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This paper investigated the flow-induced vibration of the tube bundles considering the effect of periodic
fluid force in a rotated triangular tube array. We first performed an experiment to obtain the vibration
responses of a rotated triangular tube array with the pitch-to-diameter ratio P/D = 1.48. To further inves-
tigate the vibration characteristics of the tube bundles, a mathematical model of the tube bundles con-
sidering the effect of the periodic fluid force and the clearance restriction was developed. Based on the
Computational Fluid Dynamics calculation, the fluid force coefficients and the Strouhal numbers of the
periodic fluid force in the tube bundles were determined. Considering the effect of the periodic fluid force,
the vibration responses of the tube bundles were calculated. The vibration characteristics of the tube
bundles induced by the periodic fluid force were discussed. The results demonstrated that some complex
vibrations such as the beat vibrations and resonance may be induced by the periodic fluid force in the
rotated triangular tube array, and the frequency of the periodic fluid force has a significant influence
on the vibration characteristics of the tube bundles before the fluidelastic instability.

� 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow-induced vibration is a major concern in the design of
nuclear steam generators. Due to the fretting wear between the
tube bundles and support structures, some tube failures may occur
leading to a nuclear accident. Thus, a great deal of research has
been conducted. A number of papers have summarized that the
flow excitation mechanisms can be classified as (a) turbulence,
(b) vortex shedding, and (c) fluidelastic instability.

Turbulence-induced vibration has been analyzed by several
scholars. Taylor et al. (Taylor et al., 1989) performed an extensive
experiment to discuss the turbulence-induced vibration of the tube
bundles subjected to two-phase cross-flow. Based on the experi-
mental results, a normalized forced-excitation spectrum was
formed as a design guideline of steam generators. Axisa et al.
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carried out several experiments to investigate the turbulent buffet-
ing of the tube arrays subjected to two-phase cross-flow. They
found that in the high void fraction conditions, the random force
of the air–water and steam-water would be of the same order of
magnitude (Axisa et al., 1990). Langre et al. (Langre and Villard,
1998) proposed an upper bound on random buffeting forces caused
by two-phase cross-flow in the tube bundles with the help of an
experimental database. Taylor and Pettigrew (Taylor and
Pettigrew, 2000) measured the fluid forces acting on the tube bun-
dles in their experiments. The experimental results were used to
determine the guidelines for random excitation forces. At the
design stage of a steam generator, these guidelines can be used
to estimate the turbulence-induced vibration of the tube bundles.

Fluidelastic instability is the excitation mechanism which may
cause a short term failure of the steam generator tubes
(Paidoussis, xxxx). With this potential for short term damage,
many studies have been performed to investigate the fluidelastic
instability of the tube bundles subjected to cross-flow. Price and
Paidoussis (Price and Paidoussis, 1986) proposed a method to
study the stability of a double row of flexible tubes subject to
cross-flow. Lever and Weaver (Lever and Weaver, 1986a, 1986b)
present a theoretical model to investigate the cross-flow induced
fluidelastic instability in heat exchanger tube bundles. Nakamura
et al. (Nakamura et al., 1992) carried out several experiments to
investigate the fluidelastic vibration of the tube bundles both by
air–water and steam-water flow. And, a new criterion, compared
with the usual Connors-type criteria, was presented to estimate
the fluidelastic instability. Austermann and Popp (Austermann
and Popp, 1995) investigated the vibration behavior of the tube
bundles subjected to air cross-flow. Their experimental results
indicate that the array pattern has a significant influence on the
threshold of the fluidelastic instability. Janzen et al. (Janzen et al.,
2005) studied the vibration response of U-tubes in two-phase
cross-flow in their experiments. The fluidelastic instability of the
U-tubes in the transverse direction and the parallel direction was
observed in the experiment. Hassan et al. (Hassan and Hayder,
2008) developed a time-domain model for fluidelastic instability
forces of tubes with loose supports. The model can be used to cal-
culate the critical flow velocity, tube response, and impact force
between the tube and support. Chu et al. (Chu et al., 2009) exper-
imentally investigated the fluidelastic instability of a U-tube array
with pitch-to-diameter ratio P/D = 1.633 in two-phase cross-flow.
The vibration responses of the U-tube bundles were measured to
determine the instability constant of the Connors equation. Their
experimental results show that, for the rotated square array with
a pitch-to-diameter ratio P/D = 1.633, the fluidelastic instability
constant is 8.5. Based on the linear lumped-parameter models,
Harran (Harran, 2014) analyzed the influence of the mass ratio
on the fluidelastic instability of the tubes in the transverse direc-
tion. Hassan and Mohany (Hassan and Mohany, 2016) present sim-
ulations of a loosely supported multi-span U-bend tube subjected
to turbulence and fluidelastic instability forces. Borsoi et al.
(Borsoi et al., 2017) investigated the turbulence-induced vibration
and fluidelastic instability of a loosely supported tube, separately.
Shinde et al. (Shinde et al., 2018) presented a theoretical model
based on transient interactions between a single tube and the adja-
cent flow streams to study the fluidelastic instability of the tube
bundles. Using this theoretical model, the critical velocity of the
fluidelastic instability was obtained. Palomar and Meskell
(Palomar and Meskell, 2018) calculated the static fluid force coef-
ficient from steady RANS simulation. The pressure on the tube sur-
face obtained from the calculational fluid dynamic (CFD) was
compared with the experimental results to verify the correctness
of the CFD methodology. Based on the numerical results, they
found that the pitch ratio has the most effect on the threshold of
the fluidelastic instability. Elhelaly et al. (Elhelaly et al., 2020)
2

