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A sphere impacting a plate is different from impacting a half-space bulk, because energy in the former
case can be dissipated in a form of flexural wave propagating on the plate. Such energy loss by the elastic
wave can be explained by the Zener model; however, this model is only valid for low-velocity impact
with elastic Hertzian contact law. For high-velocity impact with contact plasticity, the Zener model is
not valid any ore because energy dissipation by plasticity may take a large fraction, so that the Zener
model, which ignores plasticity, will overestimate the coefficient of restitution (COR). In order to study
how much the plasticity affects the sphere impacting the plate, we developed a modified Zener model
by employing the contact plasticity into the controlling equation. Using the developed model, we firstly
presented a thickness-dependent yielding velocity (yielding impact velocity depends on the thickness of
the plate), above which the contact plasticity should be taken into account. What is more, we presented a
semi-analytical solution to predict the COR over a large range of plate thickness. Meanwhile, finite ele-
ment simulations were carried out to prove that the present model can give enough accuracy for the high
velocity impact.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

During the impact of a spherical object on a massive object, it is
interesting to see how the initial kinetic energy is partitioned dur-
ing and after the impact. There will be three parts for the partition:
the kinetic energy restored after rebounding, the energy by the
elastic wave propagating on the plate, and the plastic energy dissi-
pation during the impact. The first term, rebounding energy, can be
used to determine the coefficient of restitution (COR). The second
term, energy dissipated by elastic wave, has been studied by Hun-
ter (Hunter, 1957) and Reed (Reed, 1985). Their results indicate
that only a small fraction of energy will be converted into the elas-
tic wave, less than 5 percent. The third term, plastic dissipation,
has been noticed by Hutchings (Hutchings, 1979), and extensively
studied by Thornton’s group (Hutchings, 1979; Wu et al., 2003,
2005), whose study for the plastic impact showed that the energy
loss due to stress wave propagation was negligible compared with
the energy dissipation by plastic deformation. In all these studies,
they used a half space to represent the impacted object, so that
these models cannot be used for a thin plate on which the flexural
wave effect can be enormous.

When the plate is thin, the half-space assumption is no longer
correct. Considering the flexural wave on the plates, Zener derived
the governing equation of the relative displacement for the elastic
contact between the sphere and the plate (Zener, 1941). Because
the Hertzian contact is used (the force is proportional to the dis-
placement to the power of 1.5), the governing equation of Zener
model cannot be analytically solved. As a result, numerical integra-
tion method was used to solve Zener model (Mueller et al., 2015;
Muller et al., 2016; Zener, 1941). Results showed that the Zener
model provided enough accuracy for an elastic contact under the
condition that the spherical object had to be detached from the
plate before the arrival of the first reflected wave from the bound-
ary. One step further, by simplifying the force–displacement rela-
tion with a linear relationship, Mueller et al. proposed a semi-
analytical solution, reaching an approximation to the Zener model
for the range of COR larger than 0.2 (Mueller et al., 2015).

There are also a few studies concerning the thickness effect of
the plate. For a thick plate (Mittal, 1987) or a thick beam (Sherif
and Almufadi, 2018), the transverse shear deformation cannot be
neglected. For instance, Mittal proposed a closed form solution to
determine the deflection of the impact point (Mittal, 1987). For
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Nomenclature

FEM Finite element method
NFD Normal-force displacement
COR Coefficient of restitution
e Coefficient of restitution
E1 Young’s modulus of the sphere
E2 Young’s modulus of the plate
E� Effective modulus
Fm Maximum force during loading stage
FðdÞ Function for the normal-force displacement relationship
F x1; x2; x3ð Þ Equivalent form of FðdÞ for present dynamical system
H Thickness of the plate
m� Effective mass
R Radius of the sphere
R� Effective radius
Re Residual for Taylor expansion
t Time
V0 Initial impact velocity of the sphere
VW Propagation velocity of longitudinal waves
Vr Recovered velocity of the sphere
VY0 Yielding velocity of a sphere impacting a bulk

VY Yielding velocity of a sphere impacting a plate
w Dimensionless compressive relative displacement
wm Maximum dimensionless compressive relative displace-

ment
x1; x2; x3 State variables for present dynamical systemState vari-

ables for present dynamical system
d Compressive relative displacement
dm Maximum compressive relative displacement
dr Residual compressive relative displacement
dY Yielding compressive relative displacement
dP Transition parameter for elastic and elastoplastic load-

ing
q1 Density of the sphere
q2 Density of the plate
m1 Poisson’s ratio of the sphere
m2 Poisson’s ratio of the plate
k Zener’s inelasticity parameter
g One material-dependent parameter
rY Yielding strength of the sphere
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an even thicker plate, the wave reflection from the opposite side of
the plate should also be considered; the bending of the plate is
achieved by at least 6–8 wave transitions (Boettcher et al., 2017;
Koller and Kolsky, 1987).

