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a b s t r a c t 

Reconstruction of turbulent flow based on data assimilation methods is of significant importance for 

improving the estimation of flow characteristics by incorporating limited observations. Existing works 

mainly focus on using only one observation data source, e.g., velocity, wall pressure, lift or drag force, to 

reconstruct the flow. In practical applications observations are disparate data sources that often vary in 

dimension and quality. Simultaneously incorporating these disparate data is worth investigation to im- 

prove the flow reconstruction. In this work, we investigate the disparate data assimilation with ensem- 

ble methods to enhance the reconstruction of turbulent mean flows. Specifically, a regularized ensemble 

Kalman method is employed to incorporate the observation of velocity and different sources of wall quan- 

tities (e.g., wall shear stress, wall pressure distribution, lift and drag force). Three numerical examples are 

used to demonstrate the capability of the proposed framework for assimilating disparate observation data. 

The first two cases, i.e., a one-dimensional planar channel flow and a two-dimensional transitional flow 

over plate, are used to incorporate both the sparse velocity and wall friction. In the third case of the flow 

over periodic hills, the wall pressure distribution and the lift and drag force are regarded as observation 

in addition to velocity, to recover the flow fields. The results demonstrate the merits of incorporating 

various disparate data sources to improve the accuracy of the flow-field estimation. The ensemble-based 

method can assimilate disparate data non-intrusively and robustly without requiring significant changes 

to the model simulation codes. The method demonstrated here opens up possibilities for assimilating 

realistic experimental data, which are often disparate. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Turbulent flow reconstruction 

Estimation of turbulent flow field is an important yet chal- 

enging subject for both academic and industrial investigations. 

omputational fluid dynamics (CFD) simulations and experimen- 

al measurements are primary approaches to estimate the states 

f turbulent flows. However, CFD simulations have to balance 

he trade-off between computational cost and predictive accuracy. 

or example, the low fidelity methods such as Reynolds-averaged 

avier-Stokes (RANS) simulation can provide fast but inaccurate 

rediction, while high fidelity simulations such as large eddy simu- 

ations and direct numerical simulations can make satisfactory pre- 

ictions but at prohibitive computational costs [1,2] . On the other 
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and, the experimental measurements face the challenges of lim- 

ted view domain, measurement noises, and insufficient resolu- 

ion [3,4] . Due to these limitations, it is appealing to combining 

omputational models and experimental measurements of various 

echniques for reconstructing turbulent flows. 

Reconstruction of turbulent flows essentially involves the mini- 

ization of the discrepancy between model prediction and obser- 

ation data. The objective function J can be written as 

 = ‖ y − H[ x ] ‖ , (1) 

here x is the state (e.g., model parameters), y is the measurement 

ata, H[ x ] can be surrogate models (e.g., linear regression model or 

eural network) or physics-based models (e.g., RANS model), and 

 · ‖ indicates a norm in a Hilbert space. The experimental data y

s often sparse, only providing limited information of the flow field. 

n the other hand, the model can predict the flow field in the full 

omputational domain but likely with large discrepancies. The re- 

onstruction of turbulent flow aims to complement the low fidelity 

odel with experimental data. Specifically, based on the experi- 

https://doi.org/10.1016/j.compfluid.2021.104962
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104962&domain=pdf
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ental data, we can infer optimal state x or model operator H by 

inimizing the cost function (1) . Further, we can reconstruct the 

ow in the entire computational domain with the inferred state x 

r operator H. Different strategies have been explored for recon- 

tructing turbulent flows from data, including sparse representa- 

ion [5] , machine learning [6] , and data assimilation [2] . 

The sparse representation method assumes that a dynamic flow 

volution can be represented based on a reduced-order model such 

s proper orthogonal decomposition (POD) by promoting the spar- 

ity. Specifically, the computational model H[ x ] is reformulated 

s a linear combination of basis functions �, e.g., H[ x ] = �� ω ,

here � is POD modes and ω is the mode coefficients. This 

ethod needs to build a library of modes and infers optimal mode 

oefficients ω by reducing the data misfit and enforcing sparsity 

onstraint simultaneously. The merits of the sparse representation 

ethod have been demonstrated for the reconstruction of some 

anonical flows, e.g., the vortex shedding in cylinder wakes and the 

ixing layer at low Reynolds numbers [5] . However, the method 

equests a large library that must contain a sufficiently extensive 

ollection of example flow fields, and it is still not clear how to 

uild the suitable library for various types of flows. 

Machine learning techniques have developed rapidly in the past 

ew years and are also increasingly used to address challenges in 

uid mechanics, including flow reconstruction [7–9] . Several ma- 

hine learning techniques have been used in reconstructing tur- 

ulent flows, e.g., random forest [10] , neural networks [7] , and 

parse regression [11] . Here we take neural network-based ma- 

hine learning as an example. The neural network can be con- 

idered as a surrogate model H[ x ] , where x is the input features.

o be used for the reconstruction of turbulent flows, this method 

rains a model operator/mapping (i.e., H in Eq. (1) ) based on refer- 

nce data by inferring optimal weights of each layer in neutral net- 

ork. The trained model can be further used to map other avail- 

ble low-resolution data to high-resolution data [8,12] . In contrast 

o the sparse representation, the neural network can represent tur- 

ulent flows more flexibly. However, it usually needs a large set of 

ata to train the functional mapping. The high fidelity data is not 

traightforward to acquire, particularly in CFD applications at high 

eynolds numbers. Moreover, the trained model is often very sen- 

itive to data with weak generalization ability of extrapolating to 

ew cases. 

Data assimilation is another data-driven method that combines 

hysical model and limited observation data to reconstruct turbu- 

ent flows. It can be also applied for the reduced-order dynamic 

ystems to improve the computational efficiency [13] , but here we 

ocus on the conventional data assimilation method based on the 

hysical model. In the objective function defined in Eq. (1) , the 

ata assimilation framework regards H[ x ] as the physical model, 

.g., the RANS model, where H represents a composition of the 

odel operator and the observation operator, and x represents the 

ow state that depends on the initial condition and the uncer- 

ain terms in the model, e.g., the Reynolds stress or eddy viscos- 

ty. The flow-field reconstruction is to reduce the discrepancy be- 

ween model prediction H[ x ] and observation data y by inferring 

ptimal x . The cost function in Eq. (1) is often ill-posed, and hence

 background term, e.g., ‖ x − x 0 ‖ P −1 , is added in the cost function

o penalize the departure from the initial condition x 0 in the data 

ssimilation method. The term is weighed by a given covariance 

atrix P to impose the spatial correlation of the solution. In con- 

rast to the sparse representation, data assimilation is more flexi- 

le in representing turbulent flow fields, since it incorporates the 

hysical model instead of the reduced-order model, i.e., the lin- 

ar combination of basis functions. Compared to machine learning, 

ata assimilation can use very limited observation data to recon- 

truct the flows in the entire computational domain and ensure 

he reconstructed flow states conform to physical models. In other 
2 
ords, the data assimilation integrates the physical model and the 

ata so that the physical model can reduce the data requirement 

nd the data can reduce the model uncertainties. For this reason, 

he data assimilation method has emerged as a practical tool for 

ow-field reconstruction. As such, here we review in more detail 

ecently developed data assimilation methods for the flow recon- 

truction. 

.2. Data assimilation for flow reconstruction 

Data assimilation is widely used for state estimation of chaotic 

ystems such as ocean and atmosphere. It can be categorized 

nto adjoint-based methods (e.g., variational data assimilation 

ethod [14] ) and ensemble-based methods (e.g., ensemble Kalman 

ethod [15] and ensemble-based variational method [16] ), de- 

ending on how the cost function is minimized. The adjoint-based 

ethods search for the optimal solution based on the derivative of 

ost function that is estimated through solving an adjoint equa- 

ion. This method enables the recovering of smaller scales than 

hat is possible with the ensemble-based methods using limited 

ample sizes [16] and has been used for flow reconstruction [17–

2] . However, the adjoint method needs intrusive modification of 

he CFD solver, leading to a very time-consuming and laborious 

rocess for development. This makes the non-intrusive methods, 

.g., ensemble-based data assimilation method, very appealing for 

he reconstruction of turbulent flows. 

