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The particle–particle (PP) model has a growing number of applications in plasma
simulations, because of its high accuracy of solving Coulomb collisions. One of the
main issues restricting the practical use of the PP model is its large computational cost,
which is now becoming acceptable thanks to state-of-art parallel computing techniques.
Another issue is the singularity that occurs when two particles are too close. The most
effective approach of avoiding the singularity would be to simulate particles with only
like charges plus a neutralizing field, such that the short-range collisions are equivalent
to those of using unlike charges. In this paper, we introduce a way of adding the
neutralizing field by using the analytical solution of the electric field in the domain filled
with uniformly distributed charges, for applications with homogeneous and quasi-neutral
plasmas under a reflective boundary condition. Two most common Cartesian domain
geometries, cubic and spherical, are considered. The model is verified by comparing
simulation results with an analytical solution of an electron–ion temperature relaxation
problem, and a corresponding simulation using unlike charges. In addition, it is found that
a PP simulation using like charges can achieve a significant speed-up of 100 compared
with a corresponding simulation using unlike charges, due to the capability of using larger
time steps while maintaining the same energy conservation.
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1. Introduction

In general, particle simulation models can be grouped into three categories, the
particle–particle (PP) model, the particle–mesh (PM) model and the particle–particle
particle–mesh (PPPM) model (Hockney & Eastwood 1981). Among these three models,
the PP model has the highest accuracy in principle, since it considers the forces of all
the pairs of particles. However, the trade-off of high accuracy is the large computational
cost, because the number of operations is proportional to the square of the number
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of particles. This obvious disadvantage prevents the PP model from being widely used
in many applications of particle simulations.

In the area of electrostatic plasma simulations, for collisionless plasmas, the well
developed and commonly used PM model particle-in-cell (PIC) (Birdsall & Langdon
1991) has succeeded in numerous applications, which not only utilizes a mesh system
to reduce the computational cost, but also introduces the concept of a macroparticle to
decrease the simulated number of particles and screen out the less interesting short-range
particle interactions. For collisional plasmas, however, short-range interactions play a
major role, the nature of PIC or other PM models, that particle interactions cannot
be resolved within the range of a cell, makes it unsuitable or even unable to capture
the correct physics of collisions. Although some other schemes can be added into PIC
to consider collisions, such as Monte Carlo binary collision methods (Nanbu 1997),
uncertainties remain in the accuracy of collisions, e.g. how to choose an appropriate
Coulomb logarithm. For example, in the regime of small angle scattering, the Coulomb
logarithm (ln Λ � 1) could be calculated using the simple formula Λ = λD/bmin, where
λD is the Debye length and bmin denotes a minimum impact parameter. For strongly coupled
plasmas, possible large angle scattering exists, the Coulomb logarithm would have to be
determined using other theories, as in Ramazanov & Kodanova (2001), where higher-order
many-particle correlations are taken into account. To compute collisions accurately and
directly without utilizing the Coulomb logarithm, a PP or PPPM (Dimonte & Daligault
2008) model is needed, and except for the large computational cost, simulations using the
PP model with real particles (instead of macroparticles) should produce the most trustable
results, because the PP model can solve collisions in a desired accuracy given a small
enough time step, and it considers all particle correlation effects intrinsically, while PM
or PPPM models do not.

For the large computational cost of the PP model, we may not be able to overcome it
easily, but with the development of supercomputers and parallel computing techniques,
the computational time can be reduced to an amount that is acceptable for simulations
on a small spatial scale with a small number of plasma particles. Recent works have
already shown that the PP model is feasible for contributing to real applications that
require high accuracy of collisions, e.g. electron–ion temperature relaxation problems
occurred in inertial confinement fusion (Zhao 2017, 2018a,b); calculations of conductivity
and diffusion coefficients in ultracold plasmas (Bobrov et al. 2011; Bobrov, Vorob’ev &
Zelener 2018; Bobrov et al. 2019, 2020) and some fundamental non-Maxwellian plasma
relaxation problems (Zhao 2018c). In addition, the idea of PP in general has some other
beneficial applications. For example, in electric propulsion thruster plume simulations, a
large vacuum region usually has to be solved by a Poisson solver to limit the non-physical
effects caused by the boundaries, but solving the vacuum region without particles is a
waste. Using PP, only the information of particle positions is needed, all computational
focus is the plume, thus there is no waste (Zhao, Wang & Usui 2018). Also, an open
boundary condition can be easily achieved using PP. Moreover, for electrospray thrusters,
Coulomb interactions of charged droplets are strong near the electrospray needle, and the
plume expands spatially very fast, so it is more advantage to use a PP model, than a PM
model which has to apply very fine meshes near the electrospray needle to resolve the
strong interactions (Zhao & Wang 2019).

