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ABSTRACT
The dynamic response of a 5 MW floating wind turbine is examined using the coupled finite element
simulations, and the dynamic effects of the catenary is considered, while the coupling between
flexible components are included. The restoring performance of the mooring-line is analysed based on
the vector equations and numerical simulations. The stiffness hysteresis and the influence of the
catenary dynamics on the restoring performance are studied. Then the structural responses
undergoing wind and wave loads, are examined. Our results show that the mooring-line tension
significantly rise due to catenary dynamics, and the snap tension gets around three times larger. The
mooring-line stiffness presents a hysteresis character, owing to the fluid/structural damping, which
becomes more obvious with the increase of motion frequency/amplitude. Moreover, the structural
response gets smaller principally because of the hysteresis effect. The spar displacement and the
tower root stress become respectively 18.4% and 32.7% smaller.
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1 Introduction

Given the benefits of deep sea wind resources, e.g. steadier wind
field, higher wind speed and smaller noise to residents, the
wind energy industry is increasingly developed towards deeper
ocean area (Wang et al. 2016). More floating wind turbines,
including spar, tension-legged, semi-submerged (Rajeswari
and Nallayarasu 2020), are considered to operate in ocean
area, the floating turbines should be moored through its moor-
ing system to prevent large offset motion from their initial pos-
ition. Different from the onshore case, the offshore wind
turbine suffers environmental loads coming from both the
wind and ocean wave/current. Moreover, for a large-sized
wind turbine, the dynamic coupling between its flexible parts,
such as the blades, tower, and mooring-lines, becomes signifi-
cant owing to larger structural flexibility and dynamics. There-
fore, it’s more challenging to analyse the dynamic response of a
large-sized floating wind turbine under actions of wind and
ocean wave/current (Fazeres-Ferradosa et al. 2020).

The quasi-static method is one of the popular methods
originally used in many research studies (Jonkman 2007;
Robertson and Jonkman 2011; Karimirad and Moan 2012;
Park et al. 2016) about dynamic response, where the restoring
force resulting from static displacement is applied on top-end.
Or the mooring system is simplified as a non-linear spring, and
restoring force is mainly induced by the structural weight of
mooring-line. Robertson and Jonkman (2011) used a non-lin-
ear spring to model the mooring-line and studied the stability

and external loads of wind turbines with different mooring-
line systems. Karimirad et al. (2012) employed an empirical
expression of the restoring stiffness based on the experiments.
Then the authors built a FEM (finite element method) model
of a spar wind turbine and studied its response under environ-
mental loads. Based on the popularly used FAST (Fatigue,
Aerodynamics, Structures, and Turbulence) code (Jonkman
and Buhl 2007; Browning et al. 2012) where the mooring-
line restoring force is calculated through the quasi-static
method. Matha et al. (2010) comprehensively studied the natu-
ral frequency and response of a TLP (tension leg platform)
wind turbine under consideration of the dynamic behaviours.
He found that the structural stress may increase, by around
20%, in harsh sea conditions. Using the quasi-static method
to model the restoring force of the catenary, Barooni and
Ashuri (2018) developed the coupled method of floating
wind turbine and programmed the integrated codes to analyse
response under wind and wave loads, and Giusti et al. (2017)
studied the main influence parameters of dynamic response
and the coupling effect between different degrees of freedom
of floating platform of wind energy. Actually, in the quasi-sta-
tic method, the force resulting from the mooring-line motion
and its interaction with the ambient fluid are neglected there.
That is to say, the structural dynamics, e.g. the inertia and
damping effects along with the fluid load acting on the moor-
ing-line are not considered. By applying quasi-static restoring
force, Rajeswari and Nallayarasu (2020) investigated the
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dynamic response of 3-column and 4-column semi-submers-
ible floaters supporting a wind turbine in regular and random
waves.

However, as the mooring-line length increases with the
increase of water depth, its dynamic effect becomes more
obvious (Waris et al., 2012; Sethuraman and Venugopal
2013). Some research studies (Masciola et al. 2013; Hall
and Goupee 2015a; Hall et al. 2015b) indicate that if using
quasi-static restoring force, the response of wind turbine
may be overestimated. Then the lumped-mass model was
developed, where the inertial effect is considered (Palm
et al. 2011; Matha et al. 2011). Masciola et al. (2013) studied
the impacts of mooring-line inertia and hydrodynamic force
on the top tension and rigid body displacement of the semi-
submersible wind turbine. He pointed out that the mooring-
line dynamics has little effect on the float sway/heave
motions, but would induce a significant increase of the top
tension; Hall and Goupee (2015a) analysed the tension of
the mooring-line under different loads, and he found that
quasi-static theory may underestimate the restoring force,
and the fatigue load becomes about 30% lower (Hall et al.
2015b). Matha et al. (2011) studied the response of wind tur-
bine with the mooring-line dynamics under consideration
and the results showed that the hydrodynamic forces of
mooring-line have obvious influence on the body displace-
ment. Kallesoe et al. (2011) pointed out that the load level
of structure fatigue may drop, and Azcona et al. (2017)
found that the mooring line tension and the tower base
loads will significantly change if the dynamic behaviour of
the mooring-line is involved. Using a mass-spring model to
simulate the mooring lines, Tanaka et al. (2020) studied
the dynamic response of a 2-MW spar-type FOWT at the
time of typhoon attack in actual sea area.

