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Deep Learning Based Semi-Supervised Control for
Vertical Security of Maglev Vehicle With

Guaranteed Bounded Airgap
Yougang Sun , Member, IEEE, Junqi Xu , Han Wu, Guobin Lin, and Shahid Mumtaz, Senior Member, IEEE

Abstract— The vertical security problem of maglev train is
challenging for nonlinearity, external disturbances, unmeasurable
airgap velocity and constrained output. To solve this problem, a
semi-supervised controller based on deep belief network (DBN)
algorithm is proposed in the presence of unknown external dis-
turbances. Firstly, the extended state observer (ESO) is designed
to ensure fast convergence of observation errors with high
enough estimation precision. An output-constrained controller
is designed by backstepping method, and the estimated value of
ESO is introduced to ensure that the output airgap is constrained
within a bounded range. Then, the stability of this method
is proved based on the symmetric Barrier Lyapunov function.
Subsequently, a semi-supervised controller is presented based
on DBN algorithm and the output-constrained controller. The
numerical simulation results show that this method can effec-
tively deal with unmeasurable airgap velocity and generalized
external disturbances, and guarantee the vertical security with
output airgap within a bounded range. Finally, experiments are
implemented on a full-scale maglev vehicle and the experimental
results demonstrate that the developed deep learning controller
can ensure the vertical security.

Index Terms— Extended state observer, intelligent control,
nonlinear dynamics, state constrains, vertical security.

I. INTRODUCTION

MAGLEV vehicle is a new type of rail transit tools
[1]–[3]. Different from the ordinary wheel-rail train,

the maglev vehicle mainly relies on electromagnetic force to
levitate the body above the track to run [4], [5]. Because there
is no contact between the car body and the track, the friction
between the vehicle body and the track can be neglected so
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as to improve the limited value of train speed. In practice,
the value of suspension airgap is not arbitrary. Because of
the existence of physical constraints, the suspension airgap
can only change in the range of 0-16 mm. Once the airgap
great than 16 mm, the suspension chassis of maglev train
collides with the track (called “rail smashing”) or less than
0 mm, the suspension electromagnet sucks with the track
(called “magnet smashing”). The current control algorithm
cannot guarantee the bounded suspension airgap. In actual
operation, there will be rail smashing or magnet smashing,
which seriously affects the vertical security of maglev vehicle.
In addition, in the general magnetic suspension control system,
the airgap value can be obtained by eddy current sensor,
and the vertical acceleration of electromagnet can also be
obtained by acceleration sensor, but the airgap change velocity
value cannot be measured directly [6], [7]. If the airgap is
differentiated to obtain the velocity, it is easy to introduce great
disturbance at high frequencies. If the acceleration is integrated
to obtain the airgap change velocity, the system is easy to
integrate saturation at low frequency, which results in large
error. Therefore, it is necessary to design a state observer to
estimate the airgap velocity. In fact, observers and controllers
affect each other in the system. How to ensure the security of
the coupled system with the designed observers and controllers
has been seldom studied.

As a typical open-loop unstable, strong nonlinear and
susceptible to external disturbance system, the research of
control algorithm of maglev train has been very challenging.
At present, most commercial maglev trains adopt mature linear
control theory. In the design of controller and stability analysis,
the system is often linearized near the equilibrium point.
But when the system state is far from the equilibrium point,
the control effect will be greatly deteriorated. How to design a
nonlinear controller and simultaneously solve the problem of
airgap state limitation and airgap velocity unmeasurable is a
tough problem in the control system of maglev train at present.
The back-stepping control method or improved back-stepping
method is very powerful tool to deal with nonlinear system
[8]–[10]. Michino et al. [11] introduced two different virtual
filters, and a high-gain adaptive output feedback controller
is designed using backstepping strategy. Finally, the high-
gain adaptive output feedback controller is applied to the
magnetic suspension system, and satisfactory tracking results
are obtained. Liu et al. [12] proposed an adaptive control

1558-0016 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on May 25,2021 at 15:42:31 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1549-0108
https://orcid.org/0000-0002-7678-6033


