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a b s t r a c t 

As adhesively bonded layered devices scale down, micro-scale adhesive layers become common and play a key 

role in the overall performance of micro devices. Herein, we use the strain gradient elasticity to characterize the 

micro-scale adhesive layers and propose an analytical size-dependent model to predict the mechanical behaviors 

of adhesively bonded layered structures. The results indicate that the local interfacial tractions and the global 

adherend displacement both show strong size effects, especially for soft adhesives with low modulus. When 

the ratio of the adhesive layer thickness to its material characteristic length scale (on the order of microns), 

representing the scale of the layered structures, decreases to unity, the interfacial tractions increase substantially 

and the adherend displacement decreases significantly. Meanwhile, the adherend displacement is insensitive 

to the adhesive modulus. The present study reveals the stiffening behaviors of layered structures, which are 

attributed to the large strain gradients in the constrained micro-scale adhesive layers. The results can help us 

predict the deformation of adhesively bonded layered structures, and achieve high performance of micro devices 

by adhesive bonding. 
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. Introduction 

The bonding with adhesive layers has many advantages, such as

he ability to join different materials, low mass density and low stress

oncentration [ 1 , 2 ]. Thus, the adhesive bonding technology has been

idely used in layered devices, among which typical representatives

re smart structures with piezoelectric actuators/sensors [3–5] , flexible

lectronics [ 6 , 7 ] and micro-electromechanical systems (MEMS) [ 2 , 8 ].

he adhesive properties have been found to significantly affect the

train transfer between the host structures and the piezoelectric actu-

tors/sensors [ 5 , 9 ]. In flexible electronics, the bonding by a thin layer

f polydimethylsiloxane (PDMS) can yield strong interfaces between

he silicon circuits and a wide range of substrates [10] . For three-

imensional MEMS integration and packaging, the adhesive wafer bond-

ng is a crucial process [11] . Therefore, the adhesive layers play an im-

ortant role in the overall performance of widely-used layered struc-

ures. 

As the size of the layered structures is reduced, the adhesive layer

hickness correspondingly decreases from macro to micro scale. Remark-

bly, when the adhesive layer thickness is on the order of hundred mi-

rons, the size effects of interfacial strength and fracture energy have

een observed in many experiments [12–16] . For example, for the dou-

le cantilever beam (DCB) specimens with epoxy adhesives, Ji et al.
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12] showed that when the adhesive layer thickness decreases from

 mm to 0.09 mm, the mode I interfacial strength increases while the

racture energy decreases. Similar trends were also observed in Li et al.’s

xperiments [13] on the scarf joints with silicone rubber adhesives, and

hey found that when the adhesive layer thickness is reduced to 0.1 mm,

he interfacial tensile and shear strengths reach 2–5 times the adhesive

ulk strengths. As the layered devices scale down, the micro-scale ad-

esive layers, deposited by spin-coating or other procedures, become

ommon. For example, spin-casted silicone layers with a thickness of

0 𝜇m were used to bond a stack of lead zirconate titanate (PZT) me-

hanical energy harvesters [17] . And a layer of liquid skin adhesive with

 thickness of 3–4 𝜇m was added to keep an electronic tattoo laminated

n human skin [18] . When Park et al. [19] fabricated Si ribbons on

lastic substrates, the thickness of the spin-coated epoxy adhesive layer

s about one micron. The spin-coated adhesive layers with thicknesses

f hundreds of nanometers can be seen in the adhesive wafer bonding

or the integration of MEMS [2] and nano-electromechanical systems

NEMS) [20] . In many experiments, strong size effects of the mechani-

al behaviors in micro-scale metals [ 21 , 22 ] and polymers [23–25] have

een observed. Thus, the mechanical behaviors of micro-scale adhesive

ayers (most are polymers) should also exhibit apparent size effects due

o the increased importance of microstructure effects. 
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Nomenclature 

a distance from the plate end to the simple supports 

b width of the layered structure 

E Young’s modulus 

E a Young’s modulus of the adhesive layer 

E b Young’s modulus of the host beam 

E p Young’s modulus of the bonded plate 

f i body force vector 

G a shear modulus of the adhesive layer 

h a thickness of the adhesive layer 

h b thickness of the host beam 

h p thickness of the bonded plate 

L span length 

L p plate length 

l material characteristic length scale 

M b bending moment in the host beam 

M p bending moment in the bonded plate 

N b axial force in the host beam 

N p axial force in the bonded plate 

P concentrated force 

q intensity of the distributed line load 

r i double-stress traction vector 

T ijklmn isotropic projection tensor 

t i surface traction vector 

u a displacement of the adhesive layer in the x direction 

u b displacement of the host beam in the x direction 

u b0 displacement of the host beam at the middle plane in 

the x direction 

u i displacement vector 

u p displacement of the bonded plate in the x direction 

u p0 displacement of the bonded plate at the middle plane in 

the x direction 

V b shear force in the host beam 

V p shear force in the bonded plate 

W strain energy density (per unit volume) 

w a displacement of the adhesive layer in the z direction 

w b displacement of the host beam in the z direction (deflec- 

tion) 

w M 

midspan deflection of the host beam in layered struc- 

tures 

w M0 midspan deflection of the host beam without a bonded 

plate 

w p displacement of the bonded plate in the z direction (de- 

flection) 

Greek and special symbols 

𝜀 ij strain tensor 

𝜅 ijk strain gradient tensor 

𝜈 Poisson’s ratio 

𝜈a Poisson’s ratio of the adhesive layer 

𝜎ij stress tensor 

𝜎xx b axial stress in the host beam 

𝜎xx p axial stress in the bonded plate 

𝜏 ijk high-order stress tensor 

( ̄⋅) dimensionless quantities 

( ̄⋅̄) dimensionless quantities divided by dimensionless force 

( ̄⋅)∕ ̄𝑃 
Δ�̄� difference of dimensionless axial displacements ̄𝑢 b0 − ̄𝑢 p0 

Considering the wide use of the micro-scale adhesive layers, how

o characterize their size-dependent mechanical behaviors becomes es-

ential. In order to predict the interfacial stresses and global displace-

ents of layered structures with macro-scale adhesive layers, many re-
2 
earchers adopted the shear-lag model [ 26 , 27 ] and the two-parameter

lastic foundation model [28–30] , where the latter considers the ad-

esive layer as continuously distributed tangential and normal springs.

evertheless, these widely-used models are not applicable to describ-

ng the size-dependent behaviors of micro-scale adhesive layers, since

hey are within the framework of classical continuum mechanics, which

s inherently scale-free. In contrast, size effects can be captured by the

igh-order continuum mechanics theories, which incorporate the intrin-

ic length scale parameters related to the microstructure, such as couple

tress theories [31–33] and strain gradient theories [ 24 , 34–36 ]. On the

asis of couple stress theories or strain gradient elasticity theories, many

esearchers investigated the size-dependent behaviors of layered struc-

ures, such as composite laminated beams [ 37 , 38 ], micro beams with

iezoelectric actuators/sensors [ 39 , 40 ] and partially covered laminated

icro beams [41] . However, these researchers mainly focused on the

icro beams whose thicknesses are on the order of microns, and their

odels did not include the adhesive layers. To the best of our knowl-

dge, Ascione’s work [42] is one of the few studies which considered

he size effects of micro-scale adhesives with high-order continuum me-

hanics theories, but the results were obtained from finite element sim-

lations. Therefore, an analytical model accounting for the size effects

f micro-scale adhesive layers is still lacking. 

In a previous work [29] , we studied the layered structures with

acro-scale adhesive layers by the classical two-parameter elastic foun-

ation model. Herein, we establish a size-dependent model of the lay-

red structures with micro-scale or macro-scale adhesive layers, where

he thin adhesive layer constrained between the adherends is character-

zed by strain gradient elasticity. This model can capture the size effects

f the mechanical behaviors of layered structures, and is especially ap-

licable to the layered structures with micro-scale adhesive layers. 

The remainder of this paper is organized as follows.

ection 2 presents the analytical formulation of the size-dependent

odel, including the governing equations and the solutions to dis-

lacements and interfacial tractions. The results of the size-dependent

odel for layered structures at different scales and the micro scale are

espectively discussed in Section 3 . Section 4 summarizes the main

onclusions. 

. Analytical formulation of the size-dependent model 

.1. Problem statement 

In micro devices, it is common to see host structures bonded with

mall-size piezoelectric actuators/sensors [ 4 , 43 ], and the substrate par-

ially covered with inorganic electronic films [19] . Thus, the layered

tructure considered here consists of a host beam adhesively bonded by

 partially covered plate (the plate length L p is smaller than the span

ength L ), as illustrated in Fig. 1 . The layered structure with symmet-

ical geometry is subjected to three-point bending. However, we can

xtend the following analysis to the cases of more complicated geome-

ry configurations and loading conditions. Hereafter, subscripts ‘b’, ‘a’

nd ‘p’ refer to the host beam, the adhesive layer and the bonded plate,

espectively. The thicknesses and the Young’s moduli of the three layers

re denoted by h i and E i ( i = b, a, p), respectively. The Poisson’s ratio of

he adhesive layer is represented by 𝜈a . 

The assumptions adopted in the present study are summarized as

ollows: 

(1) The host beam, the adhesive layer and the bonded plate are

isotropic and linearly elastic materials. The adhesive fracture and

interface delamination are not considered. 

(2) Only the mechanical behaviors of the plate are considered, and

the electric-mechanical coupling behavior is not involved, since

mechanical loads are inevitable whether for piezoelectric actua-

tors/sensors or flexible electronics. 
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Fig. 1. Schematic diagram of the adhesively bonded layered structure under 

three-point bending. The plate length and the span length are denoted by L p 
and L , respectively. And we have L = L p + 2 a , where a is the distance from the 

plate end to the simple supports. Parameters E and h represent Young’s modulus 

and thickness, respectively, with subscripts ‘b’, ‘a’ and ‘p’ referring to the host 

beam, the adhesive layer and the bonded plate, respectively. The Poisson’s ratio 

of the adhesive layer is denoted by 𝜈a . All three layers have rectangle cross- 

sections with the same width (denoted by b ). Under the Cartesian coordinate 

system shown above, the left end of the plate (or the adhesive layer) situates at 

x = 0 and the left end of the host beam situates at x = − a . 
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(3) The adherends, i.e., the host beam and the plate, are modeled by

the classical Euler-Bernoulli beam theory, while the thin adhe-

sive layer is characterized by the strain gradient elasticity. Simi-

lar to the classical analyses [28–30] , the deformation of the ad-

hesive layer is simplified as the combination of shear and ten-

sion/compression. Since the adhesive layer thickness is smaller

than its length (i.e., h a ≪ L p ), and the adhesive layer modulus is

also much smaller than those of the adherends, we only consider

the strain gradient components along the adhesive thickness di-

rection, referring to [50] . 

.2. Governing equations 

.2.1. A brief review of the simplified strain gradient theory 

The simplified strain gradient theory presented here is mostly within

he framework of Mindlin’s strain gradient elasticity theory [35] , but the

onstitutive relations are directly obtained from Wei-Hutchinson strain

radient theory [44] , where both the elastic and plastic strain gradients

re considered. For solids in elastic deformation, Wei-Hutchinson strain

radient theory [44] has a simplified form [ 45 , 46 ], and it is introduced

riefly as follows. 

For a given displacement field u i , the strain tensor 𝜀 ij and the strain

radient tensor 𝜅ijk are defined respectively as 

 𝑖𝑗 = 

1 
2 
(
𝑢 𝑖,𝑗 + 𝑢 𝑗,𝑖 

)
, 𝜅𝑖𝑗𝑘 = 𝜅𝑗𝑖𝑘 = 𝑢 𝑘,𝑖𝑗 . (1)

The variation of the strain energy density (per unit volume)

 ( 𝜀 ij , 𝜅 ijk ) gives 

𝑊 = 𝜎𝑖𝑗 𝛿𝜀 𝑖𝑗 + 𝜏𝑖𝑗𝑘 𝛿𝜅𝑖𝑗𝑘 , (2)

here 𝜎ij is the stress tensor and 𝜏 ijk is the high-order stress tensor. The

tress tensor and the high-order stress tensor are expressed respectively

s 

𝑖𝑗 = 

𝜕𝑊 

𝜕 𝜀 𝑖𝑗 
, 𝜏𝑖𝑗𝑘 = 𝜏𝑗𝑖𝑘 = 

𝜕𝑊 

𝜕 𝜅𝑖𝑗𝑘 
. (3)

When the line loads along the surface edges are ignored, the principle

f virtual work can be written as [ 35 , 47 ] 

 

(
𝜎𝑖𝑗 𝛿𝜀 𝑖𝑗 + 𝜏𝑖𝑗𝑘 𝛿𝜅𝑖𝑗𝑘 

)
d 𝑉 = ∫

𝑉 
𝑓 𝑖 𝛿𝑢 𝑖 d 𝑉 + ∫

𝑆 
𝑡 𝑖 𝛿𝑢 𝑖 d 𝑆 + ∫

𝑆 
𝑟 𝑖 𝐷 

(
𝛿𝑢 𝑖 
)
d 𝑆, (4)

here d V and d S are the volume and boundary area elements, f i is the

ody force, t i is the surface traction and r i is the double-stress traction.

n the boundary S , the gradient of displacements can be divided into

wo independent parts: 

 𝑖,𝑗 = 𝑛 𝑗 𝐷 𝑢 𝑖 + 𝐷 𝑗 𝑢 𝑖 , (5)

here D = n k 𝜕 k is the normal derivative operator and D j = 𝜕 j − n j D is
3 
he surface-gradient operator. 