As the size of floating wind turbines gets larger, the moor-
ing-line dynamics and coupling effect between flexible bodies
become more significant. In this study, a fully coupled wind
turbine model, which includes flexible blades, tower, floating
spar and catenary mooring-lines, is established to consider
the impacts of catenary dynamics on global response of a
large-sized floating wind turbine. Particularly, the dynamic
effect of the catenary mooring-lines and its hysteresis restoring
performance are presented. The impacts of mooring-line
dynamics on the response of the integrated system under
wind and wave conditions are studied. Firstly in Section 2,
an approach, including the vector equations of 3D curved
flexible beam and the FEM numerical simulation, is developed.
Then, the hysteresis character of the restoring stiffness and the
influences of the catenary dynamics on its restoring perform-
ance are presented in Section 3.1. Finally, the dynamic
responses of the integrated system, e.g. the structural displace-
ment and stress of the spar, top tower and the blade, under-
going wind and wave loads, are systematically examined in
Section 3.2 and 3.3. Section 4 is our conclusion.

2 The basic equations and FEM numerical
simulation models

Previously, two analysis approaches of floating wind turbine,
i.e. the multi-body model and multi-degree of freedom

model, were used, and the global structures are somewhat
simplified into limited degrees of freedom or rigid bodies.
To study the response of a spar wind turbine with catenary
mooring-lines, the nacelle and rotor were simplified as
lumped masses, and then Jeon et al. (2013) examined the
change of mooring-line tension with respect to the length
and connection position of the mooring-line. Stewart
(2012) studied the dynamics of a floating wind turbine
atop a tension-leg platform with the modified FAST model.
Christiansen et al. (2013a) showed the influence of wind
speed and wave frequencies on the platform motion, where
the wind load was simplified to horizontal concentration
force acting at the tower top. In these research studies, to
simplify the wind turbine system during dynamic response
analysis, the bodies, such as the blade and tower, are princi-
pally regarded as either a lumped-mass or a multi-degree-of-
freedom body instead of a flexible body. Here, to include the
catenary dynamics, along with the coupling between the
flexible bodies of large-sized floating wind turbine, an inte-
grated approach, based on FEM simulations, will be
developed.

2.1 Spar type wind turbine

Here the OC3-Hywind spar wind turbine (Jonkman et al. 2009;
Jonkman 2010) is taken as the examined example, the NREL 5-
MW wind turbine is mounted on a 120 metres draft spar plat-
form moored by catenary mooring-lines, as shown in Figure 1
(a,b). The parameters of the wind turbine system are shown in
Table 1.

2.2 Dynamic equations and FEM model of catenary

2.2.1 3D vector expression of a dynamic catenary
Here, the dynamic governing equations, based on the 3D
curved flexible beam approach, are applied to consider the
non-linear geometry and structural/fluid dynamics of the
catenary. In Figure 2, for a 3D catenary, the bottom touch-
ing angle w can be a certain value (in classically static theory,
only zero angle was considered). Although the dynamic
equations include some non-linear terms that may introduce
difficulty in solving dynamic response, they are more reason-
able to describing a moving catenary (Sagrilo et al. 2002;
Karimirad 2013; Kim et al. 2013; Shin et al. 2013). The gov-
erning equations of catenary dynamics can be written by the
way of vectors as follows (Chen et al. 2001)

T′ + q = rAr̈ (1)

Q′ + r′ × T+m = 0 (2)

where r is the position vector of the catenary which depends
on the arc length s and time t, as shown in Figure 1. ρ is the
catenary mass per unit length and A is the cross-sectional
area. T and Q are the total force and moment acted on
the catenary, respectively, m are the distributed force and
moment. Here, q includes not only the structural gravity
ρAg but also the hydrodynamic load f, or q = ρAg + f, differ-
ently from the static case where only the structural gravity
ρAg is included. The hydrodynamic force acting on the
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catenary mooring-line is calculated according to the Morison
equation as

f = 1
2
CDrD|V− u̇|(V− u̇)+ CA

pD2

4
r(V̇− ü)

+ pD2

4
rV̇ (3)

where D is the diameter and u is the displacement of the
catenary. V is the velocity of the amid fluid.