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

strategy based on backstepping method for nonlinear magnetic
suspension system with disturbance, which can effectively
improve its anti-disturbance ability. Saikia et al. [13] com-
bined the backstepping method with sliding mode control
method and applied it to the magnetic suspension control
system. The impulse signal is simulated as disturbance, and
the simulation results show the proposed controller can track
the target trajectory more accurately. The above works are
done under the condition that all states are known. However,
in practice, some states in the magnetic suspension system
cannot be measured directly or mismeasurement because of
sensor fault. It is necessary to design a state observer to
estimate these state values which cannot be measured directly.
Recently, the disturbance estimation issues have attracted a
lot of research attentions [14]–[16]. Liu [17] discussed the
state observer in detail, and estimated the unmeasurable state
variables by state reconstruction. The proposed state observer
lays a foundation for the subsequent development of other
forms of state observers. The extended state observer (ESO)
can observe the unmeasurable state and external disturbance
in the system. It is an important part of the non-linear control
technology such as active disturbance rejection controller
[18], [19]. It is noteworthy that ESO is an effective and practi-
cal method for estimating unknown states or uncertainties [20].
He [21] proposed a new bearingless suspension system based
on ESO. Using ESO to estimate disturbances, a mathematical
model was established. Zhao [22] proposed a novel control
method for a two-joint manipulator system driven by pneu-
matic artificial muscle. A nonlinear ESO is developed to
estimate the disturbance and state of the system. Sun [23]
proposed an adaptive neuro-fuzzy sliding mode controller.
Simulation and experimental results show that the proposed
robust controller can cope with the disturbance and parameter
perturbations effectively. Wai et al. [24] proposed an adaptive
observer to estimate the airgap change velocity and passed it
to the suspension controller. Chen et al. [25] used the linear
Kalman filter algorithm to design the observer, and obtained
the state observation value of vehicle suspension vibration by
coordinate inverse transformation. Wang et al. [26] designed
speed state observer based on second-order sliding mode
for linear motor control of medium and low speed maglev
vehicle system. Xu et al. [27] proposed a hybrid flux density
observer for maglev vehicles. Sun [28] proposes an on-line
estimation method of periodic interference based on repetitive
learning, which is applied in magnetic suspension system.
These observers or on-line estimation algorithms provide many
new ideas for the state observer of maglev train, but neglect
the limitation of airgap state output of maglev train.

Output constraints refer to the fact that the output of the
actual system cannot exceed a certain range [29]. The general
Lyapunov function used in traditional controller design can
only make it stable without restricting the output value to a cer-
tain range due to the lack of self-constraints. At present, some
scholars have proposed barrier Lyapunov function (BLF). This
Lyapunov function can set constraints. When the constraints
are closer to the critical constraints, the value of its function
tends to be infinite, thus constraining the constraints to the
interval. Tee et al. [30] proposed the control design of SISO

nonlinear systems with strict feedback form with output con-
straints. Asymmetric barrier Lyapunov function is designed
to relax the requirement of initial value. The simulation
results of symmetric barrier Lyapunov function, asymmetric
barrier Lyapunov function and controller design based on
quadratic Lyapunov function show that barrier Lyapunov func-
tion is better than quadratic Lyapunov function. The adaptive
control method has also attracted much attention [31]–[33].
Xu et al. [33] proposed an adaptive robust control method for
the suspension control of a nonlinear maglev train with state
constraints. A three-step state transition method is designed to
transform the maglev train into an interconnected uncertain
system. At the same time, in order to prevent collision,
the airgap between the suspension electromagnet and the
guideway is limited to a specific range, but the problem
that the airgap change speed is unmeasurable in practice is
neglected. Moreover, the study on the combination of deep
learning algorithms [34]–[36] and advanced control method
to deal with complex control problems of maglev system is
less. Deep learning originated from the research of neural
network, which can be understood as deep neural network.
Through it, deep feature representation can be obtained,
which can avoid the complexity of manual feature selection
and dimension disaster of high-dimensional data. At present,
the basic models of deep learning include Deep belief network
(DBN) [37], Stacked auto encoders (SAE) [38], Convolutional
neural networks (CNN) [39] and Recurrent neural networks
(RNN) [40]. In order to overcome the shortcomings of the
traditional neural network, such as slow convergence and easy
convergence to the local optimum, this paper uses DBN to
design the controller, which is more convenient to learn and
deal with the uncertainty encountered of the maglev vehicle
in the actual situation.