investigate the dynamics of loosely supported tube array subjected
to cross-flow considering the effect of the flow approach angle and
the clearance between the tube and the support.

Recently, we have performed a series of experimental studies to
investigate the flow-induced vibration of a rotated triangular tube
array subjected to two-phase cross-flow (Lai et al., 2019, 2020a,
2020b). The theoretical models to predict the critical velocity of
the fluidelastic instability of the tube bundles have also been pre-
sented (Lai et al., 2019) (Lai, 2019). Based on these models, the
nonlinear dynamic models of the tube bundles subjected to two-
phase flow and loose support have been developed, and the two-
phase flow-induced instability and nonlinear dynamic of the tube
bundles have been investigated (Lai et al., 2019, 2020c, 2020d).
These studies provide us with the theory for investigating the flu-
idelastic instability and the post-instability of the tube bundles.

As mentioned above, most experimental and numerical studies
were carried out to investigate the fluidelastic instability associ-
ated with high flow pitch velocity in the tube bundles. It is impor-
tant to note that, before the onset of the fluidelastic instability,
some complex vibrations of the tube bundles were observed in
the experiments (Taylor et al., 1989; Chung and Chu, 2006), which
were different from the vibration characteristics of the turbulence-
induced vibration. Some scholars speculated that the vortex shed-
ding vibration of the tube bundles occurred. However, there are
few specific verifications and quantitative studies given.

In this study, experimental and theoretical analyses were con-
ducted to investigate the vibration characteristics of the tube bun-
dles subjected to cross-flow. First, the experimental measurements
of the vibration responses of the tube bundles in the transverse
direction were carried out. Then, a mathematical model of the
flow-induced vibration of the tube bundles considering the effect
of the periodic fluid force was established. To obtain the fluid force
coefficient and the frequency of the periodic fluid force in a rotated
triangular tube array with the pitch-to-diameter ratio P/D = 1.48, a
calculation of the Computational Fluid Dynamics was presented.
Last, considering the effect of the periodic fluid force, the vibration
responses of the tube bundles were calculated. The vibration char-
acteristics of the tube bundles induced by the periodic fluid force
were discussed.
2. Experimental analysis

The measurements of the vibration response of the tube bun-
dles subjected to cross-flow were conducted using the experimen-
tal loop shown in Fig. 1. It includes two loops, one is a water loop
and another is an air loop. In this experiment, only the water loop
was used. The max rated flow of the water loop is 1200 m3/h, the
max operating pressure is 1.6 MPa, and the max operating temper-
ature is 80 ℃. Magnetic flowmeter was used to measure the water
flow rate. A more comprehensive description of this experimental
loop was presented in reference (Lai et al., 2019). All measure-
ments were conducted at room temperature (approximately 20℃).

