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Abstract
The problem of two-dimensional capillary-gravity waves
on an inviscid fluid of finite depth interacting with a lin-
ear shear current is considered. The shear current breaks
the symmetry of the irrotational problem and supports
simultaneously counter-propagating waves of different
types: Korteweg de-Vries (KdV)-type long solitary waves
and wave-packet solitary waves whose envelopes are
associated with the nonlinear Schrödinger equation. A
simple intuition for the broken symmetry is that the
current modifies the Bond number differently for left-
and right-propagating waves. Weakly nonlinear theo-
ries are developed in general and for two particular res-
onant cases: the case of second harmonic resonance
and long-wave/short-wave interaction. Traveling-wave
solutions and their dynamics in the full Euler equa-
tions are computed numerically using a time-dependent
conformal mapping technique, and compared to some
weakly nonlinear solutions. Additional attention is paid
to branches of elevation generalized solitary waves of
KdV type: although true embedded solitary waves are
not detected on these branches, it is found that periodic
wavetrains on their tails can be arbitrarily small as the
vorticity increases. Excitation of waves by moving pres-
sure distributions and modulational instabilities of the
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periodic waves in the resonant cases described above are
also examined by the fully nonlinear computations.

KEYWORDS
gravity-capillary wave, solitary wave, water wave

1 INTRODUCTION

There have been numerous investigations on free-surface water waves in the presence of both
gravity and surface tension, the so-called capillary-gravity waves. Despite of a short wavelength
(typically about a centimeter), these waves are believed to play an important role in transfer-
ring mass, momentum, and energy across the ocean surface.1 For a review of basic concepts of
capillary-gravity waves, the readers are referred to the monograph.2
The motion of an inviscid, incompressible, and irrotational flow with a free surface is governed

by the full Euler equations, which can be reduced to simplified models in various limits. Two
widely used models are

𝜁𝑡 + 𝑐0𝜁𝑥 +
3𝑐0
2ℎ

𝜁𝜁𝑥 + (1 − 3) 𝑐0ℎ2
6

𝜁𝑥𝑥𝑥 = 0, (1)

the Korteweg de-Vries (KdV) equation valid in the shallow-water regime,3 where 𝜁 is the surface
displacement, ℎ the mean depth of the fluid, 𝑐0 =

√
𝑔ℎ the long-wave speed with 𝑔 being the

acceleration due to gravity, and  = 𝜎∕𝜌𝑔ℎ2 the Bond number defined as the ratio of surface
tension force to gravitational force with 𝜎 being the coefficient of surface tension and 𝜌 being the
fluid density, and

i𝐴𝑡 + 𝜆𝐴𝑥𝑥 + 𝛾|𝐴|2𝐴 = 0, (2)

the nonlinear Schrödinger (NLS) equation for water of arbitrary depth, where 𝐴 stands for the
envelope of a monochromatic wavetrain,4 and the parameters 𝜆 and 𝛾 depend on the problem
being studied. In the long-wave limit, the KdV equation (1) admits depression solitons for > 1∕3

and elevation for  < 1∕3. The coefficients of (2) were first derived in Ref. 5 for the irrotational
case and in Ref. 6 in the presence of a constant vorticity. It is well known that when 𝜆𝛾 > 0 the
NLS is of focussing type and allows small-amplitude wavepackets (see Ref. 7 for example).
The existence of capillary-gravity solitarywaveswith damped oscillations in the full Euler equa-

tions was proved rigorously by Refs. 8, 9 in the case of finite and infinite depth, respectively. From
an asymptotic point of view, the bifurcationmechanism is that the underlying NLS is of focussing
type at the phase speedminimumwhere the group velocity equals the phase velocity.10 Computa-
tions of such waves on deep water in the fully nonlinear equations were achieved by a boundary
integral equation method in Ref. 11. Two basic branches bifurcating from infinitesimal periodic
waves were found: depression waves with a negative displacement at their center and elevation
waves with a positive displacement at their center. There are many other branches of solitary
waves, e.g., asymmetric solitary waves, which can exist only at finite amplitude (see Refs. 12, 13
for more details). The dynamics and stability were studied in Refs. 14, 15 where a time-dependent
conformal mapping method pioneered by Ref. 16 was employed. Depression waves are found to
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be stable, while the stability exchange occurs twice along the bifurcation curve of the elevation
branch. In the case of finite depth, bifurcations of solitary waves depend on the value of the Bond
number. If > 1∕3, there are only depressionwaves bifurcating from infinitesimal longwaves but
no wavepacket solitary waves associated with the NLS equation (see Ref. 17). If < 1∕3, there exit
both wavepackets and generalized solitary waves featuring an elevation hump and a nondecaying
train of ripples extending up to infinity. It is emphasized that these generalized solitary waves are
shown not to approach any embedded soliton solutions as a limit (i.e., along the bifurcation curve
no solutions vanish completely in the far field).18
Meanwhile, it was derived in Ref. 4 that the modulational instability criterion simply depends

on the type of the underlying NLS equation. A periodic wavetrain is modulationally stable if the
NLS is of defocusing type. However, such amodel equation is not applicable in the case of the sec-
ond harmonic resonance and long-wave/short-wave interaction since the coefficient of the non-
linear term from (2) becomes singular under these two scenarios (e.g., see Ref. 6). Modified mul-
tiscale analyses were achieved by Refs. 19, 20 for the former resonance and Ref. 5 for the latter one
for irrotational flows. In this work, weakly nonlinear theories will be developed for the resonant
cases in the presence of a linear shear current.
Ocean waves are usually accompanied by mean flows or shear currents generated by tides or

winds. In reality, the initial generation and growth of capillary-gravity waves by wind are vastly
influenced by the wind-induced shear current beneath the free surface.21 As the first step toward
the understanding of wave-current interactions, we restrict ourselves to the linear shear profile
(i.e., constant vorticity) and to the two-dimensional problem. In this situation, solitary waves were
computed in the full Euler equations using a boundary integral equation method by Ref. 22. The
NLS equation describing the envelope dynamics of a quasi-monochromatic wave was derived in
Ref. 6 and the modulational instability was also investigated in the same paper. In Ref. 23, the
classic Stokes expansion for periodic waves was extended to this physical setting and the resultant
analytical solutions were comparedwith the numerical solutions to the fully nonlinear equations.
In the present paper, we extend the work of Ref. 22 by computing, using the time-dependent

conformalmapping technique, solitary waves, and their collision dynamics. In addition, themod-
ulational instabilities in the resonant cases are numerically examined in a similar manner to Ref.
24, which is concerned with the problem of flexural-gravity waves. The rest of the paper is struc-
tured as follows. The formulation and numerical scheme are introduced in Sections 2 and 3,
respectively. The results are presented and discussed in Section 4. And finally, a conclusion is
given in Section 5.