Then the bending moment can be given by the following
curvature

Q = r′ × (EIr′′)+Hr′ (4)

where EI is the bending stiffness and H is the torsion moment.
In fact, the rotation moment is small enough, and both H and
m can be neglected, substituting Equations (4) into (2), we

have:

T = −(EIr′′)′ + lr′ (5)

Substituting Equation (5) into (1) yields

−(EIr′′)′′ + (lr′)′ + q = rAr̈ (6)

The equation of strain is

r′ · r′ = (1+ 1)2 (7)

where ε = TL/EA is the catenary strain, and TL is the location
tension of the catenary. If the value of the bending moment
in Eq.(6) is zero, we will have the governing equation of a
flexible catenary of which the loads include not only the static
structural gravity but also the dynamic fluid load as follows:

(lr′)′ + q = rAr̈ (8)

Combing Equations (7) and (6) or (8), we have the non-linear

Figure 1. Schematic of the integrated wind turbine system (This figure is available in colour online.).

Table 1. Main parameters of the wind turbine system.

Parameters Value Parameters Value

Tower height above water 87.6 m Mooring-line
length

800.0 m

Material density of tower 8500.0 kg/m3 Rotor diameter 126.0 m
Depth to spar base below
water

120.0 m Blade length 61.5 m

Spar total mass 7466330.0 kg Hub diameter 3.0 m
Equivalent mooring-line
weight in water

698.1 N/m Rated wind
speed

11.4 m/s

Depth to anchors below
water

420.0 m Blade mass 17740.0 kg

Horizontal projection
mooring system

706.0 m Figure 2. The schematic diagram of a dynamic catenary (This figure is available in
colour online.).
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governing equations of the dynamic catenary. Since the gov-
erning equations could not be directly solved, they will be
numerically solved by employing finite element simulations.

2.2.2 FEM model of dynamic catenary
Two-node Euler beam element is used as the basic element
of the catenary, which is able to provide tension stiffness
and also available to bear transverse force caused by ambi-
ent fluid during dynamic response. The catenary is uni-
formly divided so that the laterally distributed load of the
ambient fluid, consisting of the hydrodynamic inertia and
drag terms, can be conveniently acted on the beam
elements. For representativeness and simplicity, we con-
sider only three DOFs (degrees of freedom), i.e. two trans-
lation displacements in x-y plane, ui and vi (i = 1,2,… ,N
+1), plus one rotation angle around z axis, θi, of per
node. The dynamic equation of the catenary can be written
as follows:

(MC + �MC)ÜC + CCU̇C + KCUC = FC (9)

where MC is the mass matrix and �MC is the added mass
matrix. CC is the structure damping matrix. KC is the stiff-
ness matrix. UC and FC are, respectively, the displacement
and external force vectors. Owing to the large flexibility
of the moving catenary, the value of its rotation and trans-
lation displacement may be large too. To model this situ-
ation, the constrain of rotational DOFs of two connecting
beam element is not included in our numerical simulation.
Subsequently, due to this additional rotation DOF of con-
nection grid, the displacement vector of each catenary
element will have more DOFs (Guo et al. 2017) as follows.

UCi= [ui, vi,wi,ui,ui+1, vi+1,wi+1,ui+1]
T i=1,N

U′
Ci= [ui, vi,wi,ui,u′i,ui+1, vi+1,wi+1,ui+1,u′i+1]

T i=2, ··· ,N−1

(10)

Comparing Equation (11) with the previous one, i.e.

UCi = [ui, vi, wi, ui, ui+1, vi+1, wi+1, ui+1]
T

i = 1, N
(11)

it is seen that there are two additional DOFs, i.e. u′i and
u′i+1, which could introduce in-determinacy of the govern-
ing equations. In that case, additional constrains are
required to solve out the dynamic responses. Here, the
special initial condition, i.e. a pre-stressed top tension cal-
culated according to the static method along with the stati-
cally equilibrium configuration, is employed to meet the
deterministic condition of the solution. More specifically,
under the original static shape and still status, the catenary
is balanced according to statics, or the structural tensions
and gravity can keep the catenary body statically deter-
mined. And, the two adjacent beams have the same angle
at the connection nodes. If the catenary dynamically
moves under the wave load, the system is governed by
both static and dynamic terms, as shown in Equations (1)
and (2). Then the additional dynamics can carry on the
additional rational DOF, and we can get the dynamic
response of the catenary.

2.3 Coupled FEM model of integrated wind turbines

Regarding the slender bodies, i.e. the blades’ tower and spar,
every single body is divided into several beam elements.
Regarding the body forces, e.g. the centrifugal force coming
from the blade rotation and structural gravity of large-sized
bodies, the axial DOF of the beam element is also included.
The beam element is shown in Figure 3, and its displacement
vector is

Ue= [u1j,u2j,u3j,u1j,u2j,u3j,u1j+1,u2j+1,u3j+1,u1j+1,u2j+1,u3j+1]

(12)

where the direction 1 is along the beam axle, and directions 2
and 3 are lateral. j is the node number. For simplicity of repre-
sentativeness, the displacement vector can be rewritten as
involving two parts, i.e. the axial and lateral parts, as follows.