The experimental test section is shown in Fig. 2. The tube array
in the test section is a rotated triangular tube array composed of
seven columns of tubes and two columns of half-tube attached
to the walls, all arranged in fifteen rows, as shown in Fig. 3. The
tube diameter is 0.01745 m, the tube length is 0.312 m, and the
pitch-to-diameter ratio is 1.48. The tube bundles were fixed in
the test section. All the tubes were supported with a flexible can-
tilever beam, called the frequency control unit, to limit to move
in the transverse direction. The fundamental natural frequency of
the tube bundles in air is 40 Hz in the transverse direction and
80 Hz in the parallel direction, respectively. The strain gauges were
mounted on the flexible beam near the clamped end to measure
the strains of the tube bundles at the transverse direction.



Fig. 1. Schematic diagram of the two-phase test loop.

Fig. 2. Schematic diagram of the experiment model.
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The vibration response tests were conducted for various flow
pitch velocities. In the experiment, the flow pitch velocity was
increased progressively and the strains of five tubes (tube 1, tube
2, tube 3, tube 4, and tube 5, as shown in Fig. 3) were measured.
The root-mean-square (RMS) strains of the five tubes were illus-
trated in Fig. 4. When the flow pitch velocity is less than 0.7 m/s,
the turbulence-induced vibration of the tube bundles can be
observed for all five tubes. The increasing rate of the RMS strains
of the tube bundles with the flow pitch velocity is not significant.
When the flow pitch velocity is higher than 0.7 m/s, with the
increasing of the flow pitch velocity, the RMS strains of the tube
bundles increases gradually. When the flow pitch velocity is above
1.28 m/s, the RMS strains of the tube bundles show a sharp
3

increase with respect to a small increase in the flow pitch velocity,
which can be defined as the threshold of the fluidelastic instability.
As we know, the fluidelastic instability is a typical self-excited
vibration, when the fluidelastic instability occurs, a periodic oscil-
lation of the tubes can be observed. However, in the present exper-
iment, it is interesting to note that before the fluidelastic
instability, the tube bundles vibrations with large amplitude and
two frequencies can be observed which are different from the
vibration characteristics of the fluidelastic instability. The vibration
response time histories of the five tubes when the flow pitch veloc-
ity is 1.2 m/s were shown in Fig. 5, which are ‘‘beat” signals. It is
important to note that the beat vibration is a forced oscillation
induced by a periodic force when the force frequency closes to



Fig. 3. Schematic diagram of a rotated triangular tube array.

Fig. 4. RMS strain amplitude of the five tubes in the transverse direction versus flow pitch velocity: (a) tube 1; (b) tube 2; (c) tube 3; (d) tube 4; (e) tube 5.

J. Lai, T. Tan, S. Yang et al. Annals of Nuclear Energy 161 (2021) 108488
the natural frequency of the tube. And, the vibration amplitudes of
the upstream tubes are larger than those of the downstream tubes.

The vibration frequency spectra of the five tubes when the flow
pitch velocity is 1.2 m/s were illustrated in Fig. 6. It is clearly seen
that there are three main frequencies (f1 = 29.0 Hz, f2 = 30.4 Hz,
f3 = 31.9 Hz). f1 is the system frequency of the experimental appa-
ratus resulting from the pump. According to our previous study
(Lai et al., 2019), it is known that f3 is the fundamental natural fre-
quency of the tube in water. Thus, it is reasonable to believe that f2
is the frequency of the force which causes the beat vibration of the
tube bundles. To verify the correctness of this speculation, the the-
oretical and numerical analyses were carried out in the next
sections.
4