Ensemble Kalman filtering (EnKF) [23] is a widely used 

nsemble-based data assimilation method, which is developed 

rom Kalman filter [24] . The Kalman filter is a derivative-free data 

ssimilation method, and the gradient information is obtained by 

volving the linearized system dynamics. Nevertheless, the stan- 

ard Kalman filter is computationally prohibitive when used for 

igh-dimensional problems, such as flow-field reconstruction, be- 

ause it needs to propagate and store in time a high-rank error 

ovariance matrix. Hence, it usually requires reduced-order tech- 

iques to make it practical for turbulence problems [25–27] . En- 

emble technique can be regarded as one of the reduced-order 

ethods and has been introduced in the Kalman filter [23] . It 

everages the ensemble realizations to estimate the error covari- 

nce at each iteration, thus avoiding the storage and propagation 

f the full rank error covariance as in the Kalman filter. From this 

oint of view, EnKF inherits the advantage of non-intrusiveness 

rom the Kalman filter and also is feasible to be applied for the 

igh-dimensional problems, e.g., flow reconstruction. A number of 

esearchers have utilized the EnKF and its variants for the recon- 

truction of flow fields. For instance, Colburn et al. [28] used the 

nKF method to estimate the turbulent near-wall flows with only 

kin friction and pressure at the wall. Xiao et al. [29] adopted an 

terative ensemble Kalman method to estimate the entire flow ve- 

ocity field in periodic hills and square duct from sparse velocity 

bservations. Mons et al. [19] investigated various ensemble-based 

ethods, including ensemble Kalman filtering, to assimilate differ- 

nt observations, e.g., the velocity, pressure coefficient, drag and 

ift coefficient. They evaluated the performance of different obser- 

ations for the reconstruction of unsteady viscous flows around a 

ylinder. Zhang et al. [30] applied an ensemble-based data assim- 

lation method to construct the flow over a bump by assimilating 

he observation of the wall friction coefficient. The recent develop- 

ents on this topic can be found in Refs. [31–35] . 

The works mentioned above use either wall measurements or 

parse velocity to reconstruct the flow fields. The wall information 

ould be used to reconstruct the near-wall flow and much more 

onvenient to obtain than PIV measurements. However, they have 

imited effects on the flows away from the wall, likely due to the 

ecaying correlation between the local flow and the wall observa- 

ion with increasing spatial distance [19] . On the other hand, the 
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parse velocity observation away from the wall can provide im- 

roved local estimation around observed locations but may not af- 

ect the near-wall flow. Hence, the use of all these available infor- 

ation sources is a promising method for improving the perfor- 

ance of flow reconstruction. In practice, various disparate data 

ources are available from the experimental measurements with 

ifferent techniques including, among others, 

1. volume data sources (low data sparsity), e.g., the velocity, 

which can be measured with hot-wire anemometry, laser 

doppler velocimetry (LDV), and particle image velocimetry (PIV) 

inside the flow domain [36] , 

2. surface data sources (medium data sparsity), e.g., the pressure 

and wall shear stress distribution along the wall, which can 

be measured with pressure and micro-pillar shear stress sen- 

sors [37] , respectively, and 

3. integral data sources (high data sparsity), e.g., lift and drag 

force measured with force-moment sensor cell [38] , and acous- 

tic noise measured from microphones [39] . 

All the data enumerated above are measurable from experi- 

ents and can be used to improve the accuracy of flow reconstruc- 

ion. These data are often heterogeneous in quality and dimension. 

t would be of significant interest to assimilate these disparate 

ata sources, thereby enhancing the reconstruction of turbulent 

ows. Recently, He and Liu [40] used the adjoint-based method 

o assimilate both the velocity and wall pressure. They combined 

he POD technique and linear stochastic estimator (LSE) to correct 

he velocity measurements based on the pressure signal as a pre- 

rocessing, and then they applied the adjoint-based data assimila- 

ion method to reconstruct the flow by assimilating the corrected 

elocity field. They showed that the mean velocity, wall pressure 

oefficient, and the normal Reynolds stress could be significantly 

mproved by considering the data of velocity and wall pressure. 

owever, the sensitivity to the choice of the modes and the ab- 

ence of the small-scale fluctuations after the LSE process need 

o be addressed to further improve the accuracy of the wall pres- 

ures. The ensemble-based data assimilation method is able to as- 

imilate disparate data without the specific pre-processing and in- 

rusive code modifications due to its non-derivative nature. Hence, 

he ensemble method warrants further investigations in CFD appli- 

ations. 

.3. Proposed approach and contributions of present work 

A regularized ensemble Kalman filtering (REnKF) method was 

roposed by Zhang et al. [41] to incorporate general regularization 

erms during the data assimilation process. This method makes 

nly minor modifications to the standard ensemble Kalman filter, 

eading to a derivative-free method that is able to enforce regular- 

zations. Hence, it incorporates the regularizations in the inference 

ithout requiring the derivation of adjoint equations. This method 

an also be used for assimilating disparate data sources to improve 

he flow reconstruction. It is achieved by regarding the discrepancy 

f model predictions with some data sources as regularizations. For 

nstance, the sparse velocity data are assimilated as observation, 

nd the wall quantities are used as the regularization. 

The present work aims to enhance the reconstruction of tur- 

ulent mean flow by assimilating disparate data sources with the 

EnKF method [41] . Different types of data sources are incorpo- 

ated in this work, including velocity, wall friction coefficient, wall 

ressure distribution, and lift and drag force. In contrast to the 

djoint-based method, the REnKF method is able to incorporate 

isparate data non-intrusively because of its derivative-free na- 

ure. Admittedly, the standard EnKF can also be used to assimi- 

ate multiple data sources by embedding all the available data in 

he observation, but it requires to compute the augmented Kalman 
3 
ain matrix involving an inverse of a large matrix, which may re- 

ult in high computational costs. The REnKF method can avoid the 

omputation of the augmented Kalman gain matrix by consider- 

ng some data sources the regularization instead of the observa- 

ion, thereby improving the efficiency of the assimilation. In fact, 

e will show in Section 2.2 that the EnKF and REnKF are equiv- 

lent in the context of disparate data assimilation. The proposed 

isparate data assimilation framework is a useful and convenient 

ool to combine CFD simulations and multiple experimental data 

ources for the reconstruction of turbulent flow fields. 

The rest of the paper is structured as follows. Section 2 presents 

he data assimilation framework used for disparate data assimila- 

ion and algorithm for practical implementation. Section 3 show- 

ases the capability of the proposed data assimilation framework 

o enhance the reconstruction of turbulent flows in three different 

onfigurations. Finally, Section 4 concludes the paper. 

. Methodology 

In this section, we present the framework of the ensemble- 

ased data assimilation method to assimilate disparate data 

ources. The objective in the context of flow reconstruction is to 

educe the data mismatch between CFD predictions and reference 

ata by inferring optimal state x that can be model uncertain pa- 

ameters or ambiguous boundary conditions. We consider two dis- 

arate data sources y 1 (e.g., velocity) and y 2 (e.g., wall shear stress), 

hich are different from each other in dimensionality, physical 

uantity, and measurement quality. To designate the relationship 

etween the state and the observed quantities, we define the ob- 

ervation models of y 1 and y 2 as 

 1 = Hx + ε, 

 2 = Dx + η, (2) 

espectively. The observation errors of data y 1 and y 2 are assumed 

o be uncorrelated with each other. In the equations above, H 

nd D are the observation operator mapping the state x onto the 

bservation spaces where y 1 and y 2 are in, respectively; ε and η
re random observation errors, conforming to a Gaussian distribu- 

ion of ε ∼ N (0 , R ) and η ∼ N (0 , Q ) ; R and Q are the correspond-

ng error covariances. It is noted that multiple data sources can be 

ncorporated in the data assimilation framework, and here we only 

ocus on the scenario of two disparate data sources for simplicity. 

owever, the method can be straightforwardly extended to multi- 

le data sources. 