U1
e = [u1j,u1j+1],U

2
e = [u2j,u3j,u2j+1,u3j+1] andU

3
e

= [u3j,u2j,u3j+1,u2j+1] (13)

Then the stiffness matrices corresponding to respectively the
axial and lateral displacements are

K1
e =

�le
0

�
Ae
BT
1 EeB1dAedxe M1

e =
�le
0

�
Ae
NT

1 reN1dAedxe

K2,3
e =�le

0

�
Ae
BT
2,3EeB2,3dAedxe M2,3

e = �le
0

�
Ae
NT

2,3reN2,3dAedxe

(14)

where le, xe and Ae are the beam element length, axial location
and cross section area, respectively. The strain matrix
Bi(x)=dNi(xe)/dxe. The displacement functions are

N1(xe)= [1−xe/le,xe/le]N2,3(xe)= [1−3j2

+2j3, le(j−2j2+j3), 3j2−2j3, le(j
3−j2)]

where ξ = xe/le. Based on the above element matrices, i.e. the
stiffness matrix Ke and mass matrix Me in Eq. (14), the
whole structural matrices can be obtained through the transfer
matrix Tn as follows

K=∑
Nsys

TT
e KeTe M=∑

Nsys

TT
e MeTe (15)

where

j k
Tn= [0] ··· [I] · ·· [I] ·· · [0]

[ ] (16)

Figure 3. The beam element in the local coordinate system (This figure is avail-
able in colour online.).
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Here [I] is a unit matric with 12 dimensions (6 DOFs per node
times 2 nodes of every single beam element), and Tn is 12 ×
Nsys where Nsys is the number of the system’s DOFs.

Actually, the DOFs of the integrated system consist of three
components, i.e. the displacement vector UB including the
blade and nacelle displacements, the displacement vector US

including the spar and tower displacements, and UM is the dis-
placement of the mooring system. Now, the coupled equations
of the integrated system can be written as follows:

MBB MBS 0
MSB MSS MSM

0 MMS MMM

⎡
⎣

⎤
⎦ ÜB

ÜS

ÜM

⎡
⎣

⎤
⎦

+
CBB CBS 0
CSB CSS CSM

0 CMS CMM

⎡
⎣

⎤
⎦ U̇B

U̇S

U̇M

⎡
⎣

⎤
⎦

+
KBB KBS 0
KSB KSS KSM

0 KMS KMM

⎡
⎣

⎤
⎦ UB

US

UM

⎡
⎣

⎤
⎦

=
FB
FS
FM

⎡
⎣

⎤
⎦ (17)

where Mij, Cij and Kij (i, j = B, S, M) are, respectively the mass
matrix, damping matrix and stiffness matrix of different com-
ponents. It is worth noting that the non-diagonal terms of the
matrices actually indicate the non-linear dynamic coupling
between the wind turbine components, which were mostly
neglected if the uncoupled approach is used.

It is also noted that, on the boundary of two adjacent com-
ponents, the boundary nodes, e.g. connecting blade root and
tower top, essentially belong to both components, which actu-
ally have at the same position. So the displacement vectors UB

and US have the same DOFs of the boundary node, and it is
required to use the coincident node. In other words, similarly
with the process of assembling elements as a whole structure,
the value of the corresponding item in the assembling matrix is
the sum of the two components. In order to avoid matrix
singularity in response calculation, the multipoint constraints
are used to connect the bodies with large difference of the stiff-
ness value in the developed FEM model.

At last, super-element is used for the mooring-line part for
better efficiency of computation process. Given the non-linear-
ity of the catenary, the values of the beam element length and
the time step during dynamic response should be small enough
to obtain an acceptable numerical accuracy. On the other
hand, this may introduce an expensive computation cost in
terms of calculation time and computer resources. Therefore,
super-element is used for every single catenary of the mooring
system.

Generally speaking, each catenary is processed indepen-
dently resulting in a set of matrices that are reduced to a
boundary and describe the behaviour of the catenary, as seen
by the rest of the wind turbine. The reduced boundary
matrices for the individual super-elements are combined to
form the assembly matrices which are referred to as the
residual matrices. The residual matrices are solved for calculat-
ing displacements. The residual solution is then imposed on

the boundary of each super-element so that the data recovery
for the boundary can be combined with the data recovery for
the body loads on the super-element. For example, the stiffness
matrix of a catenary can be rewritten as

Kbb Kbo

Kob Koo

[ ]
Ub

Uo

[ ]
= Pb

Po

[ ]
(18)

where Ub and Uo are, respectively, the boundary and interior
displacements. Then the reduced matrix equation is

