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Abstract: A nonlinear static aeroelastic methodology based on the coupled CFD/CSD approach has been
developed to study the geometrical nonlinear aeroelastic behaviors of high-aspect-ratio or multi-material
flexible aerial vehicles under aerodynamic loads. The Reynolds-averaged Navier–Stokes solver combined
with the three-dimensional finite-element nonlinear solver is used to perform the fluid-structure coupling
simulation. The interpolation technique for data transfer between the aerodynamic and structural modules
employs radial basis function algorithm as well as dynamic mesh deformation. A high-aspect-ratio structure
with multi-material is modeled by the finite element method to investigate the effects of geometrical non-
linearity on the aeroelastic behavior. Numerical simulations of the linear and nonlinear static aeroelasticity
were conducted at transonic regime with different angles of attack. By comparing the aeroelastic behaviors
of linear and nonlinear structure, it shows that geometrical nonlinearity plays an important role for flexible
high-aspect-ratio wings undergoing the large static aeroelastic deformation and should be taken into account
in aeroelastic analysis for such structures.
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1 Introduction
With the growing advances of demands for aerospace industry, much attention has been given to develop
aircrafts which can fly more higher, farther and faster. The high-aspect-ratio lifting surfaces to achieve the
desired high lift-to-drag ratio and composite material to obtain the minimum structural weight designs are
commonly used in high-altitude long-endurance vehicles and wide-body aircrafts to satisfy all performance
and schedule constraints. From the structural viewpoint, this leads to very flexible constructions. Such
aircrafts often undergo large deflections, which sometimes give rise to adverse or even disastrous effects on
the structure and induce the structural geometrical nonlinearity.

Fluid–structure interaction has played an important role in aeroelastic stability analysis. In the recent
20 years, many numerical simulations have been adopted to study aeroelastic behavior with geometrical
nonlinearity. As a whole, they can be roughly categorized into two types of approaches according to involved
aerodynamic loads computation method. One is linear aerodynamic theory with beam model. Patil et al.
[1–3] investigated geometrical nonlinearity effects on the static and dynamic aeroelastic behavior, with stall
model ONERA [4] which originates from trip theory or doublet-lattice theory, combined with geometrically
exact beam model, and demonstrated the change in structural frequencies and aeroelastic response due to
geometrical nonlinearity. Another is nonlinear aerodynamic equation with nonlinear beam model. Patil et al.
used Euler solver coupled geometrically exact beam to study aeroelastic behavior of a high-aspect-ratio wing
and concluded that linear aerodynamic models may cause overly conservative predictions in divergence and
flutter speed. Garcia and Guruswamy [5] used Navier–Stokes solutions for fully nonlinear aeroelastic analysis
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of slender wings modeled by nonlinear beam element. Previous literatures, which study on the geometrical
nonlinear aeroelasticity, mainly focus on the aircrafts in subsonic regime.

1-D beam models can reflect the average deformations of the practical 3-D wings. However, they cannot
provide the actual elastic solution in 3-D domain [6]. Linear aerodynamics model is limited to inviscid flows
which do not have strong shocks or vortical flow regions associated with them. When performing aeroelastic
analysis of complex configuration or accurately predicting geometrically nonlinear aeroelastic behavior, high
fidelity methods based on Navier–Stokes equations coupled with 3-D structural finite element model should
be used.

In this article, the aeroelastic behavior of a wide-body airplane with a real composite wing is investigated
with Reynolds-average Navier–Stokes solver and 3-D elastic structure dynamics solver in transonic regime.
This article is divided into four sections. First, a brief introduction of fluid–structure interaction key compo-
nents including the fluid dynamics solver, nonlinear structural solver, moving grid deformation scheme and
data interpolation approach are given. Then the composite material finite element structural model and CFD
model used in here are described. In the third section, the linear and nonlinear static aeroelastic responses are
simulated, and the differences between them are compared and discussed. Finally, some concluding remarks
are offered.