2 FORMULATION

We consider an incompressible and inviscid fluid with density 𝜌 of finite depth ℎ bounded below
by a flat rigid bottom. We introduce a two-dimensional Cartesian coordinate system with the 𝑥-
axis along the undisturbed free surface and the 𝑦-axis directed vertically opposite to gravity. The
upper boundary is free to move and denoted by 𝑦 = 𝜁(𝑥, 𝑡). The effect of surface tension and vor-
ticity are both included. The former is expressed by −𝜎𝜅 with 𝜅 being the curvature. We define
the vorticity by

Ω = 𝑣𝑥 − 𝑢𝑦, (3)
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F IGURE 1 Schematic description
of the physical problem

where (𝑢, 𝑣) is the velocity field in the fluid region and the subscripts denote partial derivatives.
For simplicity, we assume Ω is a constant and nondimensionalize the problem by choosing

[
𝜎

𝜌𝑔

]1∕2
,

[
𝜎

𝜌𝑔3

]1∕4
, (4)

as the reference length and time scale. In particular, the dimensionless fluid depth and vorticity
are defined, respectively, by

ℎ = ℎ̃

[
𝜎

𝜌𝑔

]1∕2
, Ω = Ω̃∕

[
𝜎

𝜌𝑔3

]1∕4
. (5)

The tildes in the nondimensionalization are removed for the purpose of easy notations. The fol-
lowing system governs the motion of the fluid body and the deformation of the free surface

𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 0, for 𝑦 < 𝜁, (6)

𝜙𝑦 = 0, on 𝑦 = −ℎ, (7)

𝜁𝑡 = 𝜙𝑦 − 𝜁𝑥(𝑢0 + 𝜙𝑥), on 𝑦 = 𝜁, (8)

𝜙𝑡 + 𝑢0𝜙𝑥 +
1

2
|∇𝜙|2 + Ω𝜓 + 𝜁 − 𝜅 + 𝐵(𝑡) = 𝑃𝑒, on 𝑦 = 𝜁. (9)

Here 𝜙 is the potential function of the irrotational part, 𝜓 is the harmonic conjugate of 𝜙 usually
called the stream function, and (𝑢0, 𝑣0) = (𝑈0 − Ω𝑦, 0) is a trivial solution to the problem satisfy-
ing all the boundary conditions where𝑈0 describes a constant speed at the undisturbed surface as
shown in Figure 1. It is noted that we can always assume𝑈0 = 0 via introducing amoving frame of
reference. In addition, the integral constant 𝐵(𝑡) can be absorbed by redefining the velocity poten-
tial 𝜙, and 𝑃𝑒 is the external forcing, which is only considered in Section 4.2 and zero otherwise.
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2.1 Linear theory

By linearizing (6)–(9), the linear dispersion relation reads

𝑘𝑐2𝑝 − Ω𝑐𝑝 tanh 𝑘ℎ − (1 + 𝑘2) tanh 𝑘ℎ = 0 , (10)

where 𝑘 is the wavenumber and 𝑐𝑝 is the phase speed. It has two distinct real solutions

𝑐±𝑝 =
Ω tanh 𝑘ℎ ±

√
Ω2 tanh

2
𝑘ℎ + 4𝑘(1 + 𝑘2) tanh 𝑘ℎ

2𝑘
, (11)

inwhich thewavenumber 𝑘 is always kept positive and 𝑐+𝑝 (𝑐−𝑝 ) is positive (negative) representing a
right-moving (left-moving) wave. We denote by 𝑐𝑔 (= 𝜔𝑘) the group velocity, where the frequency
𝜔 is a function of the wavenumber. The long-wave speed can be obtained from (11) by letting
𝑘 → 0, which takes the form of

𝑐±0 =
Ωℎ ±

√
Ω2ℎ2 + 4ℎ

2
. (12)

For right-going waves, an elementary analysis of the derivative of 𝑐+𝑝 yields

⎧⎪⎨⎪⎩
𝑐+𝑝 is monotonically increasing in 𝑘 when  >

1 + Ω𝑐+0
3

,

𝑐+𝑝 has a minimum 𝑐min at 𝑘 = 𝑘𝑐(≠ 0) when  <
1 + Ω𝑐+0

3
,

(13)

where the Bond number is defined as = 1∕ℎ2 in dimensionless variables. Similarly, the version
for left-moving waves can be obtained by letting Ω → −Ω and 𝑐+0 → 𝑐−0 . The former case in (13)
is subsequently referred to the shallow-water regime or simply the shallow regime, whereas the
latter is called the deep-water regime or the deep regime.We list some key facts for the deep regime
as follows:

1. the group speed reaches its minimum at 𝑘 = 𝑘𝑑, and 𝑘𝑑 < 𝑘𝑐;
2. the second harmonic resonance defined by 2𝜔(𝑘𝑠) = 𝜔(2𝑘𝑠) occurs at 𝑘 = 𝑘𝑠, and 𝑘𝑠 < 𝑘𝑐 <

2𝑘𝑠;
3. the long-wave/short-wave interaction occurs at 𝑘 = 𝑘𝑙, and 𝑘𝑐 < 𝑘𝑙.