From Eq. (4) , we can obtain the equilibrium equations: 

𝑖𝑘,𝑖 − 𝜏𝑖𝑗𝑘,𝑖𝑗 + 𝑓 𝑘 = 0 , (6)

nd the boundary conditions: 

 𝑘 = 𝑛 𝑖 
(
𝜎𝑖𝑘 − 𝜏𝑖𝑗𝑘,𝑗 

)
+ 𝑛 𝑖 𝑛 𝑗 𝜏𝑖𝑗𝑘 

(
𝐷 𝑝 𝑛 𝑝 
)
− 𝐷 𝑗 

(
𝑛 𝑖 𝜏𝑖𝑗𝑘 
)
, (7a)

 𝑘 = 𝑛 𝑖 𝑛 𝑗 𝜏𝑖𝑗𝑘 , (7b)

here t k is the surface traction and r k is the double-stress traction. 

For strain gradient elasticity, the simplified constitutive relations of

ei-Hutchinson strain gradient theory can be written as [46] 

𝑖𝑗 = 

𝐸𝑣 

( 1 + 𝑣 ) ( 1 − 2 𝑣 ) 
𝜀 𝑘𝑘 𝛿𝑖𝑗 + 

𝐸 

1 + 𝑣 
𝜀 𝑖𝑗 , (8a)

𝑖𝑗𝑘 = 2 𝐸 

4 ∑
𝐼=1 

[
𝑙 ( 𝐼 ) 
]2 
𝑇 
( 𝐼 ) 
𝑖𝑗𝑘𝑙𝑚𝑛 

𝜅𝑙𝑚𝑛 , (8b)

here E is the Young’s modulus, v is the Poisson’s ratio and l ( I ) are the

aterial characteristic length scales, and 𝑇 
( 𝐼) 
𝑖𝑗𝑘𝑙𝑚𝑛 

are isotropic projection

ensors (see Ref. [44] ). When l ( I ) = l ( I = 1–4), considering 
4 ∑
𝐼=1 

𝑇 
( 𝐼) 
𝑖𝑗𝑘𝑙𝑚𝑛 

=

 𝛿𝑖𝑙 𝛿𝑗𝑚 + 𝛿𝑖𝑚 𝛿𝑗𝑙 ) 𝛿𝑘𝑛 ∕2 , Eq. (8b) can be further simplified as [45] 

𝑖𝑗𝑘 = 2 𝐸 𝑙 2 𝜅𝑖𝑗𝑘 . (9)

Although a simplified strain gradient elasticity theory involving only

ne non-classical parameter has also been proposed by Altan and Aifan-

is [34] , its constitutive relations are different from the present ones. 

.2.2. Governing equations of the adhesive displacements and the 

nterfacial tractions 

The motivation for exploring the strain gradient effects in the con-

trained adhesive layers derives from the experiments about the inter-

acial strength of adhesively bonded layered structures. Previous exper-

mental results [ 12 , 13 , 16 ] showed that the interfacial strength, depen-

ent on the adhesive layer thickness, can reach several times the ad-

esive bulk strength when the adhesive layer thickness decreases to the

rder of hundred microns. For example, for the aluminum alloy/silicone

ubber adhesive layer/aluminum alloy system, at the adhesive layer

hickness of 0.1 mm, the average interfacial tensile and shear strengths

about 1.8 MPa [13] ) are several times the adhesive bulk strengths (the

ensile and shear strengths of the bulk silicon rubber are 0.33 MPa and

.55 MPa, respectively [16] ). When we further decrease the adhesive

ayer thickness (below a hundred microns), we expect that the interfa-

ial strength measured in the experiments will be much higher, as Ji

t al. [12] have pointed out. This phenomenon can hardly be explained

y the classical continuum mechanics, and its explanation may require

he application of the strain gradient theory, on the basis of which the

eak separation tractions above 10 times the yield stress can be attained

44] . Thus, we use the strain gradient elasticity to characterize the thin

dhesive layer, which leads to the results distinct from those of the clas-

ical model (e.g., adhesive displacements and interfacial tractions). 

Under the Cartesian coordinate system shown in Fig. 1 , the displace-

ents of the adhesive layer in the x and z directions are u a ( x,z ) and

 a ( x,z ), respectively. Similar to the classical two-parameter elastic foun-

ation model [28] or the adhesive layer theory [48] , the soft adhesive

ayer mainly undergoes shear and lateral tension/compression deforma-

ions, corresponding to the strain components 𝜀 31 and 𝜀 33 , respectively.

rom Eq. (1) , the strain gradient components along the thickness direc-

ion include 𝜅331 and 𝜅333 . Thus, from Eqs. (8a) and (9) , the nonzero

tress and high-order stress components can be expressed by 
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Fig. 2. Free-body diagram of an infinitesimal element with a length of d x in the 

adhesively bonded layered structure. We use parameters N, M , and V to denote 

axial force, bending moment and shear force, respectively, with subscripts ‘b’ 

and ‘p’ referring to the host beam and the bonded plate. The shear and normal 

tractions at the interfaces are t 1 ( x ) and t 3 ( x ), respectively. The intensity of the 

distributed line load is q ( x ). 
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31 = 2 𝐺 a 𝜀 31 

= 𝐺 a 

( 
𝜕 𝑢 a 
𝜕𝑧 

+ 

𝜕 𝑤 a 
𝜕𝑥 

) 
, 

33 = 𝐸 a 𝜀 33 

= 𝐸 a 
𝜕 𝑤 a 
𝜕𝑧 

, (10a) 

331 = 2 𝐸 a 𝑙 
2 𝜅331 

= 2 𝐸 a 𝑙 
2 𝜕 

2 𝑢 a 

𝜕 𝑧 2 
, 

333 = 2 𝐸 a 𝑙 
2 𝜅333 

= 2 𝐸 a 𝑙 
2 𝜕 

2 𝑤 a 

𝜕 𝑧 2 
, (10b) 

here G a = E a /[2(1 + 𝜈a )] is the shear modulus of the adhesive layer. If

he high-order stresses are omitted, the strain gradient model degener-

tes into the classical model. The term 𝜕 w a / 𝜕 x in Eq. (10a) was neglected

n some classical studies [28–30] , but it is considered here for complete-

ess, similar to [ 26 , 49 ]. If w a = 0 and we only consider the shear defor-

ation ( 𝜀 31 and 𝜅331 ), the present model can degenerate into the strain

radient shear-lag model aimed at the staggered bio-structure materials

50] . 

From Eq. (6) , the equilibrium equations in the adhesive layer are

iven by 

31 , 3 − 𝜏331 , 33 = 0 , (11a)

33 , 3 − 𝜏333 , 33 = 0 . (11b)

Since the host beam and the bonded plate are characterized by clas-

ical elasticity, they cannot be subjected to the double-stress traction

ransferred from the interfaces. Thus, we only consider the transfer of

urface tractions at the interfaces, as shown in Fig. 2 . From Eq. (7a) , the

ractions at the interfaces ( z = 0, h a ) are given by 

 1 ( 𝑥, 𝑧 = 0 ) = 

(
𝜎31 − 𝜏331 , 3 

)
𝑧 =0 , 𝑡 3 ( 𝑥, 𝑧 = 0 ) = 

(
𝜎33 − 𝜏333 , 3 

)
𝑧 =0 , (12a)

 1 
(
𝑥, 𝑧 = ℎ a 

)
= 

(
𝜎31 − 𝜏331 , 3 

)
𝑧 = ℎ a 

, 𝑡 3 
(
𝑥, 𝑧 = ℎ a 

)
= 

(
𝜎33 − 𝜏333 , 3 

)
𝑧 = ℎ a 

. 

(12b) 
4 
From Eqs. (11), we can know that 𝜎31 − 𝜏331,3 and 𝜎33 − 𝜏333,3 are

ndependent of z . Thus, the interfacial tractions at the upper and lower

nterfaces ( z = 0, h a ) are equal, as shown in Fig. 2 , and they can be

ritten as 

 1 ( 𝑥, 𝑧 = 0 ) = 𝑡 1 
(
𝑥, 𝑧 = ℎ a 

)
= 𝜎31 − 𝜏331 , 3 = 𝑡 1 ( 𝑥 ) , (13a)

 3 ( 𝑥, 𝑧 = 0 ) = 𝑡 3 
(
𝑥, 𝑧 = ℎ a 

)
= 𝜎33 − 𝜏333 , 3 = 𝑡 3 ( 𝑥 ) . (13b)

The equal interfacial tractions at the upper and lower interfaces di-

ectly result from the equilibrium of the adhesive layer. And this does

ot mean that the stress state is uniform across the adhesive layer

hickness. Since we consider the strain gradient effects in the adhesive

ayer, the stress components ( 𝜎31 , 𝜎33 ) and the high-order stress compo-

ents ( 𝜏331 , 𝜏333 ) vary with the coordinate z . Only their combinations

31 − 𝜏331,3 and 𝜎33 − 𝜏333,3 are independent of z , according to Eqs.

11). 

Substitution of Eqs. (10) into Eqs. (11) gives 

𝜕 4 𝑤 a 

𝜕 𝑧 4 
− 

1 
2 𝑙 2 

𝜕 2 𝑤 a 

𝜕 𝑧 2 
= 0 , (14a)

𝜕 4 𝑢 a 

𝜕 𝑧 4 
− 

1 
4 
(
1 + 𝜈a 

)
𝑙 2 

𝜕 2 𝑢 a 

𝜕 𝑧 2 
= 

1 
4 
(
1 + 𝜈a 

)
𝑙 2 

𝜕 2 𝑤 a 
𝜕 𝑥𝜕 z 

. (14b)

We assume that no work is done at the interfaces z = 0, h a , and thus

ccording to the virtual work principle Eq. (4) , the displacement u i and

ts normal gradient Du i are continuous at the interfaces [50] . Therefore,

e can obtain the following boundary conditions about w a : 

 a ( 𝑧 = 0 ) = 𝑤 b , 
𝜕 𝑤 a 
𝜕𝑧 
|𝑧 =0 = 

𝜕 𝑤 b 
𝜕𝑧 
|𝑧 =0 = 0 , (15a)

 a 
(
𝑧 = ℎ a 

)
= 𝑤 p , 

𝜕 𝑤 a 
𝜕𝑧 
|𝑧 = ℎ a = 

𝜕 𝑤 p 

𝜕𝑧 
|𝑧 = ℎ a = 0 , (15b)

here w b = w b ( x ) and w p = w p ( x ) are the deflections (displacements in

he z direction) of the host beam and the bonded plate, respectively. 

Similarly, the boundary conditions about u a can also be obtained. Be-

ore that, we should give the adherend displacements from the classical

uler-Bernoulli beam theory: 

 b = 𝑢 b0 − 

( 
𝑧 + 

ℎ b 
2 

) 
d 𝑤 b 
d 𝑥 

, − ℎ b ≤ 𝑧 < 0 , (16a)

 p = 𝑢 p0 − 

( 
𝑧 − 

ℎ p + 2 ℎ a 
2 

) d 𝑤 p 

d 𝑥 
, ℎ a ≤ 𝑧 ≤ ℎ a + ℎ p , (16b)

here u b and u p are the displacements of the host beam and the bonded

late in the x direction, respectively. At the middle planes, we have

 b = u b0 for z = − h b /2 and u p = u p0 for z = h a + h p /2 . Therefore, the

oundary conditions about u a can be expressed by 

 a ( 𝑧 = 0 ) = 𝑢 b ( 𝑧 = 0 ) = 𝑢 b0 − 

ℎ b 
2 

d 𝑤 b 
d 𝑥 

, 
𝜕 𝑢 a 
𝜕𝑧 
|𝑧 =0 = 

𝜕 𝑢 b 
𝜕𝑧 
|𝑧 =0 = − 

d 𝑤 b 
d 𝑥 

, (17a)

 a 
(
𝑧 = ℎ a 

)
= 𝑢 p 
(
𝑧 = ℎ a 

)
= 𝑢 p0 + 

ℎ p 

2 
d 𝑤 p 

d 𝑥 
, 
𝜕 𝑢 a 
𝜕𝑧 
|𝑧 = ℎ a = 

𝜕 𝑢 p 

𝜕𝑧 
|𝑧 = ℎ a = − 

d 𝑤 p 

d 𝑥 
. 