.1. Conventional EnKF method 

The ensemble Kalman filtering method is a widely used 

nsemble-based data assimilation method, where the optimal state 

an be searched with an explicit analysis scheme. The scheme is 

ormulated as 

 

a 
j = x f j + K (y j − Hx f j ) , (3) 

here the superscript a and f represent the analysis and fore- 

ast, j indicates the sample index, K = PH 

� (HPH 

� + R ) −1 is 

nown as Kalman gain matrix, and P is the model error covariance, 

hich is estimated with ensemble samples X = { x j } M 

j=1 
through 

 = 

1 

M − 1 

(
X − X̄ 

)(
X − X̄ 

)� 
, (4) 

here the sample mean X̄ = 

1 
M 

∑ M 

j=1 x j . When used to assimilate 

he disparate observation data of different physical quantities, the 

bservation is augmented to include both y 1 and y 2 . Specifically, 

e can reformulate the observation model as 

 aug = 

[
y 1 
y 2 

]
= H aug x + εaug , (5) 
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here εaug is subject to a Gaussian process GP (0 , R aug ) with 

 aug = 

[
R 0 

0 Q 

]
, and H aug = 

[
H 

D 

]
. (6) 

ccordingly, the update scheme need to be modified to be 

x a j = x f j + K aug 

(
y ( aug , j) − H aug [ x 

f 
j 
] 
)
, 

 aug = PH 

� 
aug 

(
H aug PH 

� 
aug + R aug 

)−1 
, (7) 

here the subscript j of y is omitted for brevity in the following 

ontext. Note that the Kalman gain matrix K involves the inverse of 

he matrix HPH 

� + R that has the same rank as the dimension of

bservation space. Hence, directly embedding disparate data in the 

bservation may cause a daunting computational burden in case 

f a large volume of data y 2 , e.g., for time-resolved PIV data. An-

ther approach to assimilate different data sources is performing 

ultiple standard EnKF steps to assimilate each data sequentially. 

owever, it is also computationally inefficient since it requires to 

erun simulation after assimilating each disparate data. 

Efficient data assimilation techniques have been investigated in 

nsemble-based methods to reduce computational costs. For in- 

tance, the ensemble transform Kalman filter [42] uses the square 

f ensemble covariance matrix (i.e., the anomaly matrix) to avoid 

he high computational cost. Additionally, the localization tech- 

iques such as domain localization [43] have been employed to 

andle the large data set through performing local Kalman analysis 

ith local observations. These approaches have been extensively 

sed in weather forecasting and in geoscience. In addition, a multi- 

rid ensemble Kalman filter strategy [44] was proposed recently 

o facilitate the efficient data assimilation for unsteady flows. It is 

chieved by using the ensemble of realizations from low resolution 

imulations to generate the Kalman correction and then projecting 

n high-resolution grids to correct the flow state. In this work we 

se a regularized ensemble Kalman filtering method to assimilate 

he disparate data, which is a promising alternative to assimilate 

arge sets of data. 

.2. Regularized EnKF framework 

The regularized ensemble Kalman filtering (REnKF) method is 

roposed to empower the conventional EnKF to incorporate addi- 

ional regularizations or constraints [41] . EnKF can be derived from 

he minimization of an objective function, as discussed in the lit- 

rature [45,46] . Compared to the EnKF, the REnKF is derived in a 

imilar manner, i.e., by minimizing an objective function but with 

 regularization term. The objective function involves an additional 

egularization term G[ x ] as 

rg min 

x 
J = ‖ x a j − x f j ‖ 

2 
P −1 + ‖ y 1 − Hx j ‖ 

2 
R −1 + ‖ G[ x a j ] ‖ 

2 
Q −1 , (8)

here the third term on G[ x j ] is added to represent the regular-

zation in contrast to cost function of EnKF. The added term can be 

onsidered from a Bayesian viewpoint [41] . That is, the posterior 

istribution is conditioned on the two measurements sequentially, 

.e., P (x | y 1 , y 2 ) ∝ P (x ) P (y 1 | x ) P (y 2 | x ) , where P indicates the proba-

ilistic distribution. On the other hand, the regularization term can 

e interpreted as a weak constraint strategy in the classical data 

ssimilation framework. Specifically, the model error is usually im- 

osed in the cost function as the weak constraint to alleviate the 

ll-posedness of the problem [22] . The added regularization term 

n the proposed method can be regarded as the weak constraint to 

enalize the discrepancy from the disparate data y 2 instead of the 

odel error. By minimizing the cost function (8) , an explicit up- 

ate scheme can be formulated as two steps: a pre-correction step 

nd a standard Kalman correction step as 

  

f 
j = x f j − P G ′ [ x f j ] � Q 

−1 G[ x f j ] , (9a) 
4 
 

a 
j = ̃  x f j + K (y j − H ̃ x f j ) . (9b) 

The readers are referred to Ref. [41] for further details. 

To use this method for assimilating disparate data, we formu- 

ate the misfit between model prediction and extra observation 

ata y 2 as the regularization term. That is, 

[ x j ] = Dx j − y 2 . (10) 

he REnKF framework requires the derivative of the regularization 

[ x ] with respect to x . However, direct computation of the deriva- 

ive G ′ [ x ] is not straightforward, which usually requires intrusive 

odifications with adjoint methods. Here we estimate the sensi- 

ivity matrix with the tangent linear operator D as the standard 

nKF [23] . The weight Q is constructed as a diagonal matrix based 

n the disparate data noise. Further, the original pre-correction 

tep (9a) can be formulated as 

 

 

f 
j = x f j − P G ’ 

[
x f j 

]� 
Q 

−1 G 
[
x f j 

]
= x f j − PD 

� Q 

−1 
(
Dx f j − y 2 

)
. (11) 

his method only makes a small modification on the conventional 

nKF to account for additional observations or regularizations, and 

t is very straightforward to implement. 

Although the motivations of EnKF and REnKF are inherently 

ifferent, the connection between them for assimilating disparate 

ata is worthy of further discussions. The conventional EnKF 

ethod consider the disparate data y 2 as same as the data y 1 , 

hile the REnKF method regards y 1 as primary observation and 

he disparate data y 2 as a regularization or a secondary observa- 

ion usually with larger data noise. However, it can be derived that 

he EnKF and REnKF for disparate data assimilation are equivalent 

ith practical implementation. The details of derivation are pre- 

ented in Appendix A . In contrast to the conventional EnKF, REnKF 

an avoid the computation of the large matrix in case of the ad- 

itional data with high dimension, since it only needs to compute 

he inverse of a diagonal matrix Q . This method can be consid- 

red as an alternative method for computationally efficient assimi- 

ation of large data set. Hence in this work, we aim to demonstrate 

he assimilation of disparate data sources with the REnKF method 

o enhance the reconstruction of turbulent mean flows. It is noted 

hat the ensemble Kalman method is also able to be used for dis- 

arate data assimilation. We run the test cases in this paper with 

onventional EnKF, and the results agree with what we obtained 

ith REnKF and are thus omitted for brevity. We provide the com- 

arison between the EnKF and the REnKF in terms of the error of 

he reconstructed fields in Appendix. B. 