3. Theoretical analysis

It is known that, in a steam generator, the tube bundles are
threaded through support structures, such as the tube support
plate (TSP) and anti-vibration bars (AVBs). There is certain expan-
sion clearance between the tube bundles and support structures
which can prevent deformation of the heated surface due to
restrained expansion. When the flow pitch velocity is low, there
won’t be any collision between the tube bundles and support
structures. Once the flow pitch velocity is larger than the threshold
of the fluidelastic instability, the collision may take place. The tube
support plate and anti-vibration bars may change the support stiff-
ness of the tube bundles system, leading to a change in the vibra-
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Fig. 5. The vibration response time histories of the five tubes in the transverse direction at Up = 1.2 m/s.
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tion frequency of the tube bundles, once the fluidelastic instability
occurs. In other words, before the onset of fluidelastic instability,
the vibration amplitude of the tube is less than the gap between
the tube and the support. The support has little effect on the vibra-
tion response of the tube. Thus, considering the effect of the peri-
odic fluid force and the support structures, the vibration equation
of a flexible tube in tube bundles subjected to cross-flow and clear-
ance restriction, as shown in Fig. 7, was presented as follows:

EI
@4w
@y4

þ ct
@w
@t

þmt
@2w
@t2

þ d y� yað Þf wð Þ

¼ Ffluidelastic w; _w; €wð Þ þ Fperiodic CL; xS; tð Þ ð1Þ
where E is the elasticity modulus, I is the cross-sectional moment of
inertia, ct is the damping per length, mt is the mass of the tube per
length, d(y-ya)f(w) is the impact force between the tube bundles and
the support structures, Ffluidelastic(w, _w,€w) is the steady fluid force, Fpe-
riodic(CL,xS, t) is the periodic fluid force, CL is the lift force coefficient,
xS is the circular frequency of the periodic fluid force, u is the phase
angle.

The fluidelastic fluid force of the cross-flow acting on the tube
can be written as:

Ffluidelastic w; _w; €wð Þ ¼ ma
@2w y; tð Þ

@t2
þ ca

@w y; tð Þ
@t

þ kaw y; tð Þ ð2Þ

where ma, ca, and ka is the added mass, added damping, and added
stiffness, respectively, which can be expressed as:

ma ¼ p
4qD

2 De=Dð Þ2þ1
De=Dð Þ2�1

h i
ca ¼ 1

2
qU2

1CF sinUF
x

ka ¼ 1
2qU

2
1CFcosUF

ð3Þ

where q is the cross-flow density, U1 is the stream velocity, D is the
tube diameter, x is the angular fundamental frequency of the tube,
CF is the force coefficients,UF is the fluid force phase (Sawadogo and
Mureithi, 2014); De/D is a confinement parameter given as:
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De=D ¼ 0:96þ 0:5
P
D

� �
P
D

ð4Þ

The flow pitch velocity of the tube bundles can be expressed as:

Up ¼ U1
P

P � D
ð5Þ

The periodic fluid force of the cross-flow acting on the tube
bundles can be expressed as:

Fperiodic tð Þ ¼ 1
2
qDU2

1CLsin xSt þuð Þ ð6Þ

Introducing the following the non-dimensional quantities:

g¼w
D
; n¼y

L
; s¼k21

ffiffiffiffiffiffiffiffiffiffiffi
EI

mtL
4

s
t¼Xt; 1¼ ct

Xmt
; m� ¼ mt

qD2 ;

U� ¼2pU1
DX

;a¼ 1
1þ4m�=ðpCmaÞ; x� ¼x

X
;

x�� ¼xS

X
;C�

L¼DCL

ð7Þ

where L is the tube length, k1 is the dimensionless eigenvalue of the
first-order mode for a cantilever beam, Cma is the added mass coef-
ficient which can be expressed as (Pettigrew et al., 1989):

Cma ¼ De=Dð Þ2 þ 1

De=Dð Þ2 � 1
ð8Þ

By substituting these dimensionless quantities into equation
(1), the partial differential equation of the motion of the tube bun-
dles considering the effects of two-phase cross-flow and clearance
restriction can be rewritten as:

1
1�a

@2g
@s2 n; sð Þ þ f� U�2CF sinUF

8p2m�x�

h i
@g
@s n; sð Þ þ 1

k41

@4g
@f4

n; sð Þ

� U�2CFcosUF
8p2m� � ax�2

1�a

h i
g n; sð Þ þ d n� nbð Þf � gð Þ ¼ U�2s

8p2m� C
�
Lsin x��sð Þ

ð9Þ

According to the Galerkin method, it is reasonable to suppose
that:
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gðn; sÞ ¼
XN
i¼1

uiðnÞqiðsÞ ð10Þ

where ui(n) is the modal shape of the simply supported tube. It is
known that the dynamic response of a tube is dominated by the first
6

low modes. Thus, the first five order modes (N = 5) were chosen in
the present study.