Considering the physical limitation of airgap between the
suspension electromagnet and the track, the unmeasurable
airgap velocity and unknown external disturbance of maglev
train, an output-constrained maglev train backstepping control
strategy based on ESO is proposed. The strategy introduces the
estimation of airgap velocity and external disturbance by the
ESO into the controller. The suspension controller is designed
by combining the output constraints with the estimation of the
extended state observer. Then the stability analysis is carried
out based on the symmetric Barrier Lyapunov function. Next,
the deep learning semi-supervised controller based on deep
belief network (DBN) algorithm is developed. In order to
prove the validity and reliability of the developed vertical
security control method, numerical simulation is carried out
according to the actual situation. Finally, the experimental
verification is carried out through the experimental platform.
The main contribution of this work is summarized as follows:

The main contribution of this work is summarized as
follows:

1. The proposed controller can ensure the airgap to be
always within a permitted range despite unmeasurable system
state and external disturbances.

2. The deep belief network is utilized to learn the maglev
control system, which is more effective to learn and deal with
the uncertainties encountered in practice.
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Fig. 1. Structure of maglev system.

3. Experimental results illustrate that the proposed method
can achieve increased control performance than traditional
method and airgap can constrained within the permitted range

The rest of this paper is structured as follows. In section 2,
the mathematical model of maglev system is established and
analyzed. Section 3 designs the extended state observer (ESO).
Section 4 proposes a deep learning controller and stability
analysis. Simulation and experiment results are provided in
Section 5 and 6, respectively. Finally, the conclusions and
future work directions are drawn in Section 7.

II. VERTICAL DYNAMICS AND SECURITY

ANALYSIS OF MAGLEV VEHICLE

A single module of the magnetic suspension system of the
maglev train can be illustrated in Fig. 1. Based on Newton’s
law and Kirchhoff’s law, the dynamic model of maglev system
can be established as follows [23]:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mẍ = mg − F(t) + δ(t)

F(t) = κ · i2(t)

x2(t)

Ri(t) + L
di(t)

dt
= u(t)

(1)

where x(t), ẋ(t), ẍ(t) represent the airgap, airgap velocity and
acceleration between the suspension electromagnet and the
track respectively; m represents the mass of the train; g is the
gravitational acceleration; F(t) denotes the electromagnetic
force, κ is the electromagnetic force transmission coefficient
determined by the effective area of the magnet and the turns
number of the coil; i(t) represents the excitation current,
u(t) denotes the voltage; R and L represent the resistance and
inductance of the electromagnet respectively; δ(t) represents
various disturbance forces in the vertical direction of the
train.

To simplify the design, the disturbance force δ(t) is assumed
to be a bounded function with period T as follows [28].

δ(t) = δ(t − T ), δ(t) ≤ δ0 ≤ mg (2)

For the maglev train system, the voltage u(t) can be changed to
adjust the current i(t), thus changing the electromagnetic force
F(t) to make the train levitate stably at a reference height.

Remark 1: Airgap x(t) is related to the safety of maglev
train and will be limited to a range (xmin, xmax). If the airgap
exceeds the range, it will cause rail or magnet smashing.

Definition 1: The nonlinear systems can be described as
follows:

ẋ = f(x), x ∈ Rn (3)

where x denotes system state; f(x) represents nonlinear
function.

The first linear approximation of (3) near the equilibrium
point x0 can be reduced into:

ẋ = A(x0)(x−x0), x∈Rn (4)

where A(x0) denotes a constant matrix. If x0 is an isolated
singular point of a nonlinear system (3) and all eigenvalues of
A(x0) have non-zero real parts, then x0 is called a hyperbolic
singular point of a nonlinear system (3).

The nonlinear systems (3) can be rewritten as below:

ẋ = A(x0)(x − x0) + O(x − x0), x ∈ Rn (5)

Theorem 1: If x0 is a hyperbolic singularity of a nonlinear
system (3), and the following condition is satisfied:

lim
x→x0

(
O(x − x0)

|x − x0|
)

=0 (6)

Theorem1 is mainly to serve the subsequent stability analy-
sis. With Theorem 1, the system (3) has the same topological
structure as its corresponding linear system (5) at the isolated
singular point x0 [41].

Remark 2: The vector field of the linearized system of
hyperbolic nonlinear system at its equilibrium point is topo-
logically equivalent to that of the original system near that
point.