(17b) 

If the dimensionless quantities are denoted by overlined letters, we

ave �̄� = 𝑥 ∕ ℎ b , �̄� = 𝑧 ∕ ℎ a , �̄� b = 𝑤 b ∕ ℎ b , �̄� a = 𝑤 a ∕ ℎ b , �̄� p = 𝑤 p ∕ ℎ b , �̄� b0 =
 b0 ∕ ℎ b , �̄� a = 𝑢 a ∕ ℎ b , �̄� p0 = 𝑢 p0 ∕ ℎ b , ̄ℎ a = ℎ a ∕ ℎ b , ̄ℎ p = ℎ p ∕ ℎ b , ̄𝑡 1 = 𝑡 1 ∕ 𝐸 b , ̄𝑡 3 =
 3 ∕ 𝐸 b , �̄� a = 𝐸 a ∕ 𝐸 b and �̄� a = 𝐺 a ∕ 𝐸 b . Then, Eqs. (13)–(17) can be rewrit-

en in a dimensionless form. 

Solving Eqs. (14) in the dimensionless form, we can obtain the ad-

esive displacements as follows: 

̄
 a = C 1 cosh 

(
�̄� ̄𝑧 
)
+ C 2 sinh 

(
�̄� ̄𝑧 
)
+ C 3 ̄𝑧 + C 4 , (18a)
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̄ a = C 5 cosh 
(
�̄� ̄𝑧 
)
+ C 6 sinh 

(
�̄� ̄𝑧 
)
+ C 7 ̄𝑧 + C 8 + 

�̄� 2 ℎ̄ a (
�̄� 

2 − �̄� 2 
)
𝐴 

( 
d ̄𝑤 b 
d ̄𝑥 

− 

d ̄𝑤 p 

d ̄𝑥 

) [
𝑎 11 sinh 

(
�̄� ̄𝑧 
)
+ 𝑎 21 cosh 

(
�̄� ̄𝑧 
)]

− 

𝑎 31 

2 ̄ℎ a 

( 
d ̄𝑤 b 
d ̄𝑥 

− 

d ̄𝑤 p 

d ̄𝑥 

) 
�̄� 2 , (18b) 

here �̄� = ℎ a ∕( 
√
2 𝑙 ) , 𝐵 = ℎ a ∕(2 𝑙 

√
1 + 𝜈a ) and C i ( i = 1–8) are integration

onstants determined by the boundary conditions of Eqs. (15) and (17):

 

 

 

 

 

 

C 1 
C 2 
C 3 
C 4 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑎 11 − 𝑎 11 
𝑎 21 − 𝑎 21 
𝑎 31 

1 − 𝑎 11 

− 𝑎 31 
𝑎 11 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
( 
�̄� b 
�̄� p 

) 
, (19a)

 

 

 

 

 

 

C 5 
C 6 
C 7 
C 8 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑎 51 − 𝑎 51 𝑎 53 𝑎 54 

𝑎 61 − 𝑎 61 𝑎 63 𝑎 64 
𝑎 71 − 𝑎 71 𝑎 73 𝑎 74 
1 − 𝑎 51 𝑎 51 𝑎 83 𝑎 84 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
�̄� b0 
�̄� p0 
d ̄𝑤 b 
d ̄𝑥 
d ̄𝑤 p 
d ̄𝑥 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (19b)

The expressions of dimensionless coefficients a ij are given in

ppendix A . 

Substituting Eqs. (10) and (18) into Eqs. (13), we can obtain the

nterfacial tractions: 

̄
 1 = 

�̄� a 

ℎ̄ a 

( 
𝑎 71 Δ�̄� + 𝜉1 

d ̄𝑤 b 
d ̄𝑥 

+ 𝜉2 
d ̄𝑤 p 

d ̄𝑥 

) 
, (20a)

̄
 3 = 𝑎 31 

�̄� a 

ℎ̄ a 

(
�̄� b − �̄� p 

)
, (20b)

here Δ�̄� = �̄� b0 − ̄𝑢 p0 , 𝜉1 = 𝑎 73 + ( 1 − 𝑎 11 ) ̄ℎ a and 𝜉2 = 𝑎 74 + 𝑎 11 ̄ℎ a . The in-

erfacial tractions can be completely determined only when we obtain

he displacements Δ�̄� , �̄� b and �̄� p , which will be given in the next sec-

ion. 

Although the governing equations of the deformation of the adhe-

ive layer have been proposed, we should be concerned with the lim-

tations of the present model. Firstly, as shown in Fig. 2 , the moment

quilibrium of the adhesive layer is not satisfied, similar to the classi-

al analyses [28–30] . In this case, the adhesive layer mainly transfers

orces rather than moments, and the strain gradient effects make the

orce transfer more efficient. When the adhesive layer thickness is small

ompared with the adherend thicknesses, the approximation of ignor-

ng the moment equilibrium condition can always meet the accuracy

equirements. Secondly, the free boundary conditions at the ends of the

dhesive layer ( x = 0, L p , see Fig. 1 ) are not satisfied. It should be

oted that this limitation also exists in the classical models [28–30] ,

ince the boundary conditions at some edges are hard to be taken into

ccount in the one-dimensional (1D) analysis. However, the interfacial

tresses obtained from the two-dimensional (2D) finite element method

FEM) [51] have shown close agreement with those of the classical an-

lytical solutions [52] , except in a narrow region near the plate end.

n the present model, the strain gradients along the adhesive thickness

irection, the dominated strain gradient components, are incorporated.

hus, we can think that the present model captures the key factors of the

roblem. Besides, we should also note that previous analytical solutions

nd finite element simulations [ 53 , 54 ] have revealed the boundary lay-

rs for the 1D strain gradient bars/beams. Therefore, possible boundary

ayer effects, corresponding to the boundary conditions at the adhesive

nds, are ignored in the present model, and the results near there are

naccurate. For more accurate local results near the adhesive ends, we

hould resort to 2D FEM. 
5 
.2.3. Governing equations of the adherend displacements 

Since the layered structure is symmetrical about the midspan, as

hown in Fig. 1 , we only need to consider the left half of the struc-

ure. And the left half of the host beam can be divided into two parts:

ne part bonded with a plate ( 0 ≤ �̄� < �̄� p ∕2 , �̄� p = 𝐿 p ∕ ℎ b ), and the other

art without a bonded plate ( − ̄𝑎 ≤ �̄� < 0 , �̄� = 𝑎 ∕ ℎ b ). 
When 0 ≤ �̄� < �̄� p ∕2 , from Eqs. (16), axial stresses in the host beam

nd the plate can be obtained: 

𝑥𝑥 b = 𝐸 b 
𝜕 𝑢 b 
𝜕𝑥 

= 𝐸 b 

[ 
d 𝑢 b0 
d 𝑥 

− 

( 
𝑧 + 

ℎ b 
2 

) 
d 2 𝑤 b 

d 𝑥 2 

] 
, (21a)

𝑥𝑥 p = 𝐸 p 
𝜕 𝑢 p 

𝜕𝑥 
= 𝐸 p 

[ 
d 𝑢 p0 
d 𝑥 

− 

( 
𝑧 − 

ℎ p + 2 ℎ a 
2 

) d 2 𝑤 p 

d 𝑥 2 

] 
. (21b)

Then, the axial forces in the two layers are 

 b = 𝑏 
0 
∫

− ℎ b 
𝜎𝑥𝑥 b d 𝑧 = 𝐸 b 𝑏 ℎ b 

d 𝑢 b0 
d 𝑥 

, (22a)

 p = 𝑏 
ℎ a + ℎ p 
∫
ℎ a 

𝜎𝑥𝑥 p d 𝑧 = 𝐸 p 𝑏 ℎ p 
d 𝑢 p0 
d 𝑥 

. (22b)

The bending moments about the respective middle planes can be

xpressed by 

 b = 𝑏 
0 
∫

− ℎ b 
𝜎𝑥𝑥 b 

( 
z + 

ℎ b 
2 

) 
d 𝑧 = − 

𝐸 b 𝑏 ℎ b 
3 

12 
d 2 𝑤 b 

d 𝑥 2 
, (23a)

 p = 𝑏 
ℎ a + ℎ p 
∫
ℎ a 

𝜎𝑥𝑥 p 

( 
𝑧 − 

ℎ p + 2 ℎ a 
2 

) 
d 𝑧 = − 

𝐸 p 𝑏 ℎ p 
3 

12 
d 2 𝑤 p 

d 𝑥 2 
. (23b)

From Fig. 2 , we can obtain the equilibrium equations of the host

eam: 

d 𝑁 b 
d 𝑥 

= − 𝑡 1 ( 𝑥 ) 𝑏, (24a)

d 𝑉 b 
d 𝑥 

= − 𝑞 ( 𝑥 ) − 𝑡 3 ( 𝑥 ) 𝑏, (24b)

d 𝑀 b 
d 𝑥 

= 𝑉 b − 𝑡 1 ( 𝑥 ) 𝑏 
ℎ b 
2 
, (24c)

Similarly, we can also obtain the equilibrium equations of the

onded plate: 

d 𝑁 p 

d 𝑥 
= 𝑡 1 ( 𝑥 ) 𝑏, (25a)

d 𝑉 p 
d 𝑥 

= 𝑡 3 ( 𝑥 ) 𝑏, (25b)

d 𝑀 p 

d 𝑥 
= 𝑉 p − 𝑡 1 ( 𝑥 ) 𝑏 

ℎ p 

2 
, (25c)

here V b and V p are the shear forces in the host beam and plate, respec-

ively. And q ( x ) is the intensity of the distributed line load. 

Substituting Eqs. (20), (22) and (23) into Eqs. (24) and (25) and

eformulating them, we obtain the governing equations about displace-

ents u b0 , u p0 , w b and w p : 

d 2 �̄� b0 
d ̄𝑥 2 

+ �̄� p ̄ℎ p 
d 2 �̄� p0 
d ̄𝑥 2 

= 0 , (26a)

1 
d ̄𝑤 b 
d ̄𝑥 

+ 𝜉2 
d ̄𝑤 p 

d ̄𝑥 
= − 𝜆1 

d 2 Δ�̄� 
d ̄𝑥 2 

− 𝑎 71 Δ�̄� , (26b)

d 4 �̄� b 

d ̄𝑥 4 
− 12 

�̄� a 

ℎ̄ a 
𝑎 31 
(
�̄� b − �̄� p 

)
+ 𝜆2 

d 3 Δ�̄� 
d ̄𝑥 3 

= 12 ̄𝑞 ( ̄𝑥 ) , (26c)

𝜆3 
d 4 �̄� p 

4 = − 𝜆1 
d 5 Δ�̄� 

5 − 𝑎 71 
d 3 Δ�̄� 

3 + 𝜉1 𝜆2 
(
1 + ̄ℎ p 

)d 3 Δ�̄� 
3 − 12 𝜉1 ̄𝑞 ( ̄𝑥 ) , (26d)
d ̄𝑥 d ̄𝑥 d ̄𝑥 d ̄𝑥 
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𝑚  

𝑚  

𝑤
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a

𝑢  

𝑢  

w

 

c

𝑤  

 

t

1  

(  

E

ith �̄� p = 𝐸 p ∕ 𝐸 b , 𝑞 = 𝑞∕( 𝐸 b 𝑏 ) and the parameters defined as 

1 = 

�̄� p ̄ℎ p ̄ℎ a (
1 + �̄� p ̄ℎ p 

)
�̄� a 
, 𝜆2 = 

6 ̄𝐸 p ̄ℎ p 

1 + �̄� p ̄ℎ p 
, (27a)

3 = 𝜉2 − �̄� p ̄ℎ 
3 
p 𝜉1 = 

�̄� sinh �̄� 
2 𝐾 2 

[(
ℎ̄ p + ̄ℎ a 

)
− �̄� p ̄ℎ 

3 
p 
(
1 + ̄ℎ a 

)]
, (27b)

here K 2 is expressed by Eq. (A.4). According as whether the coefficient

3 in Eq. (26d) is zero or not, two cases should be discussed separately:

he balanced case ( 𝜆3 = 0) and the unbalanced case ( 𝜆3 ≠ 0). From

q. (27b) , the balanced case ( 𝜆3 = 0) indicates a balanced state of the

eometry and material parameters, and it includes the special case of

dentical moduli and thicknesses for the adherends, i.e., �̄� p = 1 and ̄ℎ p =
 . In the balanced case, Eq. (26d) reduces to a five-order linear ordinary

ifferential equation (ODE) about Δ�̄� . While in the unbalanced case, Δ�̄�
nd �̄� p are coupled in Eq. (26d) . The detailed discussions will be given

n Section 2.3 . If ℎ̄ a ≪ 1 and ℎ̄ a ≪ ℎ̄ p , the balanced case is reduced to
̄
 p ̄ℎ 

2 
p = 1 , which is consistent with the classical studies [ 29 , 55 ]. 