An illustrative graph is shown in Figure 2. It is noted that these comments stay valid for other
problems with the same structure of the dispersion relation, e.g., flexural-gravity waves.
It is also noted that the criteria for the critical case 𝑐 = (1 + Ω𝑐0)∕3 is in fact an equation for

ℎ whose value can be found numerically by an iterative scheme. It is discovered that 𝑐 = 0.0544

forΩ = −1 and𝑐 = 0.8949 forΩ = 1. As summarized in Table 1, a left-moving wave and a right-
moving wave can be in different regimes provided  is in a certain range. It is of great interest to
study such break of symmetry of the curves for positive and negative phase speed, which does not
take place in the irrotational case.
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F IGURE 2 The curve of the phase
speed 𝑐𝑝(𝑘) (in black) and the group
speed 𝑐𝑔(𝑘) (in gray) in the so-called
deep regime as defined in (13)

TABLE 1 The type of linear regime for right-moving waves and left-moving waves when Ω = 1

𝛀 = 𝟏 𝟎 <  < 𝟎.𝟎𝟓𝟒𝟒 𝟎.𝟎𝟓𝟒𝟒 <  < 𝟎.𝟖𝟗𝟒𝟗 𝟎.𝟖𝟗𝟒𝟗 < 

Right-moving waves Deep Deep Shallow
Left-moving waves Deep Shallow Shallow

To this end, we fix ℎ = 2.5 and usually select Ω = ±1 in the rest of the paper such that the
associated Bond number is equal to 0.16, which lies in the interval [ 0.0544 , 0.8949 ]. The two
solutions to the quadratic equation (10) are depicted in Figure 3 for Ω = ±1 and also Ω = 0 for
reference. We note that the dispersion relation (10) is invariant under the reflective transforma-
tion (𝑐𝑝,Ω) → (−𝑐𝑝, −Ω). Therefore, we may choose 𝑐𝑝 > 0 (so all the superscripts ± are now
dropped) and vary Ω to be positive or negative for studying unidirectional waves. In the irrota-
tional case, the value of  equals 0.16, which is less than the critical value 1∕3, i.e., in the deep-
water regime. The theory predicts a phase speed minimum at a nonzero wavenumber marked
with a diamond where wavepacket solitary waves may bifurcate. Since the phase speeds at 𝑘 = 0

and 𝑘 ≈ 2.0003 are almost equal, the long wave can resonate with a Stokes wave so that elevation
solitary waves with nondecaying oscillations in the far field, the so-called generalized solitary
waves, are expected. In the presence of a positive vorticityΩ = 1, the dispersion relation remains
in the deep-water regime but the long wave resonates with a periodic wave with much larger

F IGURE 3 Graphs of the dispersion
relation for ℎ = 2.5 when Ω = 0 (left),
Ω = 1 (middle), and Ω = −1 (right).
𝑘 = 0 are highlighted by circles. Phase
speed minima are marked by triangles
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F IGURE 4 Graphs of the NLS
coefficients in the deep-water regime
versus the wavenumber 𝑘. This
particular example is for ℎ = 2.5 and
Ω = 0 with 𝑘𝑎 = 0.392, 𝑘𝑑 = 0.592,
𝑘𝑠 = 0.622, 𝑘𝑐 = 0.907, 𝑘𝑙 = 1.215, and
𝑘𝑏 = 2.503. The graphs are qualitatively
similar for different ℎ and Ω

wavenumber (𝑘 ≈ 10.25). When Ω = −1, the problem is in the shallow regime, i.e., 𝑐𝑝 is always
monotonically increasing in 𝑘. Depression solitary waves are expected to bifurcate at 𝑘 = 0.

2.2 NLS equation

The NLS equation

i𝐴𝜏 + 𝜆𝐴𝑋𝑋 + 𝛾|𝐴|2𝐴 = 0, (14)

was derived in multiscale variables 𝑋 = 𝜖𝑥, 𝜏 = 𝜖2𝑡, where 𝜖 is a small parameter, by Ref. 6 for
capillary-gravity waves propagating on a linear shear current. Explicit expressions for 𝜆 and 𝛾 are
given by equations (2.28) and (2.31) in Ref. 6, respectively, and the dimensionless version can be
obtained by simply setting 𝜌 = 1, 𝑔 = 1, and 𝜎 = 1. The graphs of 𝜆 and 𝛾 from Equation (14)
against 𝑘 in the deep regime are presented in Figure 4. The results are qualitatively similar for
different Ω, provided the deep-water regime criterion is met, with only a matter of scale. There
is a zero for 𝜆 (= 𝜔𝑘𝑘∕2) at 𝑘 = 𝑘𝑑 where the group speed 𝑐𝑔 (= 𝜔𝑘) attains its minimum. Also, 𝛾
reaches zero at two positions 𝑘 = 𝑘𝑎 & 𝑘 = 𝑘𝑏 as marked in the bottom graph of Figure 4. When
𝑘 ∈ {𝑘𝑎, 𝑘𝑏, 𝑘𝑑}, the cubic NLS is no longer valid as one of the coefficients becomes zero, and an
equation with higher order dispersion or nonlinearity can be expected. Meanwhile, there are two
asymptotes in the graph of 𝛾 corresponding to the second harmonic resonance at 𝑘 = 𝑘𝑠 and long-
wave/short-wave interaction at 𝑘 = 𝑘𝑙, respectively. The weakly nonlinear theory breaks down at
these two resonant points. To deal with such singularities, a different scaling is required to balance
nonlinearity and dispersion, which will be further explored in Sections 2.3 and 2.4.
As shown in Ref. 10, the existence of small-amplitude wavepacket solitary waves requires two

conditions: (1) in the deep-water regime and (2) theNLS at 𝑘 = 𝑘𝑐 is of focussing type (i.e., 𝜆𝛾 > 0).
As discussed in the last paragraph, the NLS swaps type at five specific wavenumbers 𝑘𝑎, 𝑘𝑏, 𝑘𝑑,
𝑘𝑠, and 𝑘𝑙 that are in fact the boundaries between the white and gray regions in the 𝑘ℎ– diagram
shown in Figure 5 forΩ = ±1. Also, we rediscover the fact that the NLS swaps type at 𝑘ℎ ≃ 1.363

in the irrotational case (Ref. 25), and we omit the detail here. In the presence of constant vorticity,
the NLS is of focussing type in the limit  → 0 and 𝑘 → 0 (Ref. 26). As the inequalities 𝑘𝑑 < 𝑘𝑐
and 𝑘𝑎 < 𝑘𝑠 < 𝑘𝑐 < 𝑘𝑙 are guaranteed, it can be readily shown that the NLS at 𝑘 = 𝑘𝑐 (in the deep
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F IGURE 5 Graphs showing the
type of NLS for different  and 𝜇 = 𝑘ℎ

when (A) Ω = −1 and (B) Ω = 1. White
(gray) regions correspond to NLS
focusing (defocusing) regime. The black
thick curves represent the critical case
𝜇 = 𝜇𝑐 where the phase speed attains its
minimum. If 𝜇𝑐 = 0, it is in the shallow
regime. If 𝜇𝑐 > 0, it is in the deep regime