2 CFD/CSD coupling methodology
Fluid–structure interaction procedure in this article is loosely coupled algorithm, in which unsteady
Navier–Stokes equations with radial basis function (RBF) mesh deformation technique are solved to obtain
the unsteady information about flow fields, and nonlinear structural solver is adopted to account for the
geometrical nonlinearity caused by large deformation. In addition, there exists the transfer of information
between CFD and CSD: surface loads from the aerodynamics to the structure, and surface displacement from
the structure to the aerodynamics. RBF method is also employed for the transfer. In both solvers, the internal
sub-iterations are usually necessary to achieve convergence of their nonlinear equations.

2.1 Unsteady Navier–Stokes solver
Unsteady aerodynamics computations are performed by three-dimensional RANs Navier–Stokes control
equations and have been coded by the Institute of Mechanics, Chinese Academy of Sciences (CAS). The
integral form of the conservation equation on an arbitrary control volume V with moving boundary can be
written as [7],

𝜕

𝜕t∫
V

Q dV+∮S
(Gc − Gv) n dS = 0 (1)

where Q is conserved quantity vector, Gc and Gv represent convective and viscous flux vectors, respectively, S
denotes the boundary of the control volume V, S is the face area scalar and n denotes the face normal vector.
Equation (1) is spatially discretized by finite volume method as,

d
dt

QIVI = −
NF∑

m=1
(Gc − Gv)m ΔSm (2)

where VI is the volume of the Ith grid cell, NF is the number of faces around the Ith cell, ΔSm is the normal
area of the mth surface. Two-equation turbulence k–w model is used to derive the closed Navier–Stokes
equations.

For suppressing numerical oscillations and capturing the shock, Roe difference scheme [8] with high
shock resolution is used to discretize the convective terms and can be written by,

(Fc)I+1∕2 =
1
2
(

FR
c + FL

c
)
− 1

2
|A|I+1∕2 (QR − QL) (3)
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where A is Roe matrix. Viscous terms are discretized by second-order center difference scheme. Dual time
stepping implicit format is used to temporal discretization of Eq. (2), and Eq. (4) can be obtained as

3Vn+1
I Qn+1

I − 4Vn
I Qn

I + Vn−1
I Qn−1

I
2Δt

= −Rn+1
I (Qn+1

I ) (4)

where RI generally called residual represents the right-hand side of Eq. (2). In present computation, pseudo
time is introduced to eliminate time-marching error. After some deduction, Eq. (4) can then be finally written
as follows,

(( 1
𝜏∗
+ 3

2Δt

)
V (n+1)

I + 𝜕RI
𝜕QI

)
ΔQ∗(m)

I = −
3V (n+1)Q∗(m)

I − 4V (n)Q(n)
I + V (n−1)Q(n−1)

I
2Δt

− R∗(m)
I (5)

where asterisk denotes pseudo quantities and m is pseudo time step. Lower-upper Symmetric Gauss-Seidel
algorithm is adopted to achieve implicit solutions.

The above CFD solver has been parallelized with Message Passing Interface (MPI) and has good resolution
in space and time and computation efficiency. It can predict the flows from subsonic to hypersonic flow
regimes and has been used in many engineering applications (Yang, 2011, 2014) [9] to validate the algorithm
effectiveness and efficiency.

2.2 Nonlinear structural solver
Linear analysis assumes a linear relationship between the load applied to a structure and the response of the
structure. The stiffness of a structure in a linear analysis does not change depending on its previous state.
Linear static problems are solved in one step, by a single decomposition of the stiffness matrix. For a very
flexible structure here, the large deflections cannot meet the infinitesimal deformation restrictions, and the
stiffness of the structures changes and must be accounted for by regenerating the stiffness matrix. In the
study, such change roots in large deformations, that is to say, geometric nonlinearity. MSC Nastran has an
excellent ability to analyze structural problems subjected to geometric nonlinearities (MSC.software) [10].