When simulating strongly coupled plasmas, the PP model has another issue, which
is the singularity that occurs when two particles are getting too close. For colliding
like charges, if we use a sufficiently small time step, no singularity can occur, because
like charges eventually repel each other away. For colliding unlike charges, however, no
matter how small the time step is, the singularity can always occur due to attractions,
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Implementation of neutralizing fields for particle–particle simulations using like charges3

when recombinations are about to happen. The singularity and the resulting unphysical
large forces can lead to numerical heating and instability. For many applications, the
recombinations can be ignored, thus the issue of singularity must be avoided for the
success of PP simulations. To tackle the singularity issue, the easiest way is to introduce a
cutoff and ignore or reduce the strong forces that occur when the interparticle distance is
smaller than the cutoff distance (Zhao 2017, 2018a). Another option is to apply only like
charges with an additional neutralizing background, such that the long-range collective
forces are cancelled out. Considering two approaching particles with the separation of an
impact parameter, changing the sign of the charge only results in a flipped scattering, but
the scattering angle remains the same, thus although the microscopic trajectories vary,
the resultant macroscopic relaxation does not, especially for the strongly coupled plasma
condition considered in this paper. For example, Dimonte & Daligault (2008) applied
only positively charged particles with a neutralizing background to study electron–ion
temperature relaxation using a PPPM model.

For PM or PPPM models, implementing the neutralizing background is straightforward.
For example, a neutralizing charge density can be added on mesh points before solving
Poisson’s equation to obtain neutralized electric potentials and fields (Dimonte &
Daligault 2008). For the pure PP model, however, to the best of our knowledge, there
are no references in the literature of how to add a neutralizing background. Therefore, in
this paper, we develop an approach of adding a neutralizing background in the PP model,
so that like charges can be used to avoid singularity, while maintaining the correct physics
of Coulomb collisions.

The approach of adding a neutralizing background considered in this paper is to utilize
the analytical solution of the electric field in the simulation domain due to uniformly
distributed charges that fill the domain, for those applications with homogeneous,
quasi-neutral plasmas, any non-drifting particle velocity distributions, and under a
reflective boundary condition. For example, problems of temperature relaxation that are
considered in this paper, and relaxation problems of non-Maxwellian velocity distributions
as studied in Zhao (2018c). Also note that this PP method does not account for
any magnetic fields generated by moving particles, so it is limited in non-relativistic
electrostatics, while PIC plus a Monte Carlo model can compute collisions in the
relativistic regime (Zhao et al. 2020). Two types of simulation domains are studied. One
is a spherical domain, which has a simple form of the analytical solution. The other is a
cubic domain, whose solution has a relatively complicated form.

This paper is organized as follows. In § 2, we describe the analytical solutions for the
two types of domains, and the procedure of the applied PP model. In § 3, we use an
electron–ion temperature relaxation problem to verify the PP model by comparing the
simulation results with a theoretical solution and the results of a corresponding simulation
using unlike charges. Finally, conclusions and discussions are given in § 4.