Using the Galerkin expansion and modal truncation techniques,
a set of ordinary differential equations can be deduced from the
partial differential equation, as follows:



Fig. 7. Schematic diagram of the tube bundles subjected to cross-flow and clearance restriction.

Fig. 8. Schematic diagram of the CFD model.
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€qi
1�aþ f� U�2CF sinUF

8p2m�x�

� �
_qi þ k4i

k41
� U�2CFcosUF

8p2m� þ ax�2
1�a

� �
qi þ f � gað Þui nað Þ

¼ U�2
8p2m� C

�
Lsin x��sð Þ i ¼ 1; 2; 3; 4; 5ð Þ

ð11Þ
where ga is the displacement at n = na.

Notice that the coupling term is the impact force between the
tube and tube support plate f*(ga) due to the constraint at the
clearance restriction. In this study, the mathematical model pre-
sented by Paidoussis et al. (Sawadogo and Mureithi, 2014) was
used to represent properly the restraining force of clearance
restriction, which can be written as:

f � gað Þ ¼ j ga �
1
2

ga þ dj j � ga � dj jð Þ
� �3

ð12Þ

where d is the gap between the tubes and the support structures, j
is the non-dimensional stiffness of the clearance restriction. In this
paper, j is chosen to be 5.6 � 106 in accordance with reference
(Paidoussis et al., 1991).

4. Numerical analysis

The last section provides the analysis method to study the
fluid–structure interaction of the tube bundles subjected to
cross-flow and clearance restriction. On the basis of the analyses
above, the quantitative analysis was conducted. Firstly, according
to the experimental model, a calculation of the Computational
Fluid Dynamics (CFD) was presented to obtain the force of the peri-
odic fluid force acting on the rotated triangular tube array with
P/D = 1.48 in section 4.1. Then, considering the effect of the peri-
odic fluid force, the vibration responses of the tube bundles before
the onset of fluidelastic instability were calculated in section 4.2.

4.1. CFD calculation

To obtain the lift force coefficient and the circular frequency of
the periodic fluid force acting on the tube bundles, a calculation of
the Computational Fluid Dynamics was presented. Commercial
CFD calculation programs ANSYS Fluent was utilized to solve the
governing equations of continuity, momentum, energy, and turbu-
lence quantities.

The standard k-emodel based on model transport equations for
the turbulence kinetic energy, k, and its dissipation rate, e, was
used to calculate the cross-flow in a rotated triangular tube array.
The turbulence kinetic energy, k, and its rate of dissipation, e, can
be obtained from the following transport equations:

@qk
@t þ @qkui

@xi
¼ @

@xj
lþ lt

rk

� �
@k
@xj

h i
þ Gk þ Gb � qe� YM

@qe
@t þ @qeui

@xi
¼ @

@xj
lþ lt

re

� �
@e
@xj

h i
þ C1e

e
k Gk þ C3eGbð Þ � C2eq e2

k

ð13Þ
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where Gk is the generation of turbulence kinetic energy due to the
mean velocity gradients, Gb is the generation of turbulence kinetic
energy due to buoyancy, YM represents the contribution of the fluc-
tuating dilatation incompressible turbulence to the overall dissipa-
tion rate, C1e, C2e, and C3e are constants, rk, and re are the turbulent
Prandtl numbers for k and e, respectively.

The turbulence viscosity, lt, can be written as:

lt ¼ qCl
k2

e
ð14Þ

The values of the model constants C1e, C2e, Cl, rk, and re, deter-
mined from experiments for fundamental flows including fre-
quently encountered shear flows.