K∗
bb 0

K∗
ob I

[ ]
Ub

Uo

[ ]
= P∗

b
P∗
o

[ ]
(19)

where

K∗
bb = Kbb − KboK−1

oo Kob, P∗
b = Pb − KboK−1

oo Po

K∗
ob = K−1

oo Kob, P∗
o = K−1

oo Po
(20)

It should be pointed out that the process from Equations
(18)–(19) is done by using the Gaussian-Jordan elimination
method rather than a matrix manipulation. Data recovery
for each super-element is performed by expanding the solution
at the attachment points, using the same transformation that
was used to perform the original reduction on the super-
element. As we get the boundary displacement vector Ub, we
can obtain the displacement vector of the interior nodes by
the second formula of Equation (19) as

Uo = P∗
o − K∗

obUb (21)

The right side term of Equation (17) is the load term which can
be categorised into the three parts, the first part FB is the force
acting on the blades and tower, which includes the wind force
and centrifugal force induced by the rotating blade. The
second part FS is the load acting on the spar mainly coming
from the ocean wave. The third part FM includes the hydro-
dynamic force acting on the mooring-line. The gravity force
is also included in all the three parts. Here, all the loads, i.e.
the wind and wave force, the inertia and damping force and
dynamic restoring force of the mooring system are included
in the dynamic equation of the wind turbine system. To
solve the non-linear equation, the Newmark method is used.

2.4 The random wind and wave loads

The randomwind and wave loads are considered here, in order
to generate the time history of the random wind, the mostly
used Kaimal spectrum (Hansen 2013) is chosen here to calcu-
late the time history approximation of wind speed and the con-
sequent wind load. The wind speed spectrum is

PSD(f ) = I2V10minl

(1+ 1.5
fl

V10min
)
5/3 (22)

where I is the turbulence intensity. V10 min is the average wind
speed in ten minutes at the given point. l is the scalar taking
value. It is assumed that the wind load uniformly acts on
every blade, and the value of wind speed is the same with
that at the hub height. For simplicity, an approximate wind
thrust force is computed for the complete swept area of the
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blades following the method of Christiansen et al. (2013b)

Fthrust = 1
2
CTrairAbV

2
rel (23)

where ρair is the density of air, and Ab is the swept area of the
blades. CT is the thrust coefficient, and Vrel is the amplitude of
the velocity of the wind relative to that hub.

As for the random wave loads, we use the JONSWAP spec-
trum (Li et al. 2018), an empirical relationship that defines the
distribution of the wave energy, to generate the time history of
the ocean wave speed. The equation of the JONSWAP spec-
trum is

S(v) = ag2

v5
exp −b

v4
p

v4

[ ]
ga (24)

where

a = exp − (v− vp)
2

2v2
ps

2

[ ]
s = 0.07 v ≤ vp

0.09 v ≥ vp

{
b = 1.25

And α is a constant, ω is the wave frequency and ωp is the peak
wave frequency, g is the gravity acceleration. Using Equation
(24) we can obtain the time history of the random wave, then
the wave force acting on the spar can be derived. As the spar
is a slender cylindrical structure, where the diffraction regime
is not that significant for the calculation of the wave loads,
the Morison equation is applied to obtain the hydrodynamic
force, and here the added mass and damping coefficients for
the spar are 0.97 and 0.6, respectively (Jonkman 2010).

2.5 Verification of the FEM models and dynamic
characteristics of the integrated wind turbine

As we know, to examine the dynamic response and stability of
a floating system, six rigid body motions are usually con-
sidered. For this spar wind turbine, its motion performance
in surge and sway direction is determined by the restoring
force of the mooring system, while its heave and pitch motions
mainly depend on the inertia property of spar itself. Given the
well-designed stability of its heave motion, only the surge and
pitch responses of the spar are presented in this study to evalu-
ate the performance of the wind turbine system. A multi-
flexible-body FEM model of the integrated wind turbine
including several parts, i.e. the blades, nacelle, tower, spar

and mooring systems, was developed, and the FEM model is
shown in Figure 4(a–c).

To model the elasticity of the flexible bodies, each blade is
divided into 123 beam elements, and the tower is divided into
100 beam elements. As for the catenary mooring-line, special
beam elements, of which the rotation degree is released between
neighbouring ends, are used, and the bending stiffness of special
beam element is ignored. Every single mooring-line is divided
into 400 elements. The Morison equation is used to obtain the
hydrodynamic force of the ambient fluid acting on the moor-
ing-line, in which the drag coefficient is 1.2 (Jonkman 2010).

2.5.1 Comparison of the dynamic mooring-line model
with the experiment
To verify our dynamic mooring-line model, the top tensions
and displacements of a catenary under top-end surge and
heave motions are calculated and compared to the experiment
(Barrera et al. 2019). The schematic of the catenary is shown in
Figure 5(a), and its main parameters are given in Table 2 (Bar-
rera et al. 2019). Here three cases are considered, i.e. in surge
case, the top-end is moving amplitude is 75 mmwith 1.58s and
3.16s period. In heave case, the top-end moves with heave
75 mm amplitude and 2.21s period.