.3. Implementation 

Here we show the practical implementation to apply the 

EnKF method for assimilating the disparate data sources. The 

tate augmentation is employed for the joint state and param- 

ter estimation, i.e., x (aug) = [ x , H(x )] . Moreover, the iterative en-

emble Kalman filter [47] recasts the steady state inverse problem 

s artificial dynamic data assimilation problem. That is, x (aug) 
i +1 

= 

 x (aug) 
i 

, H(x (aug) 
i 

)] � , where the linear observation operator is given 

s H = [0 , I ] , and a single update is done at each observation time.

ereafter, the state is taken to the augmented version and thus the 

uperscript “(aug)” is omitted for brevity. 

In this work, we focus on assimilating two disparate data 

ources, but it is noted that the framework can be extended 

o multiple disparate data assimilation by formulating the pre- 

orrection step (9a) as 

  

f 
j = x f j −

n ∑ 

p=1 

P G ′ p [ x f j ] � Q 

−1 G p [ x f j ] , (12)
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here p indicates the index of observation data source. The sam- 

le collapse is a common issue for iterative ensemble Kalman 

ethod [46] , i.e., the samples often converge to the sample mean 

fter a few iterations. This would lead to a very small error co- 

ariance P , and the pre-correction step involving the regularization 

erm is not effective. To avoid the effects of sample collapse and 

eep the regularization term active, we weigh the pre-correction 

erm with the Frobenius norm of P to retain only the direction of 

 . That is, we reformulate the weight matrix as 

 

−1 = 

χ

‖ P ‖ F 

Q̄ 

−1 , (13) 

here χ is constant parameter and Q̄ is normalized such that its 

argest diagonal element is 1. In steady-state scenarios as investi- 

ated in this work, the variance of the samples may be underesti- 

ated due to the repeated use of the data [46] , and consequently 

he norm of error covariance ‖ P ‖ F can become very small. This 

an cause the filter to diverge. To avoid the possibly overlarge reg- 

larization term, the convergence criteria are introduced based on 

he discrepancy principle [48] . Specifically, the convergence criteria 

re set as ‖ Hx − y 1 ‖≥ 2 
√ 

trace (R ) and ‖ Dx − y 2 ‖≥ 2 
√ 

trace (Q ) . 

s with the ensemble Kalman filter, the REnKF method can di- 

erge when applied to high dimensional space and non-Gaussian 

istributions with small ensemble sizes [23] . Additionally, we grad- 

ally enhance the strength of the regularization term to ensure the 

obustness. Specifically, the parameter χ is adjusted dynamically 

ith a ramp-up function as 

= 0 . 5 

(
tanh 

(
i − S 

d 

)
+ 1 

)
, (14) 

here i denotes the iteration step, the parameters S and d control 

he slope of the ramp curve and are chosen as 5 and 2, respec-

ively, in this work. 

Given the disparate data sources y 1 and y 2 with the data error 

ovariance R for y 1 and Q for y 2 and the prior state x 0 with the

rior covariance function K, we can implement the disparate data 

ssimilation framework as follows: 

1. Sampling step : 

Draw initial ensemble samples { x 0 } n 
j=1 

from the Gaussian pro- 

cess GP (x 0 , K) 

2. Prediction step : 

i) For each sample, perform the model prediction in next itera- 

tion x (i −1) → x (i ) 

ii) Compute the sample mean x̄ and the model error covariance 

P as 

X̄ 

(i ) = 

1 

M 

M ∑ 

j=1 

x 
(i ) 
j 

(15a) 

P 

(i ) = 

1 

M − 1 

(
X 

(i ) − X̄ 

(i ) 
)(

X 

(i ) − X̄ 

(i ) 
)� 

. (15b) 

3. Regularization step : 

Perform the regularization step to assimilate the data y 2 and 

obtain the regularized state ˜ x based on 

δ(i ) 
j 

= −P 

(i ) D 

� Q 

−1 (Dx (i ) − y 2 ) (16a) 

˜ x (i ) 
j 

= x 
(i ) 
j 

+ δ(i ) 
j 

. (16b) 

4. Kalman update step : 

Compute the Kalman gain matrix and update the regularized 

state based on 

K 

(i ) = P 

(i ) H 

� (HP 

(i ) H 

� + R ) −1 (17a) 

a , (i ) (i ) (i ) (i ) 

x 

j 
= ̃  x 

j 
+ K (y 1 − H ̃ x 

j 
) . (17b) i

5 
5. Return to step 2 until the ensemble is statistically converged or 

the maximum iteration number is reached. 

The REnKF method is implemented in our software suite DAFI 

or data assimilation and field inversion [49–51] . 

. Test cases 

In this section, we showcase the superiority of the proposed 

isparate data assimilation framework for the reconstruction of 

urbulent flows. Data assimilation involves the physical model de- 

cribing the system state. For the simulation of turbulent flows 

articularly at high Reynolds numbers, the most used physical ap- 

roach is still the RANS method due to its computational efficiency 

nd tractability. Hence, we consider the RANS equation involving 

he turbulent mean flow as the physical model in the data assim- 

lation framework. It is well known that the RANS method is usu- 

lly not confident to predict complex turbulent flows in the pres- 

nce of mean pressure gradient, mainly due to the modeling of clo- 

ure term, i.e., Reynolds stress. Based on the linear eddy viscosity 

odel of Reynolds stress, the RANS equation can be formulated 

s 

∂U i 

∂x i 
= 0 

 j 

∂U i 

∂x j 
= −∂ p ∗

∂x i 
+ 

∂ 

∂x i 

[
( ν + νt ) 

(
∂U i 

∂x j 
+ 

∂U j 

∂x i 

)]
, (18) 

here U is velocity, i, j indicate the spatial direction, x is spa- 

ial coordinate, p ∗ is pressure term, ν is the fluid viscosity, and 

t is the eddy viscosity. The eddy viscosity can be estimated with 

arious turbulence models, e.g., Spalart-Allramas model [52] , k –ε
odel [53] , and k –ω model [54] . However, there is still no uni- 

ersal model that is able to make accurate predictions in all flow 

onditions. For this reason, we consider the uncertainty within the 

ddy viscosity. The turbulent flow fields, e.g., velocity or pressure, 

an be recovered by inferring the optimal eddy viscosity with the 

roposed data assimilation method. 

To represent the uncertainty within the eddy viscosity, we as- 

ume the prior log νt conforms to a Gaussian process as 

og νt ∼ GP ( log ν0 
t , K) . (19) 

here ν0 
t is the prior mean and K is the kernel function. The loga- 

ithm ensures the non-negativity of νt . A Gaussian kernel K is used 

n this work as 

(x, x ′ ) = σ 2 exp 

(
− (x − x ′ ) 2 

l 2 

)
, (20) 

here x and x ′ indicate two different spatial locations, σ repre- 

ents variance, and l is the correlation length scale. With this ker- 

el, we can generate ensemble realizations based on Karhunen- 

oève (KL) expansion [55] to guarantee the smoothness of sam- 

les. Specifically, we build KL modes with φi = 

√ 

λ ˆ φi where λ and 

ˆ are the eigenvalue and eigenvector of K. Further, we truncate 

he modes { φi } n i =1 
to cover more than 99% variance and draw the 

andom coefficients { ω i } n i =1 
from normal distribution N (0 , 1) . With 

he KL modes φ and KL coefficient ω , the eddy viscosity field can 

e constructed based on 

og νt = log ν0 
t + 

n ∑ 

i =1 

φi ω i . (21) 

hus, in this work the coefficients ω are the uncertain model pa- 

ameters used to reconstruct the eddy viscosity field νt ( x ) . Further 

he proposed REnKF framework is used to infer the optimized coef- 

cients ω through incorporating the observation data as illustrated 

n Section 2.3 . 
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Table 1 

Summary of case setups. The dim( y) indicates the number 

of the observed positions for y; u τ is the friction velocity at 

wall; C f represents the friction coefficient along the wall; p w 
is the pressure along the wall; F is the lift and drag force. 