When − ̄𝑎 ≤ �̄� < 0 , the governing equation of the host beam deflection

s 

d ̄𝑉 b 
d ̄𝑥 

= − 

1 
12 

d 4 �̄� b 

d ̄𝑥 4 
= 0 . (28)

In order to give the boundary conditions, we should firstly express

he internal forces in terms of displacements. From Eqs. (22)–(25), the

imensionless axial forces, bending moments and shear forces in the

ost beam and the bonded plate can be expressed by 

̄
 b = 

𝑁 b 
𝑏 ℎ b 𝐸 b 

= 

d ̄𝑢 b0 
d ̄𝑥 

, �̄� p = 

𝑁 p 

𝑏 ℎ b 𝐸 b 
= �̄� p ̄ℎ p 

d ̄𝑢 p0 
d ̄𝑥 

, (29a)

̄
 b = 

𝑀 b 

𝑏 ℎ b 
2 𝐸 b 

= − 

1 
12 

d 2 �̄� b 

d ̄𝑥 2 
, �̄� p = 

𝑀 p 

𝑏 ℎ b 
2 𝐸 b 

= − 

�̄� p ̄ℎ 
3 
p 

12 
d 2 �̄� p 

d ̄𝑥 2 
, (29b)

̄
 b = 

𝑉 b 
𝑏 ℎ b 𝐸 b 

= − 

1 
12 

d 3 �̄� b 

d ̄𝑥 3 
+ 

1 
2 
𝑡 1 ( ̄𝑥 ) , 𝑉 p = 

𝑉 p 

𝑏 ℎ b 𝐸 b 
= − 

�̄� p ̄ℎ 
3 
p 

12 
d 3 �̄� p 

d ̄𝑥 3 

+ 

ℎ̄ p 

2 
𝑡 1 ( ̄𝑥 ) . (29c) 

Equations (29) are also valid for − ̄𝑎 ≤ �̄� < 0 since ̄𝑡 1 ( ̄𝑥 ) = 0 . 
The boundary conditions are proposed as follows. At the simple sup-

orts ( x = − a ), the deflection and the bending moment are zero, i.e.,

̄
 b ( ̄𝑥 = − ̄𝑎 ) = 0 , 

d 2 �̄� b 

d ̄𝑥 2 
|�̄� =− ̄𝑎 = 0 . (30)

At the plate end ( x = 0), the axial forces in the host beam and the

late are zero. The deflection, the slope, the bending moment and the

hear force in the host beam are continuous. Besides, the bending mo-

ent and the shear force in the plate are zero. From Eqs. (29), these

onditions yield 

d ̄𝑢 b0 
d ̄𝑥 
|�̄� =0 = 0 , 

d ̄𝑢 p0 
d ̄𝑥 
|�̄� =0 = 0 , (31a)

̄
 b ( ̄𝑥 = 0 − ) = �̄� b 

(
�̄� = 0 + 

)
, 
d ̄𝑤 b 
d ̄𝑥 
|�̄� = 0 − = 

d ̄𝑤 b 
d ̄𝑥 
|�̄� = 0 + , (31b)

d 2 �̄� b 

d ̄𝑥 2 
|�̄� = 0 − = 

d 2 �̄� b 

d ̄𝑥 2 
|�̄� = 0 + , d 3 �̄� b 

d ̄𝑥 3 
|�̄� = 0 − = 

d 3 �̄� b 

d ̄𝑥 3 
|�̄� = 0 + − 6 ̄𝑡 1 ( 0 ) , (31c)

d 2 �̄� p 

d ̄𝑥 2 
|�̄� =0 = 0 , �̄� p ̄ℎ 

2 
p 
d 3 �̄� p 

d ̄𝑥 3 
|�̄� =0 − 6 ̄𝑡 1 ( 0 ) = 0 . (31d)

At the midspan ( x = L p /2), the axial displacements and slopes in the

ost beam and the plate are zero. The dimensionless shear force in the

ost beam is 𝑉 b = 𝑃 ∕2 , where 𝑃 = 𝑃 ∕( 𝐸 b 𝑏 ℎ b ) , and the shear force in the

late is zero. From Eqs. (29), these conditions can be expressed by 

̄ b0 

( 
�̄� p 

2 

) 
= 0 , �̄� p0 

( 
�̄� p 

2 

) 
= 0 , (32a)
6 
d ̄𝑤 b 
d ̄𝑥 
|�̄� = ̄𝐿 p ∕2 = 0 , 

d ̄𝑤 p 

d ̄𝑥 
|�̄� = ̄𝐿 p ∕2 = 0 , (32b)

d 3 �̄� b 

d ̄𝑥 3 
|�̄� = ̄𝐿 p ∕2 = −6 ̄𝑃 , 

d 3 �̄� p 

d ̄𝑥 3 
|�̄� = ̄𝐿 p ∕2 = 0 . (32c)

.3. Solutions to displacements and interface tractions 

.3.1. Balanced case 

For the balanced case ( 𝜆3 = 0), considering 𝑞 ( ̄𝑥 ) = 0 for three-point

ending, Eq. (26d) reduces to a five-order linear ODE: 

d 5 Δ�̄� 
d ̄𝑥 5 

− 𝑚 1 
2 d 3 Δ�̄� 
d ̄𝑥 3 

= 0 , (33)

here m 1 is the parameter defined by 

 1 
2 = 

�̄� a �̄� sinh �̄� 
ℎ̄ a 𝐾 2 

[ 
1 + 

1 
�̄� p ̄ℎ p 

+ 3 
(
1 + ̄ℎ p 

)(
1 + ̄ℎ a 

)] 
> 0 . (34)

Solving Eq. (33) , we can obtain 

𝑢 = D 1 cosh 
(
𝑚 1 ̄𝑥 
)
+ D 2 sinh 

(
𝑚 1 ̄𝑥 
)
+ D 3 ̄𝑥 

2 + D 4 ̄𝑥 + D 5 , (35)

here Δ ̄̄𝑢 = Δ�̄� ∕ ̄𝑃 . In Eq. (35) and the following equations, D j ( j = 1–

4) are integration constants. 

From Eqs. (26b) , 26c ) and ( (35) , we have 

d 5 ̄̄𝑤 b 

d ̄𝑥 5 
+ 4 𝑚 2 

4 d ̄̄𝑤 b 
d ̄𝑥 

= 𝑚 3 
[
D 1 cosh 

(
𝑚 1 ̄𝑥 
)
+ D 2 sinh 

(
𝑚 1 ̄𝑥 
)]

+ 𝑚 4 
(
D 3 ̄𝑥 

2 + D 4 ̄𝑥 
)
+ 𝑚 5 , (36) 

here ̄̄𝑤 b = �̄� b ∕ ̄𝑃 and 

 2 
4 = − 

3 
(
1 + �̄� p ̄ℎ 

3 
p 

)
�̄� p ̄ℎ 

3 
p 

�̄� a 

ℎ̄ a 
𝑎 31 > 0 , 𝑚 3 = − 𝜆2 𝑚 1 

4 + 

72 ̄𝐸 a 
(
1 + ̄ℎ p 

)
𝑎 31 

ℎ̄ a 
(
1 + �̄� p ̄ℎ p 

)
ℎ̄ 2 p 
, (37a)

 4 = 

12 ̄𝐸 a 𝑎 31 𝑎 71 

ℎ̄ a 𝜉2 
, 𝑚 5 = 

24 ̄𝐸 p ̄ℎ p �̄� a 𝑎 31 (
1 + �̄� p ̄ℎ p 

)
𝜉2 �̄� a 

D 3 + 𝑚 4 D 5 . (37b)

Solving Eq. (36) , we can obtain 

̄̄
 b = cosh 

(
𝑚 2 ̄𝑥 
)[
D 6 cos 

(
𝑚 2 ̄𝑥 
)
+ D 7 sin 

(
𝑚 2 ̄𝑥 
)]
+ 

sinh 
(
𝑚 2 ̄𝑥 
)[
D 8 cos 

(
𝑚 2 ̄𝑥 
)
+ D 9 sin 

(
𝑚 2 ̄𝑥 
)]
+ 

𝑚 3 (
𝑚 1 

4 + 4 𝑚 2 
4 
)
𝑚 1 

[
D 2 cosh 

(
𝑚 1 ̄𝑥 
)
+ D 1 sinh 

(
𝑚 1 ̄𝑥 
)]
+ 

𝑚 4 
12 𝑚 2 

4 D 3 ̄𝑥 
3 + 

𝑚 4 
8 𝑚 2 

4 D 4 ̄𝑥 
2 + 

𝑚 5 

4 𝑚 2 
4 �̄� + D 10 , 0 ≤ �̄� < �̄� p ∕2 . (38)

From Eq. (26c) , the deflection of the plate ̄̄𝑤 b = �̄� p ∕ ̄𝑃 is given by 

̄̄
 p = 

̄̄𝑤 b − 

ℎ̄ a 

12 ̄𝐸 a 𝑎 31 

( 
d 4 ̄̄𝑤 b 

d ̄𝑥 4 
+ 𝜆2 

d 3 Δ ̄̄𝑢 
d ̄𝑥 3 

) 
, 0 ≤ �̄� < �̄� p ∕2 . (39)

From Eqs. (26a) and (35) , the axial displacements in the host beam

nd the plate can be expressed by 

̄̄
 b0 = 

1 
1 + �̄� p ̄ℎ p 

(
�̄� p ̄ℎ p Δ ̄̄𝑢 + D 11 ̄𝑥 + D 12 

)
, 0 ≤ �̄� < �̄� p ∕2 , (40a)

̄̄
 p0 = 

1 
1 + �̄� p ̄ℎ p 

(
−Δ ̄̄𝑢 + D 11 ̄𝑥 + D 12 

)
, 0 ≤ �̄� < �̄� p ∕2 , (40b)

here ̄̄𝑢 b0 = �̄� b0 ∕ ̄𝑃 and ̄̄𝑢 p0 = �̄� p0 ∕ ̄𝑃 . 
For the part of the host beam not bonded with a plate, its deflection

an be obtained from Eqs. (28) and (30) : 

̄̄
 b = D 13 ( ̄𝑥 + �̄� ) 3 + D 14 ( ̄𝑥 + �̄� ) , − ̄𝑎 ≤ �̄� < 0 . (41)

At this moment, the solutions of all displacements have been ob-

ained, i.e., Eqs. (38) –(41) , where the integration constants D j ( j = 1–

4) can be determined by the boundary conditions (i.e., Eqs. (31) and

32)). Then, the interfacial tractions can be obtained by substitution of

qs. (35) , (38) and (39) into Eqs. (20). 
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e  
.3.2. Unbalanced case 

For the unbalanced case ( 𝜆3 ≠ 0), we need to solve Eqs. (26) simul-

aneously to obtain all the displacements. From Eqs. (26b) –( 26d ), we

an obtain the following nine-order linear ODE ( ̄𝑞 ( ̄𝑥 ) = 0 for three-point

ending): 

d 9 Δ ̄̄𝑢 
d ̄𝑥 9 

− 𝛼1 
d 7 Δ ̄̄𝑢 
d ̄𝑥 7 

+ 𝛼2 
d 5 Δ ̄̄𝑢 
d ̄𝑥 5 

− 𝛼3 
d 3 Δ ̄̄𝑢 
d ̄𝑥 3 

= 0 , (42)

here 𝛼j ( j = 1–3) are positive parameters defined as 

1 = 

�̄� a 

ℎ̄ a �̄� p ̄ℎ 
2 
p 

[
6 
(
𝜉2 + �̄� p ̄ℎ 

2 
p 𝜉1 

)
− 𝑎 71 ̄ℎ p 

(
1 + �̄� p ̄ℎ p 

)]
, (43a)

2 = − 

12 ̄𝐸 a 𝑎 31 

ℎ̄ a 

( 
1 + 

1 
�̄� p ̄ℎ 

3 
p 

) 
, (43b)

3 = − 

12 ̄𝐸 a �̄� a 𝑎 31 

ℎ̄ 2 a �̄� 

2 
p ℎ̄ 

4 
p 

[
6 ̄𝐸 p ̄ℎ p 

(
1 + ̄ℎ p 

)(
𝜉1 + 𝜉2 

)
− 

(
1 + �̄� p ̄ℎ p 

)(
1 + �̄� p ̄ℎ 

3 
p 

)
𝑎 71 

]
. 

(43c) 

For typical material and geometry parameters, the characteristic

quation of Eq. (42) has two nonzero real roots, two pairs of conjugate

omplex roots and three zero roots (see Appendix B ). Thus, the solution

f Eq. (42) can be expressed by 

̄̄𝑢 = D 1 cosh 
(
𝜂1 ̄𝑥 
)
+ D 2 sinh 

(
𝜂1 ̄𝑥 
)
+ cosh 

(
𝛾1 ̄𝑥 
)[
D 3 cos 

(
𝛾2 ̄𝑥 
)
+ D 4 sin 

(
𝛾2 ̄𝑥 
)]

inh 
(
𝛾1 ̄𝑥 
)[
D 5 cos 

(
𝛾2 ̄𝑥 
)
+ D 6 sin 

(
𝛾2 ̄𝑥 
)]

+ D 7 ̄𝑥 
2 + D 8 ̄𝑥 + D 9 , (44)

here 𝜂1 , 𝛾1 and 𝛾2 are positive parameters given by Eqs. (B.6) and

B.7). 