Nonlinear problems require incremental solution schemes that divide the problem into steps calculating
the displacement, and then updating the stiffness. Each step uses the results from the previous step as a
starting point. As a result, the stiffness matrix must be generated and decomposed many times during the
analysis. We adopt the total Lagrangian approach based on the initial element geometry by using the LGDISP
parameter. This method is suitable for problems where moderately large rotations but small strains occur.
The equilibrium equation can be expressed by the principle of virtual work as,

∫
V0

t+Δt
0Si j𝛿

t+Δt
0 Ei j dV = ∫

V0

b0
i 𝛿𝜂i dV + ∫

A0

t0
i 𝛿𝜂i dA (6)

Here V0 is the volume of the initial configuration, t+Δt
0Si j is the symmetric second Piola–Kirchhoff stress

tensor, t+Δt
0 Eij is the Green–Lagrange strain, b0

i is the body force in the reference configuration, t0
i is the

traction vector in the reference configuration and 𝜂i is the virtual displacements. Integrations are carried
out in the original configuration at t = 0. Introduce incremental decomposition for the stress tensor and the
strains as following,

t+Δt
0Si j =

t
0Si j + ΔSi j (7.1)

t+Δt
0Ei j =

t
0Ei j + ΔEi j (7.2)

where t
0Si j and t

0Ei j are the total stress and strains for equilibrated configurations, respectively, ΔSij and ΔEij
are the incremental stress and strains between t and t + Δt. The incremental strains are further decomposed
into linear ΔEl

i j and nonlinear ΔEnl
i j parts as,
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ΔEi j = ΔEl
i j + ΔEnl

i j (8)

where ΔEl
i j =

1
2

(
Δui, j + Δu j,i + t

0uk,iΔuk, j + t
0uk, jΔuk,i

)
, ΔEnl

i j =
1
2

(
Δuk,iΔuk, j

)
.

Linearization of equilibrium of Eq. (6) yields,

(t
0KL +

t
0KNL

)
Δu = t+ΔtQ − tF (9)

where t
0KL is linear stiffness matrix, t

0KNL is called nonlinear stiffness composed of initial displacement
stiffness matrix and initial stress stiffness matrix [11],Δu is incremental displacement vector, t+ΔtQ and tF are
the external and internal forces, respectively.

Newton–Raphson iterative algorithm is employed to solve the equilibrium problem described in Eq. (9)
at each load increment. The total load is applied gradually in steps (or increments) and for each load step,
the solution is arrived at after one or more iterations. Each iteration involves an assembly and solution of the
stiffness matrix. Hence, nonlinear problems inherently take longer than linear models (of the same size) to
solve. At the end of each iteration, a check is made to see if the solution has converged. If the convergence
check fails, the iteration is re-repeated with the new information; and it is re-assembled and re-solved. This
process repeats until convergence is achieved. Following that, the next increment of load is applied. The load
increments are applied until the full load of the model is solved. Here, for static problems, t + Δt stands for
load increment not for time.

2.3 Mesh deformation and data transfer technique
Aerodynamic analysis requires a higher degree of mesh resolution than structural analysis, and the mismatch
between structure grids and the fluid grids demands interdisciplinary transfer of data involving aerodynamic
loads converted to structural loads and structural deformations presented on the aerodynamic surface. In the
study, the RBF method [12] is used to accomplish the above two-way data exchange and grid deformation.
The essence of the method is described below. Interpolants are constructed based on scattered points with
given displacements located at the deforming component. These displacements are then propagated into the
interior of the mesh by evaluating the interpolants at all mesh points.

The formulation of the RBF interpolation model used in the study is

s(r) =
Ns∑

i=1
𝛾i𝜑

(‖‖r − ri
‖‖
)
+ p(r) (10)

where s is the function to be evaluated at point r, 𝜑 is the RBF adopted which have several forms as described
by Beckert and Wendland [13], Ns is the numbers of the centers for RBFs and ri is the center point location.
The coefficients 𝛾 i are found by requiring exact recovery of the original function; in this study the structural
displacement p(r) is the optional polynomial. In two-way data transfer, let p(r) = a0 + a1x + a2y + a3z to
satisfy conservations of force and moment. In mesh deformation, p(r) is not used.