In the experiment of a sphere impacting a half space, authors
can record the contact force history to evaluate the surface defor-
mation. Sherif and Almufadi used a thick block to represent an infi-
nite half space and a linear model to consider the contact plasticity
(Sherif and Almufadi, 2018). Once the force history was recorded,
the displacement of the sphere can be integrated using elastic or
plastic contact model. The experiment of a sphere impacting a thin
plate, on the contrary, is different from a sphere impacting a half
space, because the slenderness has to be considered during the
contact. Muller et al. experimentally measured the history of a
steel spheres impacting a sufficiently large glass plate and then
compared the result with the Zener model (Muller et al., 2016).
They concluded that, compared with experiment, the Zener model
might underestimate the contact time for thin plates (for example,
the ratio of plate thickness to sphere radius is less than 0.3). It
should be noticed that they mainly focused on low-velocity impact,
so that the plasticity effect on the contact had not be discussed.

The Zener model has enough accuracy as long as the impact
remains elastic. For impacts with higher velocity, plastic deforma-
tion cannot be ignored, a lot of studies has proposed the plastic
contact models. For example, Johnson’s contact model is suitable
for elastic perfect-plastic contact (Johnson, 1985). The Jackson–
Green (JG) (Jackson and Green, 2005) and Kogut–Etsion (KE)
(Kogut and Etsion, 2002) models are suitable for the contact
between a rigid flat surface and deformable hemisphere. The
Kogut–Komvopoulos (KK) (Kogut and Komvopoulos, 2004), Ye–
Komvopoulos (YK) (Ye and Komvopoulos, 2003), Brake (Brake,
2012, 2015), Stronge (Stronge, 2000), Thornton (Thornton, 1997),
and modified version of the JG models (Ghaednia et al., 2015) are
suitable for the contact between a rigid hemisphere and a deform-
able half space.

Previous plasticity contact models have been used for cases
such as sphere-half space impact (Thornton, 1997), rough surface
contact (Majumdar and Bhushan, 1991), rod contact (Ghaednia
et al., 2015; Ye et al., 2020). However, few studies have been
focused on the mixed effect of the plasticity and flexural wave on
2

the thin plate impact. Patil and Higgs has paid attention to the
effect of both the plasticity and flexural vibration on the COR for
sphere-plate contact (Patil and Higgs, 2017). Similar to Mueller’s
linearization method of the normal force–displacement (NFD) rela-
tionship, they proposed a linear normal force–displacement rela-
tionship for the plastic phase so that a semi-analytical approach
was possible. The flexural wave effect has also been investigated
on plastic impacts of a sphere against a slender beam (Wang
et al., 2017a, 2017b). The authors used different contact models
to check the vibration effect induced by impacts theoretically
and experimentally. Their results suggested Hertz model matches
the experiment well under the condition of low impact velocities.
For higher-velocity impact, they suggested that plastic contact
model shall be used, and under such condition, responses of the
flexible beam become very sensitive to the selection of the contact
model.

In summary, on one hand, for high velocity sphere impacting a
half space, previous studies have concluded that the COR is propor-
tional to V�0:5

0 (V0: initial impact velocity of the sphere) as a result
of plasticity (Wu et al., 2003, 2005). On the other hand, for an elas-
tic sphere impacting a thin plate, the COR monotonically depends
on the Zener’s parameter k which is proportional to V0:2

0 (Mueller
et al., 2015; Muller et al., 2016; Zener, 1941). It is still not clear
how the COR changes with V0 for the plastic impact between a
sphere and a thin plate. Aiming to discover this effect, present
study deals with the impact during which both the plasticity and
flexural wave effect should be considered. By using the developed
model in this work, we discuss how much is the dependency of the
COR on the impact velocity V0 if both factors—the plasticity and
wave effects—are considered. The paper is organized as follows.
First, we built an elastoplastic contact model for the sphere-plate
impact from finite element simulation. Second, we modified Zener
model with the elastoplastic contact model to a 3-variable first-
order dynamical system. Using the modified model, we first
obtained the yield velocity, above which the plasticity should be
taken into account. What is more, we obtained a semi-analytical
expression for the COR depending on the impact velocity, and fur-
ther validated the solution with finite element simulations. Last,
we also discussed the effect of plasticity on energy dissipation
and contact duration.
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2. Description of problem

Fig. 1 illustrates the process of an elastoplastic sphere impacting
an elastic plate. The sphere hits the plate with initial impact veloc-
ity of V0, and then decelerates to zero by the reaction force. At this
moment, the sphere arrives its maximum compressive relative dis-
placement dm to the plate; the plate, on the other hand, deforms to
an extent depending on its compliance. Next, during the restitution
stage, the sphere bounces back, and the flexural wave continues
travelling further away from the impact location. Finally, the
sphere detaches from the plate with a recovered velocity Vr before
the flexural wave could reflect back from boundary (the radius of
the plate is sufficiently large). A permanent compressive relative
displacement dr remains if plastic deformation takes place. Under
such condition, the loss of kinetic energy will compose of two
parts: the flexural wave and the plastic dissipation.