F IGURE 6 The gray region
corresponds to the shallow regime where
𝑐𝑝 is monotonically increasing. The
white region is for the deep regime in
which the associated NLS is always
focussing at 𝑘 = 𝑘𝑐 . The black thick
curve is the critical case  = (1 + Ω𝑐0)∕3

regime) stays always focusing regardless of the value of Ω or . Two examples for Ω = ±1 from
Figure 5 confirm the prediction as the black thick curves lie in white regions. The full diagram
demonstrating the nature of the linear theory and the type of the weakly nonlinear regime for
various Bond number (or simply the depth in the current scaling) and vorticity is displayed in
Figure 6.
A general theory was developed by Ref. 4 regarding the modulational instability of periodic

waves. It was shown that such instability occurs when the associated NLS is of focusing type.
The problem was investigated by Ref. 6 for capillary-gravity waves on water of finite depth in
the presence of a linear shear current in the nonresonant case. The modulational instabilities in
the resonant cases are to be discussed by weakly nonlinear theories in Sections 2.3 and 2.4, and
numerically examined by fully nonlinear computations in Section 4.3.

2.3 Second harmonic resonance

As previously introduced in Figure 2, there is a specific wavenumber 𝑘𝑠 such that the associated
propagating speed is identical to the speed of its second harmonic, i.e., 𝑐𝑝(𝑘𝑠) = 𝑐𝑝(2𝑘𝑠) or equiv-
alently

𝜔2(𝑘𝑠) tanh(𝑘𝑠ℎ) = 3𝑘3𝑠 . (15)

The equality (15) causes the coefficient of the nonlinear term in the NLS being singular. Under
such circumstance, a modified multiscale analysis with the inclusion of the second harmonic
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mode is needed. The unknown free surface 𝜂 and the potential 𝜙 are functions of (𝑋, 𝑇, 𝜏) where

𝑋 = 𝜖𝑥, 𝑇 = 𝜖𝑡, 𝜏 = 𝜖2𝑡. (16)

Following Ref. 20, 𝜂 can therefore be expanded about 𝑦 = 0 as

𝜂 = 𝜖𝐴11𝐸 + 𝜖𝐴12𝐸
2 + 𝜖2𝐴21𝐸 + 𝜖2𝐴22𝐸

2 + 𝜖2𝐴23𝐸
3 + 𝜖2𝐴24𝐸

4

+ 𝜖3𝐴31𝐸 + 𝜖3𝐴32𝐸
2 + 𝜖3𝐴33𝐸

3 + 𝜖3𝐴34𝐸
4 ⋯ + c.c.,

(17)

where 𝐸 = exp(i(𝑘𝑥 − 𝜔𝑡)) and “c.c.” stands for complex conjugate. The expansion of the poten-
tial function 𝜙 about 𝑦 = 0 is obtained by solving the Laplace equation with the impermeability
boundary condition (7). The detailed expression can be found in Refs. 19, 20. Substituting the
ansatz of 𝜂 and 𝜙 into the kinematic condition (8) and the dynamic condition (9) on the free
surface and collecting the coefficients of 𝜖𝐸 and 𝜖𝐸2 at the leading order yields two solvability
conditions

𝜔(𝑘)2 coth(𝑘ℎ) − Ω𝜔(𝑘) = 𝑘 + 𝑘3, (18)

2𝜔(𝑘)2 coth(2𝑘ℎ) − Ω𝜔(𝑘) = 𝑘 + 4𝑘3, (19)

for nontrivial solutions for𝐴11 and𝐴12, respectively. Combining (18) and (19) gives the criterion of
the second harmonic resonance (15). By collecting the coefficients of 𝜖2𝐸 and 𝜖2𝐸2 at the quadratic
order yields the solvability conditions for 𝐴21 and 𝐴22

𝐴11𝑇 + 𝑐
(1)
𝑔 𝐴11𝑋 = −𝑖𝑘𝑐1𝐴12𝐴

∗
11, (20)

𝐴12𝑇 + 𝑐
(2)
𝑔 𝐴12𝑋 = −𝑖𝑘𝑐2𝐴

2
11, (21)

where

𝑐
(1)
𝑔 = 𝜔𝑘(𝑘), 𝑐

(2)
𝑔 = 𝜔𝑘(2𝑘), (22)

𝑐1 =
Ω2 + [3 coth

2
(𝑘ℎ) − 1]𝜔2 − [3 coth(𝑘ℎ) + tanh(𝑘ℎ)]Ω𝜔

2𝜔 coth(𝑘ℎ) − Ω
, (23)

𝑐2 =
Ω2 + [3 coth

2
(𝑘ℎ) − 1]𝜔2 − [3 coth(𝑘ℎ) + tanh(𝑘ℎ)]Ω𝜔

4𝜔 coth(2𝑘ℎ) − Ω
. (24)
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The coefficient 𝑐(1)𝑔 and 𝑐(2)𝑔 are in fact the group speed for the first and second harmonic, respec-
tively. It is also noted that quadratic equations (20)–(24) for the second harmonic resonance have
the same form as those presented in Ref. 24 for flexural-gravity waves where the surface tension
term is replaced by the flexural rigidity of plate. At the cubic order, collecting the coefficients of
𝜖3𝐸 and 𝜖3𝐸2 from the kinematic and dynamic boundary conditions yields the solvability condi-
tions for 𝐴31 and 𝐴32

i𝐴11𝜏 + 𝑖
(
𝐴21𝑇 + 𝑐

(1)
𝑔 𝐴21𝑋

)
+ 𝜆1𝐴11𝑋𝑋 + 𝜇1|𝐴11|2𝐴11 + 𝜇2|𝐴12|2𝐴11

+ 𝜇3𝐴12𝐴
∗
21 + 𝑖𝜇4𝐴12𝐴

∗
11𝑋

+ 𝜇5𝐴22𝐴
∗
11 + 𝑖𝜇6𝐴12𝑋𝐴

∗
11 = 0, (25)

i𝐴12𝜏 + 𝑖
(
𝐴22𝑇 + 𝑐

(2)
𝑔 𝐴22𝑋

)
+ 𝜆2𝐴12𝑋𝑋 + 𝜈1|𝐴11|2𝐴12 + 𝜈2|𝐴12|2𝐴12

+ 𝜈3𝐴11𝐴21 + 𝑖𝜈4𝐴11𝐴11𝑋 = 0, (26)

with

𝜆1 =
𝜔𝑘𝑘(𝑘)