The interpolation problem is described in the following matrix expression as

usx = Cssax (11)

where Usx = (usx0 0 0 0)T is displacement vector in x-direction,

ax =
(
𝛾1 , … , 𝛾Ns

a0 a1 a2 a3
)T (12)
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(13)

If used in mesh deform, the later four rows in the above three terms are removed. Here, RBF function
formulation is selected as

𝜑
(‖‖r − ri

‖‖
)
=
(

1 −
‖‖r − ri

‖‖
R

)4 (
4
‖‖r − ri

‖‖
R

+ 1
)

(14)

R is support radius to control the region of influence of the center.
By solving Eq. (11), the coefficients matrix expressed by Eq. (12) can be obtained. An analogous matrix

Cas is created to interpolate displacements of aerodynamic surface from structure displacements.

Cas =

⎡
⎢
⎢
⎢
⎢⎣

𝜑
(‖‖r1 − r1

‖‖
)

… 𝜑

(‖‖‖r1 − rNs
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)

1 x1 y1 z1
...

...
...

...
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𝜑

(‖‖‖rNa
− r1

‖‖‖
)

… 𝜑

(‖‖‖rNa
− rNs

‖‖‖
)

1 xNa
yNa

zNa

⎤
⎥
⎥
⎥
⎥⎦

(15)

uax = Casax (16)

where Na is the number of aerodynamic surface nodes and uax is the corresponding displacement vector.
On the above basis, with greedy sampling strategy [14], some of the aerodynamic surface nodes are

selected to interpolate the mesh grid deformation. The procedure resembles the interpolation between struc-
ture displacement and aerodynamic displacement. The only difference is that the last four rows in Eq. (13)
need to be removed when used in the mesh grid deformation. In addition, in terms of the enormous number
of the volume mesh nodes, the computation of mesh deformation is realized by MPI parallelization.

The procedure described in the section can be depicted as below (Figure 1).
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Figure 1: CFD/CSD coupling procedure.
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3 Numerical example
A multi-composite material wing with the engine pylon used for wide-body aircraft is selected to investigate
structural geometrical nonlinearity effects on aeroelastic behavior. The wing has an aspect ratio of 9.4, a taper
ratio of 0.4 and a quarter chord swept angle of 32◦. The airfoil thickness is 14% at root and 10% at tip. The
chord root length is 11,634 mm. Material fiber directions are designed to make the wing suffer geometrical
bending-torsion coupling effect while chordwise bending or flapwise bending occurs.

3.1 Structural model
The wing structure consists of wing boxes and wing ribs, whose finite element model has been developed
using 4-node, 3-node shell elements and 2-node beam elements. For the engine pylon finite element model
is modeled by beam elements, concentrated mass elements and rigid bar elements. All composite laminates
comprise 0, ±45 and 90◦ plies. The thickness of all the plies are constrained to be equal. The number of
elements is 6019 and the number of discrete DOF is 5760. The structural model of the wing used in the
research is shown in Figure 2.

3.2 Aerodynamic model
The structured multi-block mesh has been generated for CFD computation in the example. The semi-
symmetrical model is used as the aerodynamic model. O-type grid topology is used to enclose the fuselage
surface with the height of approximate 400 mm to create the boundary layer region. The first cell height is
1 × 10−5 of the wing root chord length with a growth rate of 1.2. H-type grid topology is adopted to create
volume mesh except the boundary layer. The outer domain is about 6–7 times the root chord length. The
whole volume domain has about 17.35 million cells as shown in Figure 3(a), where the blue lines represent
the boundaries of the multi-block mesh. The zoomed mesh of the surface and symmetrical plane is shown in
Figure 3(b).

3.3 Results and discussion
Nonlinear static aeroelastic results are computed at the same Mach number of 0.85 and at different angles of
attack of 0◦, 2.46◦, 4◦ and 8◦, where 2.46◦ is the trimming angle of attack. Figure 4 shows the convergence
of the residuals and largest displacement over the wing surface for nonlinear static aeroelastic case with
the free-stream Mach number of 0.85 and the angle of attack 8◦. Residuals represent L2 norm of the density
residual,ΔUmax represents the maximum displacement (at the wing tip in this case) in vertical direction and b
refers to the wing root chord length. The deformation of the wing surface has the largest vertical displacement
of approximately 7% with respect to the wing root chord length. It can be seen from Figure 4 that the static
aeroelastic equilibrium has been achieved with the convergence of the residuals.

