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Abstract: As mining depth increases, the backfill mining method is more and more widely used
in underground mines. The dynamic load generated by the blasting can affect the stability of the
cemented tailings backfill (CTB). The CTB samples were prepared to conduct a test of the split
Hopkinson pressure bar (SHPB) to investigate the dynamic disturbance of CTB. The present paper
discusses dynamical mechanics, energy dissipation, and microstructure analysis of CTB. Micro-
computer tomography (micro-CT) scanning of CTB samples after the SHPB test was performed to
analyze the evolution of internal cracks. The experimental results showed that when the average
strain rate (ASR) increased from 30 to 98 s−1, the dynamic uniaxial compression strength (DUCS) of
the CTB showed a trend of first increasing and decreasing with the increase in ASR. The dynamic
stress–strain pre-peak curve of CTB directly enters the linear elastic stage. As ASR increases, the
absorbed energy of the CTB shows a trend of first increasing and then decreasing. Moreover,
according to the micro-CT scanning results, the crack area of CTB accounts for about 16% of the sample
near the incident bar and about 1% near the transmitted bar. The crack area ratio is exponentially
related to the specimen height. These findings can provide reasonable dynamical CTB strength data
selection for underground pillar mining.

Keywords: cemented tailings backfill (CTB); split Hopkinson pressure bar (SHPB); dynamical char-
acteristics; energy dissipation; micro-computer tomography

1. Introduction

Underground metal mines have made a steady transition to deep mining as time
goes on. Many metal mining methods are available such as caving, open stoping, and
filling methods for excavating ore reserves from underground. Among the many methods
employed, the filling mining method has been widely used because of its advantages,
such as a small stripping ratio, low loss rate, reduced solid waste accumulation, and
prevention of surface settlement. Therefore, the mechanical properties of the cemented
backfill are very important in ensuring the safety of mining [1,2]. In recent years, the
instability accidents of backfills have been mostly caused by blasting vibrations in nearby
mining areas. Jiang et al. [3] studied dynamic mechanisms of layered cemented backfill
pillars under the far-field blasting and found that the peak values of the velocity and the
displacement response of the backfilling body are affected by the frequency of stress waves.
In this scenario, the cemented tailings backfill (CTB) or cemented paste backfill (CPB) in
goaf is disturbed by the impact load generated during the blasting of the mining adjacent
stope, which affects the stability of the CTB.
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The CTB is an artificial composite material composed of tailing, cemented agent, and
water [4]. Mine backfill has become a safe and environmentally tailings disposal method.
The strength and consistency of CPB are of key concerns in the stope stability and cost
control for underground mines [5]. Tang et al. [6] investigated the effect of β-hemihydrate
gypsum dosages cemented paste backfill produced from sulfide-rich mine tailings using
NaOH-activated slag (NAS) as the major binder. Wang et al. [7] prepared CTB specimens
using fly ash as a binder to study the solid content of the filling body, the ratio of sizing
material, the type and content of fly ash on the viscosity and the uniaxial compressive
strength of the filling body impact. Xu et al. [8] concluded that the binder proportion
promotes the strength acquisition of CTB samples. Wu et al. [9] found the peak strength of
CPB is positively linear with confining pressure.

Thus, such factors as the lime–sand ratio and slurry concentration greatly influence
its dynamic performance [10,11]. Zhu et al. [12] proposed that the dynamic uniaxial
compression strength (DUCS) of the CTB increases correspondingly with the increase in
the slurry concentration and ratio within a certain range. Tan et al. [13–15] found that the
greater the cement–tailings ratio of the CTB, the more obvious the strain response would
be. In comparison, Yang et al. [16,17] believed that the higher the cement–tailings ratio
of the backfill, the greater the ultimate dynamic compressive strength of the specimen.
By comparing the mechanical properties of the dynamic and static loads of the high-
concentration cemented backfill, it has been found that the average strain rate (ASR) of
the critical failure of cemented backfill specimen is 103 s−1. Wang et al. [18] found that the
deformability of the backfill decreased with the increase in the slurry concentration and
the lime–sand ratio. Furthermore, the stability of cemented backfill is also closely related
to the strain rate. Within a certain range, the strain rate has a gain effect on the dynamic
compressive strength of the cemented backfill. Yang et al. [19] proposed that cemented
backfills are similar to rock materials and have strain rate effects. Cao et al. [20] performed
the split Hopkinson compression bar test and reported an ASR of 10–100 s−1; furthermore,
the DUCS of the CTB increased exponentially with the increase in the ASR. Zhang et al. [21]
obtained the law of dynamic mechanical properties under the strain rate of 10–80 s−l. The
dynamic compressive strength of the layered cemented backfill is positively correlated
with the strain rate. Similarly, the strength increase factor has also been reported to be
positively correlated with the strain rate. Zhang et al. [22] found that under the impact
load, the maximum strain rate of cemented backfill specimen of high-density unclassified
tailings can reach 305 s−1.