Case Geometry y 1 dim( y 1 ) y 2 dim( y 2 ) 

1 Channel 2 u τ 1 

2 Flat plate U 1 17 C f 10 

3a Periodic hills 10 p w 10 

3b Periodic hills 10 F 1 

s

d

fl

d

b

f
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f
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Fig. 1. Computational setup of channel case. Figure (a) presents the channel domain 

where half of the channel height is H. Figure (b) shows the mesh and boundary 

setup. Only bottom half channel need to be computed because of the symmetry. 
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The near-wall flow is of great importance to account for the 

hear and related local turbulence production as well as the energy 

issipation [56] . However, the near-wall region of wall-bounded 

ows is usually challenging to be measured accurately due to the 

ecreasingly small size of this region at higher Reynolds num- 

er [57] . On the other hand, the near-wall flow is significantly af- 

ected by the wall where the information is measurable with dif- 

erent techniques. For instance, the pressure distribution along the 

all can be measured with wall tapping or static tube [36] , the 

orce can be measured with force balance instrument [36] , and 

all shear stress can be measured with pillar sensors [37] or mi- 

ro PIV [58] . Moreover, the velocity away from the wall is rela- 

ively straightforward to be measured along straight lines with the 

lanar PIV or at sparse locations with the LDV technique. The lo- 

al velocity data can improve the model prediction around the ob- 

erved positions, while the wall measurements are able to enhance 

he reconstruction of near-wall flows. Therefore, it is promising to 

nhance the reconstruction of turbulent mean flows by combining 

hese different disparate data sources with the RANS equation. It is 

ot straightforward to use 3D PIV data for 3D flow reconstructions. 

handramouli et al. [22] recently attempted reconstructing 3D tur- 

ulent flows based on the PIV data on two orthogonal planes with 

 variational data assimilation method. Here we focus on the re- 

onstruction of turbulent mean flows in 2D. 

We use three different cases to show the enhancement of the 

ow reconstruction by assimilating various disparate data sources 

ith the REnKF method. The first case is a fully developed turbu- 

ent flow in 1D channel, where the sparse velocity away from the 

all and the wall friction velocity are given as disparate observa- 

ion data. In the second case, we test on a more challenging case, 

.e., 2D transitional flow over flat plate where the sparse velocity 

way from the wall and friction coefficient along the wall are con- 

idered. In the first two cases, we mainly consider the disparate 

ata of wall friction that is related to the velocity gradient adja- 

ent to the wall. In the third case, we consider disparate data from 

he pressure at the wall. We use the sparse velocity measurements 

nd the pressure distribution along the wall to reconstruct both 

he velocity and pressure fields. Moreover, we incorporate the inte- 

ration of pressure along the bottom wall, i.e., lift and drag forces, 

o improve the flow reconstruction. In all the cases, we provide the 

EnKF results assimilating both sparse velocity and wall informa- 

ion compared to the EnKF results assimilating either wall infor- 

ation or sparse velocity alone. The summary of the case setup is 

hown in Table. 1 . 

In this work, we use OpenFOAM to simulate the incompressible, 

teady-state turbulent flows. The SIMPLE (Semi-Implicit Method for 

ressure Linked Equations) algorithm is used to solve the RANS 

quations. Second-order spatial discretization schemes are applied 

o discretize the equations on an unstructured mesh. The prior 

ean and synthetic truth are both obtained from RANS simula- 

ions using the built-in simpleFOAM solver but with different tur- 

ulence models. We created a modified solver nutFOAM that uses 

 given eddy viscosity field instead of using a turbulence model. 
6 
his modified solver is used as the forward model that propagates 

he specific eddy viscosity field to the velocity and pressure fields. 

.1. Channel flow 

The first case is the turbulent flow in a planar channel, which 

s extensively used for the validation of CFD solvers. The com- 

utational domain is one-dimensional as presented in Fig. 1 . The 

esh is evenly distributed with 90 cells with the dimensionless 

istance y + of the first cell adjacent to the wall around 1. Periodic 

oundary conditions are imposed on the inlet and outlet. A no-slip 

oundary condition is imposed on the bottom wall, and a symme- 

ry condition is imposed on the top boundary. The Reynolds num- 

er based on the friction velocity and half channel height is 180. 

e regard the DNS results [59] as the reference data. The prior 

ean is applied from RANS simulation with k –ω model but using 

 reduced model coefficient C μ = 0 . 45 to have an apparent differ-

nce from DNS in the velocity profile. The number of samples is set 

s 100. Both the length scale l and the variance σ in Eq. (20) are 

et as 0.1. The number of modes used to generate ensemble is 20 

o cover more than 99% of variance. The prior samples of the eddy 

iscosity and the propagated velocity are shown in Fig. 2 . The dis- 

arate data we consider here are the sparse velocity U 1 and fric- 

ion velocity u τ . We place the sparse velocity observation at two 

ifferent locations, one in the buffer layer ( y = 0 . 1 H) and one in

he outer layer ( y = 0 . 8 H) as shown in Fig. 2 . The relative obser-

ation error of the velocity is 10 −3 , and that of friction velocity 

s 0.1. The comparison results of assimilating different observations 

re plotted in Fig. 3 . It is noticeable in Fig. 3 a that EnKF with only

all information can provide the velocity of the near-wall flow in a 

ood agreement with the DNS data, since the friction velocity can 

nform the velocity gradient in the viscous layer ( y + < 5 ). While in

he buffer layer and log layer ( y + > 5 ), the flow velocity cannot be

ecovered accurately and exhibit a relatively large difference likely 

ue to a lack of local information. We also perform a test with 

nly velocity observation, and the results are shown in Fig. 3 b. It 

an be seen that the velocity can only match in the outer region 

here we have local observation but cannot recover the near-wall 

egion. That is likely due to the large spatial distance leading to 

 low correlation between the observation and the near-wall re- 

ion. Finally, when considering both the friction velocity and the 

elocity measurements, we can reconstruct the velocity profile ac- 

urately in the entire domain, as shown in Fig 3 c. The friction ve-

ocity can reconstruct the velocity in the viscous layer, and the two 

parse velocity observations, one in the log layer and one in the 

uter layer, can recover the flow velocity regionally. Clearly, with 

 combination of these two disparate data sources, the best data 

t can be achieved even in the region where we do not provide 

bservation data. The inferred eddy viscosity with different obser- 

ations are shown in Fig. 3 d–f. It can be seen that all the inferred

ddy viscosity in the three cases have a large discrepancy with the 

ruth particularly near the center of channel. That is not surpris- 
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Fig. 2. Plots of the prior samples of eddy viscosity νt and propagated velocity U 1 for channel case. The observed position of sparse velocity y 1 is indicated with crosses ×. 

Fig. 3. Data assimilation results of the streamwise velocity and eddy viscosity by incorporating different observation data for channel case. 

Table 2 

Summary of data assimilation results. The error for Hx and Dx is com- 

puted based on (22) . Hx represents U 1 . Dx indicates u τ in channel 

case, C f in T3A plate case, and p w and F in periodic hill case. 

Geometry Filter Observation Error( Hx ) Error( Dx ) 

Channel EnKF u τ 3 . 27% 6 . 68% 

EnKF U 1 3 . 01% 46 . 9% 

REnKF u τ , U 1 1 . 41% 0 . 93% 

T3A plate EnKF C f 8 . 38% 11 . 2% 

EnKF U 1 7 . 08% 62 . 4% 

REnKF C f , U 1 6 . 33% 50 . 7% 

Periodic hills EnKF p w 9 . 84% 4 . 55% 

EnKF U 1 8 . 37% 15 . 7% 

REnKF p w , U 1 7 . 24% 9 . 26% 

REnKF F , U 1 7 . 34% 10 . 2% 
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Fig. 4. Convergence feature of REnKF in the normed data misfit for channel case. 