The motion of the sphere is governed by the following equation
with respect to the compressive relative displacement d (Zener,
1941).

d2d

dt2
þ 1
m� F dð Þ þ a

dF dð Þ
dt

¼ 0 ð1Þ

where m� is the effective mass

m� ¼ 1
m1

þ 1
m2

� ��1

m1 the mass of the sphere, m2 the mass of the plat, a a constant

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2 1�m2

2ð Þ
E2

r
4q2H

2

H the thickness of the plate, q2 the density of the plate, m2 the
Poisson’s ratio of the plate, E2 the Young’s modulus of the plate
and FðdÞ the normal contact force depending on d. Zener used the
Hertzian contact model to derive a model for the COR for small k,
which is an inelasticity parameter with the form

k ¼ p3
5

3
1
2

R
H

� �2 V0

VW

� �1
5 q1

q2

� �3
5 E1= 1� m21

� �
E1= 1� m21
� �þ E2= 1� m22

� �
 !2

5

ð2Þ

where VW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2=q2 1� m22

� �q
is the propagation velocity of longitu-

dinal waves in the thin plate (Landau et al., 1986), R the radius of
the sphere, H the thickness of the plate, V0 the impact velocity, E1

the Young’s modulus of the sphere, and m1 the Poisson’s ratio of
the sphere, and q1 the density of the sphere. By using a linearization
Fig. 1. Schematic diagram for an elastoplastic sphere impacting an elastic plate.

3

method, Mueller et al. (Mueller et al., 2015) obtained an approxi-
mate solution, in which the COR was given by

e ¼ exp �p kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� k2

p
 !

ð3Þ

However, if the impact velocity exceeds the yielding velocity
(Thornton, 1997), plastic deformation will take place such that
the Hertzian NFD relationship is no longer valid. Under the
assumption that the kinetic energy of the sphere is solely dissi-
pated by plastic deformation, Thornton adopted the expression

VY0 ¼ 3:194
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r5

YR
�3=E�4m�

q
for this yielding velocity which was first

obtained by Davies (Davies, 1949), where rY is the yielding
strength, R� the effective radius, and E� the effective modulus
(Thornton, 1997). By Thornton’s assumption, the yielding velocity
was determined by the yielding compressive relative displacement
dY . However, the yielding compressive relative displacements are
generally not necessarily the same for different elastoplastic con-

tact models. For example, other than dY ¼ 0:25p2r2
YR

�=E�2 provided
by Thornton, Majeed et al. (the MYC model) suggested that

dY ¼ 0:68p2r2
YR

�=E�2 (Majeed et al., 2012). Following Thornton’s
assumption, we can obtain the yielding velocity according to the
MYC model (Majeed et al., 2012):

VY0 ¼ 0:552

ffiffiffiffiffiffiffiffiffiffiffiffi
p4r5

Y

q1E
�4

s
ð4Þ

For an elastoplastic cAl2O3 sphere with R ¼ 0:9mm impacting
an elastic glass bulk (Muller et al., 2016), we can calculate the
yielding velocity being 2.126 m/s and 7.426 m/s using Thornton’s
model and Eq. (4), respectively, indicating that we have to select
a suitable elastoplastic contact model first to model the dynamics.
3. Modified Zener’s model considering plasticity

3.1. Choice of elastoplastic NFD relationship

Different contact models generally lead to different results for
either the loading stage or the unloading stage (Wang et al.,
2017b), including the history of contact force, the contact duration,
and as we showed in Section 2, the yielding velocity. To find a cor-
rect NFD relationship for elastoplastic contact, we built a Finite Ele-
ment Method (FEM) model to inspect NFD relationships. FEM
simulations were carried out using commercial software ABAQUS
with a static solver (ABAQUS/Standard). Due to the symmetry, only
an axisymmetric model was used, as shown in Fig. 2. The radius of
the sphere R is set to 0.9 mm. The width and thickness of the bulk
were set to 500R in order to eliminate the boundary effects. A con-
tact pair was established between the sphere and the plate: the
penalty method of constraint enforcement was applied on the nor-
mal direction for the pressure-overclosure relationship (‘Hard’ con-
tact in ABAQUS), and the friction coefficient was set to 0.1
(ABAQUS, 2016).

In this study, we investigated an elastoplastic sphere in contact
with an elastic target. As an example, we set the materials for the
elastic-perfect plastic sphere and the elastic plate to cAl2O3 and
glass, respectively, which were also experimentally studied by
Mueller et al. (Mueller et al., 2015). Table 1 lists the details of
the material parameters for the FEM model. The sphere and the
bulk were meshed with linear element CAX4R with element count
more than 70,000 and the finest element size at the contact region
being 0:01R1 (Peng et al., 2020).