However, as a kind of artificial composite material, cemented backfill has different
initial defects in its internal structure, such as pores and micro-cracks. The macroscopic
deformation caused by the external load is realized through the adjustment of the internal
microstructure parameters. The wide application of CT makes it possible to visualize the
internal structure of composite materials, such as the CTB [23]. Sun et al. [24,25] generated
scanning images of cemented backfill under different stress through medical CT and
obtained the pore values of cemented backfill under different strain conditions. Through
micro-CT, Wang et al. [26] found numerous pores in the layered cemented backfill due to
the changes during curing age. They reported that the internal pore structure of cemented
backfill greatly influenced its failure mode and working performance. Cao et al. [27] and
Xue et al. [28] prepared fiber fillers and scanned its internal structure through industrial
CT and found the failures of backfill samples (i.e., tensile, shear, and tensile–shear mixed
failures). They also found that the internal structure of the CTB has an improved effect
on strength at a fiber output of 0.2 wt.%. Yi et al. [29] visually characterized the waste
cemented backfill of metal mine tailing through uniaxial compression real-time CT scanning
mechanical tests and reported that the crack shape of the damaged backfill is affected by
the shape, size, and distribution of the waste stone.

Generally, the room and pillar should be divided during the whole backfilling mining
process. The mined-out area was backfilled when the room finished mining. Thus, the CTB
or CPB was easily disturbed by the blasting shockwave in the process of pillar mining. As
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for the backfill mining method, the same size of the mining chamber and prop are used in
mines. Therefore, in this paper, the size of the specimen used in the SHPB test is 50 mm
in diameter × 50 mm in height, closer to the typical mine site. The paper introduces new
ideas to study the strengthening effect of the strain rate of cemented backfill under SHPB
and analyze the stress–strain curve. The micro-CT reveals the internal micro-crack law of
CTB under SHPB, thus providing a useful reference for improving the stability of CTB in
the pillar mine.

2. Materials and Methods
2.1. Material Characterization

The tested unclassified gold tailings used in the study were from a gold mine in
the Shandong Gold Group Co., Ltd. The density of the tested tailings was 2.34 g/cm3,
and the specific surface area was 39.595 m3/kg. After drying, the tailings were analyzed
by a laser particle size analyzer. Figure 1 shows the particle size distribution curve of
unclassified tailing. The d50 of unclassified tailing is 321.295 µm, which belongs to larger-
sized tailings according to Landriault’s mine tailings classification [30,31]. A sequential
X-ray fluorescence spectrometer is used to test the chemical composition of tested tailings
and cement. Table 1 shows the chemical composition of the tested tailings. The main
component is SiO2, accounting for 58.4 wt.%. Figure 2 shows the X-ray diffraction (XRD)
patterns of tested tailings, which agrees well with their chemical components [32]. The
tailings mainly consist of crystalline minerals (i.e., quartz and lime).
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Table 1. Chemical composition of the unclassified tailings.

Chemical
Composition SiO2 Al2O3 K2O CaO Fe2O3 SO3 MnO

Content (wt.%) 58.4 7.03 4.02 2.08 1.29 0.7 0.041
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The ordinary Portland cement 42.5R was used to be the cementing material. The
chemical composition is shown in Table 2. Among them, the effective ingredient CaO
accounts for 35.4 wt.%.

The water used is tap water.

Table 2. Chemical composition of ordinary Portland cement 42.5R.