Afterwards, from Eqs. (26b) –( 26d ), we can obtain the deflections of

he host beam and the bonded plate for 0 ≤ �̄� < �̄� p ∕2 : 

̄̄
 b = − 

𝜆1 
𝜉1 + 𝜉2 

dΔ�̄� 
d ̄𝑥 

− 

𝑎 71 
𝜉1 + 𝜉2 

∫ �̄� 0 Δ�̄� d ̄𝑥 + 𝛼4 

( 
d 5 Δ�̄� 
d ̄𝑥 5 

− 𝛼1 
d 3 Δ�̄� 
d ̄𝑥 3 

) 
+ D 10 , 

(45) 

̄̄
 p = − 

𝜆1 
𝜉1 + 𝜉2 

dΔ�̄� 
d ̄𝑥 

− 

𝑎 71 
𝜉1 + 𝜉2 

∫ �̄� 0 Δ�̄� d ̄𝑥 − 𝛼4 

( 
d 5 Δ�̄� 
d ̄𝑥 5 

− 𝛼1 
d 3 Δ�̄� 
d ̄𝑥 3 

) 
+ D 10 , 

(46) 

ith parameter 𝛼4 defined as 

4 = 

�̄� 

2 
p ℎ̄ 

4 
p ℎ̄ 

2 
a 𝜉2 

12 
(
1 + �̄� p ̄ℎ p 

)(
𝜉1 + 𝜉2 

)
𝑎 31 𝜆3 �̄� a �̄� a 

. (47)

For the unbalanced case, Eqs. (40) and (41) are also valid, but the ex-

ression of Δ�̄� is different. Substituting Eq. (44) into Eqs. (40), (45) and

46) , we can obtain the solutions of all displacements, and the integra-

ion constants D j ( j = 1–14) can be determined by the boundary con-

itions (i.e., Eqs. (31) and (32)). Then, the interfacial tractions can be

btained by substitution of Eqs. (44) –(46) into Eqs. (20). 

. Results and discussions 

In this section, we focus on the solutions of the local interfacial trac-

ions and the global host beam deflection. And referring to previous

iterature, we can take typical values of the geometry and material pa-

ameters. For aluminum beams bonded with PZT actuators [56] , the

dhesive layer thickness varies from 20 𝜇m to 1 mm. And we have

 p = E b = 70 GPa, E a = 3 GPa, 𝜈a = 0.4, h p = 1 mm and h b = 1–

00 mm. In flexible electronics [19] , Si ribbons with thickness vary-

ng from 100 nm to 10 𝜇m are bonded to a poly(ethyleneterepthalate)

PET) substrate (50 𝜇m or 175 𝜇m thick) with a thin epoxy adhesive

ayer (about 1 𝜇m thick). The Young’s moduli of the Si ribbons and the

ubstrate are 130 GPa and 4 GPa, respectively. The Young’s modulus
7 
nd Poisson’s ratio of the adhesive layer are 4.4 GPa and 0.44, respec-

ively. Besides, the adhesive layer can be very soft. For example, the

oung’s modulus of silicone layers (adhesives, E a = 60 kPa) is about

ve orders of magnitude smaller than that of the polyimide layers (ad-

erends, E = 2.5 GPa) [57] . Considering these facts, the ranges of pa-

ameters in the following discussions are h a / l = 0.1–100, h a / h b = 10 − 2 ,

 p / h b = 0.1–1, L p / L = 0.01–1, L / h b = 20, E a / E b = 10 − 5 –10 − 1 , 𝜈a = 0.4

nd E p / E b = 0.1–50. In the strain gradient theories, the material charac-

eristic length scale is always on the order of microns ( l = 0.1–10 𝜇m)

 21 , 24 , 45 , 58 ]. Thus, typically, for l ≈ 1 𝜇m, the host beam thickness is

 b ≈ 100 𝜇m and the minimum plate thickness is h p ≈ 10 𝜇m. 

In the following discussions, we will firstly compare the strain gra-

ient solutions of layered structures at different scales, which will de-

enerate into the classical solution for the macro scale. Then, we will

ocus on the layered structures at the micro scale (with micro-scale ad-

esives). Here, since the geometry parameters span several orders (e.g.,

 a / h b = 10 − 2 ), we use the adhesive layer thickness, the smallest geom-

try parameter, to represent the scale of the layered structure. 

.1. Results of adhesively bonded layered structures at different scales 

.1.1. Distributions of interfacial tractions 

From the strain gradient model, the dimensionless interfacial trac-

ions can be expressed as 

𝑡 𝑖 𝑏ℎ b 
𝑃 

= 𝑓 𝑖 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝑥 

𝐿 p 
, 
ℎ a 
𝑙 

⏟⏟⏟
scale 

, 
ℎ a 
ℎ b 
, 
ℎ p 

ℎ b 
, 
𝐿 p 

𝐿 
, 
𝐿 

ℎ b 
, 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
geometry 

𝐸 a 
𝐸 b 
, 𝑣 a , 

𝐸 p 

𝐸 b 
⏟⏞⏞⏞⏟⏞⏞⏞⏟

metarial 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 𝑖 = 1 , 3 . (48) 

As illustrated in Fig. 3 , for adhesively bonded layered structures with

imilar geometry and material properties (i.e., the geometry and mate-

ial parameters in Eq. (48) are identical), the parameter h a / l charac-

erizes the structure scale (including the scale of the adhesive layer).

hen h a / l increases from 10 − 3 to 10 3 ( l is a micron-scale parameter),

he order of the adhesive layer thickness varies from nanometers to mil-

imeters. Correspondingly, the geometry parameters vary in equal pro-

ortion. When h a / l tends to infinity, Eq. (48) degenerates into the clas-

ical solution. It should be noted that from the classical solution, the

imensionless interfacial tractions are the same for similar geometry

nd material properties, regardless of the structure scales. 

Distributions of interfacial tractions (i.e., interfacial stresses,

 i = 𝜎3 i ( i = 1, 3)) for layered structures at the macro scale, obtained

rom the classical solution, are shown in Fig. 4 . Similar classical re-

ults have been presented by Long et al. [29] , but they ignored the

erm 𝜕 w a / 𝜕 x in Eq. (10a) for small thickness ratios of adhesive layer

o adherends. We can also obtain an approximate strain gradient solu-

ion by ignoring this term in Eq. (10a) (see Appendix C ). From Fig. 4 (a),

he shear traction reaches its maximum at the plate end, and then de-

reases to zero at the midspan due to its antisymmetry distribution. From

ig. 4 (b), high tensile traction occurs at the plate end, and the normal

raction decays to zero somewhere far away from the plate end. And

 compression zone can be observed next to the tension zone, which

s reasonable considering that the resultant force of the normal trac-

ion is zero. Actually, we have ∫
�̄� p ∕2 
0 𝑡 3 ( ̄𝑥 )d ̄𝑥 = 𝑉 p ( ̄𝐿 p ∕2 ) − 𝑉 p (0) = 0 from

q. (25b) , indicating the force equilibrium in the z direction for the

late. Influences of dimensionless adhesive layer thickness h a / h b , a ge-

metry parameter, are also shown in Fig. 4 . With the decrease of h a / h b ,

nterfacial shear and normal tractions increase in a wide region of the

nterface. The previous study [51] has shown that the approximate an-

lytical solutions [52] are in good agreement with the results of FEM,

xcept in a narrow region near the plate end (approximately x / L p ≤

.1%). 

Distributions of interfacial tractions for layered structures at differ-

nt scales (represented by h a / l ) are shown in Fig. 5 . All these results
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Fig. 3. Schematic diagram of adhesively bonded layered struc- 

tures with similar geometry and material properties at different 

scales. The structure scale can be represented by the parameter 

h a / l , where h a is the adhesive layer thickness and l is the mate- 

rial characteristic length scale of the adhesive ( l is a micron-scale 

parameter). 

Fig. 4. Distributions of interfacial tractions for layered structures at the macro scale (obtained from the classical solution) for different values of dimensionless 

adhesive layer thickness h a / h b : dimensionless (a) interfacial shear traction t 1 bh b / P and (b) interfacial normal traction t 3 bh b / P versus normalized distance from the 

plate end x / L p . The values of other parameters are fixed at h p / h b = 0.1, L p / L = 0.5, L / h b = 20, E a / E b = 10 − 4 , 𝜈a = 0.4 and E p / E b = 10. 

Fig. 5. Distributions of interfacial tractions for layered structures at different scales (represented by h a / l ): dimensionless (a) interfacial shear traction t 1 bh b / P and 

(b) interfacial normal traction t 3 bh b / P versus normalized distance from the plate end x / L p . The values of other parameters are fixed at h a / h b = 10 − 2 , h p / h b = 0.1, 

L p / L = 0.5, L / h b = 20, E a / E b = 10 − 4 , 𝜈a = 0.4 and E p / E b = 10. The limiting case of h a / l → +∞ (dashed curves) corresponds to the classical solution. 
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orrespond to the unbalanced case ( 𝜆3 ≠ 0 from Eq. (27b) ). The impor-

ance of the strain gradient solution (solid lines) can be seen by compar-

ng it with the classical solution (dashed lines). As mentioned before, the

arameter h a / l characterizes the structure scale. From Fig. 5 , with the

ecrease of h a / l , the strain gradient solution deviates more significantly

rom the classical solution. Moreover, the interfacial shear and normal

ractions increase in a relatively wide region of the interface, since the

onstrained adhesive layer undergoes obvious nonuniform deformation

nd large strain gradients exist. Therefore, the interfacial tractions show

n apparent size effect when the layered structure scales down ( h a / l

ecreases). It is noteworthy that when h a / l = 1 (correspondingly, the

dhesive layer thickness is h a = 0.1–10 𝜇m), the interfacial tractions

ncrease substantially, indicating the stiff interface bonding created by

he micro-scale adhesive layers. It should be noted that the results in a
8 
arrow region near the plate end ( x / L p → 0) are inaccurate since we

gnore the boundary conditions near the adhesive ends. Previous exper-

ments [13] have shown that the average interfacial tensile and shear

trengths are several times the adhesive bulk strengths when h a is about

00 𝜇m, and the local strength should be much higher. Thus, the experi-

ental results provide qualitative evidence for high interfacial tractions

redicted by our model. 

Although the increased interfacial tractions with varying parameter

re both observed in Figs. 4 and 5 , the underlying reasons are totally

ifferent. In Fig. 4 , the variation of interfacial tractions with thickness

atio h a / h b shows geometry effects for layered structures at the macro

cale ( h a / l → +∞). In contrast, in Fig. 5 , the variation of interfacial

ractions with structure scale h a / l for fixed h a / h b reflects the size effects

or layered structures at different scales (correspondingly, the adhesive



H. Long, H. Ma, Y. Wei et al. International Journal of Mechanical Sciences 198 (2021) 106348 

Fig. 6. For layered structures at different scales (represented by h a / l ), variations of the normalized midspan deflection of the host beam w M / w M0 with the di- 

mensionless (a) plate thickness h p / h b , (b) plate length L p / L , (c) adhesive modulus E a / E b and (d) plate modulus E p / E b . The midspan deflection is normalized by 

w M0 = L 3 /(4 E b bh b 
3 ), the midspan deflection of the host beam without a bonded plate. For all curves, h a / h b = 10 − 2 , L / h b = 20 and 𝜈a = 0.4. The limiting case of 

h a / l → +∞ (dashed curves) corresponds to the classical solution. 
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ayer thickness varies from macro to micro scale). The geometry effects

t the macro scale can be studied by the classical model, while the size

ffects should be captured by the present strain gradient model. 

From Fig. 4 , interfacial tractions tend to infinity near the plate end

hen h a / h b → 0. And similar phenomenon can also be observed in

ig. 5 when h a / l → 0. On the one hand, these results are rigorous solu-

ions to our analytical model. On the other hand, the traction singularity

ear the plate ends is not surprising if we consider the ends as the crack

ip of the interface cracks (90° interface crack for host beam/adhesive

nterface and 180° interface crack for plate/adhesive interface). Actu-

lly, referring to the classical results about the stress singularities in bi-

aterial wedges [59] , we can know that the interfacial stresses would

ave a power singularity at the plate ends if we treat the adherends

nd the adhesive layer as elastic continua. Generally, the 1D analysis

ased on the beam theory and adhesive layer theory cannot predict the

tress singularities (i.e., interfacial stresses are bounded everywhere).

owever, interfacial stresses can tend to infinity near the plate ends

hen the adhesive layer thickness decreases to zero [29] , due to infin-

ty stiffnesses of the springs simplified from the adhesive layer (spring

tiffnesses are inversely proportional to the adhesive layer thickness).

imilarly, in the present strain gradient solution, as shown in Fig. 5 ,

nfinite interfacial tractions near the plate ends can be observed when

 a / l → 0, indicating that the adhesive layer becomes very stiff owing to

arge strain gradients. 

.1.2. Midspan deflection of the host beam 

Herein, the midspan deflection of the host beam in layered structures

s denoted by w M 

= w b ( L p /2), and the midspan deflection of the host
9 
eam without a bonded plate is represented by w M0 . Due to the stiffening

ffects of the bonded plate on the host beam, which are transferred by

he adhesive layer, the midspan deflection of the host beam becomes

maller for the same applied load, i.e., w M 

≤ w M0 . 