The top tension and displacement are compared to the
experiments in Figure 5. Figure 5(b,c) show that there is an
acceptable agreement with the numerical and experimental
results, though the time history of top tension has a certain
phase difference. For the surge case, the predicted minimum
tension is almost the same with the experiment, and the differ-
ence of the maximum tension is about 5.1%, i.e. 8.73N of cal-
culated value compared to 8.29N of experiment. For heave
case, as shown in Figure 5(c), the numerical top tension is
slightly higher, by about 3%, than the experimental value,
both the maximum and minimum values. The value compari-
sons of the catenary tensions are listed in Table 3, the differ-
ences between numerical and experimental results can be
estimated by the following equation

Es = Tnum − Texp

Texp
× 100% (25)

whereEs represents the difference,Tnum is the calculated tension
and Texp is the experimentally measured tension. It can be seen
that the differences are less than 5.1%, or our numerical model
can give good prediction of dynamic catenary response.

Figure 4. FEM model of the integrated wind turbine system (This figure is available in colour online.).

6 S. GUO ET AL.



The vertical displacements of the two markers, i.e. respect-
ively located at 1.0 m (Marker 1) and 1.2 m (Marker 2) from
the top-end point (Carlos et al, 2019), are shown in Figure 5(d,
e). It can be seen that the numerical results agree well with the
experimental one, e.g. the difference is less than 4.9% (0.586 m
of calculated value compared to 0.616 m of experiment).

2.5.2 Global dynamic characteristics of integrated wind
turbine
Based on the developed coupled FEM model of the inte-
grated floating wind turbine, the global dynamic character-
istics along with response could be given. Here the
dynamic characteristics of the integrated system are

Figure 5. Schematic of the catenary and response comparisons (This figure is available in colour online.).

Table 2. Parameters of the catenary.

Parameter Value Parameter Value

Total length 7.305 m Mass in air 0.162 kg/m
Initial horizontal projection 6.97 m Equivalent diameter 0.0052 m
Initial vertical projection 1.2 m Elastic modulus 77.2 GPa

Table 3. Comparison of the catenary tension.

Cases Tension Numerical/N Experimental/N Error/%

Surge Maximum 8.29 8.73 5.1
Minimum 4.52 4.51 0.2

Heave Maximum 6.85 6.66 2.8
Minimum 5.23 5.08 2.9
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calculated, and they are compared with the published result
(Karimirad 2013) to verify our FEM model, see Table 4 and
Figure 6. Table 4 gives the period comparison of our results
to the other (Karimirad 2013), it can be seen that the pre-
dicted value agrees well with the published one, and the
difference is less than 5%.

Figure 6 shows that, in addition to the rigid-body modes
[see Figure 6(a,b)], the coupled FEM model is able to give
more elastic modes, such as Figure 6(c,d). It is noted that the
periods of certain modes of the integrated wind turbine, e.g.
the first three bending modes of the mooring-line and the
first bending mode of the blade or tower, fall in the range of
the wave periods. That may introduce a larger-amplitude
response at higher frequencies, which could influence the
structure fatigue life and should be paid attention during
dynamic response analysis.

3. Non-linear restoring performance of mooring-
line and structural response of the wind turbine

The regularwave (Shinet al. 2013) and the randomwind together
with the irregular wave (Karimirad 2013; Cheng et al. 2017) load
cases are summarised inTable 5.Here, the initial condition is that
all bodies are still originally. To examine the impact of catenary
dynamics on the structural response, the response of the inte-
grated system with quasi-static restoring force is also calculated.

3.1. Restoring performance of the catenary with its
dynamic effects under consideration

The dynamic tension and the non-linear restoring stiffness will
be discussed, and compared with the quasi-static cases, to
examine the impacts of the catenary dynamics.

3.1.1 The dynamic restoring tension
The top tension response of Line 1 in time domain (see Figure 1
(b)) is presented in Figure 7. It is seen that the dynamic tension is
slightly larger than the quasi-static one, and the difference is not
obvious if the surge amplitude/frequency is smaller, e.g. 2 m
amplitude and 20s period, as shown in Figure 7(a). But the
dynamic tension gets larger than the quasi-static value with
the increase of the amplitude/frequency of the top-end motion.
For example, at 3 m amplitude and 10s period in Figure 7(b), the
tension amplitude is 1.5 times larger than the quasi-static value.