Remark 3: If the non-linear system and the linearized system
are topologically equivalent at the equilibrium point, then the
stability of the non-linear system near the equilibrium point
can be determined by the linearized system.

According to theorem 1, the characteristics of the nonlinear
magnetic suspension system can be analyzed by linear analysis
method, which can ensure the accuracy of the analysis results
under certain accuracy.

The linearized model of nonlinear magnetic suspension
system (1) at equilibrium point x0 can be described as
follows:

ẋ = A0(x0)(x − x0) + A1(um − u0) + O(x − x0)
n (7)

where

x0 = (xre f , 0, ire f ),

A0 =

⎡
⎢⎢⎢⎢⎣

0 1 0
Px

m
0 − Pi

m

0
Pi

Lre f
− R

Lre f

⎤
⎥⎥⎥⎥⎦ , A1 =

⎡
⎢⎢⎣

0
0
1

Lre f

⎤
⎥⎥⎦ ,

Pi = 2κire f

mx2
re f

, Px = 2κi2
re f

mx3
re f

, Lre f = 2κ

mxref
.

Through the Laplace transform, (7) can be rewritten as
follows:

(ms2 − Px )�x(s) = −Pi�i(s) (8)

�u(s) = (R + Lre f s)�i(s) − Pi s�x(s) (9)
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Based on the (8) and (9), the transfer functions of the system
can be obtained as follows:

G(s) = �x(s)

�u(s)

= −Pi

Lre f ms3 + Rms2 + (P2
i − Lre f Px )s − RPx

(10)

Theorem 2: If the characteristic equation of the system is
expressed as below:

ansn + an−1sn−1 + · · · + a1s + a0 = 0 (11)

Then, the necessary condition for the stability of linear sys-
tems is that the coefficients of characteristic polynomials are
positive, that is, the coefficients of characteristic polynomials
are positive as follows [42]:

an > 0, an−1 > 0, . . . , a0 > 0 (12)

With theorem 2, we can analyze the open-loop stability of
the maglev system. For the transfer function (10) of the mag-
netic suspension system, it is obvious that a0 = −Rm Px < 0
in the characteristic polynomial. So the system is unstable by
theorem 2.

Remark 4: The open-loop of maglev system is unstable. It is
necessary to design a feedback controller for active regulation
to ensure vertical security.

Remark 5: The original mathematical model of magnetic
suspension system (1) is strongly non-linear and beyond the
scope of application of traditional linear control strategy.

III. DESIGN OF EXTENDED STATE OBSERVER (ESO)

In the actual maglev train suspension system, the chopper is
used to supply the suspension electromagnet, and the current
following principle is utilized to adjust the current of the
electromagnet. Therefore, the current loop is used to control
when designing the controller.

For maglev train system, it can be transformed into the
following state space equation as follows:{

ẋ1 = x2

ẋ2 = g − bu + f (t)
(13)

where b = κ
mx2

1
, u = i2, f (t) = δ(t)

m . x1 denotes airgap; x2 is

airgap velocity, u represents control input; g denotes gravity
acceleration.

The expanded state observer is used to obtain airgap velocity
and external disturbance of maglev train. The expanded state
observer is designed as follows:⎧⎪⎨

⎪⎩
˙̂x1 = x̂2 + η1(x1 − x̂1)
˙̂x2 = g − bu + x̂3 + η2(x1 − x̂1)
˙̂x3 = η3(x1 − x̂1)

(14)

where η1 = α1
ε , η2 = α2

ε2 , η3 = α3
ε3 , ε > 0, α1, α2, α3 are

positive real numbers; x̂1 denotes the estimate value of x1;
x̂2 is the estimate value of x2; x̂3 is the estimate of disturbance
f (t);

∣∣ ḟ
∣∣ ≤ L. The observation error should be analyzed

mathematically.