2. Model

The simulation procedure of the applied PP model is described as follows, which is
very similar to those that have been implemented in previous works by Zhao (Zhao 2017,
2018a,c,b; Zhao et al. 2018). Initially, particle positions and velocities are sampled as
needed in the simulation domain. At each time step, the electric field Ei at the spatial
location of the ith particle is calculated through Coulomb’s law plus a neutralizing field,

Ei = 1
4πε0

N∑
j=1,j�=i

qj

|rij|3 rij + En(ri, Qtot), (2.1)
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where ri (rj) is the position vector of the ith (jth) particle, rij = ri − rj, q denotes the
particle charge, ε0 is the vacuum permittivity, N is the total number of particles, En denotes
the neutralizing field, which can be computed through (2.3) for a spherical simulation
domain, or (2.5) for a cubic simulation domain, Qtot = −∑N

i=1 qi is the total neutralizing
charge. Note that for PM or PPPM models, the neutralization can be achieved easily
by adding an neutralizing charge density on each mesh points, before solving Poisson’s
equation for the electric potentials and fields (Dimonte & Daligault 2008).

It is worth mentioning here that for the specific temperature-relaxation problems
considered in this paper, the classical electrostatic assumption, i.e. Coulomb potential,
can be well applied as many references have done (Glosli et al. 2008; Benedict et al.
2009, 2012; Daligault & Dimonte 2009). Also, the PP simulations presented in this work
include the physics occurring within the range of Debye length In fact most effective
collisions occur within the Debye sphere, as shown in some previous works that the
interactions of particles located greater than approximately 2λD do not contribute to the
relaxation anymore (Zhao 2017) for a plasma condition which is similar to that of this
paper. Therefore, applying Coulomb potential is correct and appropriate in this work,
other screening potentials like Debye potential would underestimate the strong interactions
that should physically occur. However, one should note that in the regime of quantum
degenerate plasmas, the classical Coulomb potential may not be appropriate anymore, thus
other potentials like Yukawa potentials (Faussurier & Blancard 2017) could be considered.

Knowing Ei from (2.1), the velocities and positions of all the particles are updated
through the velocity Verlet algorithm (Verlet 1967). It is found that using a dynamic time
step �t increases the simulation speed significantly, while it still conserves the system
energy as the same as using a small fixed �t. The dynamic time step is chosen based on
the criteria

�t = ftrmin/vmax, (2.2)

where rmin is the minimum interparticle distance and vmax is the maximum particle speed
at the current time step, ft is a given factor to adjust �t. The physical meaning of ft is that
the simulation takes 1/ft time steps to solve the trajectory of a particle with the maximum
particle speed vmax travelling the minimum interparticle distance rmin. Thus, ft = 0.1 would
be a recommended value as a first attempt for most simulations. Note that one drawback
of using the dynamic time step is that the total number of time steps of simulations cannot
be known in advance, and the simulation runtime may be hard to estimate.

The boundary condition for particles is specular reflection on the surface of the
simulation domain, which is straightforward for a cubic simulation domain. For the
specular reflection boundary condition on a spherical surface, since no reference is
found, we present an implementation that is used in this work, and give its derivation
in Appendix A.

Note that the geometry does not matter for the problem studied in this paper. Compared
with the cubic domain, the advantage of the spherical domain is that its neutralizing field
solution has a much simpler form, but the implementation of the reflection boundary
condition on a spherical surface requires the information of particle portions at an old
time step.

2.1. Spherical neutralizing field
For a spherical simulation domain, the neutralizing field can be obtained easily from the
known analytical solution of the electric field in a uniformly charged sphere centred at the
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Implementation of neutralizing fields for particle–particle simulations using like charges5

FIGURE 1. The magnitude of electric field in a uniformly charged sphere with radius R on the
z = 0 plane. Values of R = 1, ρ = 3Qtot/(4πR3) = 1 and 1/(4πε0) = 1 are used to make the
plot.

origin (by using a spherical Gaussian surface),

E = Qtot

4πε0

r
R3

, (2.3)

where r = (x, y, z), R denotes the radius of the spherical domain. A plot of the field on the
z = 0 plane is shown in figure 1.