The data misfit is normed by the initial misfit to keep the convergence curve in the 

same magnitude. 
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ng since around the center region of the channel, the mean rate 

f strain tensor is very small, and thus the velocity is insensitive to 

he eddy viscosity, making the inference problem ill-posed. Addi- 

ional constraints in the eddy viscosity such as its smoothness can 

e used to regularize the problem and to improve the inference of 

he eddy viscosity. 

For better illustration, the error of quantity q between the 

odel estimate and truth in the entire computational domain is 

efined based on 

rror = 

‖ q truth − q estimate ‖ 

‖ q truth ‖ 

. (22) 

he error in friction velocity and velocity is summarized in Table 2 . 

t can be seen that assimilating both sparse velocity and friction 

elocity can achieve the best data fit in both u τ and U . The evolu-
1 

7 
ion of relative error normalized by the initial error is provided in 

ig. 4 , showing that the assimilation process is very robust. 

.2. Flow over flat plate 

In the second case, we demonstrate how to enforce wall friction 

nformation to improve the reconstruction of turbulent mean flows 

n a 2D flow: the turbulent flow over flat plate, which is a canon- 

cal case for investigations of the by-pass transition problem [60] . 

he inflow turbulence intensity is 0.033. The inlet bulk velocity U b 

s 5.4 m/s. The kinetic viscosity ν is 1 . 5 × 10 −5 m 

2 /s. The viscos-

ty ratio νt /ν is set as 12. The mesh is constructed with 10010 

ells. The computational setup and the close-up view of the mesh 

round the plate are shown in Fig. 5 . The inlet is imposed with

he uniform velocity, and the outlet is applied with zero-gradient 

ondition for velocity. The top boundary is set as the free stream, 
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Fig. 5. Computational setup of flat plate case. Figure (a) presents the by-pass transition process and the computational domain with boundary setup. Figure (b) shows the 

mesh information around the plate. 

Fig. 6. Plots of the prior samples of the eddy viscosity, the propagated velocity, and wall friction coefficient for the flat plate case. The observed position of sparse velocity 

y 1 is indicated with crosses ( ×). 
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nd the plate is solid wall with the no-slip condition. In this case, 

e regard the k –ω model as the baseline. The k –ω SST model with 

e θ –γ transition model [61] is used as a synthetic truth, since this 

odel has been validated to simulate the by-pass transition flow 

ccurately. The length scale l for the streamwise and wall-normal 

irection is chosen as 0.1 and 0.003, respectively, and the standard 

eviation σ is 0.1 in this case. The number of modes used for gen- 

rating the samples is 500 to cover more than 99% of the variance. 

he number of samples is 100. The plot of the initial samples of 

he eddy viscosity and the propagated velocity and friction coeffi- 

ient is provided in Fig. 6 . The 19 observation positions of sparse 

elocity are placed along three straight lines, as shown in Fig. 6 b. 

he relative error of observation y 1 is 0.001. The friction coeffi- 

ient C f along the wall is used as the disparate data y 2 with the

elative error of 0.01. The ten observed positions of the wall fric- 

ion coefficient are evenly distributed along the plate. The friction 

oefficient is defined as 

 f = 

τw 

1 
2 
ρU 

2 
b 

, (23) 

here U b is bulk velocity, and the τw 

is the wall shear stress which 

s defined as 

w 

= μ

(
∂U 1 

∂y 

)
y =0 

. (24) 

e first perform the EnKF with only the observation of wall fric- 

ion coefficient. The results are shown in Fig. 7 a and d. It is notice-

ble that EnKF assimilating only the friction coefficient can recover 

he turbulent flow velocity near the wall but results in the inferior 

ean velocity profile, especially away from the wall. Conversely, 

ssimilating only the sparse velocity can replicate the flow away 

rom the wall but lead to a large discrepancy in the region adjacent 

o the wall as presented in Fig. 7 b and e. Further, we employ the

EnKF method that incorporates both the friction coefficient and 

parse velocity, and the results are shown in Fig. 7 c and f. It is clear

hat the assimilation of both the friction coefficient and the sparse 

elocity can enhance the turbulent flow reconstruction in the ve- 

ocity field, exhibiting a good agreement with reference data in 

oth the friction coefficient and the velocity. The friction coefficient 

s essentially related to the velocity gradient adjacent to the wall. 
8 
s in the channel case, with only the wall friction measurement, it 

an offer good velocity profiles in the viscous layer adjacent to the 

all but not in the outer region, while the sparse velocity obser- 

ation can only improve the local flow estimate. By contrast, the 

econstruction can be enhanced by combining the wall friction ve- 

ocity and the sparse velocity with the REnKF method. The inferred 

ddy viscosity in this case are shown in Fig. 7 g–i. It can be seen

hat the inferred eddy viscosity by assimilating only the friction 

oefficient lead to the largest discrepancy, showing that the data 

ssimilation with only wall measurements are ill-conditioned. The 

ther two cases, i.e., of assimilating only U 1 and assimilating both 

 f and U 1 , provide better results compared to that of assimilating 

 f . 

The discrepancy between the reconstructed quantities (i.e., ve- 

ocity and wall friction coefficient) and the reference is summa- 

ized in Table 2 based on Eq. (22) . It shows clearly that the dis-

arate data assimilation can provide better agreement in U 1 com- 

ared to assimilating only friction coefficient and in both U 1 and 

 f compared to assimilating only sparse velocity. The convergence 

istory in this case is shown in Fig. 8 , which demonstrates that the 

ethod can reduce the misfit of the disparate data simultaneously 

nd robustly. 

.3. Flow over periodic hills 

The above two cases both have zero pressure gradient, and we 

se the wall shear stress related information as disparate data 

o enforce the flow reconstruction. Both the observed quantities 

re associated with the velocity gradient adjacent to the wall. 

or the third case, we incorporate a different data source, i.e., 

ressure along the wall, to reconstruct the pressure and velocity 

elds simultaneously. We choose the turbulent flow over periodic 

ills [62] , which is an internal flow widely used for evaluating tur- 

ulence models [63] and has been extended for a wide range of 

eynolds numbers [64] and different hills geometries [63] . In this 

ase, the Reynolds number based on the bulk velocity U b and crest 

eight H is 5600. The inlet and outlet are imposed as the periodic 

oundary condition. The bottom and top are solid walls with no- 

lip condition. The mesh is constructed with 100 in the stream- 

ise direction, 30 in the normal to wall direction. The computa- 
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Fig. 7. The data assimilation results of streamwise velocity, friction coefficient, and eddy viscosity by incorporating different observation data for T3A plate case 

Fig. 8. Convergence feature of REnKF in the normed data misfit for flat plate case. 

The data misfit is normed by the initial misfit to keep the convergence curve in the 

same magnitude. 
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ional setup is shown in Fig. 9 . In this case we regard the RANS

esults with Spalart-Allmaras model as the baseline. The RANS re- 

ults with k –ε model are used as a synthetic truth to test the pro-

osed framework. The measurement data are taken from the syn- 

hetic truth, while the results from the baseline are referred to as a 
ig. 9. Computational setup of periodic hill case. Figure (a) presents the computational do

9 
rior. The length scale and variance in Eq. (20) is set as 0 . 25 H and

.0, respectively. The number of samples is 100, and the first 300 

odes are used to cover more than 99% variance. The plots of the 

rior realizations are shown in Fig. 10 . The 10 sparse velocity ob- 

ervations are considered as shown in Fig. 10 b. The relative error 

s 0 . 1% . In this case, the disparate data from other physical fields,

.e., the pressure coefficient along the bottom wall, is regarded as 

nother data with a relative error of 1 . 0% to enhance the turbu- 

ent flow reconstruction. The ten observed positions of wall pres- 

ure is evenly distributed along the wall. The results for the pe- 

iodic hill case with different observations are shown in Fig. 11 . 

s a baseline case, we only consider the wall pressure distribution 

ith standard EnKF, and the results are plotted in Fig. 11 a, d, g. It

an be seen that by only assimilating the wall pressure distribu- 

ion, the result of wall pressure is in good agreement with data, 

nd the entire pressure field can be reconstructed very well simul- 

aneously. However, the reconstructed velocity would have a large 

ifference from the reference, as shown in Fig. 11 a. On the other 

and, when only assimilating the sparse velocity, the results show 

hat the reconstructed velocity away from the wall can be well re- 
main where the crest height is H. Figure (b) shows the mesh and boundary setup. 
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Fig. 10. Prior samples of the eddy viscosity and the propagated velocity and wall pressure distribution for periodic hill case. The observed position of sparse velocity y 1 is 

indicated with crosses ( ×). 