To this end, let

γ = [
γ1 γ2 γ3

]T

where

γ1 = x̃1

ε2 , γ2 = x̃2

ε
, γ3 = x̃3, x̃1 = x1 − x̂1,

x̃2 = x2 − x̂2, x̃3 = x3 − x̂3

Since: ⎧⎪⎨
⎪⎩

εγ̇1 = −α1γ1 + γ2

εγ̇2 = −α2γ1 + γ3

εγ̇3 = −α3γ1 + ε ḟ (t)

(15)

The equation of state of observation error can be written as
follows:

εγ̇ = Aγ + εB ḟ (16)

where A =
⎡
⎣ −α1 1 0

−α2 0 1
−α3 0 0

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ . The characteristic

equation of matrix A is described as follows:

λ3 + α1λ
2 + α2λ + α3= 0 (17)

By selecting αi (i = 1, 2, 3), A is obtained to satisfy the
Hurwitz criterion [43].

Then for any given symmetric positive definite matrix Q,
there exists a symmetric positive definite matrix P satisfying
the following Lyapunov equation:

ATP + PA + Q = 0 (18)

The Lyapunov function of the observer is defined as follows:

V0 = εγ TPγ (19)

Therefore:

V̇0 = εγ̇ TPγ + εγ TPγ̇ = (Aγ + εB ḟ )T Pγ

+γ T P(Aγ + εB ḟ ) = γ T(AT P + PA)γ

+2εγ T PB ḟ ≤ −γ T Qγ + 2ε ‖PB‖ · ‖γ ‖ · ∣∣ ḟ
∣∣

≤ −λmin(Q) ‖γ ‖2 + 2εL ‖PB‖ · ‖γ ‖ (20)

where λmin(Q) denotes the minimum eigenvalue of Q.
The convergence condition of observer obtained from

V̇0 ≤ 0 is:

‖γ ‖ ≤ 2εL ‖PB‖
λmin(Q)

(21)

(21) shows that the convergence rate of observation error γ
is related to ε. The smaller ε is, the faster γ converges. With
the decrease of ε, the observation error tends to zero.

IV. SEMI-SUPERVISED CONTROL DESIGN BASED ON

DEEP BELIEF NETWORK ALGORITHM

A. Output-Constrained Controller Design

On the basis of the proposed extended state observer,
the airgap of the system output x1 is limited within physical
permissible range, and the controller is designed by using

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on May 25,2021 at 15:42:31 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUN et al.: DEEP LEARNING BASED SEMI-SUPERVISED CONTROL FOR VERTICAL SECURITY OF MAGLEV VEHICLE 5

the backstepping method to ensure its stability. By introduc-
ing inter virtual control variable, the backstepping method
decomposes the complex nonlinear system into subsystems
that do not exceed the order of the system. Then the Lyapunov
functions of each subsystem are designed in sequence to
develop the whole control law.

The airgap error e1 is defined as follows:

e1 = x1 − x1d (22)

where x1 denotes airgap of the system output; x1d is the
reference airgap. The limitation range of x1 is (xmin, xmax).

The inter virtual control variable β of the backstepping
control is defined as follows:

β = −k1e1 − e1

k2
b − e2

1

(23)

where k1 ∈ R+ denotes the control gain.
Simultaneously, e2 can be designed as below:

e2 = x̂2 − β − ẋ1d (24)

Based on (22) and (24), we can obtain the following
equation:

ė1 = e2 + β + x̃2 (25)

If |e1| < kb, then we can get:

−kb + x1d min < x1 < kb + x1d max (26)

Therefore, x1 can be guaranteed in the limitation range
by setting the value of kb. The proposed controller can be
represented in the following fashion:

u = 1

b
(x̂3 + η2(x1 − x̂1) − β̇ − ẍ1d + k2e2 + g + e1

k2
b − e2

1

)

(27)

where k2 ∈ R+ represents the control parameter.

B. Closed-Loop Stability Analysis

The stability of general extended state observer (ESO) and
proposed control method has been proved separately. In this
section, the entire stability of the presented intelligent control
fused with the developed ESO is proved.

A symmetric Barrier Lyapunov function is defined as
follows:

V1 = εγ T pγ + 1

2
log

k2
b

k2
b − e2

1

(28)

By taking the time derivative of V1(t) in (28), substituting
(20) and (25) into the resulting equation, canceling out the
common terms, and making some arrangements, we can get
the following results:

V̇1 ≤ −λmin(Q) ‖γ ‖2 + 2εL ‖PB‖ · ‖γ ‖ + e1(e1 + β + x̃2)

k2
b − e2

1
(29)

By using Young’s inequality, the second and third terms in
(29) can be arranged as follows:

2εL ‖PB‖ · ‖γ ‖ ≤ εL(‖PB‖2 + ‖γ ‖2) (30)

e1x̃2

k2
b − e2

1

≤ 1

2
[ e2

1

(k2
b − e2

1)
2

+ |x̃2|2]

≤ e2
1

(k2
b − e2

1)
2

+ |εγ2|2
2

(31)

By inserting (30) and (31) into (29), and arranging the
obtained results, one can reorganize (29) as follows:

V̇1 ≤ −λmin(Q) ‖γ ‖2 + εL ‖γ ‖2 + εL ‖PB‖2

+ε2

2
|γ2|2 + e2

1

(k2
b − e2

1)
2

+ e1(e2 + β)

k2
b − e2

1

= −[λmin(Q) − εL)] ‖γ ‖2 + ρ

− k1e2
1

k2
b − e2

1

+ e1e2

k2
b − e2

1

(32)

where ρ = εL ‖PB‖2 + ε2

2 |γ2|2.
Since x2 does not need to be restricted and the proposed

control law (27) is introduced, the Lyapunov candidate func-
tion can be defined as follows:

V = V1 + 1

2
e2

2 (33)

By taking the time derivative of V (t) in (33), and arranging
the obtained results, we can get the following result:

V̇ = V̇1 + e2ė2 ≤ −[λmin(Q) − εL] ‖γ ‖2

+ρ − k1e2
1

k2
b − e2

1

+ e1e2

k2
b − e2

1

+ e2( ˙̂x2 − β̇ − ẍ1d)

= −[λmin(Q) − εL] ‖γ ‖2 + ρ − k1e2
1

k2
b − e2

1

+e2( ˙̂x2 − β̇ − ẍ1d + e1

k2
b − e2

1

)

= −[λmin(Q) − εL] ‖γ ‖2 + ρ − k1e2
1

k2
b − e2

1

+e2[g − bu + x̂3 + η2(x1 − x̂1) − β̇ − ẍ1d + e1

k2
b − e2

1

]

−[λmin(Q) − εL] ‖γ ‖2 + ρ − k1e2
1

k2
b − e2

1

− k2e2
2 (34)

The following inequality (35) holds [44]:

− k1e2
1

k2
b − e2

1

≤ − log
k2

b

k2
b − e2

1

(35)

Using the fact of (35), the (34) can be processed as:

V̇ ≤ −[λmin(Q) − εL)] ‖γ ‖2 + ρ

− log
k2

b

k2
b − e2

1

− k2e2
2 ≤ −cV + λ (36)

where c = min{λmin(Q)−εL
λmin(p) , 2, 2k2}, λ = ρ.

The solution of inequality (36) is obtained as follows:

0 ≤ V ≤ V (t0)e
−c(t−t0) + λ

c
(37)
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Fig. 2. Structure of deep belief network (DBN).

It is indicated from (37) that

lim
t→∞ V = λ

c
(38)

(37) and (38 ) demonstrate that V (t) is within the sphere
with the origin as the center of the sphere and the radius of λ

c ,
that is V (t) uniformly ultimately bounded. It is shown that
this method can stabilize the system and restrict the airgap in
the limited range.

C. DBN Semi-Supervised Control

The deep belief network is trained by stacking multiple lay-
ers of restricted Boltzmann machine (RBM), and a supervised
reverse iterative layer is added to the last layer to achieve the
overall fine-tuning, as shown in Fig. 2.

RBM is a typical undirected graph model in which the
visible layer v is connected to the hidden layer h through
an undirected weighted connection [46], [47]. RBM can be
defined as a probability distribution model through an energy
function. Assuming it is a binary RBM, you can obtain:

− log p(v, h)∞E(v, h; θ)

= −
|V |∑
i=1

|H |∑
j=1

wi j vi h j −
|V |∑
i=1

bivi −
|H |∑
j=1

a j h j (39)

where θ = (w, a, b) is the parameter set, wi j is the symmet-
rical weight between the visible unit i and the hidden unit j ;
a j is the offset of the visible layer, and bi is the offset of the
hidden layer. The number of visible units and hidden units
can be expressed as |V | and |H |, respectively. When v and h
do not changes, the structures make it easier to calculate the
conditional probability distribution, as follows:

p(h j |v ; θ) = sigm(

|V |∑
i=1

wi j vi + a j ) (40)

p(vi |h ; θ) = sigm(

|H |∑
j=1

wi j h j + bi ) (41)

where sigm(x) = (1/(1 + e−x)) is a sigmoid function. The
model parameters θ = (w, a, b) can be learned by the contrast
divergence algorithm (CD-k) [35].