2.2. Cubic neutralizing field
For a cubic simulation domain, the neutralizing field can be obtained from the electric field
in a cube centred at the origin with a size of 2L × 2L × 2L and a uniformly distributed
charge density ρ = Qtot/(8L3),

E =
∫ L

−L

∫ L

−L

∫ L

−L

ρ

4πε0

r − r′

|r − r′|3 dx′ dy′ dz′, (2.4)

where r = (x, y, z) and r′ = (x′, y′, z′).
An exact but tedious solution can be obtained by solving the triple integral directly. For

the x component, the field reads

Ex = ρ

4πε0

[
F
(√

x2− + y2+, y+, z
)

− F
(√

x2− + y2−, y−, z
)

−F
(√

x2+ + y2+, y+, z
)

+ F
(√

x2+ + y2−, y−, z
)]

, (2.5)

where x± ≡ x ± L, y± ≡ y ± L and z± ≡ z ± L, Ey can be obtained by replacing x with y,
y with z and z with x; Ez can be obtained by replacing x with z, y with x and z with y.
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FIGURE 2. The magnitude of electric field in a uniformly charged cube with length 2L on the
z = 0 plane. Values of L = 1, ρ = Qtot/(2L)3 = 1 and 1/(4πε0) = 1 are used to make the plot.

The function F reads

F(a, b, c) ≡ ln
[(c2

+ + a2)1/2 + b]c+

[(c2− + a2)1/2 + b]c−
+ 2

√
a2 − b2

[
tan−1

(√
a − b
a + b

t+
)

− tan−1

(√
a − b
a + b

t−
)]

+ b ln
∣∣∣∣(t++1)(t−−1)

(t+−1)(t−+1)

∣∣∣∣+ 2a
(

t+
t2+ − 1

− t−
t2− − 1

)
, (2.6)

where t± ≡ tan[tan−1(c±/a)/2]. A plot of the field on the z = 0 plane is shown in figure 2.
Since no reference is found about this solution, we also provide a brief derivation in
Appendix B.

3. Simulation

Since similar PP models have been successfully applied in solving different physical
problems (Zhao 2017, 2018a,c,b; Zhao et al. 2018), here we only focus on the verification
of simulations using like charged particles with the neutralizing fields described in
§§ 2.1 and 2.2. To achieve this goal, an electron–ion temperature relaxation problem
is chosen, in which electrons and ions are in their own equilibrium but have different
temperatures initially, then temperature relaxation occurs due to Coulomb collisions and
their temperatures become the same after the relaxation process. For this problem, a
theoretical solution is available, as described in § 3.1, with which the PP simulation results
can be compared.

All simulations in this work were carried out at the Center for Advanced Research
Computing (CARC) at the University of Southern California (https://carc.usc.edu).
Decomposition of the particle array is used to parallelize the code with message passing
interface (MPI).
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Implementation of neutralizing fields for particle–particle simulations using like charges7

3.1. Theoretical solution
Here we consider the commonly used Landau-Spitzer theory, in which the time rate of
temperature relaxation reads (Spitzer 1962; Dimonte & Daligault 2008)

dTe

dt
= νei(Ti − Te),

dTi

dt
= νie(Te − Ti),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where νei = ν0Λ, νie = (ne/ni)νei = Zνei, Λ is the Coulomb logarithm, Z is the ion charge
number, i.e. the number density ratio ne/ni, subscripts e and i denote electrons and ions,
respectively. The prefactor can be written as (Dimonte & Daligault 2008)

ν0 = 8
3

nie4Z2

(4πε0)2

(2πmemi)
1/2

(mekBTi + mikBTe)3/2
, (3.2)

where e is the elementary charge, kB is the Boltzmann constant, m is the particle mass.
Uncertainty arises in choosing the Coulomb logarithm of the form

Λ = ln(CλD/Rc), (3.3)

where λD = (ε0kBTe/nee2)1/2 is the electron Debye length, representing the largest impact
parameter before forces are screened out; Rc = Ze2/4πε0kBTe is the Landau length,
representing the smallest impact parameter and characterizing large angle scatterings,
which do not occur in weak coupling plasmas. Proposed values of the coefficient C are
found to vary between 1 and 3 under different theoretical approximations (Landau 1937;
Cohen, Spitzer & Routly 1950; Thompson & Hubbard 1960; Spitzer 1962).