Chemical
Composition CaO SiO2 SO3 Al2O3 Fe2O3 TiO2 K2O MnO

Content (wt.%) 35.4 17.1 3.21 2.39 2.19 0.56 0.44 0.1

2.2. Specimen Preparation

In this study, the value of solid content and the cement–tailings ratio of the manufac-
tured CTB samples was constantly set to 75 wt.% and 0.25. The experiment personnel used
a standard electronic scale to weigh the tailings, cement, and tap water and fully stirred
the materials in the mixer for 180 s [33]. The content of each component is 34.5 g of cement,
138 g of tailings, and 57.5 g of water. The slump value of the tested CTB slurry was about
24.5 cm. Then, the stirred slurry was poured into the mold (the mold with a height of
50 mm and a diameter of 50 mm) with the requirements of ASTM C192/C192M [34]. The
CTB samples were placed inside the standard curing box at 20 °C ± 1 °C in temperature,
90% ± 1% in humidity. After 48 h, the samples were demolished from the mold and then
returned to the curing box until 28 d [35]. After 28 d, the specimen was gently polished at
both ends to meet the flatness requirements of the dynamic load test [36]. The preparation
process of CTB specimens is shown in Figure 3.
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Figure 3. Preparation process of CTB specimens.

2.3. Experimental Devices

The SHPB test platform consisted of a nitrogen cylinder, Hopkinson pressure bar test
bench, launch chamber, elastic pressure bar, confining pressure device, super dynamic
strain gauge, oscilloscope, computer, timer, and other parts. The diameter of the pressure
bar in the SHPB test device was 50 mm, the material was 40 Cr alloy steel, the density was
7800 kg/m3, and the wave velocity was 5200 m/s. In this study, the maximum average
strain rate was 98 s−1. Besides, the sensitivity of the hyper dynamic strain gauge was more
than 0.2 V/100 µε, and the strain coefficient was 2.0 [37]. Figure 4 is a schematic diagram of
the SHPB test device system. Before the beginning of SHPB, a thin layer of Vaseline should
be coated on the end surfaces of the specimen to eliminate possible stress that is uneven
due to contact between the specimen and bars.
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Figure 4. Schematic diagram of the SHPB device.

The micro-CT test system used in this study was a dual-source, dual-detector system.
The two sources are the 225 kV microfocus and 450 kV light source, whereas the two
detectors were a flat panel and line array detector. In this experiment, a 225 kV micro-focus
micro-CT light source was used for a continuous rotating scan at a spatial distribution rate
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of 23 Lp/mm. The exact resolution of the backfill specimen prepared in the experiment
was 68 µm. Figure 5 presents a diagram of the CT test system device.
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3. Results and Discussion
3.1. Dynamic Stress Equilibrium

The assumption condition for establishing the SHPB test system is that it conforms
to the one-dimensional stress wave propagation theory and that the two ends of the
specimen reach stress equilibrium [38]. Therefore, it is necessary to check the stress
equilibrium at both ends of the specimen. When the incident wave plus the reflected wave
is approximately equal to the transmitted wave, the two ends of the specimen are said to
reach a stressed equilibrium. Figure 6 is a superposition of the waveform relationship of
the CTB specimen. The stress at the incident end of the specimen is counted by the incident
wave plus the reflected wave, and the stress at the transmitted end is the transmitted
wave. The relationship between the stress and time in the pressure bars at both ends of
the specimen can be obtained by superposition. As shown in Figure 6, the amplitudes
of superimposed wave and transmitted wave are almost equal. The waveforms overlap,
indicating that the two ends of the backfill specimen in this experiment have reached a
stressed equilibrium.
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3.2. Relation between Dynamic Stress and Strain

Actually, the dynamical strength enhancement factor obtained in this manuscript
could provide a data basis for the engineering application of the strength design of the
backfill. As we know, the design of the CTB must consider the safety factor in the actual
mining process. CTB samples were performed ASR by SHPB of ASR in the range from
30 to 98 s−1. Figure 6 shows the relationship between the ASR of CTB and DUCS and the
dynamic strength enhancement factor. As shown in Figure 6, when the ASR was between
30 and 98 s−1, the DUCS of CTB shows a trend of first increasing and then decreasing with
ASR. When the strain rate is 74 s−1, the peak DUCS of CTB is 14.1 MPa. According to the
uniaxial compression test, the static uniaxial compressive strength of CTB is 4.47 MPa. In
rock dynamics, dynamic strength enhancement factors are often used further to express
the strain rate effect [39].