As shown in Fig. 8, according to the experimental model used in
the last section, a 2-D flow domain was established to represent
the tube bundles with the pitch-to-diameter ratio P/D = 1.48. the
upstream and downstream length is 5.2D and 16.7D, respectively.
A comprehensive description of the mesh sensitivity analysis of
this model was conducted in our previous study (Lai et al.,
2020e). The grid model used for flow field calculation in the pre-
sent study was illustrated in Fig. 9.

The transient analysis of the periodic fluid force in a rotate tri-
angular tube array was conducted with the flow pitch velocity
ranging from 0.5 m/s to 1.5 m/s, and reasonable numerical results
were obtained. An example of the lift force coefficient of the peri-



Fig. 9. Near-wall mesh inside the tube array.
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Fig. 10. The example of the time histories of the lift force coefficient of the central tube.
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odic fluid force acting on the central tube for four flow pitch veloc-
ity conditions (Up = 0.6 m/s, Up = 0.8 m/s, Up = 1.2 m/s, and
Up = 1.3 m/s) was illustrated in Fig. 10. The phenomenon of peri-
odic fluid force can be obviously observed. It is important to note
that the lift force coefficient and the frequency of the periodic fluid
force increase with the increase of the flow pitch velocity. In order
to more clearly illustrate the influence of the flow pitch velocity on
the frequency of the periodic fluid force, the frequency spectrum of
the lift force coefficients as shown in Fig. 11. It can be clearly seen
that when the flow pitch velocity is low (e.g. Up = 0.5 m/s,
Up = 0.6 m/s, and Up = 0.8 m/s), the periodic fluctuation character-
istics of the cross-flow is very weak which can be neglected. For the
high flow pitch velocity conditions (e.g. Up = 1.2 m/s, Up = 1.3 m/s,
and Up = 1.5 m/s), the periodic fluctuation characteristics of the
flow become highly obvious, and the frequency of the periodic fluid
force has a significant variation with the increase of the flow pitch
velocity. As shown in Fig. 11, when the flow pitch velocity is 1.2 m/
s, the frequency of the periodic fluid force is 30.6 Hz. When the
flow pitch velocity is 1.3 m/s, the frequency of the periodic fluid
force is 33.2 Hz. When the flow pitch velocity is 1.5 m/s, the fre-
quency of the periodic fluid force is 38.4 Hz.

For a better description of the periodic fluctuation characteris-
tics of the flow, the Strouhal number of the periodic fluid force in
the rotated triangular tube array was calculated. The Strouhal
8

number, St, is an important dimensionless parameter to describe
the periodic characteristics of the periodic fluid force, which can
be expressed as:

St ¼ fD
Up

¼ xSD
2pUp

ð15Þ

The Strouhal numbers of the periodic fluid force for the six flow
pitch velocity conditions considered in this study were illustrated
in Fig. 12. The Strouhal number of the periodic fluid force in a
rotated triangular tube array with P/D = 1.48 is about 0.42, and pre-
sents fewer variations when the Reynolds number ranging from
0.8 � 105 to 2.8 � 105. It is the main reason that with the flow pitch
velocity ranging from 1.3 m/s to 1.5 m/s, the frequency of the peri-
odic fluid force changes from 33.2 Hz to 38.4 Hz. Thus, we can con-
firm that in Fig. 6, besides the peak of the fundamental natural
frequency of the tube in water, the other two peaks are the exter-
nal exciting frequencies of the forces acting on the tube bundles.
One is the system frequency of the experimental loop, the other
is the frequency of the periodic fluid force in the tube array.

On the other hand, a comparison of the static pressure and tur-
bulent intensity distribution between the six tubes was presented
in Fig. 13. It can be clearly seen that the static pressure and turbu-
lent intensity distributions of the upstream tubes are similar to
those of the downstream tubes. The fluid forces acting on the
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upstream tubes are larger than those acting on the downstream
tubes. An obvious asymmetry of the static pressure and turbulent
intensity distributions between tube 2 and tube 6, tube 3 and 5
can be observed.