In this work, we carry out the simulations under a plasma condition that is chosen by
Dimonte & Daligault (2008), i.e. the non-ideality γ = Rc/λD = 0.1. Under this condition,
an implicit solution of the electron temperature Te(t) as a function of time t is (Dimonte &
Daligault 2008)

1 − Te

Te0
+ ε ln

(
ε − 1

ε − Te/Te0

)
= t(Z + 1)νei0, (3.4)

where νei0 is calculated using the initial electron and ion temperatures Te0 and Ti0,
ε = T∞/Te0, T∞ = (ZTe0 + Ti0)/(Z + 1) denotes the final equilibrium temperature. Then
Ti(t) can be obtained via the relation Ti = Ti0 − Z(Te − Te0). In the following section,
simulation results are compared with this theoretical solution.

3.2. Comparison with the theory
For the simulation parameters, we choose electron and ion initial temperatures Te0 = 15 eV
and Ti0 = 3 eV, the number densities ne = ni = 9 × 1026 m−3, i.e. ion charge number Z =
1. These parameters are the same as those in Dimonte & Daligault (2008) for the case
with γ = 0.1. The number of simulated particles are chosen to be Ne = Ni = 8192, such
that the domain radius for spherical domain is R = [3Ne/(4πne)]1/3 ≈ 12.95 nm and the
domain length for cubic domain is 2L = (Ne/ne)

1/3 ≈ 20.88 nm. These parameters lead to
a Debye length λD ≈ 0.96 nm and an equilibrium temperature T∞ = 9 eV.

Note that, ideally, the periodic boundary condition would be used for studying this
problem, but we have found in previous works by Zhao (2017, 2018a,b) that if the
domain size is sufficiently larger than the Debye length, applying a reflective boundary
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FIGURE 3. Temperature relaxation of simulations in the cubic domain (labelled cube) and in the
spherical domain (labelled sphere), and the theoretical solution (labelled theory). The decreasing
line and dots are of electrons, the increasing ones are of ions.

condition leads to the same relaxation simulation results. For the PP method used in this
work, regardless of using like charges or unlike charges, the periodic boundary condition
cannot be easily applied. One can refer to the much more computational expensive Ewald
summation method (Liu, Hu & Zhao 2011) for implementing the periodic boundary
condition.

To speed up the simulation, we use an artificial ion mass mi/me = 30, which is greater
than the minimum mass ratio 25 found in Dimonte & Daligault (2008) that leads to correct
physical results. To apply particles with like charges, both electrons and ions are set to have
positive charges. Initially, particle positions are sampled randomly in the corresponding
domain, particle velocities are sampled according to Maxwellian distributions based on
their temperatures. The time step factor is chosen to be ft = 0.05. A typical elapsed time
for these simulations is 18 hours using 72 MPI ranks running on three CARC nodes, with
Intel Xeon E5-2640 v4 processors.

First, the temperature relaxation history of electrons and ions are shown in figure 3. As
we can see, due to Coulomb collisions, Te decreases from 15 eV to 9 eV, and Ti increases
from 3 eV to 9 eV, and the simulation results of both cubic and spherical domain match
with the theoretical solution.

In addition to the correct temperature relaxation, to test the validity of the neutralizing
fields, we can also examine the particle velocity distribution function and the particle
spatial distribution function, because if the neutralizing fields are wrong, the long-range
collective Coulomb forces will not be cancelled, thus the velocity distribution cannot reach
the equilibrium easily, and the spatial distribution cannot keep uniform. Therefore, we plot
the velocity distribution function of electrons fve as an example at the final equilibrium
state in figure 4 to show that the final state is indeed the equilibrium and matches the
corresponding Maxwellian distribution. Also, we compute the spatial distribution function
of electrons fse along direction x, i.e. a histogram of the number of electrons in different
intervals of x regardless of y and z. For the cubic domain, we should get a constant fse,
while for the spherical domain, fse should be proportional to the cross-section area, i.e.
fse ∝ π(R2 − x2). We found that fse does not vary with time except for small oscillations.
We plot the time averaged fse in figure 5.
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Implementation of neutralizing fields for particle–particle simulations using like charges9

FIGURE 4. Normalized electron velocity distribution function f̂ve at the final equilibrium state.
Here f̂ve is averaged over time from 300 to 400 fs and among x, y, z directions to reduce the
statistical noise, and its maximum value is normalized to unity. The subscript k denotes x, y
or z, because the plasma is isotropic, the distribution in all directions are the same. Here vte =
(kBTe/me)

1/2 is the electron thermal velocity. The analytical curve is a Maxwellian distribution
for electrons with temperature Te = 9 eV.