Fig. 6 plots the normalized midspan deflection w M 

/ w M0 for layered

tructures at different scales. Generally, these results correspond to the

nbalanced case, and only a particular combination of the geometry and

aterial parameters corresponds to the balanced case. For example, in

ig. 6 (a), we can know that 𝜆3 = 0 (the balanced case) is satisfied only

hen h p / h b ≈ 0.32 from Eq. (27b) . From Fig. 6 , if the stiffening effects of

he plate can be neglected (e.g., L p / L → 0), w M 

/ w M0 tends to unity. And

hatever the structure scale is, the midspan deflection decreases when

he plate thickness, plate length, adhesive modulus and plate modulus

ncrease, which indicates that the stiffening effects of the plate increases.

ere, free boundary conditions at the adhesive ends are ignored, even

or L p / L → 1. For large values of plate length, the size of the regions

ffected by the adhesive ends is much smaller than the plate length. 

The variation of the normalized midspan deflection with the dimen-

ionless plate thickness is presented in Fig. 6 (a). In Fig. 6 (a), when h a / l

ecreases from infinity to 100, the strain gradient solution is almost the

ame as the classical solution, implying that the strain gradient effects

an be ignored. However, when the structure scale further decreases

 h a / l decreases), the deflection exhibits an obvious size effect. As the ad-

esive layer thickness reaches the micron level ( h a / l = 1), the midspan

eflection of the strain gradient solution decreases significantly com-

ared with that of the classical solution, arising from the stiff interface

onding of the micro-scale adhesive layers due to large strain gradients.
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Fig. 7. For layered structures at different scales (represented by h a / l ), variations of the normalized midspan deflection of the host beam w M / w M0 with the dimension- 

less adhesive modulus E a / E b for different dimensionless span lengths L / h b : (a) L / h b = 100 and (b) L / h b = 200. For all curves, h a / h b = 10 − 2 , h p / h b = 0.1, L p / L = 0.5, 

𝜈a = 0.4 and E p / E b = 10. The limiting case of h a / l → +∞ (dashed curves) corresponds to the classical solution. 
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or h a / l = 0.1, the midspan deflection further decreases. Similar trends

an also be found in Fig. 6 (b)–(d). 

As illustrated in Fig. 6 (c), the difference between the strain gradient

olution and the classical solution is apparent when the adhesive mod-

lus is small. Furthermore, it is worth noting that when the adhesive

ayer thickness is on the same order of magnitude as the material char-

cteristic length scale or even smaller ( h a / l ≤ 1), the midspan deflection

s almost independent of the adhesive modulus in a wide range, due

o the strong strain gradient effects. Therefore, the adhesive modulus

ecomes unimportant in this case. This phenomenon is quite different

rom the behavior of macro-scale layered structures, where the adhesive

ayer with low modulus leads to flexible bonding and the host beam de-

ection becomes larger (the dashed line in Fig. 6 (c)). Therefore, we can

se very soft micro-scale adhesive layers (with low modulus) to realize

 stiff interface bonding, which is crucial to achieving excellent per-

ormance for micro devices, such as high accuracy and repeatability of

ignal detection. 

The above discussions are aimed at layered structures with a span

ength (or aspect ratio of the host beam) of L / h b = 20, similar to some

revious studies [ 38 , 41 , 60 ]. For larger span lengths, which are com-

on in flexible electronics [ 19 , 26 ], the variation of midspan deflection

ith adhesive modulus is shown in Fig. 7 . Combining Fig. 6 (c) with

ig. 7 (a), (b), we can see that with the increase of span length, the dif-

erence between the classical solution and the strain gradient solution

ecreases. However, the trends in midspan deflection are similar. And

ven for L / h b = 200 and E a / E b = 10 − 5 ( Fig. 7 (b)), the deflection of the

train gradient solution ( h a / l = 0.1) can be 32% smaller than that of the

lassical solution. 

.2. Results of layered structures with micro-scale adhesive layers 

In this section, we will focus on the case of h a / l = 1, where the layered

tructures are at the micro scale (with micro-scale adhesives). Besides,

he span length is fixed at L / h b = 20 and the values of other parameters

re similar to those in Section 3.1 . 

.2.1. Distributions of interfacial tractions 

For layered structures with micro-scale adhesive layers, influences of

late thickness on the distributions of interfacial tractions are presented

n Fig. 8 . It can be seen that with the increase of the plate thickness, the

hear traction decreases while the normal traction increases in a wide

egion. From Fig. 8 (b), when the plate thickness increases, the compres-

ion zone enlarges and the maximum compression traction increases. 

Fig. 9 shows the influences of the plate length on the distributions

f interfacial tractions. It can be seen that with the decrease of the plate
10 
ength, the shear and normal tractions increase in a wide region, since

he bending moment near the plate end increases for shorter plates.

rom Fig. 9 (b), for small plate length ( L p / L = 0.2), the interface is al-

ays under compression when x / L p > 0.1, which can be explained by

onsidering that the influence region of the plate end covers the whole

nterface. In contrast, for larger plate lengths ( L p / L = 0.5, 0.8), the in-

uence region is limited to the vicinity of the plate end, and thus the

ormal traction decreases to zero quickly. 

The influences of the adhesive modulus on the distributions of inter-

acial tractions are shown in Fig. 10 . As the adhesive modulus increases,

he interfacial shear and normal tractions increase substantially, indi-

ating that the adhesive layers with larger modulus can ensure stiffer

onding between the plate and the host beam. For E a / E b = 10 − 2 , we

an observe large compression traction ( Fig. 10 (b)). 

Fig. 11 shows the influences of the plate modulus on the distributions

f interfacial tractions. It can be found that with the increase of the plate

odulus, the shear traction increases. From Fig. 11 (b), when the plate

odulus increases, the compression zone enlarges and the maximum

ompression traction increases. 

From the discussions above, we can find that with the increase of ad-

esive modulus or the decrease of the plate length, the shear and normal

ractions increase in a wide region of the interface. Since high interfacial

ractions can cause interfacial delamination, the stress distribution com-

ined with a suitable failure criterion can be used to predict the strength

f adhesively bonded joints [1] . Therefore, the theoretical predictions of

he interfacial tractions presented here can help the strength prediction

nd the optimal design of layered structures to avoid premature failure,

articularly for layered structures with micro-scale adhesive layers. 

.2.2. Midspan deflection of the host beam 

For layered structures with micro-scale adhesive layers ( h a / l = 1),

nfluences of the plate geometry on the normalized midspan deflection

f the host beam are presented in Fig. 12 . From Fig. 12 (a), the midspan

eflection decreases as the plate thickness increases, because the bend-

ng stiffness of the plate E p bh p 
3 /12 increases. However, for short plate

 L p / L = 0.2), the variation of deflection is insensitive to the plate thick-

ess. In this case, the bending stiffness of the short plate is large enough.

hus the plate almost acts like a rigid body and only small deformation

ccurs. Then, although the plate thickness is increased, its stiffening ef-

ect on the host beam cannot be further enhanced. 

As shown in Fig. 12 (b), with the increase of plate length, the midspan

eflection decreases at first and eventually tends to be stable, indicat-

ng the saturation of the stiffening effects of the plate. This saturation

henomenon is related to the loading condition of three-point bend-
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Fig. 8. Influences of the dimensionless plate thickness h p / h b on the distributions of interfacial tractions for layered structures with micro-scale adhesive layers 

( h a / l = 1): dimensionless (a) interfacial shear traction t 1 bh b / P and (b) interfacial normal traction t 3 bh b / P versus normalized distance from the plate end x / L p . The 

values of other parameters are fixed at h a / h b = 10 − 2 , L p / L = 0.5, L / h b = 20, E a / E b = 10 − 4 , 𝜈a = 0.4 and E p / E b = 10. 

Fig. 9. Influences of the dimensionless plate length L p / L on the distributions of interfacial tractions for layered structures with micro-scale adhesive layers ( h a / l = 1): 

dimensionless (a) interfacial shear traction t 1 bh b / P and (b) interfacial normal traction t 3 bh b / P versus normalized distance from the plate end x / L p . The values of 

other parameters are fixed at h a / h b = 10 − 2 , h p / h b = 0.1, L / h b = 20, E a / E b = 10 − 4 , 𝜈a = 0.4 and E p / E b = 10. 

Fig. 10. Influences of the dimensionless adhesive modulus E a / E b on the distributions of interfacial tractions for layered structures with micro-scale adhesive layers 

( h a / l = 1): dimensionless (a) interfacial shear traction t 1 bh b / P and (b) interfacial normal traction t 3 bh b / P versus normalized distance from the plate end x / L p . The 

values of other parameters are fixed at h a / h b = 10 − 2 , h p / h b = 0.1, L p / L = 0.5, L / h b = 20, 𝜈a = 0.4 and E p / E b = 10. 
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Fig. 11. Influences of the dimensionless plate modulus E p / E b on the distributions of interfacial tractions for layered structures with micro-scale adhesive layers 

( h a / l = 1): dimensionless (a) interfacial shear traction t 1 bh b / P and (b) interfacial normal traction t 3 bh b / P versus normalized distance from the plate end x / L p . The 

values of other parameters are fixed at h a / h b = 10 − 2 , h p / h b = 0.1, L p / L = 0.5, L / h b = 20, E a / E b = 10 − 4 and 𝜈a = 0.4. 

Fig. 12. Influences of the plate geometry on the normalized midspan deflection of the host beam w M / w M0 for layered structures with micro-scale adhesive layers 

( h a / l = 1): (a) w M / w M0 versus dimensionless plate thickness h p / h b for different dimensionless plate lengths L p / L ; (b) w M / w M0 versus L p / L for different values of h p / h b . 

The values of other parameters are fixed at h a / h b = 10 − 2 , L / h b = 20, E a / E b = 10 − 4 , 𝜈a = 0.4 and E p / E b = 10. 

Fig. 13. Influences of the material properties on the normalized midspan deflection of the host beam w M / w M0 for layered structures with micro-scale adhesive layers 

( h a / l = 1): (a) w M / w M0 versus dimensionless adhesive modulus E a / E b for different dimensionless plate moduli E p / E b ; (b) w M / w M0 versus E p / E b for different values of 

E a / E b . The values of other parameters are fixed at h a / h b = 10 − 2 , h p / h b = 0.1, L p / L = 0.5, L / h b = 20 and 𝜈a = 0.4. 
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𝑏 = ℎ 𝑎 + 𝑏 , 𝑏 = − ℎ − 𝑏 . (A.5d) 
ng. With the increase of the distance from the midspan, the bending

oment decreases, and thus the influence of increasing plate length be-

omes weaker. If we want to minimize the deflection of the host beam, it

s economical and efficient to use a plate with the critical length, which

orresponds to the saturation of the stiffening effects. 

Fig. 13 shows the influences of the material properties on the normal-

zed midspan deflection of the host beam. In Fig. 13 (a), the deflection

lmost remains constant for a wide range of adhesive moduli, which is

ttributed to the strong strain gradient effects in the constrained micro-

cale adhesives, as discussed in Section 3.1.2 . This phenomenon is simi-

ar for different plate moduli. From Fig. 13 (b), when the plate modulus

ncreases, the midspan deflection of the host beam decreases dramati-

ally within the range of E p / E b < 5. Afterwards, the deflection reaches

 plateau, indicating that the large bending stiffness of the plate leads

o the saturation of its stiffening effects on the host beam. 

. Conclusions 

In summary, a size-dependent model for predicting the mechanical

ehaviors of adhesively bonded layered structures is established. The

hin adhesive layer is characterized by the strain gradient elasticity

hile the adherends, including the host beam and the bonded plate,

re described by the classical Euler-Bernoulli beam theory. The main

onclusions are summarized as follows: 

(1) The proposed analytical model can predict the size effects of the

mechanical behaviors of adhesively bonded layered structures.

When the structure scale decreases (the adhesive layer thickness

also decreases), the interfacial tractions increase substantially

and the midspan deflection of the host beam decreases signifi-

cantly, especially for soft adhesive layers with low modulus. Al-

though the predicted interfacial tractions near the adhesive ends

are inaccurate, they are valid for the locations a little far away

from the adhesive ends. 

(2) When the adhesive layer thickness is comparable to its mate-

rial characteristic length scale (on the order of microns), the host

beam deflection is insensitive to the adhesive modulus, indicat-

ing the stiff bonding due to the large strain gradients in the con-

strained micro-scale adhesive layer. 