4.2. Vibration response calculation

Fig. 14 is a supercritical bifurcation diagram for tube bundles
considering the effect of cross-flow and the support structures.
The flow pitch velocity at the Hopf bifurcation point is the critical
velocity of the fluidelastic instability. When the flow pitch velocity
is lower than the critical velocity, the tube bundles system is
stable. Once the flow pitch velocity is larger than the threshold
of the fluidelastic instability, the system may become unstable.
The correct method for calculating the bifurcation diagram and
the nonlinear dynamic characteristics of the tube bundles sub-
jected to two-phase cross-flow and loose support have been inves-
tigated in our previous studies (Lai et al., 2019, 2020c, 2020d).
Fig. 15.
9

When the flow pitch velocity is lower than the Hopf bifurcation
velocity, the vibration amplitude of the tube is less than the gap
between the tube and support structure, the tube bundles system
can be treated as a linear vibrating system at the equilibrium posi-
tion. The non-dimensional linearized equations at the equilibrium
position can be written as:

€qi

1� a
þ f� U�2CFsinUF

8p2m�x�

 !
_qi

þ k4i
k41

� U�2CFcosUF

8p2m� þ ax�2

1� a

 !
qi ¼ 0 i ¼ 1; 2; 3; 4; 5ð Þ

ð16Þ
In the shorthand of matrix analysis, the generalized coordinates

are expressed as:

Q ¼ _q1 _q2 _q3 _q4 _q5 q1 q2 q3 q4 q5½ �T ð17Þ
The reduced-order equations can be expressed as:

_Q ¼ AQ ð18Þ
where n=(0, g0) represents the equilibrium position, A is the Jaco-
bian matrix, which can be expressed as:

A ¼ �M�1C �M�1K
I O

" #
ð19Þ

where M is the mass matrix, C is the damping matrix, K is the stiff-
ness matrix, I is the identity matrix, O is the zero matrix.

According to Lyapunov’s indirect method, the stability of the
nonlinear tube bundles system described by equation (11) in the
neighborhood of its equilibrium point can be determined by the
eigenvalues of Jacobian matrix A. A comprehensive description of
the method to predict the critical velocity of the fluidelastic insta-
bility was presented in reference (Lai et al., 2019; Lai, 2019). Fig. 16
illustrates the real part of the eigenvalue corresponding to the flu-
idelastic instability mode of the tube. The flow pitch velocity corre-
sponding to the zero-real part of the eigenvalue is the threshold of
the fluidelastic instability of the tube bundles. For the example
considered in this study, the fundamental frequency of the tube



Fig. 13. Static pressure and turbulent intensity distributions for the six tubes at Up = 1.2 m/s: (a) tube C, tube 1, and tube 4; (b) tube 2 and tube 6; (c) tube 3 and tube 5.
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in the transverse direction is 40 Hz, the critical velocity of the flu-
idelastic instability is 1.28 m/s, which shows a satisfactory agree-
ment with the experimental results in the last section.