Moreover, the tension gap (between peak and trough) gets 4
times larger than the quasi-static value. That increase of

Table 4. Natural frequencies of the wind turbine Unit: rad/s

Wind Turbine Modes
Predicted
Value

(Karimirad
2013)

Difference
/%

Surge 0.0524 0.05 4.46
Sway 0.0524 0.05 4.46
Pitch 0.224 0.221 1.75
Roll 0.227 0.221 2.81
Mooring-lines first bending 0.3707 / /
Mooring-lines second
bending

0.7036 / /

Mooring-lines third
bending

1.0686 / /

Tower first bending 2.7558 / /
Blade first bending 4.5863 / /

Figure 6. Selected global modes of the integrated wind turbine (This figure is available in colour online.).
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catenary tension may significantly influence the structural
strength and fatigue life. It is particularly noteworthy that
slack-taut phenomenon, which may cause snap tension of
the catenary, occurs if the catenary dynamics is considered.
In Figure 7(c), at 10s period and 6 m amplitude of surge
motion, there is an abrupt drop of the tension down to a mini-
mum value, i.e. close to zero. And the top tension amplitude is
about 3 times of the quasi-static one due to the catenary
dynamics. The maximum top tension and tension gap at
different amplitudes/frequencies of the top-end are given in
Figure 8. It shows that the values of the maximum top tension
(and the tension gap) get larger, e.g. up to 3.5 times of the static
value particularly for the case of snap, with the increase of the
amplitude and/or frequency of the top end motion.

3.1.2 The non-linear restoring stiffness and its hysteretic
character
As presented above, the mooring-line dynamics could intro-
duce an increase of top tension and tension amplitude differ-
ence. In fact, because of the involvement of dynamic
behaviours, i.e. the inertial and damping effects, the restoring

stiffness may also change. Thus, the restoring stiffness will be
examined here, which is calculated under different top spar
amplitudes, i.e. A varies from 3 to 7 m, along with different
periods, i.e. T = 10, 20 and 40s. The selected results are pre-
sented in Figure 9.

Figure 9(a) shows the restoring stiffness curve of the whole
mooring-lines system (involving lines 1, 2 and 3), at 20s
period and 3.5 m amplitude, and also the static curve as a
comparison. Interestingly, it is noted [in Figure 9(a,c)] that
due to the damping effects coming from the structural bodies

Table 5. The wave parameters of the load cases

Load
Case

Average wind speed
/m·s-1

Wave Period/
s

Significant Wave Height/
m

Case 1 0 10 3
Case 2 11.4 10 3

Figure 7. Time history of catenary top tension at different amplitudes and periods of spar surge (This figure is available in colour online.).

Figure 8. Top tension responses of the catenary mooring-line under different
conditions (This figure is available in colour online.).
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Figure 9. Restoring characteristics of the whole mooring-line system (This figure is available in colour online.).

Figure 10. Surge and pitch response of the spar under regular wave (This figure is available in colour online.).
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and the fluid dynamics of the mooring-line, the restoring
stiffness curve shapes approximately as an ellipse loop, called
hysteresis loop. And, we can see that the restoring force
depends on not only the spar displacement but also the
spar velocity, or it does not get its maximum value at the
maximum displacement but at a smaller displacement that
provides a smaller dynamic stiffness, this is quite different
from the static case. The spectrum plot, shown in Figure 9
(b), indicates that the peak values at frequencies of odd
times of the excitation frequency are much larger than others.
And, the loop area of the stiffness curve (or the energy con-
sumption during a period) gets larger as the amplitude (and/
or the frequency) increases. In other words, the hysteresis

effect of the dynamic stiffness gets more obvious as the ampli-
tude and/or frequency increase, as shown in Figure 9(c,d).

Given the profound damping effect coming from the
dynamics of themooring-line, wemay say the dynamic response
of the wind turbine will get smaller under the consideration of
mooring-line dynamic behaviour, which will be presented and
discussed in the following, i.e. in Section 3.2 and 3.3.

3.2. Dynamic response of the wind turbine under
regular waves

Here the regular excitation frequencies are considered: the
wave frequency is 0.1 Hz. To evaluate the influence of

Figure 11. Displacement response of the wind turbine structures (This figure is available in colour online.).
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mooring-line dynamics on wind turbine response, the
response under quasi-static restoring force is also calculated
as a comparison.

The surge responses are compared in Figure 10(a,b). Slight
difference is seen in Figure 10(a), except that the maximum
surge displacement during the transient phase is about 11.4%
smaller than the static. It means that the catenary dynamics
has just a little influence on the global response. It is also
noted that larger displacement happens during the transient
phase and it gets much smaller during the steady phase. How-
ever, if considering the phase diagram shown in Figure 10(c),
it can be seen that the motion amplitudes and motion trajec-
tories of the spar are somewhat different from the quasi-static.
As for the pitch motion shown in Figure 10(d), the displacement
is almost the same with the quasi-static values, in both transient
and steady phases. This is principally due to the spar stability
property. In other words, the mooring system performs to pro-
vide the restoring stiffness to only the translational motion
(surge, sway and heave), to a spar type of floating body. And
the mooring system has little restoring control on its rotational
motions such as roll and pitch, because the restoring force to
control pitch or roll motions is mainly provided by hydrostatic
buoyancy and spar structural gravity.