FIGURE 5. Normalized electron spatial distribution function f̂se averaged over time from 300
to 400 fs, with the maximum (averaged) value normalized to unity for the spherical (cubic)
simulation.

3.3. Comparison with unlike charges
After comparing with the theory, we can further test the validity of the neutralizing
fields by comparing with a corresponding simulation using unlike charges. Because
simulations using unlike charges have the singularity issue, a cutoff is needed, and it is
found that these simulations have worse energy conservation than simulations using like
charges. The reason for the worse energy conservation is that, when unlike charges are
approaching, their velocities increase due to attraction forces, thus the dynamic time step
used should be decreased for accurately solving the trajectories. If the time step is not
small enough, two unlike charges could cross each other, which is unphysical but allowed
in the simulation (since head-on collisions are rare, and as long as we maintain the energy
conservation and confirm that smaller time step does not change the temperature relaxation
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10 Y. Zhao, C. Cui, Y. Zhang and Y. Hu

FIGURE 6. Time history of the minimum interparticle distance.

results anymore). For like charges, their velocities decrease when they are approaching due
to repulsive forces, thus it is much easier to solve the trajectories using a relatively bigger
time step, and accordingly an easier energy conservation can be achieved. To further speed
up the simulations using unlike charges, we choose a smaller mass ratio mi/me = 10. Note
that although the simulation results may not match the theory anymore due to this small
mass ratio, simulations of like and unlike charges should match with each other, and that
is our focus in this section.

First, simulations using like charges are carried out with mi/me = 10 and ft = 0.1. Other
parameters are the same as those in § 3.2. It is found that the results obtained from these
simulations using like charges can help determine the cutoff length for corresponding
simulations using unlike charges to avoid the singularity. For example, we can obtain the
minimum interparticle distance rmin at every time step, as shown in figure 6, for both
cubic and spherical domains. We could then determine a cutoff length, for example rc =
0.041 nm as indicated by the dashed line in figure 6, which is at least smaller than the
majority of rmin to make sure all necessary interactions are considered. Note that if a chosen
cutoff length is not small enough to include all the necessary particle interactions, the
temperature relaxation process cannot be correctly captured. One can refer to Zhao (2017)
for more detail about how different cutoff lengths would impact the simulation.

Then, this cutoff length can be applied to the corresponding simulation using unlike
charges. In this work, the cutoff is applied in a way, such that if an interparticle
distance is smaller than rc, the corresponding interparticle force will be ignored. For the
corresponding simulation using unlike charges, even if the cutoff rc = 0.041 nm is applied,
a smaller time step is required ft = 0.03 to keep the energy conserved within an acceptable
range. To further speed up the simulations, we also set a minimum allowed time step
�t = 5.0 × 10−5 fs, and the simulated number of particles is reduced to Ne = Ni = 4096,
as well as the domain size accordingly. Note that as long as the domain size is still
large enough compared with the Debye length, the simulation results remain the same,
as indicated in previous works (Zhao 2017), because the physics itself is independent
of the domain size, theoretically. Here we only consider the spherical domain, as the
cubic domain should lead to the same results. The temperature relaxation results of these
simulations are shown in figure 7. We can see that the results of using like charges match
with those of using unlike charges, as expected.
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FIGURE 7. Temperature relaxation of simulations in the cubic domain (labelled cube) and in the
spherical domain (labelled sphere) and a corresponding simulation with unlike charges (labelled
sphere unlike).

FIGURE 8. Particle kinetic energy conservation over time.