2
, 𝜆2 =

𝜔𝑘𝑘(2𝑘)

2
. (27)

The terms in 𝐴23 and 𝐴24 have been eliminated by making use of the equalities derived from the
terms in 𝜖2𝐸3 and 𝜖2𝐸4. Equations (25) and (26) are usually regarded as the counterparts to the
standard cubic NLS on the occasion of the resonance. The coefficients of the nonlinear terms are
extremely tedious, and hence we only present their values graphically as functions ofΩ for a fixed
ℎ (ℎ = 2.5 say) in Figure 7. There is a special value of Ω, denoted by Ω∗ (which is found to be
−0.475 in the case of ℎ = 2.5), such that the wavenumber 𝑘𝑠 → 0. It is in fact the moment when
the linear theory changes from the deep regime to the shallow regime. As shown in the bottom
graph of Figure 7, 𝜇2, 𝜈1, and 𝜈2 become singular in the critical caseΩ = Ω∗ causing a breakdown
of the weakly nonlinear theory. It follows that the coupled system (25) and (26) stays valid only
when Ω > Ω∗.
Combining (25) and (26) with (20) and (21) yields a system of four differential equations in

(𝐴11, 𝐴12, 𝐴21, 𝐴22) whose solutions were derived and presented in Ref. 20. The stability analysis
can then be achieved by considering small perturbations in both first and second harmonics. Here
we omit the detail since the approach is quite standard (the interested readers are referred to Ref.
20). The instability was shown to be inevitable and occurs at a sufficiently small modulational
wavenumber for a given wave solution. This is similar to the Benjamin–Feir instability theory for
a single carrier wave.

2.4 Long-wave/short-wave interaction

As illustrated in Figure 4, there is a singularity in the coefficient 𝛾 of the cubic NLS equation (2)
since

𝑐𝑔(𝑐𝑔 − Ωℎ) = ℎ (28)
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F IGURE 7 The graphs of the coefficients from Equation (25) and (26) versus the vorticity Ωwhen ℎ = 2.5

is satisfied at 𝑘 = 𝑘𝑙 where the group speed 𝑐𝑔 of the envelope matches the long-wave speed 𝑐0
from (12). Such a phenomenon occurs among longwaves and short waves onwater of finite depth,
and is usually addressed as long-wave/short-wave interactions.27 An alternative model equation
is required as the associated cubic NLS becomes invalid. Following Refs. 5, 24, a new scaling is
introduced as

𝑋 = 𝜖
2

3 (𝑥 − 𝑐𝑔𝑡), 𝜏 = 𝜖
4

3 𝑡. (29)

The surface elevation 𝜂(𝑋, 𝜏) and the potential function 𝜙(𝑋, 𝑦, 𝜏) are then expanded about 𝑦 = 0

in the form of

𝜂 = 𝜖𝐴𝑒i(𝑘𝑥−𝜔𝑡) + 𝜖4∕3𝜂2 + 𝜖5∕3𝜂3 + 𝜖2𝜂4 + 𝜖7∕3𝜂5 + 𝜖8∕3𝜂6 +⋯ , (30)

𝜙 = 𝜖2∕3𝜙0 + 𝜖𝜙1 + 𝜖4∕3𝜙2 + 𝜖5∕3𝜙3 + 𝜖2𝜙4 + 𝜖7∕3𝜙5 +⋯ . (31)

The detailed expansions are omitted here as the reader can be referred to Refs. 5, 24 for a review.
The solvability condition arising from 𝑂(𝜖7∕3) and the kinematic boundary condition at 𝑂(𝜖8∕3)
yield the evolution equations linking the short-wave envelope𝐴 and the long-wave velocity poten-
tial 𝜙0 as follows:

i𝐴𝜏 + 𝜆𝐴𝑋𝑋 = 𝐴𝐵, (32)
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𝐵𝜏 = −Δ(|𝐴|2)𝑋, (33)

where 𝐵 = 𝛿𝜙0𝑋 , 𝜆 = 𝜔𝑘𝑘∕2,

Δ = 𝛿

[
𝑐𝑔𝜔

2 + 𝜔 sinh(2𝑘ℎ)

(2𝑐𝑔 − Ωℎ) sinh
2
(𝑘ℎ)

−
Ω

2𝑐𝑔 − Ωℎ

]
, (34)

𝛿 = 𝑘

[
1 +

𝑐𝑔 − Ωℎ

2𝜔 coth(𝑘ℎ) − Ω
(𝜔2csch

2
(𝑘ℎ) − 2Ω𝜔 coth(𝑘ℎ) + Ω2)

]
. (35)

It is noted thatΔ and 𝛿 are the same as those found in Ref. 24 where the surface tension is replaced
by the flexural rigidity of plate. Themodulational instability can be studied by using the evolution
equations (32) and (33) as highlighted in Refs. 5, 24. It is discovered that there exists a threshold
wavelength such that the instability occurs when the wavelength of the perturbation is longer
than the threshold, which is analogous to the Benjamin–Feir theory.

