of streamwise velocity fluctuation u′′

d
near the wall. The dominance of C∗

u′′
d T ′ in Cu′′T ′ is significantly enhanced by the cold wall. However,

the values of Cu′′T ′ and C∗
u′′

s T ′ are coincident far from the wall in M8T1 and M8T2, implying that
the correlation between u′′ and T ′ is mainly dominated by the solenoidal component of streamwise
velocity fluctuation u′′

s far from the wall.
It is depicted that v′′ and T ′ are negatively correlated near the wall, and the negative correlation

is weaker in M8T1, indicating that the cold wall suppresses the negative correlation between v′′
and T ′ near the wall. As wall-normal distance increases, Cv′′T ′ becomes positive. The value of Cv′′T ′

tends to be nearly 0.47 far from the wall, which is similar to the observation reported in Ref. [13].
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(a) (b)

(c) (d)

FIG. 16. The average of solenoidal and dilatational components of the tensor M+
usvs

and M+
ud vd

conditioned
on the normalized dilatation 〈M+

usvs
|θ ′′+〉 and 〈M+

ud vd
|θ ′′+〉 along the wall-normal direction. (a) 〈M+

usvs
|θ ′′+〉 in

M8T1; (b) 〈M+
usvs

|θ ′′+〉 in M8T2; (c) 〈M+
ud vd

|θ ′′+〉 in M8T1; (d) 〈M+
ud vd

|θ ′′+〉 in M8T2. The dash-dot lines from
left to right represent position y+ = 10, 30, 50, and 150, respectively.

Cv′′T ′ far from the wall in M8T1 is slightly smaller than that in M8T2, indicating that the cold wall
slightly weakens the positive correlation of v′′ and T ′ far from the wall. The negative correlations
between v′′ and T ′ in M8T1 and M8T2 are mainly contributed by the dilatational component of
wall-normal velocity fluctuation v′′

d near the wall, and the cold wall suppresses the dominance of
C∗

v′′
d T ′ in Cv′′T ′ . However, the values of Cv′′T ′ and C∗

v′′
s T ′ are coincident in M8T1 and M8T2 far from

the wall, implying that the correlation between v′′ and T ′ is mainly dominated by the solenoidal
component of wall-normal velocity fluctuation v′′

s far from the wall.
Accordingly, it is concluded that the cold wall can enhance the positive correlation between

u′′ and T ′ and suppress the negative correlation between v′′ and T ′ near the wall, which are closely
related with the previous observations in Figs. 5 and 6 that the cold wall can increase the streamwise
coherency of near-wall streaks and suppress spotty structures. However, the cold wall slightly
weakens the negative correlation of u′′ and T ′ and the positive correlation of v′′ and T ′, respectively,
far from the wall. Cu′′T ′ and Cv′′T ′ are mainly contributed by their dilatational components near the
wall, and dominated by their solenoidal components far from the wall.
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(a) (b)

(c) (d)

FIG. 17. The average of solenoidal-dilatational and dilatational-solenoidal components of the tensor M+
usvd

and M+
ud vs

conditioned on the normalized dilatation 〈M+
usvd

|θ ′′+〉 and 〈M+
ud vs

|θ ′′+〉 along the wall-normal
direction. (a) 〈M+

usvd
|θ ′′+〉 in M8T1; (b) 〈M+

usvd
|θ ′′+〉 in M8T2; (c) 〈M+

ud vs
|θ ′′+〉 in M8T1; (d) 〈M+

ud vs
|θ ′′+〉 in

M8T2. The dash-dot lines from left to right represent position y+ = 10, 30, 50, and 150, respectively.

VI. THE KINETIC AND INTERNAL ENERGY BUDGETS

With the introduction of a new variable φ ≡ √
e =

√
p

γ−1 , Mittal and Girimaji [54] developed a

mathematical framework of the energy exchange in kinetic and internal energy. The velocity field is
decomposed into a Favre average and a corresponding fluctuation field, u = Ũ + u′′. Other variables
ψ (such as pressure p and temperature T ) are decomposed using Reynolds averaging, ψ = ψ + ψ ′.
Thus, the mean kinetic and internal energy K and e can be expressed as [54]

K = 1
2ρŨiŨi + 1

2ρu′′
i u′′

i ≡ Km + k, (21)

e = φ2 = φ̄φ̄ + φ′φ′ ≡ em + et , (22)

where φ is decomposed using Reynolds averaging φ = φ̄ + φ′, which are expressed as