We may say that at the regular wave frequency excitation,
the impact of mooring-line dynamics on the surge

displacement is not obvious. The influence of the mooring-
line dynamics on the dynamic response of the wind turbine
structures will be discussed in the later sections in detail.

3.3. Dynamic responses under random wind and wave
loads

The cases of irregular waves are listed in Table 5, and the
JONSWAP wave spectrum is used to get the time history
of the wave velocity, and the wind velocity is calculated
according to the Kaimal spectrum. Then the dynamic
response of the integrated wind turbine is examined during
3600s time duration, while the phases of the wind and
wave are considered as the same and the incident wave direc-
tion is along with the x axis (or the same with the surge
direction of the floating spar).

The displacements and their spectrum, of the floating spar
and the tower top, are presented in Figure 11. We found that
the hysteretic character of mooring system restoring perform-
ance may lead to a decrease in the structural response, or the
displacement peaks, for cases of dynamic and hysteresis beha-
viours being involved, are slightly smaller than the quasi-static
ones. Besides the large value at 0 Hz, which is principally
caused by the average wind velocity, the displacement is
mainly dominated by the rigid body motion, i.e. the surge

Figure 12. Structural stresses of the wind turbine (This figure is available in colour online.).
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and pitch at 0.0083 and 0.0357 Hz frequency, respectively,
while it involves some higher frequency component of elastic
bending modes, e.g. 0.43 Hz/0.72 Hz of tower/blade first
bending.

The structural stress and its spectrum, of the tower root and
the blade root, are presented in Figure 12. It shows an obvious
difference between the dynamic and the quasi-static ones, par-
ticularly at higher frequency. And, differently from the case of
displacement response, the structural stress is mainly domi-
nated by higher elastic frequency rather than the lower rigid
body frequency, e.g. the higher values at 0.43 and 0.72 Hz of
respectively the tower and blade bending frequencies. In
addition, there are some additional peaks in the spectrum
plot, see Figure 12(b,d), because the modes of the integrated
wind turbine present some additional modes of the flexible
bodies, e.g. those of the tower, blade and the mooring system.
Or, our integrated FEM model can give the higher-order
response of the wind turbine system under wind and wave
loads, which is crucial to the fatigue life of the structure.

More specifically, the comparisons of the dynamic and
quasi-static cases are presented in Figure 13. Generally speak-
ing, under consideration of the dynamic behaviours and hys-
teretic characters of the mooring-lines, the value of spar
displacement at surge frequency is 18.4%, i.e. 1.24 m compared
to 1.52 m, smaller than the quasi-static one; and values of the

stress components are up to 32.7% smaller, i.e. 7.99 MPa com-
pared to 11.77 MPa, than the quasi-static ones.

4 Conclusions

The structural dynamic responses of a large-sized floating wind
turbine, undergoing wind and wave loads, are examined by the
coupled FEM approach, and the flexible components, such as
blades, tower, and mooring-lines, are included in the integrated
system. To consider the catenary dynamics, the 3D flexible caten-
ary model is combined with the modified FEMmodel. The caten-
ary dynamics of the mooring-lines and its restoring performance
are presented. And the impacts of mooring-line dynamics on the
response of the integrated system under environmental loads are
presented based on our numerical simulations. It is found that,
owing to the fluid and structural damping, the dynamic stiffness
presents a hysteresis loop, and the hysteretic behaviour becomes
more obvious with the increase of frequency and amplitude. Our
numerical results show:

(1). The maximum top tension of the catenary becomes larger
due to the mooring-line dynamics. The top tension sig-
nificantly increases with the increase of the spar motion,
and particularly, the snap tension is 3 times larger than
the quasi-static value.

Figure 13. The structural responses under conditions of quasi-static and dynamic restoring forces (This figure is available in colour online.).
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(2). The restoring stiffness of the mooring-line presents a hys-
teresis loop due to its dynamics, and the loop area gets lar-
ger with the increase of body frequency/amplitude.

(3). Our coupled FEM model is able to give the higher-order
response of the integrated wind turbine system under
wind and wave loads, which is crucial to the fatigue life
of the structure.

(4). The structural response gets smaller principally because of
the hysteresis effect coming from the mooring-line
dynamics. For example, the spar displacement at surge
frequency is 18.4% smaller; the tower root stress at bend-
ing frequency is 32.7% smaller than the quasi-static value.

The dynamic response analysis of large-sized floating wind
turbine under actions of wind and ocean wave/current is still a
challenging issue. We hope that the presented FEM model can
be further used as one of the useful approaches to analyse
dynamic response and coupling mechanism between flexible
components of wind turbines and other similar offshore
structures.
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