Fig. 11. Data assimilation results of velocity, pressure, wall pressure, and eddy viscosity by incorporating different observation data for periodic hill case 

Fig. 12. Contour plots of streamwise velocity with comparison among the truth, prior mean, and posterior mean by assimilating different observation data for periodic hill 

case. 
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F
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b

t

i
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i

F
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n

overed, but the near-wall velocity and the pressure field have rel- 

tively large discrepancy from the reference data, as presented in 

ig. 11 b, e, h. Further, we assimilate both the sparse velocity and 

he wall pressure coefficient simultaneously. The results show that 

oth the pressure and velocity fields are in good agreement with 

he reference data. That is likely because the pressure information 
10 
s able to improve the estimation of the adverse pressure gradi- 

nt, which is beneficial to the velocity reconstruction near the wall 

n this case. The plots of the inferred eddy viscosity are shown in 

ig. 11 j, k and l. The inferred eddy viscosity by assimilating only 

all pressure results in very large discrepancy from truth in rough- 

ess and magnitude. This is the same as the T3A plate case, indi- 
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Fig. 13. Contour plots of pressure with comparison among the truth, prior mean, and posterior mean by assimilating different observation data for periodic hill case. 

Fig. 14. Convergence feature of REnKF in the normed data misfit for periodic hills 

case. The data misfit is normed by the initial misfit to keep the convergence curve 

in the same magnitude. 
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ating that data assimilation with only wall measurement are not 

ell-conditioned. In the cases of assimilating U 1 and assimilating 

oth p w 

and U 1 , the inferred eddy viscosity gets smoother and 

as the smaller magnitudes, compared to the case of assimilating 

nly p w 

. The contour plots of the velocity and pressure field for the 

ase of assimilating both velocity and wall pressure are provided in 

igs. 12 and 13 , respectively. It is observed that the separation bub- 

le size of the posterior mean by assimilating both U and p w 

are 
1 

Fig. 15. Data assimilation results of velocity, pressure and wall pressure by incorp

11 
loser to the synthetic truth compared to the prior mean. However, 

he flow structures of the assimilated results are topologically dif- 

erent from the truth as shown in Fig. 12 . That is likely because of

he ill-posed nature of inferring the full field with limited obser- 

ation. To address this issue, optimal sensor placements are of sig- 

ificant interest for further investigation by placing the sensor in 

he position where the observation data can identify the structure 

f recirculation zone. Moreover, the pressure field is significantly 

mproved by considering the wall pressure as shown in Fig. 13 . 

The convergence plot of the case is provided in Fig. 14 . It can

e seen that the REnKF method can reduce the data misfit of both 

elocity and pressure robustly. The discrepancy of the sparse ve- 

ocity and wall pressure reduce significantly in the first 10 steps. 

t around the fourth iteration step, the data misfit in wall pres- 

ure increase slightly, likely due to that the regularization term is 

egligible and the misfit of velocity is dominant. Afterwards, the 

egularization term is strengthened to be dominant, and the misfit 

f the wall pressure keep decreasing. 

Further, we investigate to use only the integral data, i.e., the 

ntegration of pressure along the wall or lift and drag force, to im- 

rove the reconstruction. The pressure integration is defined as 

 = 

∫ 
p w 

�
 n ds , (25) 
orating sparse velocity and wall pressure integration for periodic hill case. 
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here � n is the unit vector in the normal direction and s is the wall

urface area. The results of REnKF assimilating both sparse velocity 

nd pressure integration are shown in Fig. 15 . It can be seen that

he integral information can also significantly improve the entire 

ressure distribution along the wall. Both the velocity and pressure 

elds are improved, while only some local regions near the hill 

ave noticeable discrepancies from the reference data. 

The error in the reconstructed velocity field and wall pressure 

or this case is summarized in Table 2 , which shows the superiority 

f disparate data assimilation clearly. Moreover, it can be seen that 

he discrepancies are similar between the last two cases where the 

all pressure distribution and the integrated pressure are regarded 

s disparate data. It shows that the integral data, i.e., the lift and 

rag force, and the surface data source, i.e., the wall pressure dis- 

ribution, can achieve similar performance of flow reconstruction. 

n this specific case, what affects the flow reconstruction seems not 

he disparity of data but the position of the data. From this view- 

oint, the sensor placements are substantially important for the 

ata assimilation in the applications of flow reconstruction. How- 

ver, from another viewpoint, in different regions different types of 

ensors are usually used to provide the disparate observation data 

aving different physical quantities. For instance, pressure sensors 

re placed at the wall to measure the pressure fluctuations; LDV or 

ot wires are usually used to measure the velocity within the flow 

eld; microphones are often deployed at the far-field to measure 

he noise. Hence, here we demonstrate that using these disparate 

ata which are often obtained from different sensors can enhance 

he flow reconstruction. The optimal placement of these sensors is 

f significant interest for future investigations. 

. Conclusion 

Reconstruction of turbulent flow based on data assimilation 

ethods is of significant interest to improve flow-field estimation 

rom limited observations. Various disparate data sources such as 

elocity, wall shear stress, and wall pressure are measurable with 

ifferent measurement techniques. Incorporating these disparate 

ata sources is a promising method to enhance the reconstruction 

f turbulent flows. This work investigates the disparate data as- 

imilation with ensemble methods to enhance the reconstruction 

f turbulent mean flows. A regularized ensemble Kalman method 

s employed to incorporate both the sparse velocity and the wall 

easurements. Three numerical examples are used to demonstrate 

he capability of the proposed framework to assimilate different 

ata sources, including wall friction velocity, friction coefficient, 

all pressure distribution, and lift and drag force. One-dimensional 

hannel flow and two-dimensional flow over flat plate are first in- 

estigated to incorporate the sparse velocity and wall friction. Fur- 

her, the reconstruction of separated flows over periodic hills is ex- 

lored with the proposed ensemble method. The streamwise veloc- 

ty and the wall pressure are regarded as the disparate observation 

ata to reconstruct both the velocity and pressure fields. The re- 

ults show that incorporating the disparate data sources is capable 

f improving the accuracy of the flow reconstruction. The ensem- 

le method is non-intrusive and robust for reconstructing turbu- 

ent flows. The proposed method is a promising tool for the re- 

onstruction of turbulent flow fields to assimilate disparate data 

ources from experiments. 
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ppendix A. Equivalence of EnKF and REnKF for disparate data 

ssimilation 

To illustrate the connection between the EnKF and REnKF for 

isparate data assimilation, we reformulate EnKF with two differ- 

nt data sources as two Kalman update steps by use of the sad- 

le point matrix inverse [65] . The details of the derivation are pre- 

ented as follows. 