φ̄ =
√

p

γ − 1
, φ′ =

√
p

γ − 1
−

√
p

γ − 1
. (23)
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(a) (b)

FIG. 18. The correlation coefficients (a) Cu′′T ′ , C∗
u′′

s T ′ , and C∗
u′′

d T ′ . Inset: the normalized mean temperature

〈T 〉/〈Tδ〉 along wall-normal direction. (b) Cv′′T ′ , C∗
v′′

s T ′ , and C∗
v′′

d T ′ along the wall-normal direction.

The equation for the mean field of kinetic energy (Km) is given by [54]

∂Km

∂t
+ ∂ (KmŨj )

∂x j
+ ∂

∂x j
[ρu′′

i u′′
j Ũi + p̄Ū j − σ̄i jŪi]

= ρu′′
i u′′

j

∂Ũi

∂x j
+ p̄

∂Ūk

∂xk
− σ̄i j

∂Ūi

∂x j
+ u′′

k

∂ p̄

∂xk
− u′′

k

∂σ̄k j

∂x j
. (24)

The equation for the fluctuating field of kinetic energy (k) is given by [54]

∂k

∂t
+ ∂ (kŨj )

∂x j
+ ∂

∂x j

[
1

2
ρu′′

i u′′
i u′′

j + p′u′′
j − σ ′

i ju
′′
i

]

= −ρu′′
i u′′

j

∂Ũi

∂x j
+ p′ ∂u′′

k

∂xk
− σ ′

i j

∂u′′
i

∂x j
− u′′

k

∂ p̄

∂xk
+ u′′

k

∂σ̄k j

∂x j
. (25)

The mean and fluctuating pressure can be expressed in terms of the internal energy variable φ as

p̄ = (γ − 1)[φ̄φ̄ + φ′φ′], p′ = (γ − 1)[φ′φ′ + 2φ̄φ′ − φ′φ′]. (26)

Thus, the mean and fluctuating pressure can be divided into two components [54]

p̄ = p̄m + p̄t , p′ = p′
m + p′

t , (27)

where

p̄m = (γ − 1)φ̄φ̄, p̄t = (γ − 1)φ′φ′, (28)

p′
m = 2(γ − 1)φ̄φ′, p′

t = (γ − 1)[φ′φ′ − φ′φ′]. (29)
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(a) (b)

FIG. 19. The mean field of kinetic energy Km budget along wall-normal direction in (a) M8T1 and
(b) M8T2. All terms are normalized by ρwu3

τ /δν .

Thus, the equation for mean field of the internal energy (em) is given by [54]

∂em

∂t
+ ∂ (emŨk )

∂xk
+ ∂

∂xk
[φ̄φ̄u′′

k + 2φ̄φ′u′′
k + q̄k]

= σ̄i j
∂Ūi

∂x j
+ σ ′

i j

∂u′′
i

∂x j
− pm

∂Ūk

∂xk
+ 2u′′

kφ
′ ∂φ̄

∂xk
+ 2 − γ

2(γ − 1)
p′

m

∂u′′
k

∂xk
− f φ′

φ
. (30)

The equation for fluctuating field of the internal energy (et ) is given by [54]

∂et

∂t
+ ∂ (etŨk )

∂xk
+ ∂ (φ′φ′u′′

k )

∂xk

= −pt
∂Ūk

∂xk
− p′ ∂u′

k

∂xk
− 2u′′

kφ
′ ∂φ̄

∂xk
− 2 − γ

2(γ − 1)
p′

m

∂u′
k

∂xk
+ f φ′

φ
. (31)

Here the thermal flux is qk = −κ ∂T
∂xk

and f = − ∂qk

∂xk
+ σi j

∂ui
∂x j

is the sum of the thermal flux and
viscous terms.

The mean and fluctuating fields of kinetic and internal energy budgets of Eqs. (24), (25), (30),
and (31) in M8T1 and M8T2 are shown in Figs. 19–22.