With this model, by simulation of both loading and unloading
processes, we obtained both an elastic and an elastoplastic NFD
relationships, shown in Fig. 3. Results show that the MYC model



Fig. 2. Schematic diagram for validation of elastoplastic contact models.

Table 1
Material Properties for FEM model.

Sphere Bulk

Material cAl2O3 glass
Young’s Modules (GPa) 12.23 73
Poisson Ratio 0.21 0.21
Density (kg/m3) 879 2500
Yielding Stress (MPa) 472.5 N/A

Fig. 3. Validation of various models with FEM simulation.

Fig. 4. w�1:5
m as function of k.
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(Majeed et al., 2012) matches the FEM results with an error less
than 6%, while the Hertzian law only works in the elastic regime
with very small compressive relative displacement, the Thornton
model (Thornton, 1997; Wang et al., 2017b) underestimates the
contact force about 64%, and the Stronge model (Stronge, 2019;
Wang et al., 2017b) overestimate the contact force about 40%.
Based on such comparison, we selected the MYC model for the
NFD function FðdÞ. It should be noted that previous study by Wang
also considered the MYC model as their best choice in the study of
dynamic elastoplastic contact of a sphere and a beam (Wang et al.,
2017a). Similarity, Dong et al. showed that the MYC model can
4

bring higher accuracy in the prediction of the COR under high-
speed impact (V0 � 1:6m=s in their study) (Dong et al., 2018).

With the MYC model, we used the contact force as a function of
the relative distance between the sphere and the plate, so that per-
manent change of sphere curvature was not explicitly considered.
However, the change of the sphere shape during the contact is con-
sidered in the MYC equation. As the compressive displacement
reaches the different yielding stage, different level of permanent
deformation occurs. As a result, the force–displacement response
in the recovery stage depends on the amplitude of plastic deforma-
tion, and also should be obviously different from that in the loading
stage. In this sense, we could say that the MYC model is aware of
curvature change in terms of permanent deformation.

3.2. Semi-analytical model for thickness-dependent yielding velocity

As stated in Section 2, the yielding velocity VY0 used by Thorn-
ton (Thornton, 1997) or by Eq. (4) is valid only when the target is
infinitely thick (bulk). For a thin plate, because of its compliance, a
fraction of the kinetic energy is converted into flexural wave, so the
velocity required to trigger plasticity is larger than the one for the
bulk: the thinner the plate is, the larger the yielding velocity is. In
this section, we investigate the thickness-dependency of the yield-
ing velocity. The idea is that we first establish a relationship
between the impact velocity V0 and the maximum compressive
relative displacement dm, and then by setting dm ¼ dY , we can
obtain the relationship between the yielding impact velocity and
the plate thickness.

By substitution of variables, d ¼ R pq1

E�V0:5
0

� �0:4
V0w and

t ¼ R pq1

E�V0:5
0

� �0:4
s, Eq. (1) can be expressed to the following dimen-

sionless form,

d2w
ds2

þ 1þ k
d
ds

� �
w1:5 ¼ 0 ð5Þ

and with the initial conditions

wjs¼0 ¼ 0

dw
dss¼0

¼ 1

By solving Eq. (5) numerically with Runge-Kutta method
(Dormand and Prince, 1980; Shampine, 1986), we can find a rela-
tionship between the maximum value of w, denoted with wm, with
k, shown as blue squares in Fig. 4. Such relationship can be linearly
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approximated by w�1:5
m ¼ c1kþ c2, with c2 being the value of w�1:5

m

at k ¼ 0. Setting k ¼ 0 in Eq. (5), integration by parts reveals that

c2 ¼ 5=4ð Þ�3
5. Fitting with least squares method, we obtain

c1 � 1:00, and then the final expression for w�1:5
m :

w�1:5
m ¼ kþ 5

4

� ��3
5

ð6Þ

or equivalently,

dm ¼ V0R
pq1

E�V0:5
0

 !0:4

kþ 5
4

� ��3
5

 !�2
3

ð7Þ

where dm is the maximum compressive relative displacement.
With Eq. (7), the thickness-dependent yielding velocity VY can

be obtained by the following equation:

VYR
pq1

E�V0:5
0

 !0:4

kþ 5
4

� ��3
5

 !�2
3

¼ dY ð8Þ

where dY ¼ 0:68p2r2
YR

�=E�2 is the yielding compressive relative dis-
placement in the MYC model (Majeed et al., 2012). Dividing both
sides of Eq. (8) by VY0 gives the following equation.

4
5

� �2
5 VY

VY0

� �4
5

kþ 5
4

� ��3
5

 !�2
3

¼ 1 ð9Þ

Substituting Eq. (2) to Eq. (9) and introducing a new material-
dependent coefficient,

g ¼ p3
5

3
1
2

q1

q2

� �3
5 E1= 1� m21

� �
E1= 1� m21
� �þ E2= 1� m22

� �
 !2

5 VY0

VW

� �1
5

ð10Þ

we thus obtained the relationship between VY=VY0 and R=H as
follows.