(3) For layered structures with micro-scale adhesive layers, when

the adhesive modulus increases or the plate length decreases, the

shear and normal tractions increase in a wide region of the in-

terface. With the increase of the plate thickness, plate length and

plate modulus, the midspan deflection decreases firstly and then

tends to saturate, corresponding to the saturation of stiffening

effects of the boned plate on the host beam. 
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ppendix A. Expressions of the coefficients in Eqs. (19) 

.1. The general case 

The expressions of a ij in Eq. (19a) are given by 

 11 = − 

cosh �̄� − 1 
𝐾 1 

, 𝑎 21 = − 

sinh �̄� 

𝐾 1 
, 𝑎 31 = − 

�̄� sinh �̄� 

𝐾 1 
, (A.1)

here 

 1 = �̄� sinh ̄𝐴 − 2 cosh ̄𝐴 + 2 > 𝐾 1 
(
�̄� = 0 

)
= 0 . (A.2)

The expressions of a ij in Eq. (19b) are given by 

 51 = − 

cosh �̄� − 1 
𝐾 2 

, (A.3a)

 53 = 

(
cosh ̄𝐵 − 1 

)
𝐾 2 

(
𝑏 3 − 𝑏 1 − 𝑏 5 

)
+ 

(
�̄� − sinh ̄𝐵 

)
�̄� 𝐾 2 

(
𝑏 7 − 𝑏 5 

)
, (A.3b)

 54 = 

(
cosh ̄𝐵 − 1 

)
𝐾 2 

(
𝑏 4 − 𝑏 2 − 𝑏 6 

)
+ 

(
�̄� − sinh ̄𝐵 

)
�̄� 𝐾 2 

(
𝑏 8 − 𝑏 6 

)
, (A.3c)

 61 = 

sinh �̄� 
𝐾 2 

, (A.3d)

 63 = − 

sinh �̄� 
𝐾 2 

(
𝑏 3 − 𝑏 1 − 𝑏 5 

)
+ 

(
cosh ̄𝐵 − 1 

)
�̄� 𝐾 2 

(
𝑏 7 − 𝑏 5 

)
, (A.3e)

 64 = − 

sinh �̄� 
𝐾 2 

(
𝑏 4 − 𝑏 2 − 𝑏 6 

)
+ 

(
cosh ̄𝐵 − 1 

)
�̄� 𝐾 2 

(
𝑏 8 − 𝑏 6 

)
, (A.3f)

 71 = − 

�̄� sinh �̄� 
𝐾 2 

, (A.3g)

 73 = 

�̄� sinh �̄� 
𝐾 2 

(
𝑏 3 − 𝑏 1 

)
− 

(
cosh ̄𝐵 − 1 

)
𝐾 2 

(
𝑏 7 + 𝑏 5 

)
, (A.3h)

 74 = 

�̄� sinh �̄� 
𝐾 2 

(
𝑏 4 − 𝑏 2 

)
− 

(
cosh ̄𝐵 − 1 

)
𝐾 2 

(
𝑏 8 + 𝑏 6 

)
, (A.3i)

 83 = 𝑏 1 − 𝑎 53 , 𝑎 84 = 𝑏 2 − 𝑎 54 , (A.3j)

here 

 2 = �̄� sinh �̄� − 2 cosh ̄𝐵 + 2 > 𝐾 2 
(
�̄� = 0 

)
= 0 , (A.4)

 1 = − 

1 
2 
− 𝑏 2 , 𝑏 2 = 

�̄� 2 ℎ̄ a 

( ̄𝐴 

2 − �̄� 2 ) �̄� 

𝑎 21 , (A.5a)

 3 = 

ℎ̄ a 
2 
𝑎 31 − 𝑏 2 , 𝑏 4 = 

ℎ̄ p 

2 
− 𝑏 3 , (A.5b)

 5 = − ̄ℎ a − 𝑏 6 , 𝑏 6 = 

�̄� 2 ℎ̄ a 

�̄� 

2 − �̄� 2 
𝑎 11 , (A.5c)

̄ ̄
7 a 31 6 8 a 7 

https://doi.org/10.13039/501100001809
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.2. Two limit cases 

For h a / l → +∞, the expressions of a ij degenerate into those of clas-

ical solution. From Eqs. (A.1)–(A.5), we can obtain 

 31 → −1 , 𝑎 71 → −1 , 𝑎 73 →
1 − ̄ℎ a 

2 
, 𝑎 74 →

ℎ̄ p + ̄ℎ a 

2 
, 𝑎 83 → − 

1 
2 
. (A.6)

Other coefficients a ij tend to zero. Therefore, interfacial tractions of

he classical solution can be obtained from Eqs. (20): 

̄
 1 →

�̄� a 

ℎ̄ a 

( 
�̄� p0 − ̄𝑢 b0 + 

1 + ̄ℎ a 
2 

d ̄𝑤 b 
d ̄𝑥 

+ 

ℎ̄ p + ̄ℎ a 

2 
d ̄𝑤 p 

d ̄𝑥 

) 
, 𝑡 3 →

�̄� a 

ℎ̄ a 

(
�̄� p − �̄� b 

)
. 

(A.7) 

For h a / l → 0 + , the strain gradient effects cannot be enhanced any-

ore. From Eqs. (A.1)–(A.5), we can find a ij → ∞, and thus numerical

ingularities are encountered. However, some relations can be obtained

y the following analysis. According to Eqs. (19), we have 

 1 = 𝑎 11 
(
�̄� b − �̄� p 

)
, C 5 = 𝑎 51 

( 
�̄� b0 − ̄𝑢 p0 + 

𝑎 53 
𝑎 51 

d ̄𝑤 b 
d ̄𝑥 

+ 

𝑎 54 
𝑎 51 

d ̄𝑤 p 

d ̄𝑥 

) 
. (A.8)

Since the coefficient C 1 and C 5 are finite, combining Eq. (A.8) with

qs. (A.3a)–(A.3c) and (16), we can obtain 

̄
 b − �̄� p → 0 , �̄� b ( ̄𝑧 = 0 ) − ̄𝑢 p ( ̄𝑧 = 1 ) → ℎ̄ a 

d ̄𝑤 b 
d ̄𝑥 

. (A.9)

If ℎ̄ a → 0 , the displacements of the lower surface of the host beam

nd those of the upper surface of the bonded plate are equal. This case

an be called ‘perfect bonding’. 

ppendix B. Roots of the characteristic equation of Eq. (42) 

The characteristic equation of Eq. (42) can be expressed by 

𝜂6 − 𝛼1 𝜂
4 + 𝛼2 𝜂

2 − 𝛼3 
)
𝜂3 = 0 . (B.1)

Thus, 𝜂 = 0 or the expression in the parentheses is zero, i.e., 

3 + 3 𝛽1 𝜁 − 2 𝛽2 = 0 , (B.2)

here 𝜁 = 𝜂2 − 𝛼1 /3 and 

1 = 

3 𝛼2 − 𝛼1 
2 

9 
, 𝛽2 = 

2 𝛼1 3 − 9 𝛼1 𝛼2 + 27 𝛼3 
54 

. (B.3)

For typical material and geometry parameters, the discriminant

= 𝛽1 
3 + 𝛽2 

2 > 0, and thus Eq. (B.2) has one real root and two non-real

omplex conjugate roots: 

1 = 𝛽3 , 𝜁2 , 3 = − 

1 
𝛽3 ± 

√
3 
𝛽4 i , (B.4)
2 2 

ig. C.1. For layered structures at different scales (represented by h a / l ), variation

imensionless adhesive modulus E a / E b for different values of h a / h b : (a) h a / h b = 0.0

 / h b = 100, 𝜈a = 0.4 and E p / E b = 10. The dashed lines correspond to the approx

pproximate solutions for h a / l → +∞ refer to the classical solution of Long et al. [29

14 
here i = 

√
−1 and 

3 , 4 = 

3 
√ 

𝛽2 + 

√
Δ ± 

3 
√ 

𝛽2 − 

√
Δ. (B.5) 

Generally, we have 𝛼1 /3 + 𝛽3 > 0. Then, Eq. (B.1) has two nonzero

eal roots, two pairs of conjugate complex roots and three zero roots: 

1 , 2 = ± 

√ 

𝛼1 
3 

+ 𝛽3 , 𝜂3 , 4 = 𝛾1 ± 𝛾2 i , 𝜂5 , 6 = − 𝛾1 ± 𝛾2 i , 𝜂7 , 8 , 9 = 0 , (B.6)

here 𝛽5 and 𝛽6 are positive parameters defined as 

1 , 2 = 

√ √ √ √ √ 

1 
2 

⎡ ⎢ ⎢ ⎣ 
√ ( 

𝛼1 
3 

− 

𝛽3 
2 

) 2 
+ 

3 𝛽4 2 

4 
± 

( 
𝛼1 
3 

− 

𝛽3 
2 

) ⎤ ⎥ ⎥ ⎦ . (B.7)

ppendix C. An approximate solution for small thickness ratios of

dhesive layer to adherends 

Based on the complete shear strain expression in Eq. (10a) , a rigorous

nalysis is presented in the main text. If we ignore the term 𝜕 w a / 𝜕 x in

q. (10a) , we can obtain an approximate solution following the analysis

n Sections 2.2 and 2.3 . As a result, the adhesive displacement �̄� a is still

xpressed by Eq. (18a) while �̄� a is given by 

̄ ∗ a = C 5 cosh 
(
�̄� ̄𝑧 
)
+ C 6 sinh 

(
�̄� ̄𝑧 
)
+ C 7 ̄𝑧 + C 8 . (C.1)

The integration constants C i ( i = 1–8) can be expressed by Eqs. (19),

nd Eqs. (A.1), (A.2), (A.3a), (A.3d), (A.3g) and (A.4) are still valid.

owever, the coefficients a ij ( i = 5–8, j = 3, 4 ) should be replaced by

 

∗ 
53 = 

(
cosh ̄𝐵 − 1 

)
2 𝐾 2 

(
1 + 2 ̄ℎ a 

)
+ 

(
�̄� − sinh ̄𝐵 

)
�̄� 𝐾 2 

ℎ̄ a , (C.2a)

 

∗ 
54 = 

(
cosh ̄𝐵 − 1 

)
2 𝐾 2 

ℎ̄ p − 

(
�̄� − sinh ̄𝐵 

)
�̄� 𝐾 2 

ℎ̄ a , (C.2b)

 

∗ 
63 = − 

sinh �̄� 
2 𝐾 2 

(
1 + 2 ̄ℎ a 

)
+ 

(
cosh ̄𝐵 − 1 

)
�̄� 𝐾 2 

ℎ̄ a , (C.2c)

 

∗ 
64 = − 

sinh �̄� 
2 𝐾 2 

ℎ̄ p − 

(
cosh ̄𝐵 − 1 

)
�̄� 𝐾 2 

ℎ̄ a , (C.2d)

 

∗ 
73 = 

�̄� sinh �̄� 
2 𝐾 2 

− 

(
cosh ̄𝐵 − 1 

)
𝐾 2 

ℎ̄ a , (C.2e)

 

∗ 
74 = 

�̄� sinh �̄� 
2 𝐾 

ℎ̄ p + 

(
cosh ̄𝐵 − 1 

)
𝐾 

ℎ̄ a , (C.2f)

2 2 

s of the normalized midspan deflection of the host beam w M / w M0 with the 

1, (b) h a / h b = 0.1 and (c) h a / h b = 1.0. For all curves, h p / h b = 0.1, L p / L = 0.5, 

imate solution while the solid lines correspond to the rigorous solution. The 

] . 
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∗ 
83 = − 

1 
2 
− 𝑎 ∗ 53 , 𝑎 

∗ 
84 = − 𝑎 ∗ 53 . (C.2g)

Interfacial tractions are still expressed by Eqs. (20), but 𝜉1 = 𝑎 ∗ 73 and

2 = 𝑎 ∗ 74 . 

From Eqs. (A.3) and (C.2), we can find that 𝑎 ∗ 
𝑖𝑗 
− 𝑎 𝑖𝑗 = O( ̄ℎ a ) . Then,

e can know that �̄� ∗ a − �̄� a = O( ̄ℎ a ) from Eqs. (18b) and (C.1). Thus, the

ifference between the rigorous solution and the approximate solution

s approximately on the order of ℎ̄ a . If h a ≪ h b , h p , we can neglect the

erm 𝜕 w a / 𝜕 x in Eq. (10a) . However, the adhesive layer thickness can

e comparable to the adherend thickness in some micro devices such

s flexible electronics [ 10 , 26 ]. The comparisons between the global dis-

lacements of the two solutions are presented in Fig. C.1 . With the in-

rease of h a / h b , h a / l and E a / E b , the approximate solution deviates more

ignificantly from the rigorous solution. 

eferences 

[1] Ramalho LDC , Campilho R , Belinha J , da Silva LFM . Static strength prediction of

adhesive joints: a review. Int J Adhes Adhes 2020;96:102451 . 

[2] Xu Y , Wang S-K , Yao P , Wang Y , Chen D . An air-plasma enhanced low-temperature

wafer bonding method using high-concentration water glass adhesive layer. Appl

Surf Sci 2020;500:144007 . 

[3] Han L , Wang XD , Sun Y . The effect of bonding layer properties on the dy-

namic behaviour of surface-bonded piezoelectric sensors. Int J Solids Struct

2008;45(21):5599–612 . 

[4] Na WS , Baek J . A review of the piezoelectric electromechanical impedance

based structural health monitoring technique for engineering structures. Sensors

2018;18(5):1307 . 

[5] Jin C , Wang X . Analytical modelling of the electromechanical behaviour of sur-

face-bonded piezoelectric actuators including the adhesive layer. Eng Fract Mech

2011;78(13):2547–62 . 