3 NUMERICAL SCHEME

To solve the fully nonlinear equations numerically, we employ the time-dependent conformal
mapping technique pioneered by Ref. 16, which maps the fluid region onto a fixed geometry, e.g.,
a strip with depth𝐷, in a new complex plane denoted by 𝜉 + i𝜂. We present all the functions in the
new variables whose harmonic conjugate can be obtained via the Cauchy–Riemann equations for
analytic functions. In the transformed plane, we write the surface variables as 𝑋(𝜉, 𝑡) ≜ 𝑥(𝜉, 0, 𝑡),
𝑌(𝜉, 𝑡) ≜ 𝑦(𝜉, 0, 𝑡), Φ(𝜉, 𝑡) ≜ 𝜙(𝜉, 0, 𝑡), Ψ(𝜉, 𝑡) ≜ 𝜓(𝜉, 0, 𝑡). The conformal map can be explicitly
solved as solutions of the following boundary value problems

𝑦𝜉𝜉 + 𝑦𝜂𝜂 = 0, 𝜓𝜉𝜉 + 𝜓𝜂𝜂 = 0, for − 𝐷 < 𝜂 < 0, (36)

𝑦 = 𝑌(𝜉, 𝑡), 𝜓 = Ψ(𝜉, 𝑡), on 𝜂 = 0, (37)

𝑦 = −ℎ, 𝜓 = 𝑄, on 𝜂 = −𝐷, (38)

where 𝑌(𝜉, 𝑡) = 𝜁(𝜉, 0, 𝑡). Here 𝑄 is an arbitrary constant, and we choose 𝑄 = ⟨Ψ⟩ with ⟨⋅⟩ being
the mean value in 𝜉 defined as

⟨𝑓⟩ = 1

𝐿 ∫
𝐿∕2

−𝐿∕2

𝑓(𝜉, 𝜂)𝑑𝜉, (39)
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where [−𝐿

2
,
𝐿

2
] is the computational domain, and 𝐿 is usually chosen as the wavelength in the

physical space. It can be shown that

𝐷 = ℎ + ⟨𝑌⟩, 𝑋𝜉 = 1 −  [𝑌𝜉], Ψ𝜉 =  [Φ𝜉], (40)

where  [.] is a transform defined by

 [𝑓](𝜉) = 1

2𝐷
PV∫ 𝑓(𝜉′) coth

[ 𝜋

2𝐷
(𝜉′ − 𝜉)

]
𝑑𝜉′, (41)

with “PV” denoting the Cauchy principal value of the integral. By performing calculations similar
to those presented in Ref. 28, we end up with the following time-evolution equations describing
the surface motion:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑋𝜉 = 1 −  [𝑌𝜉], Φ𝜉 = − [Ψ𝜉],

𝑌𝑡 = 𝑌𝜉
[
Ψ𝜉−Ω𝑌𝑌𝜉

𝐽

]
− 𝑋𝜉

(
Ψ𝜉−Ω𝑌𝑌𝜉

𝐽

)
,

Φ𝑡 =
Ψ2
𝜉
−Φ2

𝜉

2𝐽
− 𝑌 + 𝜅 − Ω

(
Ψ −

𝑌𝑋𝜉Φ𝜉

𝐽

)
+ Φ𝜉

[
Ψ𝜉−Ω𝑌𝑌𝜉

𝐽

]
+ 𝑃𝑒,

(42)

where 𝜅 = (𝑌𝜉𝜉𝑋𝜉 − 𝑋𝜉𝜉𝑌𝜉)∕𝐽
3∕2 and 𝐽 = 𝑋2

𝜉
+ 𝑌2

𝜉
is the Jacobian of the conformal map.

The system can be further simplified for traveling waves translating at a constant velocity 𝑐,

Ψ = 𝑐𝑌 +
Ω

2
𝑌2, (43)

1

2𝐽
(𝑐 + Ω𝑌𝑋𝜉 + Ω [𝑌𝑌𝜉])

2 −
𝑐2

2
+ 𝑌 − 𝜅 = 𝑃𝑒. (44)

In the present paper, solitarywaves are approximated by long periodicwaves, therefore the surface
elevation, which is assumed to be symmetric with respect to the vertical axis, can be expressed as
a truncated Fourier series

𝑌(𝜉) =

𝑁∕2∑
𝑛=−𝑁∕2

𝑎𝑛 exp

(
2i𝑛𝜋𝜉
𝐿

)
+ c.c, (45)

where the coefficients 𝑎𝑛 are unknowns. Without lose of generality, we can set 𝑎0 = 0. The sym-
metric condition implies that 𝑎𝑛 = 𝑎−𝑛 for all 𝑛. The  -transform is computed numerically via
the Fourier multiplier

 [𝑓] = −1[i coth(𝑘𝐷)[𝑓]], (46)

where  denotes the Fourier transform. To achieve a high computational accuracy, in most com-
putations for the solitary waves we select 𝑁 = 2048 and 𝐿 = 80𝜋, and stop the Newton iteration
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F IGURE 8 Bifurcation diagram of solitary waves forΩ = 1 and ℎ = 2.5. The long-wave speed is 𝑐0 = 3.2656,
and the phase speed minimum is 𝑐min = 1.8336. Left: in the focusing NLS regime with the NLS prediction
sketched in dotted curves. Wave profiles of (i) and (ii) are plotted in the physical plane. Right: in the long-wave
regime. Wave profile (iii) and (iv) are plotted in the physical plane. Only part of the waves are shown for a better
display

when the residual error is less than 10−11. For time-dependent simulations, 𝑑𝑡 = 2.5 × 10−4 is
chosen. This numerical scheme has been successfully used in the context of gravity waves28 and
flexural-gravity waves29 on water of finite depth.

4 RESULTS

4.1 Free solitary waves

For Ω = 1 and ℎ = 2.5, the phase speed features a minimum at 𝑘𝑐 (≠ 0) where the underlying
NLS is focusing predicting the existence of decaying wavepackets as illustrated in Section 2.2. The
amplitude-speed bifurcation diagram in the full Euler equations, together with the NLS predic-
tion, is presented in the left of Figure 8. Two branches of solutions have been discovered, and the
amplitude parameter is defined by

𝐴 =
max 𝜁(𝑥) − min 𝜁(𝑥)