R
H

� �2

¼ 4
5

� �3
5 VY

VY0
� VY

VY0

� ��1
5

 !
1
g

ð11Þ

To estimate the yielding velocity for a given plate thickness, it is
convenient to find an explicit expression for VY=VY0 as a function of
R=H and g. However, Eq. (11) cannot be solved algebraically for
arbitrary g. Thus, here we propose an approximation for
VY=VY0 2 1;1½ Þ. Eq. (11) can be rewritten as follows.

VY
VY0

� q ¼ VY
VY0

� ��1
5

q ¼ g 5
4

� �3
5 R

H

� �2
8><
>: ð12Þ

If we can convert the term VY=VY0ð Þ�1
5 to a function of R=H, then

the desired explicit expression can be obtained. To do that, we

expand VY=VY0ð Þ�1
5 at a carefully selected location,

VY=VY0 ¼ qþ 1, as follows.

VY

VY0

� ��1
5

¼ qþ 1ð Þ�1
5 þ

X1
n¼1

an

VY
VY0

� q� 1
� �n

qþ 1ð Þ15þn

where an is the coefficients of Taylor expansion and anj j < 1.
Finally, we obtain the approximation for VY=VY0.

VY

VY0
¼ g

5
4

� �3
5 R

H

� �2

þ 1þ g
5
4

� �3
5 R

H

� �2
 !�1

5

þ Re

where the residual can be expressed by
5

Re ¼
X1

n¼1
an

qþ1ð Þ�1
5�1

qþ1

� �n

qþ 1ð Þ0:2

Then, as q � 0,

Rej j �
X1

n¼1

1� qþ1ð Þ�1
5

qþ1

� �n

qþ 1ð Þ0:2
¼ 1� qþ 1ð Þ�0:2

1þ q qþ 1ð Þ0:2
� 0:061 ð13Þ

We find that right term of Eq. (13) peaks at q � 1:179, and
Rj j ! 0 as q ! 0 or q ! 1. Thus, VY=VY0 can be approximated by:

VY

VY0
¼ g

5
4

� �3
5 R

H

� �2

þ 1þ g
5
4

� �3
5 R

H

� �2
 !�1

5

ð14Þ

In sum, we propose an estimation of VY=VY0 as follows, with
absolute error strictly not larger than 0.061. Since VY=VY0 � 1, we
could also say that Eq. (14) estimates VY with relative error less
than 6.1%.

3.3. Modified Zener’s model

To solve the nonlinear equation Eq. (1), we converted Eq. (1)
into a dynamical system by letting x1 ¼ d and x2 ¼ _d. Unlike the
Hertzian model where FðdÞ is bijective, a plastic model commonly
has distinct loading and unloading stages. In addition, the elasto-
plastic contact model includes the maximum loading displacement
dm that determines the residual deformation dr . Introducing a new
state variable x3 ¼ dm, we can formulate a first-order dynamical
system according to Eq. (1):

_x1
_x2
_x3

2
64

3
75 ¼

x2
� F x1 ;x2 ;x3ð Þ

m� � aF
0
x1; x2; x3ð Þx2

_x1H x2ð Þ

2
64

3
75 ð15Þ

where HðxÞ is the Heaviside function,

H xð Þ ¼ 1 for x � 0
0 for x < 0

	

and Fðx1; x2; x3Þ is an equivalent piecewise function according to
the NFD relationship FðdÞ; the domain of Fðx1; x2; x3Þ can be divided
into elastic loading, plastic loading, and elastic unloading stages for
the MYC model (Majeed et al., 2012; Wang et al., 2017b). The NFD
relationship FðdÞ can be expressed as follows.

F dð Þ ¼

4
3E

�R�0:5d1:5 Loading phase 1 : d < dP and _d � 0
4
3E

�R�0:5d1:5P þ2E�R�0:5d0:5p d� dPð Þ Loading phase 2 : d � xP and _d � 0
4
3E

�R�0:5d1:5 Unloading phase 1 : _d < 0 and dm < dY

Fm
d�dr
dm�dr

� �1:5
Unloading phase 2 : _d < 0 and dm � dY

8>>>>>><
>>>>>>:

ð16Þ
where Fm is the maximum force during loading stage and the resid-
ual deformation dr is determined by

dr ¼ dm � dY 2
dm
dY

� 1
� �0:5

ð17Þ

In Eq. (16), the phase-dividing parameters, dY and dP can be cal-
culated using

dY ¼ 0:68p2r2
Y R

�

E�2

dP ¼ 2:14p2r2
Y R

�

E�2

8<
: ð18Þ

Using variable x1, x2, and x3, the MYC model for the dynamical
system Eq. (15) can be rewritten as



Fig. 6. Dimensionless yielding impact velocity as function of dimensionless plate
thickness.
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F x1; x2; x3ð Þ