Then we discuss the energy exchanges among Km, k, em, and et . First, the Km-k interactions are
considered. The most important interaction between mean-turbulent kinetic energy is the production
term −ρu′′

i u′′
j
∂Ũi
∂x j

. The production term −ρu′′
i u′′

j
∂Ũi
∂x j

and its decomposed components along wall-

normal direction are shown in Fig. 23. It is shown that the production term −ρu′′
i u′′

j
∂Ũi
∂x j

plays a
dominant role in Km-k interactions and is always positive, indicating that production term draws
energy from the mean flow and deposits it into the fluctuating field. The production term −ρu′′

i u′′
j
∂Ũi
∂x j

achieves its peak in the buffer layer. The solenoidal component −ρu′′
s,iu

′′
s, j

∂Ũi
∂x j

has the main contri-
bution to the production term and even has a higher positive peak in the buffer layer compared with
the production term. The term −ρu′′

s,iu
′′
d, j

∂Ũi
∂x j

achieves its peak in the buffer layer and depletes the

solenoidal component −ρu′′
s,iu

′′
s, j

∂Ũi
∂x j

. In M8T1, the dilatational component −ρu′′
d,iu

′′
d, j

∂Ũi
∂x j

achieves
its peak near the wall and has a relatively small contribution to the production term. The term
−ρu′′

d,iu
′′
s, j

∂Ũi
∂x j

has negligible contribution to the production term. However, in M8T2 these two
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(a) (b)

FIG. 20. The fluctuating field of kinetic energy k budget along the wall-normal direction in (a) M8T1 and
(b) M8T2. All terms are normalized by ρwu3

τ /δν .

components −ρu′′
d,iu

′′
d, j

∂Ũi
∂x j

and −ρu′′
d,iu

′′
s, j

∂Ũi
∂x j

have negligible contributions to the production term

due to weak compressibility. Another two interactions u′′
k

∂ p
∂xk

and u′′
k

∂σk j

∂x j
are caused by pressure work

and viscous action, respectively. The terms u′′
k

∂ p
∂xk

and u′′
k

∂σk j

∂x j
along the wall-normal direction in

M8T1 an M8T2 are shown in Figs. 24 and 25, respectively. It is found that the magnitudes of u′′
k

∂σk j

∂x j

and u′′
k

∂ p
∂xk

are one and two orders smaller than that of the production term −ρu′′
i u′′

j
∂Ũi
∂x j

, respectively,
indicating that these two interactions have negligible contributions to the interactions between Km

and k. It is noticed that the negative value of u′′
k

∂ p
∂xk

represents the energy transfer from the mean flow

to the fluctuating field and vice versa. It is shown in Fig. 24 that u′′
k

∂ p
∂xk

is mainly governed by its

dilatational component u′′
d,k

∂ p
∂xk

in the buffer layer and far from the wall, except for the cancellation

of solenoidal component u′′
s,k

∂ p
∂xk

and dilatational component u′′
d,k

∂ p
∂xk

in the near-wall region. u′′
k

∂ p
∂xk

mainly transfers energy from mean flow to fluctuating field in the buffer layer, and weak reverse

(b)(a)

FIG. 21. The mean field of internal energy em budget along the wall-normal direction in (a) M8T1 and
(b) M8T2. All terms are normalized by ρwu3

τ /δν .
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(a) (b)

FIG. 22. The fluctuating field of internal energy et budget along the wall-normal direction in (a) M8T1 and
(b) M8T2. All terms are normalized by ρwu3

τ /δν .

transfer exists far from the wall. Furthermore, the positive value of u′′
k

∂σk j

∂x j
represents the energy

transfer from the mean flow to the fluctuating field and vice versa. It is depicted in Fig. 25 that
u′′

k
∂σk j

∂x j
is dominated by its solenoidal component u′′

s,k
∂σk j

∂x j
. u′′

k
∂σk j

∂x j
mainly transfers energy from the

mean flow to the fluctuating field in M8T2; however, in M8T1, u′′
k

∂σk j

∂x j
mainly transfers energy from

the fluctuating filed to the mean flow in the buffer layer, and reverse transfer exists far from the
wall. Accordingly, both pressure work (u′′

k
∂ p
∂xk

) and viscous action (u′′
k

∂σk j

∂x j
) can lead to a two-way

exchange between mean flow and fluctuating field of kinetic energy.
It is found that all three interactions between mean-turbulent kinetic energy −ρu′′

i u′′
j
∂Ũi
∂x j

, u′′
k

∂ p
∂xk

and u′′
k

∂σk j

∂x j
are smaller in M8T1, indicating weaker energy transfer between mean and fluctuating

kinetic energy with cold wall. Furthermore, the peak of the production term −ρu′′
i u′′

j
∂Ũi
∂x j

shifts farther
away from the wall with the cold wall.