2sgn(𝜁(0))
, (47)

where the sign function is included to distinguish between depression and elevation waves. Based
on the NLS theory (see Ref. 30 for example), to leading order, the wave amplitude reads

||𝜁||∞ ≈ (𝑐min − 𝑐)1∕2

√
8𝑘𝑐
𝛾
, (48)
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F IGURE 9 Left: the Fourier
spectrum of solution (iii) from Figure 8
in the log-scale. Right: the Fourier
spectrum of solution (iv) from Figure 8
in the log-scale

which indicates that the NLS is valid only for a very narrow range of speed. The bifurcation of
elevation solitary waves, predicted by the KdV equation in the long-wave regime, is shown on the
right figure. Unlike KdV solitons, these so-called generalized solitary waves have nondecaying
oscillations in the far field due to the resonance between the Stokes wave and longwave that travel
at the same speed (≈ 𝑐0). Two typical wave profiles are plotted on the right-hand side of Figure 8.
Because of the positive vorticity, the dispersion curve (10) becomes very broad, and solving the
resonant condition 𝑐(𝑘) = 𝑐0 yields 𝑘 ≈ 10.25 indicating that the long wave interacts with a very
short Stokes wave with wavelength 0.613 in the linear regime, or the 410th Fourier mode in the
carrier wave with wavelength 80𝜋. The Fourier spectrum of solution (𝑖𝑖𝑖) near the bifurcation
point is examined. It is observed that the Fourier coefficients for highmodes are of very small size
comparable to the residual error from Newton’s method except around the 413th mode where
a peak appears as can be seen from the left graph of Figure 9, which confirms the prediction
by the linear theory. On the other hand, the Fourier coefficients of the resonant modes are less
than 10−10, which results in the nondecaying oscillations of the generalized solitary waves being
too small for visualization. Also, it is worth remarking that, for a larger vorticity, the resonant
mode can be beyond the range of the Fourier modes computed. Then a larger 𝑁 is required to
observe the resonance via spectrum. In summary, the obtained generalized solitary waves are
almost embedded solitons in the presence of a large vorticity.
In addition to the numerical evidence discussed in the previous paragraph, we examine on the

value of curvature at 𝑥 = 𝐿∕2 denoted by 𝜅0 by either fixing Ω, 𝐴 and varying  or fixing , 𝐴
and varying Ω. Similar to Ref. 18, separated 𝑛-shaped and 𝑢-shaped curves, which correspond to
branches of solutions with a crest and a trough at the end of the computational domain, respec-
tively, are obtained. As can be seen in the top graph of Figure 10, the results in the presence of a
constant vorticity are qualitatively similar to the irrotational case, where the increase of  does
not lead solutions to embedded solitons. In the bottom graph of Figure 10, the curves approach the
horizontal axis asΩ increases and can get infinitely close to zero for a large vorticity (Ω = 1 say),
which shows that the obtained solutions are not but extremely close to embedded solitons. In fact,
in the linear theory the embedded elevation soliton is the limit of generalized solitary waves as the
vorticity tends to infinity where no resonance takes place and the end-point curvature becomes
zero. In practice, the elevation generalized solitary waves obtained in the case ofΩ = 1 are already
very good approximations to embedded solitons as illustrated early on.
For a negative vorticity Ω = −1, the phase speed 𝑐𝑝 is always monotonically increasing in 𝑘,

and therefore solitary waves bifurcate from infinitesimal long waves in the limit 𝑘 → 0. The KdV
equation predicts that the amplitude of a solitary wave is proportional to its wave speed (e.g., see
Ref. 17). This is confirmed by the numerical results as shown in Figure 11. In particular, solution
(vii) is a static depression solitary wave, which does not feature an overhanging structure.
The longitudinal stability of the obtained solitary waves can be easily examined by the numer-

ical algorithm given by Refs. 14, 29. A small perturbation is superimposed initially on the exact
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F IGURE 10 Top: the value of 𝜅0 versus  for elevation waves with Ω = 0.07 and 𝐴 = 0.141. Bottom: the
value of 𝜅0 versus Ω for elevation waves with 𝐴 = 0.141 and  = 0.16

F IGURE 11 Bifurcation diagram of solitary waves in the long-wave regime for Ω = −1 and ℎ = 2.5. The
long-wave speed 𝑐0 is equal to 0.7656. Typical wave profiles are plotted in the physical 𝑥-𝑦 plane

solitary-wave solution. It is found from the left graph of Figure 12 that awavepacket elevationwave
is found to be unstable, and evolves in time to a wavepacket depression wave, which is shown to
be stable as can be seen in the right graph. The KdV-type solitary waves appear to be stable (see
Figure 13).
Next, we perform the numerical computation of collision. The experiment is designed between

two stable solitary waves moving in the opposite direction crossing each other. The most strik-
ing feature is that the system supports simultaneously counter-propagating stable solitary waves
of different types, KdV-type and wavepacket solitary waves, since the underlying shear current
modifies the Bond number differently for left- and right-propagating waves. As shown in Fig-
ure 14, both waves survive the interaction in the experiment, and small ripples can be observed
after the interaction due to an inelastic nature of the collision.
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F IGURE 1 2 Left: dynamics of a wavepacket elevation solitary wave (ii) from Figure 8 with 𝑐 = 1.8218 for
Ω = 1 and ℎ = 2.5. A 1% perturbation in amplitude is imposed initially. Right: dynamics of a wavepacket
depression solitary wave (i) from Figure 8 with 𝑐 = 1.8203 for Ω = 1 and ℎ = 2.5. A 10% perturbation in
amplitude is imposed initially. The snapshots only show part of the wave profiles. A frame of reference moving
with the original wave speed is chosen in both experiments

F IGURE 13 Left: dynamics of a KdV-type depression solitary wave (vi) from Figure 9 with 𝑐 = 0.6855 for
Ω = 1 and ℎ = 2.5. Right: dynamics of a generalized elevation solitary wave (iv) with 𝑐 = 3.56 for Ω = 1 and
ℎ = 2.5. A 10% perturbation in amplitude is imposed initially in both experiments. A frame of reference moving
with the original wave speed is chosen

4.2 Excitations of solitary waves

In this section, two numerical experiments of excitation of solitary waves are carried out, which
are achieved by applying an external constant-moving forcing on the free surface. The experi-
ments are simulated with Ω = 1 by using the pressure distribution

𝑃𝑒 = 𝐴0𝑒
−(𝑥−𝑥𝑝−𝑈𝑡)

2
, (49)

where𝐴0 quantifies the strength of the forcing. The external forcing is launched at an initial posi-
tion 𝑥 = 𝑥𝑝 traveling rightwards with speed 𝑈 (leftwards if 𝑈 is negative) and removed after a
sufficient period of time (at 𝑡 = 𝑡𝑠). Both shallow and deep regimes are considered with appropri-
ate values of the parameters.