To study the effects of time step on energy conservation, two more simulations in
the spherical domain using like charges are done with ft = 0.05 and ft = 1. Comparing
the energy conservations of simulations using like charges, as shown in figure 8, we
can see that, a smaller ft leads to a better energy conservation. The energy growth is
conserved within approximately 0.2 % for ft = 0.05, 0.6 % for ft = 0.1 and 2.5 % for
ft = 1. For simulations using unlike charges, the energy growth can only be conserved
within approximately 2.3 % for ft = 0.03. Therefore, in addition to the advantage of
avoiding the singularity, simulations using like charges have another significant advantage,
which is to speed up the simulations. As shown in figure 8, comparing the simulation
using like charges with ft = 1.0 with the simulation using unlike charges with ft = 0.03,
we can see a similarity of energy conservation, but the elapsed time of the former is only
approximately 0.213 h, and that of the latter is approximately 22 h, when both are using 48
MPI ranks running on two CARC nodes, which indicates a roughly 100 times speed-up.
Note that the ratio of the two ft used indicates only a 33 times speed-up, the additional
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three times is due to the different mechanisms of collisions among like charges and unlike
charges.

4. Conclusions and discussions

In this paper, we focus on introducing a way of adding neutralizing fields in PP
simulations, such that only like charged particles can be applied to avoid the issue of
singularity. We implement the neutralizing fields by applying the analytical solution
of the electric field in the domain filled with uniformly distributed charges, for those
applications with homogeneous and quasi-neutral plasmas under a reflective boundary
condition. The analytical solutions of the neutralizing field in both spherical and cubic
domains are considered, between which the spherical solution is simple and known,
but the cubic solution has a relatively complicated form and has not been presented
in other references, so a brief derivation of the cubic solution is given. Also, one way
of implementing the specular reflection boundary condition on a spherical surface is
presented. In addition, the approach presented in this work could be generalized for
applications with non-homogeneous plasmas, as long as a proper analytical solution of
the neutralizing field can be obtained.

To test the validity of the neutralizing fields, simulations on an electron–ion temperature
relaxation problem are carried out. The results of the simulations using like charges match
the Landau–Spitzer theory and the corresponding simulations using unlike charges. In
addition, it is found that using like charges has another significant advantage over using
unlike charges besides avoiding the singularity, which is to speed up the simulations by
roughly 100 times for the simulations carried out in this work, when keeping the same
amount of energy conservation. Also, the simulation results of using like charges can
guide simulations using unlike charges, e.g. suggestions can be obtained for choosing a
reasonable cutoff length. Note that one may wonder if using like charges is better, why we
still need simulations using unlike charges. Simulations using unlike charges could still
be beneficial under some circumstances, for example when we intend to set not only a
cutoff for the short range, but also one for the long range. In this case, we can only use
unlike charges, because the neutralizing fields applied in this paper include all the charges
in the domain, thus non-physical results will occur if we apply that long-range cutoff in a
simulation using like charges with the neutralizing fields.

At last, it should be mentioned that we do not claim the PP model presented in this
paper is a better approach than other PM or PPPM methods that can also solve collisions.
However, PP is an alternative method, which can be considered as a first-principle in
classical electrostatics, and the results from PP can be used as benchmarks for other
methods. For example, one could apply the PP model first on a smaller problem to
determine the most appropriate mesh size for a corresponding PPPM model, by finding
the minimum effective cutoff length; or for applications with strong particle correlation
effects, in which the PP model that solve all PP interactions would be the best choice.

Acknowledgements

The authors acknowledge the Center for Advanced Research Computing (CARC) at the
University of Southern California for providing computing resources that have contributed
to the research results reported within this publication. Y.H. was partially supported by
the LHD Youth Innovation Fund from the State Key Laboratory of High Temperature Gas
Dynamics (grant no. LHD2019CX12).
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Appendix A. Specular reflection boundary condition on a spherical surface

As illustrated in figure 9, let O denote the centre of the sphere, also the origin of the
coordinate system. Assume a particle is located at A at time t, thus its position vector
is OA. Assume this particle moves out of the spherical domain, and locates at B at time
t + �t, thus its position vector is OB. The plane shown in figure 9 is determined by the two
vectors OA and OB. Let r1 = OA and r2 = OB. The relative position vector is then r =
r2 − r1 = AB. The distance AD can be obtained according to the line–sphere intersection
formula (Eberly 2006),