K =
σd
σS

(1)

In the equation, K is the dynamic strength enhancement factor, σd is the peak compres-
sive strength under dynamic load, and σS is the peak compressive strength under static
load. The calculation results are shown in Figure 7.
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Figure 8 shows that the relationship between the stress and strain curves of the CTB
under different ASR. As shown in Figures 7 and 8, CTB also exhibits a strengthening effect
of ASR, consistent with the findings of other scholars [13,16]. However, the difference is
that when the ASR is 74 s−1, the strengthening effect of the strain rate decreases. The large
wave impedance of CTB may cause this. The height to diameter ratio of the specimen used
here is 1, and the height to diameter ratio of the backfill specimen studied by most scholars
is 0.5. Hence, when the strain rate is greater than 74 s−1, the strengthening effect of the
strain rate decreases.
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In this study, the pre-peak mechanical properties of CTB were significantly investi-
gated. The paper also analyzes the pre-peak stress–strain curve of CTB with the ASR of
74 s−1. The stress–strain curve at the OB section is nearly straight. Due to the immedi-
ate impact speed, the pore compaction stage of the specimen does not appear, and the
stress–strain curve directly enters the elastic deformation stage. When the BC section is at
the stage in which the micro-fracture development is stable, the specimen presents micro-
fracture and develops steadily, although the stress–strain curve is still almost linear at this
point. When the BC section is at the progressive rupture stage, the micro-rupture continues
to accumulate and develop until the specimen is completely damaged and reaches the
compressive strength of the cemented backfill at the dynamic peak, that is, point C.

3.3. Energy Dissipation Analysis

The SHPB test was conducted along with the energy dissipation, and the absorbed
energy was used for evaluation. The relationships among incident energy WI , reflected
energy WR, transmitted energy WT , and absorbed energy WS are given by [39],

WS(t) = WI(t)− WR(t)− WT(t) (2)

WI(t) = EAC0

∫ T

0
ε2

I(t)dt (3)

WR(t) = EAC0

∫ T

0
ε2

R(t)dt (4)

WT(t) = EAC0

∫ T

0
ε2

T(t)dt (5)

where E is the elastic modulus of the compression bar, A is the cross-sectional area of the
incident bar, C0 is the velocity of elastic stress wave, ε I is the incident strain, εR is the
reflected strain, and εT is the transmitted strain. According to the test results. The CTB
energy is obtained as shown in Table 3.

Table 3. Summary of the energy of CTB.

Specimen No. ASR WI WR WT WS

1 30 18.99 16.82 0.24 1.93
2 52 20.34 17.47 0.07 2.79
3 74 96.46 76.49 0.74 19.23
4 98 156.22 139.64 0.90 15.68
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Next, the relationship diagram among strain rate and incident energy reflected energy,
transmitted energy, and absorbed energy is drawn according to Table 3. It can be seen from
Figure 9 that the incident energy of the cemented backfill and the reflected energy both
increase as the strain rate increases. As the strain rate increases, the transmitted energy
first decreases and then increases. However, transmitted energy is less than 1 J due to
the large difference between the density of the cemented backfill and the density of the
impact bar and the large difference in wave impedance [16]. This lessens the transmitted
wave received in the transmitted bar, making the transmitted energy so little and, thus,
negligible. At the same time, the absorbed energy of the cemented backfill shows a trend
first increasing and then decreasing with the increase in strain rate. This indicates that the
cemented backfill has a better energy absorbed performance, although it may be limited as
the energy cannot be absorbed after reaching the peak. The energy-absorbing performance
is consistent with its dynamic peak intensity.
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3.4. Two-Dimensional Micros-Crack Distribution of CTB Specimens

The distribution of cracks and pores in the CTB was obtained by micro-CT scanning.
When the ASR is 30 s−1, the CTB after dynamic load was generally intact and scanned
by micro-CT. The 2D images of the CTB samples were obtained by the slicing function of
micro-CT with 0.5 mm spacing along the Z-direction of samples. ImageJ software (V1.8.0,
National Institutes of Health, MD, USA) was used to binarize the CT slice images to make
the cracks more clearly displayed and then used the analyze particles function to calculate
the area ratio of the cracks to the entire slice. Finally, the results are shown in Figure 10.
As the specimen’s height increases and the specimen comes closer to the incident bar, the
failure area of the specimen increases. Near the incident bar, the failure area of the CTB
accounts for about 16% of the total area, whereas the failure area only accounts for about
1% near the transmitted bar. The crack area ratio is exponentially related to the specimen
height. The correlation coefficient R2 = 0.989 indicates that the exponential function has a
high correlation, and the exponential equation relation is y = a ∗ e−