1. To generate a KdV-type solitary wave, we choose𝐴0 = 0.2,𝑈 = −0.76, 𝑥𝑝 = −225, and 𝑡𝑠 = 25.
As commented by Ref. 31, 𝑈 is chosen to be close to the long-wave speed where there is no
traveling-wave solution with the forcing speed to the problem and the dynamic response to the
external forcing is nonlinear. As can be seen from Figure 15, we observe the generation of a
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F IGURE 14 Head-on collision of a stable wavepacket solitary wave (i) moving rightwards with 𝑐 = 1.8203

and a KdV-type depression solitary wave (vi) moving leftwards with 𝑐 = 0.6855 in the presence of Ω = 1

F IGURE 15 Excitation experiment 1. The external forcing is initially placed at 𝑥 = 225 and travels leftwards
with speed 𝑈 = 0.76. It is switched on at 𝑡 = 0 and off at 𝑡 = 25

depression solitary wave as well as small ripples in front. If the forcing is kept active, then a
very complex dynamics involving the periodic shedding of solitary waves can be expected (see,
e.g., Ref. 32).

2. To excite a wavepacket solitary wave, we select 𝐴0 = 0.2, 𝑈 = 2.1447, 𝑥𝑝 = 225, and 𝑡𝑠 = 25.
The value of 𝑈 is chosen to be very close to the minimum of the phase speed where no steady
responses exist in this transcritical regime. As presented in Figure 16, a stable depression
wavepacket solitary wave is formed with the presence of noise ripples on the side. Similar to
the excitation in the long-wave regime, if such forcing is always kept on, it can cause a periodic
shedding of wavepacket solitary waves as numerically computed by Ref. 15 and experimentally
observed by Ref. 33.

It is worth mentioning that the excitation of a depression solitary wave in the irrotational case
is accompanied by a generalized elevation solitary wave in front as shown in Ref. 34 because of the
small difference between the long-wave speed (𝑐0 = 1.51) and the phase speed minimum (𝑐min =

1.403). In the presence of vorticity, such a difference becomes large (greater than 1.4 for Ω = 1)
so that the phenomenon of forming a generalized elevation solitary wave was not observed in the
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F IGURE 16 Excitation experiment 2. The external forcing is initially placed at 𝑥 = −225 and travels
leftwards with speed 𝑈 = 2.1447. It is switched on at 𝑡 = 0 and off at 𝑡 = 25

numerical experiment from Figure 16. Regarding the experiment shown in Figure 15, elevation
solitary waves do not exist in the long-wave regime. Therefore in both simulations (Figures 15 and
16), only small ripples have been observed accompanying the expected solitary waves at the end.

4.3 Modulational instability in resonant cases

The weakly nonlinear theories for the resonant cases from Sections 2.3 and 2.4 predict the
inevitable presence of the modulational instability provided that the modulational wavenumber
is sufficiently small. In this subsection, the claims are to be examined numerically by the time-
dependent computations for the full Euler equations. In the subsequent numerical experiments,
an initial perturbation of magnitude 𝛼 and modulational wavenumber 𝐾 is imposed to the steady
periodic solution 𝜁0, namely,

𝜁(𝑥, 0) = [1 + 𝛼 cos(𝐾𝑥)]𝜁0(𝑥). (50)

Regarding the second harmonic resonance, a Wilton solution with wavenumber 𝑘𝑠 is selected for
the computation with the following setting:

∙ 𝛼 = 0.1, 𝐾 = 𝑘𝑠∕32 = 0.0373, 𝐿 = 32𝑙 = 168.3109 with 𝑙 being the wavelength of the carrier
wave, 𝑐 = 1.8993, 𝑎 = 0.01.

In the case of the long-wave/short-wave resonance, a uniform wavetrain with 𝑘 = 𝑘𝑙 is
employed in the numerical experiment with the following parameters:

∙ 𝛼 = 0.1, 𝐾 = 𝑘𝑙∕64 = 0.0752, 𝐿 = 64𝑙 = 83.5131, 𝑐 = 2.3470, 𝑎 = 0.01.

From Figures (17) and (18), the modulational instabilities due to the generation and growth of
the sideband Fouriermodes have been clearly observed in both examples as expected. In addition,
a strong long-wave component is generated in the case of the long-wave/short-wave interaction
as can be seen from the Fourier spectrum in Figure 18.
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F IGURE 17 (Left) Time evolution of a Wilton solution with 𝑘 = 𝑘𝑠 = 1.1946, ℎ = 2.5, Ω = 1, 𝑎 = 0.01,
𝑐 = 1.8993, 𝑙 = 5.2597, 𝐿 = 168.3109, and 𝐾 = 0.0373, which is initially given a modulational perturbation. The
snapshots are taken at t = 0 and 10000. (Right) Fourier spectrum of the wave at 𝑡 = 0 and 10000

F IGURE 18 (Left) Time evolution of a uniform wavetrain with 𝑘 = 𝑘𝑙 = 4.8151, ℎ = 2.5, Ω = 1, 𝑎 = 0.01,
𝑐 = 2.3470, 𝑙 = 1.3049, 𝐿 = 83.5131, and 𝐾 = 0.0752, which is initially given a modulational perturbation. The
snapshots are taken at t = 0 and 10000. (Right) Fourier spectrum of the wave at 𝑡 = 0 and 1400

5 CONCLUSION

The problem of capillary-gravity waves on an incompressible and inviscid fluid of finite depth
interacting with a linear shear current has been considered. The bifurcation and dynamics of soli-
tary waves for different values ofΩwere thoroughly investigated by a numerical method based on
the time-dependent conformal mapping technique, and compared to the weakly nonlinear the-
ory. When the phase speed features a global minimum, the interaction between long and shorts
waves results in branches of generalized solitary waves. Though tails never vanish along these
branches, for considerably large vorticity, almost embedded elevation solitary waves can be dis-
covered. Time-dependent computations were achieved to examine the longitudinal instability of
the obtained solutions. The vorticity modifies the Bond number differently for left- and right-
propagating waves, and hence head-on collisions between solitary waves of different types are
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possible. A numerical experiment of the head-on collision was conducted between a KdV-type
and a wavepacket-type solitary waves, and inelastic behavior was observed though both solitary
waves survive the collision. Simulations of solitary-wave excitation by a locally confined moving
pressure disturbance were also performed.Meanwhile, themodulational instabilities for the reso-
nant cases were investigated by the weakly nonlinear theories and fully nonlinear computations.
To further investigate the generation of wind ripples, a nonlinear shear profile is plausible (see
Ref. 21 for example).
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