Figure 2: Structure finite element model.
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Figure 3: (a) Fluid field mesh
and (b) surface mesh and sym-
metry plane mesh.

Figure 4: The convergence of residuals and the maximum
displacement on surface.

Figure 5 shows the comparison of the pressure distribution for the body surface at the angle of attack of
8◦ between the linear and nonlinear static analysis. It shows there is a significant horizontal displacement in
nonlinear case as compared to the linear computation.

Figure 6 shows the comparison of the twist angles of the spanwise section between the linear and
nonlinear analysis at the angle of attack 8◦. From this figure, it can be seen that the large negative twist angle
is observed for the linear case as compared to the nonlinear computation.

Figure 7 shows the linear and nonlinear spanwise deflection at different angles of attack, respectively. It
can be seen from the two figures that the horizontal deflection in nonlinear computation is larger than that
in linear case with the increment of the angle of attack, while the vertical deflection is almost the same in
the same flight condition. The significant changes in the horizontal displacement arise from the increase of
torsion component. The results seem different from the study by Mian [15] which pointed that for the linear
case there is no axial deflection in the structure. The reason is that they studied the geometrical nonlinear
effect with the beam to replace the real structure, and in the linear computation the displacement in the
horizontal direction is neglected for the beam. In this article, the structure is modeled with the actual physical
structure.
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Figure 5: Pressure coefficient plot for linear and nonlin-
ear cases.

Figure 6: Spanwise section twist angle at Mach = 0.85
angles of attack of 8◦.

The lift coefficients for linear and nonlinear cases comparison with the undeformed wing are shown in
Figure 8. It can be seen that the lift coefficient of the linear structure is smaller than the nonlinear case, which
is caused by the larger negative section twist angles of the linear computation described in Figure 6.

In order to compare the geometric nonlinear behavior and linear one, further computations were per-
formed. While bending moment and torque are the overriding aerodynamic moments suffered by airplanes
in flight, they are calculated in center of rigidity of the different profiles along the spanwise (the origin of the
coordinates located in the nose) and shown in Figure 9 to highlight the difference between the linear and the
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Figure 7: Spanwise displace-
ment for different attack angles
at Mach = 0.85.

Figure 8: Lift coefficients for different attack angles at
Mach = 0.85.
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Figure 9: Bending moment and torque at Mach = 0.85
along the spanwise.

nonlinear analysis in different angles of attack. The moment coefficients at the angle of attack of 0◦ show only
very small differences between the linear and nonlinear structure, which are expected since the structural
deflections at this attack angle are nearly identical. In this condition, the linear structure model has the ability
to calculate structure deformation. The discrepancy of moment coefficients becomes more significant at the
attack angle of 8◦, at which visible differences of structural deflections occur between the two structures. This
means that the nonlinear analysis must be used to get more accurate results due to geometrical nonlinearity.
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4 Conclusion
Nonlinear static aeroelasticity numerical simulation of the high-aspect-ratio wing has been conducted. To
consider geometrical nonlinearity of such a wing, the in-house CFD/CSD coupling solver is introduced. The
geometrically nonlinear and linear behaviors have been compared and evaluated. The results show that the
CFD/CSD coupling method developed in this study can be used to accurately provide information about the
3-D solution.

The numerical results presented for the static aeroelastic analysis show that at the same Mach number, the
linear and nonlinear effects are slightly different at the small angle of attack where the flow condition cannot
sufficiently generate the geometric structural nonlinearity. However, with the increment of the angles of attack,
the small deformation assumption cannot account for the geometrical nonlinearity. The change in stiffness
of the structure must be considered when the structure suffers from large deformation. The calculated results
indicate that the geometrically nonlinear displacement is greater than the linear one along the spanwise,
wherever they have a slight difference along the vertical, which arise from the more torsion components
coupled due to geometrical nonlinearity. It can also draw a conclusion that for practical applications, the
solution based on the linear elasticity theory gives fairly accurate results in predicting deformations and stress
resultants for reasonable attack angles.

Future work will focus on the impact of the geometrical nonlinearity on the flutter speeds of large aspect
ratio wing.
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