¼

4
3 E

�R�0:5x1:51 x1 < dP and x2 � 0
4
3 E

�R�0:5d1:5p þ 2E�R�0:5d0:5p x1 � dp
� �

x1 � dP and x2 � 0
4
3 E

�R�0:5x1:51 x2 < 0 and x3 < dY

Fm
x1�dr
x3�dr

� �1:5
x2 < 0 and x3 � dY

8>>>>>><
>>>>>>:

ð19Þ
and the derivative of FðxÞ as

F
0
x1; x2; x3ð Þ ¼

2E�R�0:5x0:51 x1 < dP and x2 � 0

2E�R�0:5d0:5p x1 � dP and x2 � 0

2E�R�0:5x0:51 x2 < 0 and x3 < dY

3
2

Fm
x3�x1

x1�dr
x3�dr

� �0:5
x2 < 0 and x3 � dY

8>>>>>><
>>>>>>:

ð20Þ

With Eqs. (15) and (17)-(20), the dynamical system can be
solved with Runge-Kutta method (Dormand and Prince, 1980;
Shampine, 1986).

3.4. Semi-analytical solution for COR

Taking the elastoplastic cAl2O3 sphere impacting elastic glass
plate as an example, with present modified Zener’s model, we
investigated the effects of impact velocity and plate thickness on
the COR. Solving Eq. (15), we obtained the COR as a function of
the dimensionless plate thickness (R=H) and the dimensionless
impact velocity (V0=VY0), as a shown in Fig. 5A. The surface in
Fig. 5A clearly shows that the COR decreases as the impact velocity
increases, or as the plate becomes thinner. Fig. 5B shows a detailed
comparison of predicted COR between Muller’s model (Mueller
et al., 2015) (a linearization to Zener’s model) and present model.
We find that Mueller’s model significantly overestimates the COR
for V0 > VY . If the impact velocity V0 exceeds the yielding velocity
VY , besides the flexural wave, the plastic dissipation also accounts
for the kinetic energy loss of the sphere. In Mueller’s model, since
only elastic contact was considered, a distinguishable overestima-
tion can thus be found.

Practically, an explicit expression for the COR, rather than an
implicit dynamical system, can bring much more convenience. To
obtain an explicit expression, we employed the following semi-
analytical approach.

First of all, we check the thickness-dependent yielding velocity
in Eq. (14) with the results integrated with present model, shown
Fig. 5. A) Coefficient of restitution as function of dimensionless impact velocity and dime
different plate thickness.

6

in Fig. 6. The error is less than 1.2%, which agrees with the estima-
tion of residual Rej j � 0:061.

Next, for the COR that depends on R=H and V0=VY , the CORmust
degenerate to its trivial form (bulk case) as H ! 1. The trivial form
can be obtained by direct integrating the loading curve and the
unloading curve in the MYC model.

lim
R
H!0

e ¼ 1� 1� V0

VY0

� ��4
5

 !2
0
@

1
A

1
4

ð21Þ

To account for the effect of thickness, we mutate the power
index with a polynomial function of R=H. Optimization according
to the surface of Fig. 5 with least square method, we can obtain
the explicit form for the COR:

e ¼
exp �p kffiffiffiffiffiffiffiffi

4�k2
p

� �
elastic : if V0

VY0
� g

1� 1� 1
g

V0
VY0

� ��4
5

� �2
 !1

4þc R
Hð Þ2

plastic : if V0
VY0

> g

8>>>>><
>>>>>:

ð22Þ

where

g ¼ g
5
4

� �3
5 R

H

� �2

þ 1þ g
5
4

� �3
5 R

H

� �2
 !�1

5

nsionless plate thickness. B) Comparison of present model to Mueller’s model under
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and

c ¼ 0:0935
Fig. 8. Validation of the semi-analytical solution for COR with the results by FEM
simulations.
4. Result and discussion

4.1. Verification of the semi-analytical solution for COR

We conducted a FEM simulation to verify the semi-analytical
solution Eq. (22). Without loss of generality, we took an elastoplas-
tic sphere (cAl2O3) impacting a sufficiently large elastic plate
(glass) as an example. A FEM model with explicit dynamic solver
was adopted for the simulation, in which the initial velocity V0

and the plate thickness H were varying parameters. Details can
be found in Appendix.

First, we show that traditional models, such as Raman’s model
(Raman, 1920), Zener’s model (Zener, 1941), and Mueller’s model
(Mueller et al., 2015), will fail when plastic deformation occurs.
Fig. 7 compared these models with the FEM results, showing that:
although Raman’s and Zener’s models can predict the COR in the
purely elastic regime, they overestimate the COR when the plastic
deformation occurs. For a small value of k, a relative error of such
overestimation is above 20%, shown in the inset of Fig. 7.

Next, we compared our semi-analytical solution Eq. (22) with
the FEM results, shown in Fig. 8. The overall trend by Eq. (22) is
in good agreement with that by the FEM results. The margin of
error becomes relatively larger (up to 14%) for thin plate, e.g.,
H ¼ 0:556R. The reason maybe that the geometry nonlinearity
must be considered for thin plates to formulate the flexural wave.
In conclusion, present semi-analytical solution can be used to pre-
dict the coefficient of restitution for a range of thickness
(H � 0:556R) under an impact velocity lower than 7VY0 within a
maximum error less than 14%.