[6] Ji B , Xie Z , Hong W , Jiang C , Guo Z , Wang L , et al. Stretchable Parylene-C electrodes

enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive.

J Materiomics 2020;6(2):330–8 . 

[7] Liu P , Liu J , Zhu X , Wu C , Liu Y , Pan W , et al. A highly adhesive flexible strain sensor

based on ultra-violet adhesive filled by graphene and carbon black for wearable

monitoring. Compos Sci Technol 2019;182:107771 . 

[8] Bleiker SJ , Visser Taklo MM , Lietaer N , Vogl A , Bakke T , Niklaus F . Cost-efficient

wafer-level capping for mems and imaging sensors by adhesive wafer bonding. Mi-

cromachines 2016;7(10):192 . 

[9] Ha S , Chang F-K . Adhesive interface layer effects in PZT-induced Lamb wave prop-

agation. Smart Mater Struct 2010;19(2):025006 . 

10] Kim D-H , Kim Y-S , Wu J , Liu Z , Song J , Kim H-S , et al. Ultrathin silicon circuits with

strain-isolation layers and mesh layouts for high-performance electronics on fabric,

vinyl, leather, and paper. Adv Mater 2009;21(36):3703–7 . 

11] Huesgen T , Lenk G , Albrecht B , Vulto P , Lemke T , Woias P . Optimization and char-

acterization of wafer-level adhesive bonding with patterned dry-film photoresist for

3D MEMS integration. Sens Actuator A-Phys 2010;162(1):137–44 . 

12] Ji G , Ouyang Z , Li G , Ibekwe S , Pang S-S . Effects of adhesive thickness on

global and local Mode-I interfacial fracture of bonded joints. Int J Solids Struct

2010;47(18-19):2445–58 . 

13] Li J , Liang L , Liu X , Ma H , Song J , Wei Y . Experimental studies on strengthening and

failure mechanism for the metal/silicone rubber/metal bonding system. Int J Appl

Mech 2018;10(3):1850029 . 

14] Campilho R , Moura DC , Banea MD , da Silva LFM . Adhesive thickness effects

of a ductile adhesive by optical measurement techniques. Int J Adhes Adhes

2015;57:125–32 . 

15] Marzi S , Biel A , Stigh U . On experimental methods to investigate the effect of layer

thickness on the fracture behavior of adhesively bonded joints. Int J Adhes Adhes

2011;31(8):840–50 . 

16] Yang S , Xu W , Liang L , Wang T , Wei Y . An experimental study on the dependence of

the strength of adhesively bonded joints with thickness and mechanical properties

of the adhesives. J Adhes Sci Technol 2014;28(11):1055–71 . 

17] Dagdeviren C , Yang BD , Su Y , Tran PL , Joe P , Anderson E , et al. Conformal piezoelec-

tric energy harvesting and storage from motions of the heart, lung, and diaphragm.

Proc Natl Acad Sci U S A 2014;111(5):1927–32 . 

18] Wang Y , Qiu Y , Ameri SK , Jang H , Dai Z , Huang Y , et al. Low-cost, 𝜇m-thick, tape-free

electronic tattoo sensors with minimized motion and sweat artifacts. NPJ Flex Elec-

tron 2018;2:6 . 

19] Park S-I , Ahn J-H , Feng X , Wang S , Huang Y , Rogers JA . Theoretical and experimen-

tal studies of bending of inorganic electronic materials on plastic substrates. Adv

Funct Mater 2008;18(18):2673–84 . 

20] Bleiker SJ , Dubois V , Schröder S , Stemme G , Niklaus F . Adhesive wafer bonding with

ultra-thin intermediate polymer layers. Sens Actuator A-Phys 2017;260:16–23 . 

21] Fleck NA , Muller GM , Ashby MF , Hutchinson JW . Strain gradient plasticity: theory

and experiment. Acta Metall Mater 1994;42(2):475–87 . 

22] Liu D , He Y , Dunstan DJ , Zhang B , Gan Z , Hu P , et al. Toward a further understanding

of size effects in the torsion of thin metal wires: an experimental and theoretical

assessment. Int J Plast 2013;41:30–52 . 

23] McFarland AW , Colton JS . Role of material microstructure in plate stiffness with

relevance to microcantilever sensors. J Micromech Microeng 2005;15(5):1060–7 . 
15 
24] Lam DCC , Yang F , Chong ACM , Wang J , Tong P . Experiments and theory in strain

gradient elasticity. J Mech Phys Solids 2003;51(8):1477–508 . 

25] Chong ACM , Lam DCC . Strain gradient plasticity effect in indentation hardness of

polymers. J Mater Res 1999;14(10):4103–10 . 

26] Li S , Liu X , Li R , Su Y . Shear deformation dominates in the soft adhesive layers

of the laminated structure of flexible electronics. Int J Solids Struct 2017:305–14

;110-111: . 

27] Crawley EF , de Luis J . Use of piezoelectric actuators as elements of intelligent struc-

tures. AIAA J 1987;25(10):1373–85 . 

28] Goland M , Reissner E . The stresses in cemented joints. J Appl Mech 1944;66:17–27 .

29] Long H , Wei Y , Liang L . A rigorous analytical solution of interfacial stresses and

overall stiffness of beam structures bonded with partially covered plates. Int J Mech

Sci 2020;167:105284 . 

30] Jiang ZQ , Huang Y , Chandra A . Thermal stresses in layered electronic assemblies. J

Electron Packag 1997;119:127–32 . 

31] Toupin R . Elastic materials with couple-stresses. Arch Ration Mech Anal

1962;11:385–414 . 

32] Mindlin RD , Tiersten HF . Effects of couple-stresses in linear elasticity. Arch Ration

Mech Anal 1962;11(1):415–48 . 

33] Yang F , Chong ACM , Lam DCC , Tong P . Couple stress based strain gradient theory

for elasticity. Int J Solids Struct 2002;39(10):2731–43 . 

34] Altan BS , Aifantis EC . On some aspects in the special theory of gradient elasticity. J

Mech Behav Mater 1997;8(3):231–82 . 

35] Mindlin RD . Micro-structure in linear elasticity. Arch Ration Mech Anal

1964;16(1):51–78 . 

36] Zhou S , Li A , Wang B . A reformulation of constitutive relations in the strain gradient

elasticity theory for isotropic materials. Int J Solids Struct 2016;80:28–37 . 

37] Yang W , He D , Chen W . A size-dependent zigzag model for composite lami-

nated micro beams based on a modified couple stress theory. Compos Struct

2017;179:646–54 . 

38] Sidhardh S , Ray MC . Exact solution for size-dependent elastic response in lami-

nated beams considering generalized first strain gradient elasticity. Compos Struct

2018;204:31–42 . 

39] Khaje khabaz M , Eftekhari SA , Hashemian M , Toghraie D . Optimal vibration control

of multi-layer micro-beams actuated by piezoelectric layer based on modified couple

stress and surface stress elasticity theories. Physica A 2020;546:123998 . 

40] Nikpourian A , Ghazavi MR , Azizi S . Size-dependent nonlinear behavior of a piezo-

electrically actuated capacitive bistable microstructure. Int J Non-Linear Mech

2019;114:49–61 . 

41] Fu G , Zhou S , Qi L . The size-dependent static bending of a partially covered lami-

nated microbeam. Int J Mech Sci 2019;152:411–19 . 

42] Ascione F . Adhesive lap-joints: a micro-scale numerical investigation. Mech Res

Commun 2010;37(2):169–72 . 

43] Agrawal BN , Treanor KE . Shape control of a beam using piezoelectric actuators.

Smart Mater Struct 1999;8(6):729–39 . 

44] Wei Y , Hutchinson JW . Steady-state crack growth and work of fracture for solids

characterized by strain gradient plasticity. J Mech Phys Solids 1997;45(8):1253–73 .

45] Song J , Liu J , Ma H , Liang L , Wei Y . Determinations of both length scale and surface

elastic parameters for fcc metals. C R Mecanique 2014;342(5):315–25 . 

46] Wei Y . A new finite element method for strain gradient theories and applications to

fracture analyses. Eur J Mech A-Solids 2006;25(6):897–913 . 

47] Fleck NA , Hutchinson JW . Strain gradient plasticity. Adv Appl Mech

1997;33:295–361 . 

48] Andersson T , Stigh U . The stress–elongation relation for an adhesive layer loaded in

peel using equilibrium of energetic forces. Int J Solids Struct 2004;41(2):413–34 . 

49] Ojalvo IU , Eidinoff HL . Bond thickness effects upon stresses in single-lap adhesive

joints. AIAA J 1978;16(3):204–11 . 

50] Ma H , Wei Y , Song J , Liang L . Mechanical behavior and size effect of the staggered

bio-structure materials. Mech Mater 2018;126:47–56 . 

51] Teng JG , Zhang JW , Smith ST . Interfacial stresses in reinforced concrete

beams bonded with a soffit plate: a finite element study. Constr Build Mater

2002;16(1):1–14 . 

52] Smith ST , Teng JG . Interfacial stresses in plated beams. Eng Struct

2001;23(7):857–71 . 

53] Niiranen J , Khakalo S , Balobanov V , Niemi AH . Variational formulation and isoge-

ometric analysis for fourth-order boundary value problems of gradient-elastic bar

and plane strain/stress problems. Comput Meth Appl Mech Eng 2016;308:182–211 .

54] Niiranen J , Balobanov V , Kiendl J , Hosseini SB . Variational formulations, model

comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam

models. Math Mech Solids 2019;24(1):312–35 . 

55] Liu Z , Huang Y , Yin Z , Bennati S , Valvo PS . A general solution for the two-dimen-

sional stress analysis of balanced and unbalanced adhesively bonded joints. Int J

Adhes Adhes 2014;54:112–23 . 

56] Luo QT , Tong LY . Exact static solutions to piezoelectric smart beams including

peel stresses. II. Numerical results, comparison and discussion. Int J Solids Struct

2002;39(18):4697–722 . 

57] Su Y , Li S , Li R , Dagdeviren C . Splitting of neutral mechanical plane of con-

formal, multilayer piezoelectric mechanical energy harvester. Appl Phys Lett

2015;107(4):041905 . 

58] Song J , Fan C , Ma H , Wei Y . Hierarchical structure observation and nanoindentation

size effect characterization for a limnetic shell. Acta Mech Sin 2015;31(3):364–72 . 

59] Hein VL , Erdogan F . Stress singularities in a two-material wedge. Int J Fract Mech

1971;7:317–30 . 

60] Kong S , Zhou S , Nie Z , Wang K . Static and dynamic analysis of micro beams based

on strain gradient elasticity theory. Int J Eng Sci 2009;47(4):487–98 . 

http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0001
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0001
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0001
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0001
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0001
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0002
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0002
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0002
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0002
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0002
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0002
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0003
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0003
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0003
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0003
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0004
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0004
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0004
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0006
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0006
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0006
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0006
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0006
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0006
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0006
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0006
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0009
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0009
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0009
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0016
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0016
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0016
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0016
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0016
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0016
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0023
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0023
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0023
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0025
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0025
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0025
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0027
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0027
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0027
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0028
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0028
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0028
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0029
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0029
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0029
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0029
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0030
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0030
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0030
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0030
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0031
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0031
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0032
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0032
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0032
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0033
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0033
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0033
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0033
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0033
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0034
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0034
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0034
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0035
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0035
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0037
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0037
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0037
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0037
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0038
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0038
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0038
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0040
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0040
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0040
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0040
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0041
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0041
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0041
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0041
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0042
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0042
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0043
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0043
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0043
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0044
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0044
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0044
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0046
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0046
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0047
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0047
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0047
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0048
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0048
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0048
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0049
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0049
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0049
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0050
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0050
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0050
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0050
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0050
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0051
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0051
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0051
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0051
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0052
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0052
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0052
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0053
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0053
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0053
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0053
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0053
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0054
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0054
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0054
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0054
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0054
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0056
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0056
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0056
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0058
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0058
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0058
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0058
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0058
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00083-7/sbref0060

	A size-dependent model for predicting the mechanical behaviors of adhesively bonded layered structures based on strain gradient elasticity
	1 Introduction
	2 Analytical formulation of the size-dependent model
	2.1 Problem statement
	2.2 Governing equations
	2.2.1 A brief review of the simplified strain gradient theory
	2.2.2 Governing equations of the adhesive displacements and the interfacial tractions
	2.2.3 Governing equations of the adherend displacements

	2.3 Solutions to displacements and interface tractions
	2.3.1 Balanced case
	2.3.2 Unbalanced case


	3 Results and discussions
	3.1 Results of adhesively bonded layered structures at different scales
	3.1.1 Distributions of interfacial tractions
	3.1.2 Midspan deflection of the host beam

	3.2 Results of layered structures with micro-scale adhesive layers
	3.2.1 Distributions of interfacial tractions
	3.2.2 Midspan deflection of the host beam


	4 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Expressions of the coefficients in Eqs. (19)
	A.1 The general case
	A.2 Two limit cases

	Appendix B Roots of the characteristic equation of Eq. (42)
	Appendix C An approximate solution for small thickness ratios of adhesive layer to adherends
	References