The conventional EnKF for disparate data assimilation is to aug- 

ent the observation y 1 with the additional observation y 2 . The 

ugmented observation can be written as 

 aug = 

[
y 1 
y 2 

]
. (A.1) 

he Kalman update scheme need to be modified accordingly as 

 

a = x f + K aug (y aug − H aug [ x 
f ]) , (A.2) 

here 

 aug = PH 

� 
aug (H 

� 
aug PH aug + R aug ) 

−1 , (A.3) 

 aug = 

[
R 0 

0 Q 

]
, and H aug = 

[
H 

D 

]
. (A.4) 

he augmented Kalman gain matrix can be reformulated as 

 aug = PH 

� 
aug (H aug P aug H 

� 
aug + R aug ) −1 

= PH 

� 
aug 

[
HPH 

� + R HPD 

� 

DPH 

� DPD 

� + Q 

]−1 

= PH 

� 
aug 

[
S −1 

a S −1 
b 

S −1 
c S −1 

d 

]
= 

[
K a K b 

]
(A.5) 

here 

 a = PH 

� S −1 
a + PD 

� S −1 
c 

 b = PH 

� S −1 
b 

+ PD 

� S −1 
d 

 a = HPH 

� + R 

 b = HPD 

� 

 c = DPH 

� 

 d = DPD 

� + Q . 

(A.6) 

he analysis step (A.2) can be rewritten as 

 

a = x f + 

[
K a K b 

][y 1 − Hx f 

y 2 − Dx f 

]
= x f + K a (y 1 − Hx f ) + K b (y 2 − Dx f ) 

(A.7) 

https://doi.org/10.13039/100017338
https://doi.org/10.13039/501100005150
https://doi.org/10.13039/501100005150
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Table B1 

Summary of data assimilation results with EnKF and 

REnKF. The error for Hx and Dx is computed based 

on (22) . Hx represents U 1 . Dx indicates u τ in channel 

case, C f in T3A plate case, and p w in periodic hill case. 

Geometry Filter Error( Hx ) Error( Dx ) 

Channel EnKF 1 . 38% 1 . 60% 

REnKF 1 . 41% 0 . 93% 

T3A plate EnKF 5 . 16% 48 . 9% 

REnKF 6 . 33% 50 . 70% 

Periodic hills EnKF 7 . 31% 8 . 28% 

REnKF 7 . 24% 9 . 26% 
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ow consider a matrix S is a symmetric saddle point matrix of 

 = 

[
A B 

� 

B −C 

]
. (A.8) 

ts inverse can be written as 

 

−1 = 

[
A 

−1 + A 

−1 B 

� F −1 BA 

−1 −A 

−1 B 

� F −1 

−F −1 BA 

−1 F −1 

]
(A.9) 

here F = −(C + BA 

−1 B � ) [66] . Based on that, we assume 

 = ( HPH 

� + R ) 
 = DPH 

� 

 = −DPD 

� − Q 

 = ( DPD 

� + Q − DPH 

� ( HPH 

� + R ) −1 ( DPH 

� ) � ) 
= (D (P − PH 

� ( HPH 

� + R ) −1 HP ) D 

� + Q 

= D (I − KH ) PD 

� + Q 

= DP 

∗D 

� + Q 

 = PH 

� ( HPH 

� + R ) −1 , 

(A.10) 

here P 

∗ = (I − KH ) P is the updated error covariance after assim- 

lating the data y 1 . Under the assumption that both A and F are

onsingular, we can formulate the blocks in Eq. (A.5) as 

 

−1 
a = ( HPH 

� + R ) −1 + ( HPH 

� + R ) −1 HP 

� D 

� (DP 

∗D 

� + Q ) −1 DK

= ( HPH 

� + R ) −1 + K 

� D 

� ( DP 

∗D 

� + Q ) −1 DK 

 

−1 
b 

= −( HPH 

� + R ) −1 ( DPH 

� ) � ( DP 

∗D 

� + Q ) −1 

= −K 

� D 

� ( DP 

∗D 

� + Q ) −1 

 

−1 
c = −( DP 

∗D 

� + Q ) −1 DK 

 

−1 
d 

= ( DP 

∗D 

� + Q ) −1 . 

(A.11) 

urther, K a and K b in Eq. (A.5) can be reformulated as 

 a = PH 

� ( HPH 

� + R ) −1 + PH 

� K 

� D 

� ( DP 

∗D 

� + Q ) −1 DK 

−PD 

� ( DP 

∗D 

� + Q ) −1 DK 

= K − P 

∗D 

� ( DP 

∗D 

� + Q ) −1 DK 

 b = −PH 

� K 

� D 

� ( DP 

∗D 

� + Q ) −1 + PD 

� ( DP 

∗D 

� + Q ) −1 

= P 

∗D 

� ( DP 

∗D 

� + Q ) −1 

(A.12) 

inally, by substituting K a and K b in (A.7) with (A.12) , we have 

 

a = x f + K (y 1 − Hx f ) − P 

∗D ( DP 

∗D 

� + Q ) −1 DK (y 1 − Hx f ) 

+ P 

∗D 

� ( DP 

∗D 

� + Q ) −1 (y 2 − Dx f ) (A.13) 

y setting 

  

f = x f + K (y 1 − Hx f ) , (A.14) 

e have 

 

a = ̃  x f + P 

∗D 

� ( DP 

∗D 

� + Q ) −1 (y 2 − Dx f − DK (y 1 − Hx f )) 

= ̃  x f + P 

∗D 

� ( DP 

∗D 

� + Q ) −1 (y 2 − Dx f − D ( ̃ x f − x f )) 

= ̃  x f + P 

∗D 

� ( DP 

∗D 

� + Q ) −1 (y 2 − D ̃ x f ) . 

(A.15) 

onclusively, the analysis scheme (A.2) of conventional EnKF with 

wo disparate data sources can be rewritten as 

  

f = x f + K (y 1 − Hx f ) 

 

a = ̃  x f + 

˜ K (y 2 − D ̃ x f ) , 
(A.16) 

here the Kalman gain matrix ˜ K in the second step is expressed 

s 

˜ 
 = P 

∗D 

� ( DP 

∗D 

� + Q ) −1 . (A.17) 

t can be seen that EnKF for assimilating two different data sources 

s equivalent to perform two standard EnKF steps sequentially. 

Regarding the REnKF method, the analysis step is formulated 

s 

  

f 
j = x f j − P G ′ [ x f j ] � Q 

−1 G[ x f j ] , (A.18a) 
13 
 

a 
j = ̃  x f j + K (y j − H ̃ x f j ) . (A.18b) 

To compare the update scheme of REnKF with EnKF, we re- 

ormulate the analysis step (A.18) of REnKF as a post-processing 

cheme as 

  

f = x f + K (y 1 − Hx f ) 

 

a = ̂  x f + P 

∗D 

� Q 

−1 (y 2 − D ̂ x f ) . 
(A.19) 

he first step is equivalent to the conventional EnKF where only 

he observation data y 1 is considered. The second step is to an- 

lyze the updated state ˆ x with observation data y 2 . By compar- 

ng Eqs. (A.16) and (A.19) , the main difference between EnKF 

nd REnKF is that the REnKF omits the DP 

∗D 

� in the inverse of 

q. (A.17) . In practice, the iterative ensemble Kalman method usu- 

lly leads to sample collapses when used for steady cases [46] , 

hich means that the method gives a small P 

∗. For this reason, 

he omitting of the term related to P in the Kalman gain matrix of 

nKF would not have significant effects on the results. Hence, EnKF 

nd REnKF are equivalent for disparate data assimilation with the 

ractical implementation. 

ppendix B. Comparison of EnKF and REnKF for disparate data 

ssimilation 

To order to assess the performance of the proposed method, we 

onduct the disparate data assimilation with the EnKF and REnKF, 

espectively. The comparison between EnKF and REnKF in terms of 

he Error ( Hx ) and Error ( Dx ) is shown in Table. B.3 . For the channel

ase, the disparate data are the friction velocity u τ and the sparse 

elocity U 1 ; for the T3A plate case, the disparate data are the fric- 

ion coefficient C f and the sparse velocity U 1 ; for the periodic hills 

ase, the disparate data are the wall pressure p w 

and the sparse 

elocity U 1 . It can be seen clearly that the REnKF method and the 

nKF method achieve the similar results in the reconstructed flow 

eld in the three test cases. 
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