4.2. Energy dissipation by plasticity

With the present modified Zener’s model, we can quantitatively
study how contact plasticity affects the fractions of the kinetic
energy loss of the sphere. The loss of kinetic energy, DE, composes
of two parts: the flexural energy transferred from the sphere to the
plate and the energy dissipated by plasticity Ep. By solving the pre-
Fig. 7. Coefficient of restitution as a function of k. Results from FEM simulation is
plotted as circles. Green ones represent cases where deformation is purely elastic
and red ones represent cases where plastic deformation occurs. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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sent modified Zener’s model, we can obtain the history of the com-
pressive relative displacement. Using the force-compressive
relative displacement relationship of the MYCmodel, we can calcu-
late the plastic dissipation by integration. Then, the energy loss due
to flexural wave can be obtained by subtracting the dissipation by
plasticity from the kinetic energy loss of the sphere. The phase dia-
gram in Fig. 9A shows the contour of COR as a function of dimen-
sionless thickness R=H and dimensionless impact velocity V0=VY0.
The isolines labelled with Ep=DE ¼ 0 and Ep=DE ¼ 0:5 divides the
whole domain into three distinct regions, labelled with I, II, and
III, respectively. Region I is the elastic region, in which the kinetic
energy loss of the sphere is solely due to the flexural wave. The tra-
ditional models, such as Raman’s model, Zener’s model, and Muel-
ler’s model, are only valid in region I. In region II and III, the energy
loss is composed of flexural wave and plastic dissipation: region II
is dominant by flexural wave, while region III is dominant by plas-
tic dissipation. Numerical fitting shows that the borderline
between region II and III can be expressed by

V0

VY0

� �2
5

¼ 1þ 1:001
R
H

� �2

ð23Þ

With such phase diagram (Fig. 9A), we are able to visualize the
state of the impact condition to determine whether plasticity
should be considered, or whether plastic dissipation will be the
dominant one against flexural wave. For instance, we plotted in
Fig. 9A the states of the experiments carried out by Mueller et al.
(Mueller et al., 2015), Patil and Higgs (Patil and Higgs, 2017), and
Kharaz and Gorham (Kharaz and Gorham, 2000). Muller et al.
experimented on elastic impact of cAl2O3 bead on glass plate, so
the states locate in region I; Kharaz and Gorham experimented
on the plastic dissipation of aluminum oxide sphere impacting
steel plate, so the states locate in region II; Patil and Higgs exper-
imented on the elastoplastic impact of tungsten sphere on alu-
minum plate, so the states span over region II and region III.

As an example, we check the thickness effect on the energy par-
titions. Fig. 9B, a stacking plot, shows the energy partition as a
function of impact velocity for R=H ¼ 0:2, 0.5 and 1.2. For a thin
plate (R=H ¼ 1:2), in current range of impact velocity, plastic dissi-
pation will never dominant the energy loss of the sphere. For a
plate with R=H ¼ 0:5, as the impact velocity increases, the main
role controlling the kinetic energy loss shifts from flexural wave
to plastic dissipation. For a thick plate (R=H ¼ 0:2Þ, the contact
force is not likely to produce significant deformation to the plate.



Fig. 9. A) Contour of ratio of plastic dissipation to kinetic energy loss as function of dimensionless impact velocity and dimensionless thickness. B) Stack plot for energy
partition (ratios of plastic dissipation and flexural wave to total kinetic energy) as function of dimensionless velocity.
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Consequently, as the impact velocity exceeds the critical velocity
VY , the plastic dissipation becomes the only cause to the kinetic
energy loss if we ignore the insignificant flexural wave.
4.3. Effects of plate thickness on contact duration

Contact duration is also important during the dynamic contact
for applications such as electrical switch or trigger. Is the duration
the same for the case of bulk and plate? In addition, does the plas-
ticity also affect the contact duration? Fig. 10 plots the contact
duration for various impact velocities and plate thicknesses. First,
given an impact velocity, thinner plate means greater compliance
of the plate to the motion of the sphere, which, in turn, elongates
the contact duration. Second, given a plate thickness, the larger
the impact velocity is, the shorter the contact duration is. This
result agrees with the fact that for a Hertzian contact, the contact

duration td / m�=V0:5
0

� �0:4
(Love, 1944; Zener, 1941). Third, com-

parison between current models and the FEM simulations shows
that the present model is capable of predicting the contact dura-
tion, whilst Zener’s model may slightly overestimate the contact
duration if plastic deformation takes place. Last, the trends shown
in Fig. 10 indicates that plasticity affects contact duration to only a
small extent compared with Zener’s model.
Fig. 10. Contact time Td as function of k.
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4.4. Limitations of present model