AD = d = −(r̂ · r1) +
[(

r̂ · r1
)2 − |r1|2 + R2

]1/2
, (A1)

where r̂ = r/|r| = r/r, R = OD is the radius of the sphere. Therefore, AD = dr̂ = d,
OD = R = r1 + d. Now, DA′ can be obtained by reflecting DA over OD,

DA′ = d′ = 2[d − (d · R̂)R̂ − d = d − 2(d · R̂)R̂, (A2)

where R̂ = R/R, (d · R̂)R̂ = CD. Thus, the position vector r′
2 after the reflection is

r′
2 = OB′ = (r − d)d̂

′ + R, (A3)

where d̂
′ = d′/|d′|, (r − d)d̂

′ = DB′ satisfying DB′ = DB. If v2 is the velocity vector at
the time t + �t at the location B before the reflection, it becomes

v′
2 = |v2|d̂′

(A4)

after the reflection.

Appendix B. Derivation of the electric field in a uniformly charged cube

To solve the triple integrals in (2.4), let us only consider the x component first, then
change the integrating variables via u = x − x′, v = y − y′, w = z − z′, and integrate once
to obtain

Ex(x, y, z)/K =
∫ z+

z−

∫ y+

y−
(x2

− + v2 + w2)−1/2

−(x2
+ + v2 + w2)−1/2 dv dw, (B1)

where K ≡ ρ/(4πε0). The inner integral of the first term in (B1) can be solved as∫ y+

y−

1√
x2− + v2 + w2

dv = ln

√
x2− + y2+ + w2 + y+√
x2− + y2− + w2 + y−

. (B2)

So, (B1) becomes

Ex(x, y, z)/K =
∫ z+

z−

[
ln(

√
x2− + y2+ + w2 + y+) − ln

(√
x2− + y2− + w2 + y−

)

− ln
(√

x2+ + y2+ + w2 + y+

)
+ ln

(√
x2+ + y2− + w2 + y−

)]
dw. (B3)
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FIGURE 9. Illustration of the specular reflection boundary condition on a spherical surface.

Steps for solving the integral

∫ z+

z−
ln
(√

a2 + w2 + b
)

dw, (B4)

are as follows, where a and b are constants, and a > |b|, a > 0.

(1) Integrating by parts leads to

∫
ln
(√

a2 + w2 + b
)

dw = w ln
(√

w2 + a2 + b
)

−
∫

w2

√
w2 + a2

(√
w2 + a2 + b

) dw. (B5)

(2) Then, the integral in (B5) can be solved by performing trigonometric substitution,
w = a tan(k), k = tan−1(w/a), dw = a sec2(k) dk, and simplifying using tan2(k) +
1 = sec2(k),

∫
w2

√
w2 + a2

(√
w2 + a2 + b

) dw

= a2
∫

sin2(k)
cos3(k)

1
a/ cos(k) + b

dk. (B6)
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(3) Applying Weierstrass substitution with t = tan(k/2) results in∫
sin2(k)
cos3(k)

1
a/ cos(k) + b

dk = −8
∫

t2

(t − 1)2(t + 1)2[(b − a)t2 − b − a]
dt. (B7)

(4) Perform partial fraction decomposition to get∫
t2

(t − 1)2(t + 1)2[(b − a)t2 − b − a]
dt =

∫ (
a2 − b2

4a2[(a − b)t2 + a + b]

+ b
8a2(t + 1)

− 1
8a(t + 1)2

− b
8a2(t − 1)

− 1
8a(t − 1)2

)
dt. (B8)

(5) The first term in (B8) can be solved by substituting m = √
(a − b)/(a + b)t, as

follows: ∫
1

(a − b)t2 + a + b
dt = tan−1(m)√

a2 − b2
. (B9)

The other terms in (B8) are simple integrals.

Thus, (B5) becomes∫
ln(
√

a2 + w2 + b) dw = w ln(
√

w2 + a2 + b) + 2at
t2 − 1

+2
√

a2 − b2 tan−1

(√
a − b
a + b

t

)
+ b ln

∣∣∣∣ t + 1
t − 1

∣∣∣∣ . (B10)

Then (B4) can be expressed by F(a, b, z) given in (2.6). Therefore, we obtain the analytical
expressions for the fields as shown in (2.5).
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