To investigate the vibration characteristics of the tube bundles
before the onsetof fluidelastic instability, a fourth-order variable
step-size Runge-Kutta integration algorithm was used to calculate
the dynamic responses of the tube bundles for the five flow pitch
velocity conditions (Up = 0.5 m/s, Up = 0.6 m/s, Up = 0.8 m/s,
Up = 1.2 m/s, and Up = 1.3 m/s, respectively). Fig. 16 shows the
vibration responses of the tube at n = na for the first four cases
(Up = 0.5 m/s, Up = 0.6 m/s, Up = 0.8 m/s, and Up = 1.2 m/s, respec-
tively). According to the analysis above, it is known that the fluide-
lastic instability does not occur, the tube vibration is a forced
oscillation induced caused by a periodic force. When the flow pitch
10
velocity is lower than 0.7 m/s, the frequency of the periodic force is
much less than the fundamental frequency of the tube in water,
and the periodic excitation is very small. Therefore, it can be clearly
seen that the amplitudes of the periodic vibration of the tube at
Up = 0.5 m/s and Up = 0.6 m/s are relatively small. At Up = 0.8 m/s,
the amplitude of the vibration of the tube is obviously increased,
and the multiple frequency vibration induced by the periodic fluid
force can be observed. At Up = 1.2 m/s, the frequency of the periodic
fluid force is close to the tube fundamental frequency. According to
the theory of vibrate dynamics, it is known that when the fre-
quency of the force acting on the system is close to the fundamen-
tal natural frequency of the structure, a beat vibration may occur,
which has been observed in the experiment. The amplitude of
the beat vibration is much larger than those of the other cases. It
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11
is important to note that the amplitude of the beat vibration is less
than the gap between the tube bundles and support structures
indicating that no collision occurs, the complex vibration behavior
may affect the mechanical characteristics of the tube bundles. In
other words, the beat vibration induced by the periodic force in
the rotated triangular tube array is a typical forced vibration that
is different from the vortex shedding vibration. And, the frequency
of the periodic fluid force could have a significant influence on the
vibration characteristics of the tube bundles before the fluidelastic
instability. Besides, it is also important to note that, in varying tube
array patterns, the frequency of the periodic fluid is different. Thus,
the vibration analysis of the tube bundles considering the effect of
the periodic fluid force should be performed to check out whether
the resonance would happen during the steam generator design
stage.

When the flow pitch velocity is larger than the threshold of the
fluidelastic instability, the fluidelastic instability of the tube bun-
dles occurs, causing an impact vibration between the tube bundles
and the support structures. Fig. 17 shows the vibration responses
and impact force of the central tube at Up = 1.3 m/s. It can be seen
that the impact vibration is a kind of multifrequency oscillation
caused by a small disturbance. As shown in Fig. 17, once the vibra-
tion amplitude is larger than the gap between the tube and the
support structures, the collision occurs, which could be the most
important reason for early damage of the tube bundles. The effect
of the impact vibration of the tube bundles on the fretting wear
between the tube and support structure will be discussed in a
future study.
5. Conclusions

Experimental and numerical studies were conducted to investi-
gate the fluid–structure interaction of a rotated triangular tube
array in cross-flow. In the experiment, the vibration responses of
the tube bundles were measured. A mathematical model was pre-
sented to analyze the vibration characteristics of the tube bundles
considering the effects of the periodic fluid force before the onset
of fluidelastic instability. To obtain the frequency of the periodic
fluid force acting on the rotated triangular tube array with
1250 1300 1350 1400 1450 1500

ime
onse of the tube.



Fig. 17. The vibration response and impact force of the tube at Up = 1.3 m/s.
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P/D = 1.48, the Computational Fluid Dynamics was presented.
Considering the effect of the periodic fluid force, the vibration
responses of the tube bundles were calculated. From these analy-
ses, we have drawn the following conclusions:

1. The critical velocity of a rotated triangular tube array with P/
D = 1.48 subjected to cross-flow was obtained in the experi-
ment. Before the fluidelastic instability, the beat vibration of
the tube bundles occurs. The beat vibrations with large ampli-
tude and multifrequency are different from the vibration char-
acteristics of the fluidelastic instability

2. The transient analysis of the periodic fluid force in a rotate tri-
angular tube array was conducted with the flow pitch velocity
ranging from 0.5 m/s to 1.5 m/s. The numerical results show
that the Strouhal number of the periodic fluid force in a rotated
triangular tube array with P/D = 1.48 is about 0.42, and presents
fewer variations when the flow pitch velocity ranging from
0.5 m/s to 1.5 m/s.

3. Considering the effect of the periodic fluid force and clearance
restriction, the vibration responses of the tube bundles were
calculated. It was found that the frequency of the periodic fluid
force has a significant influence on the vibration characteristics
of the tube bundles before the fluidelastic instability,
which should be considered during the steam generator design
stage.

4. When the flow pitch velocity is larger than the threshold of the
fluidelastic instability, the fluidelastic instability of the tube
bundles occurs, causing an impact vibration between the tube
bundles and the support structures, which could be the most
important reason for early damage of the tube bundles.
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