(a) (b)

FIG. 23. The term −ρu′′
i u′′

j
∂Ũi
∂x j

and its decomposed components along the wall-normal direction in

(a) M8T1 and (b) M8T2. All terms are normalized by ρwu3
τ /δν .
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(a) (b)

FIG. 24. The term u′′
k

∂ p
∂xk

and its decomposed components along the wall-normal direction in (a) M8T1 and

(b) M8T2. All terms are normalized by ρwu3
τ /δν .

Next, the interactions between Km and em are discussed. The most important interaction between
Km and em is through viscous action (σi j

∂U i
∂x j

). Viscous action (σi j
∂U i
∂x j

) dissipates mean field kinetic
energy to mean field internal energy and is also dominated in the mean fields of kinetic and
internal energy budgets. Another interaction is through the linear component of mean field pressure
dilatation (pm

∂U k
∂xk

). This term is two orders smaller than σi j
∂U i
∂x j

and has negligible contribution to
the interactions between Km and em. However, this term causes a two-way exchange. It is noted that
the interactions between Km and em, σi j

∂U i
∂x j

and pm
∂U k
∂xk

, are similar in M8T1 and M8T2, indicating
that the cold wall has negligible influence on the energy transfer between Km and em.

The interaction between Km and et is via the nonlinear component of mean field pressure
dilatation (pt

∂U k
∂xk

). This term is negligibly small and a two-way exchange.

(a) (b)

FIG. 25. The term u′′
k

∂σk j

∂x j
and its decomposed components along the wall-normal direction in (a) M8T1

and (b) M8T2. All terms are normalized by ρwu3
τ /δν .
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(a) (b)

FIG. 26. The term σ ′
i j

∂u′′
i

∂x j
and its decomposed components along the wall-normal direction in (a) M8T1 and

(b) M8T2. All terms are normalized by ρwu3
τ /δν .

The interaction between k and em is through fluctuating field viscous action (σ ′
i j

∂u′′
i

∂x j
). The

term σ ′
i j

∂u′′
i

∂x j
and its decomposed components along wall-normal direction in M8T1 and M8T2 are

shown in Fig. 26. It is shown that the fluctuating field of kinetic energy dissipates energy into the

mean field of internal energy via fluctuating field viscous action (σ ′
i j

∂u′′
i

∂x j
). This term is dominated

by its solenoidal components σ ′
i j

∂u′′
s,i

∂x j
. The dilatational component σ ′

i j
∂u′′

d,i

∂x j
has only a very weak

contribution in the near-wall region. It is also found in Fig. 20 that σ ′
i j

∂u′′
i

∂x j
is dominated in the

fluctuating field of kinetic energy budget, but is relative smaller compared with σi j
∂U i
∂x j

in the mean
field of the internal energy budget (shown in Fig. 21), indicating that the mean field of kinetic energy
contributes much more energy to the mean field of internal energy compared with the fluctuating
field of kinetic energy. The cold wall has a pretty small influence on the energy transfer between k
and em.

The interaction between k and et is through the fluctuating field pressure-dilatational action

(p′ ∂u′
k

∂xk
). This term transfers energy from the fluctuating field of kinetic energy to the fluctuating field

of internal energy entirely by its dilatational component. p′ ∂u′
k

∂xk
is dominated in the fluctuating field

of the internal energy budget and achieves its peak in the near-wall region. It is also shown that p′ ∂u′
k

∂xk

is very small compared with the production term −ρu′′
i u′′

j
∂Ũi
∂x j

. Furthermore, p′ ∂u′
k

∂xk
in M8T1 is much

larger than that in M8T2 near the wall, indicating that the cold wall enhances the compressibility
near the wall and strengthens the energy transfer between k and et .