x
b + y0, where a, b, and

y0 are constants (a = 0.12, b = −17.89, y0 = 0.62).
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A slice image was taken every 10 mm for further analysis, as shown in Figure 10. It
can be seen that there are initial holes in CTB. A pseudo color-enhancing algorithm was
used to process the micro-CT slice images to facilitate image analysis [40,41]. Figure 10
shows that the part of CTB wherein the stress wave acts first (Z = 40 mm) had partly been
spalled and had some cracks and micro-cracks. Furthermore (Z = 30 mm), the main cracks
and micro-cracks increased when the spalling area of CTB reduced. When Z = 20 mm,
the structure of CTB is intact without spalling, and there are two main cracks and one
micro-crack. When Z = 10 mm, the structure of CTB is also intact without spalling; although
there are two main cracks, no micro-cracks are observed. According to the test results,
when the CTB undergoes a different strain rate by Hopkinson dynamic load tests, only
30 s−1 remains basically intact, and the others are impacted into fragments. Overall, it
can be seen that when the strain rate is 30 s−1, CTB can maintain a complete shape with
residual strength.

3.5. Failure Modes of CTB Specimens Analysis

The specimen or specimen pieces of the impacted cemented backfill are collected and
summarized. The CTB specimen with a strain rate of 30 s−1 remains relatively intact after
the impact. Thus, this specimen was selected for micro-CT scanning, and other specimen
pieces were flattened and photographed into pictures. The pictures underwent grey-scale
binarization processing. Table 4 shows the diagrams of each cemented backfill that is
damaged under different strain rates. In this section, the maximum block size of CTB was
used to assess the failure degree. With the increase in the ASR from 54 to 98, the maximum
block size of the CTB specimen decreased from 25 to 17 mm.

A slice picture was obtained every 0.5 mm using CT scan, and slice image data
reconstructed the damaged cemented backfill. The results are shown in Table 4. Distinctly,
at an ASR of 30 s−1, CTB can still maintain a relatively intact shape. The entire surface of
the specimen shows tensile cracks. With the increase in ASR, it is obvious that the rate of
large blocks decreases, and the rate of small blocks increases after the cemented backfill
is damaged.

The specimen under dynamic load with the ASR of 30 s−1 was used for three-
dimensional reconstruction of the crack. Figure 11 shows the different angles of the
three-dimensional reconstruction of the crack of the specimen. Obviously, when the ASR is
30 s−1, the transfixion crack of CTB is a tensile crack accompanied by a shear crack on the
surface. Actually, the phenomenon of CTB or CPB failure was prone to occurring in pillar
mining, such as the fragmentation and collapse of artificial CTB pillars. In addition, the
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deformation of the CTB or CPB in the downhand cut and fill mining method was also a
typical type of tensile failure.

Table 4. Fracture modes of CTB specimens under SHPB impact loading.

ASR/s−1 30 52 74 98
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4. Conclusions

In this paper, a series of laboratory tests, including the SHPB test, energy dissipation,
and micro-CT scan, was conducted on CTB specimens to explore their dynamical mechanics
and microstructural characteristics. The conclusions are as follows:

(1) In the SHPB test, the superimposed wave of the incident wave and reflected wave was
almost equal to the amplitude of the transmitted wave, and the waveforms overlapped.
The two ends of the CTB specimen in this experiment reached a stressed equilibrium.

(2) When the ASR is 30–98 s−1, with the increase in the ASR, the DUCS of the CTB shows
a trend of first increasing and then decreasing.

(3) The CTB also exhibits a strengthening effect of strain rate, and when the ASR is greater
than 74 s−1, the strengthening effect decreases.

(4) As the ASR increases, the incident energy of the CTB increases, and the reflected
energy also increases. The transmitted energy can be negligible, and the absorbed
energy shows a trend of first increasing and then decreasing, which is consistent with
its dynamic peak intensity.
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(5) The pseudo-color enhancement was carried out for the original CT slice image with
micro-CT. Results show that the closer the specimen near the incident bar, the larger
the crack area of the specimen. The crack area ratio is exponentially related to the
specimen height.

In this study, the research finding has revealed the dynamical mechanics and microstruc-
tural characteristics of CTB. In future work, the further dynamic energy dissipation analysis
of CTB will be considered. Additionally, the SHPB experiments with 3D-DIC techniques
will be considered to observe the real progress of the crack development of CTB.
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