The limitations of the present model are as follows. One aspect
is of strain-rate effect. Previous studies have shown that for some
materials, strain-rate plays a significant role in contact process,
such as a steel sphere impacting on a steel plate (Jin et al., 2020)
and shot-peening impacts (Alfredsson and Nordin, 2013). In such
cases, a new model is required to model the dynamic contact of
materials with strain-rate dependence. However, at present there
is no universal contact law considering rate effect. Another aspect
of the limitation is of contact viscosity. For some high-speed
impact cases, contact viscosity may accounts for a large fraction
of energy loss. Many models use a velocity-dependent hysteresis
damping factor to model the contact viscosity, such as the L-N
model (Lankarani and Nikravesh, 1990) and the Flores model
(Flores et al., 2011). Flores and Lankarani summarized over 15 dif-
ferent types of dissipative contact force models (Flores and
Lankarani, 2016); there is also no universal dissipative contact
force model. As a result, in the present study, as long as the MYC
model fits the contact behavior of the contact pairs, the present
model will be acceptable.

In addition, Russell experimentally studied the effect of a
deformable coating layer on the sphere and its thickness on elasto-
Fig. 11. FEM model for an elastoplastic sphere impacting an elastic plate.



Fig. 12. Distribution of plastic strain after sphere is detached from plate.
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plastic COR (Russell, 2020). Due to the existence of the coating on
the sphere, the contact law may differ. In that situation, Zener’s
equation must be modified with a suitable contact law instead of
Fig. 13. Deformation of the

9

the MYC contact law. Further, when the plate is too thin, the geom-
etry nonlinearity must be considered, but Zener’s equation cannot
consider this. Thus, we believe in this case a more accurate model
is required, and this question remains open.
5. Conclusion

Considering contact plasticity, we proposed a modified Zener’s
model to study an elastoplastic sphere impacting an elastic plate.
The conclusions are as follows:

1. We obtained an explicit expression of the yielding velocity for a
plastic sphere impacting on an elastic plate, the yielding veloc-
ity by Eq. (14) shows nonlinear dependency on the thickness of
plate, with error less than 6%.

2. Employing MYC plastic model into the control equation, we
developed a modified Zener’s model to study the elastoplastic
impact on a plate. With the developed model, we presented a
semi-analytical solution Eq. (22) for the prediction of COR,
plate at typical times.
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which can well predict the transition from elastic to elastoplas-
tic impact on a plate. This solution can be used for the thin plate
whose thickness ratio H=R is larger than 0.556.

3. Results show that energy loss during the sphere-plate impact
can be divided into three zones in the phase diagram with
respect to velocity and thickness: zones dominated by elastic
deformation, by flexural wave, and by plastic dissipation. The
borderline of the latter two zones is presented as Eq. (23) and
shown in Fig. 9. In addition, we found that the effect of contact
plasticity on contact duration can be ignored.
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Appendix:. FEM simulation

FEM simulations were conducted using ABAQUS commercial
software (Dassualt Systèmes, Vélizy-Villacoublay, France) with a
dynamic solver (ABAQUS/Explicit). Due to the symmetry, only an
axisymmetric model was necessary, shown in Fig. 11. The radius
of the sphere R was set to 0.9 mm. The radius of the plate was
set to 150 mm, sufficiently large to eliminate boundary effects
(possible wave reflection). A contact pair was established between
the sphere and the plate: the penalty method of constraint enforce-
ment was applied on the normal direction for the pressure-
overclosure relationship (‘Hard’ contact in ABAQUS), and the fric-
tion coefficient was set to 0.1. The materials for the elastic-
perfect plastic sphere and the elastic plate are cAl2O3 and glass,
respectively. Detailed material parameters are listed in Table 1.
The element (CAX4R) count in this model was about 23000, with
the finest element size at the contact region being 1%R. To investi-
gate energy partitions, kinetic energy, elastic strain energy, and
plastic dissipation of the sphere were request for result output,
as well as the elastic strain energy and kinetic energy of the plate.
We parametrically studied the cases with various impacting veloc-
ity and plate thicknesses. Fig. 11 shows the model with plate thick-
ness H ¼ 0:5mm and impact velocity V0 ¼ 26m=s as an example.

Fig. 12 shows the distribution of equivalent plastic strain after
the sphere is detached from the plate. The highest plastic strain
is about 0.039. It is evident that a fraction of the kinetic energy is
dissipated by plastic deformation.

To see how the plate deforms, we scaled the deformation scale
factor to 50 since the deformation was actually too small to be
visualized. Fig. 13 shows the history of the contact force, which
can be treated as an indicator for the status of sphere/plate con-
tact: at time t ¼ 1;2;3ls, the sphere is in touch with the plate.
The contours in Fig. 13 visualize the vertical displacement of the
plate at various times. It can be seen that the flexural wave travels
away from the impact center like a ripple, and no reflective wave
can be observed during the whole impact process.
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