Finally, the interactions between em and et are discussed. The most important interaction is via

viscous and thermal flux action ( f φ′
φ

). f φ′
φ

mainly transfers energy from the fluctuating field of
internal energy to the mean field of internal energy and is dominated in fluctuating and mean fields
of internal energy budgets. Another important interaction is through the linear component of the

pressure-dilatational mechanism ( 2−γ

2(γ−1) p′
m

∂u′
k

∂xk
). This term transfers energy from the mean field of

internal energy to the fluctuating field of internal energy and is important in the fluctuating field of
the internal energy budget. The last interaction is 2u′′

kφ
′ ∂φ̄

∂xk
, which is shown in Fig. 27. This term is

two orders smaller than above two interactions and is mainly governed by its solenoidal component
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(a) (b)

FIG. 27. The term 2u′′
kφ

′ ∂φ̄

∂xk
and its decomposed components along the wall-normal direction in (a) M8T1

and (b) M8T2. All terms are normalized by ρwu3
τ /δν .

2u′′
s,kφ

′ ∂φ̄

∂xk
. In M8T1, 2u′′

kφ
′ ∂φ̄

∂xk
is a two-way exchange, and its dilatational component 2u′′

d,kφ
′ ∂φ̄

∂xk

plays an important role due to large compressibility. It is shown that the cold wall has weak influence

on the peak intensities of f φ′
φ

and 2u′′
kφ

′ ∂φ̄

∂xk
, although a two-way exchange of 2u′′

kφ
′ ∂φ̄

∂xk
appears with

cold wall. However, 2−γ

2(γ−1) p′
m

∂u′
k

∂xk
is enhanced by the cold wall due to stronger compressibility.

Accordingly, it is concluded that most of the interactions are governed by the solenoidal compo-

nents except for the terms associated with the pressure (u′′
k

∂ p
∂xk

and p′ ∂u′′
k

∂xk
), which are governed by the

dilatational components. Moreover, the interactions between mean and fluctuating kinetic energy,

−ρu′′
i u′′

j
∂Ũi
∂x j

, u′′
k

∂ p
∂xk

and u′′
k

∂σk j

∂x j
, are weaker, while the interactions associated with dilatation (p′ ∂u′′

k
∂xk

and 2−γ

2(γ−1) p′
m

∂u′
k

∂xk
) are enhanced due to higher values of 〈(θ ′′ +)2〉1/2

in M8T1 [shown in Fig. 2(b)],
and accordingly stronger compressibility near the wall with cold wall. Other interactions have small
correlation with wall temperature.

VII. SUMMARY AND CONCLUSION

In this paper, Helmholtz decomposition is introduced to investigate the compressibility effect
of the isothermal hypersonic boundary layer. Two isothermal wall conditions with the freestream
Mach number M∞ = 8 are studied, including the cold wall case Tw/T∞ = 1.9 and the less cold wall
case Tw/T∞ = 10.03 denoted by M8T1 and M8T2, respectively. The PDF of normalized dilatation
fluctuation θ ′′ + in M8T1 is negatively skewed in the near-wall region, indicating that the cold wall
condition enhances the compression motion near the wall. The Reynolds stress and decomposed
components are investigated. It is noticed that R+

ud ud
, R+

vd vd
, and R+

wd wd
are much larger in M8T1

than those in M8T2, indicating that the cold wall temperature can enhance the compressibility in
the near-wall region. The instantaneous velocity fields demonstrate that u′′ exhibits the streaks,
while v′′ has a more spotty appearance due to ejection and sweep events. The u′′

d and v′′
d behave as

streamwise wave packets traveling from left to right.
Then the tensor M+

uv and the turbulent shear stress R+
uv are investigated meticulously. Quadrant

analysis is introduced to explore the contributions of four events to the turbulent shear stress Ruv .
It is found that the cold wall condition can enhance all four events in the near-wall region, and the
increase of the Q2 (ejection) and Q3 (inward) events is larger than the Q1 (outward) and Q4 (sweep)
events. The Q1 (outward) and Q2 (ejection) events are mainly located in the expansion region, while
the Q3 (inward) and Q4 (sweep) events are primarily situated in the compression region near the
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wall. Furthermore, it is found that the cold wall condition can enhance the Q3 (inward) event mainly
in the compression region and the Q2 (ejection) event mainly in the expansion region near the wall.
On the basis of Helmholtz decomposition, the properties of four decomposed components of the
tensor M+

uv are also discussed. It is found that the cold wall condition can enhance the positive u′′
s

and negative v′′
d events, but has negligible influence on the u′′

d and v′′
s . Among four decomposed

components, 〈M+
usvs

|θ ′′+〉 and 〈M+
usvd

|θ ′′+〉 are the dominant contributions to 〈M+
uv|θ ′′+〉. 〈M+

usvs
|θ ′′+〉

is nearly independent on the wall temperature and gives the main contribution to 〈M+
uv|θ ′′+〉 far from

the wall. However, M+
usvd

is drastically influenced by wall temperature and dominant in 〈M+
uv|θ ′′+〉

near the wall. Detailed exploration demonstrates that the negative values of 〈M+
uv|θ ′′+〉 in the weak

compression region at y+ > 50 in M8T1 and 10 < y+ < 100 in M8T2 are mainly contributed by
the Q2 and Q4 events of the solenoidal component M+

usvs
. Furthermore, the strong positive values

of 〈M+
uv|θ ′′+〉 in the compression region at 5 < y+ < 30 are mainly due to the Q3 event of M+

usvd
,

and the strong negative values of 〈M+
uv|θ ′′+〉 in the expansion region at 10 < y+ < 100 are primarily

caused by the Q2 and Q4 events of M+
usvs

and the Q2 event of M+
usvd

in M8T1.
Moreover, the correlations between streamwise, wall-normal velocity fluctuations u′′, v′′, and

fluctuating temperature T ′ are also investigated. It is found that the cold wall enhances the positive
correlation of Cu′′T ′ , and suppresses the negative correlation of Cv′′T ′ near the wall. However, the
cold wall slightly weakens the negative correlation of Cu′′T ′ and the positive correlation of Cv′′T ′ ,
respectively, far from the wall. The effects of the dilatational components of Cu′′T ′ and Cv′′T ′ are
dominant in the near-wall region, and the solenoidal components govern the correlations far from
the wall.

Finally, the mean and fluctuating fields of kinetic and internal energy budgets as well as the
interactions among Km, k, em, and et are investigated. It is found that most of the interactions are gov-
erned by the solenoidal components. Things are different for the terms associated with the pressure

(u′′
k

∂ p
∂xk

and p′ ∂u′′
k

∂xk
), which are governed by the dilatational components. Furthermore, the interactions

between mean and fluctuating kinetic energy are weaker, while the interactions associated with

dilatation (p′ ∂u′′
k

∂xk
and 2−γ

2(γ−1) p′
m

∂u′
k

∂xk
) are stronger with the cold wall. The wall temperature has small

influence on other interactions.
In conclusion, the compressibility effect in the hypersonic boundary layer with an isothermal

wall condition is revealed with the introduction of Helmholtz decomposition. However, the com-
pressibility effect on the flow structures, such as coherent structures, is not included in this paper,
which is left for future studies.
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APPENDIX: VALIDATION OF THE ACCURACY OF THE CURRENT
NUMERICAL SIMULATIONS

It is noted that the current numerical simulations have the same parameters as the database
given in Refs. [22,23], and this database has been validated in previous investigations [22,23,31].
However, the current numerical simulations have a larger wall-normal and spanwise grid resolutions
Ny and Nz, as well as a larger spanwise computational domain Lz. Therefore, the accuracy of the
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(c) (d)

(a) (b)

FIG. 28. Comparison of the normalized turbulent intensities and the normalized Reynolds shear stress
between the current numerical simulations and the numerical simulations in Ref. [6]. (a) The normalized
streamwise turbulent intensity; (b) the normalized wall-normal turbulent intensity; (c) the normalized span-
wise turbulent intensity; (d) the normalized Reynolds shear stress. The labels M2p5, M6Tw025, M6Tw025,
M8Tw048, and M14Tw018 represent the numerical simulations in Ref. [6].

current numerical simulations is further confirmed by comparing with the basic statistics of the
numerical simulations in Ref. [6]. The wall-normal profiles of the normalized turbulent intensities
and the normalized Reynolds shear stress are shown in Fig. 28. The turbulent intensities and
Reynolds shear stress are normalized by u∗, which is expressed as u∗ = √

τw/ρ̄ = uτ

√
ρ̄w/ρ̄. y∗

is defined as y∗ = y/δ∗
τ , where δ∗

τ = μ̄/(ρ̄u∗) is the semilocal scaling suggested in Ref. [55]. It is
shown in Fig. 28 that the normalized turbulent intensities and normalized Reynolds shear stress of
the current numerical simulations demonstrate good collapse with those in Ref. [6], which confirms
the accuracy of the current numerical simulations.
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