Fig. 3. Structure of Semi-Supervised Controller based on DBN.

The DBN network training process canbe divided into two
stages: pre-training and fine tuning. In the stage of pre-training,
each layer of RBM network is independently and unsupervised
trained to ensure that as much feature information is retained
as possible when the feature vectors are mapped to different
feature spaces. In the stage of fine tuning, the weights between
the trained RBMs are utilized as the initial weights of the
DBN. Additionally, the network labels are utilized as the
supervised signals to calculate the network error. The Back
Propagation (BP) algorithm is utilized to calculate the error
of each layer to adjust the weights of each layer based on the
gradient descent method.

As shown in Fig 3, the DBN semi-supervised control (DBN
SSC) is expected to gradually replace the output-constrained
controller u with the deep learning output control input ud ,
after online learning in the control process.

The neural network-based supervisor controller (NNBSC)
uall(t) is designed as follows:

uall(t) = u(t) + ud(t) (42)

The weights can the be adjusted according to the stochastic
gradient descent method [35].

V. SIMULATION RESULTS

In order to verify that the above theory can accurately
estimate various states and external disturbances, and at the
same time can restrict the output within a limited range,
this section will carry out numerical simulation analysis.
Considering the actual situation, the limited range of airgap x1
is (0, 0.016); initial position x1(t0) = 0.016m; reference airgap
x1d = 0.008m; force transmission coefficient κ = 0.00076;
mass m = 750kg; gravity acceleration g = 9.8m

/
s2; ESO

parameters are chosen as: α1 = 6, α2 = 11, α3 = 6, ε = 0.01;
backstepping control parameters are selected as: k1 = 3,
k2 = 10; RBM hidden layer consists of three layers, each layer
contains 650 neurons, the learning rate is 0.2, the iteration
number is 500, and the dropout rate is 0.3; the external
disturbance force is chosen as:

f (t) = 36000 sin(2t + π/2) − 40000 sin(4t + π/2) (43)

Based on the limited range of x1 and (26), we can obtained
that kb = 0.008.

In order to further illustrate the superiority of the proposed
DBN semi-supervised control method, the dynamic response
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Fig. 4. Airgap response with PID.

Fig. 5. Control input with PID.

Fig. 6. Phase locus with PID.

of the system is also simulated under the action of the
proportion-integral-differential (PID) controller with the same
working condition. The trial-and-error method is utilized to
determine the best control parameters of PID, which are:
P = 56000, I = 500, D = 7400.

In the static suspension case without disturbance, the sim-
ulation results of the PID controller are shown in Figs. 4-6.

The external disturbance f (t) in (43) is applied to the
nonlinear system. The airgap response is illustrated in Fig. 7.

Fig. 7. Airgap response with PID under disturbance.

Fig. 8. Airgap and its bounded range with disturbance.

We can learn from the Figs. 4-6 that under the action of the
PID controller, there is a static error in the airgap response, and
the maximum steady state error is 0.25 mm. The maximum
control circuit reaches 200A, which far exceed the current
limit of 70A at the beginning. There are some fluctuations
in control current signals, which are caused by the excessive
gain. But, a small gain will lead to the system to be unstable,
which will affect the vertical security. This discussion also
can be proved in Fig. 7 when we applied the disturbance to
the system. We can see from Fig. 7 that when the nonlinear
periodic disturbance is applied to system, the PID controller
cannot stabilize the system and the system becomes instability.

When the proposed deep learning controller is applied to
the system, the simulation results of airgap with disturbance
and its bounded airgap range are shown in Fig. 8.

The simulation results of airgap error are shown in Fig. 9.
The airgap velocity x2 and the estimate value x̂2 obtained

by proposed ESO are included in Fig. 10.
The external disturbance f (t) and the estimate value x̂3

obtained by proposed ESO are shown in Fig. 11.
Figs. 8-9 show that the proposed semi-supervised control

based on deep belief network can constrain the air gap between
the bounded airgap, and the airgap can converge quickly
to the target position within about 0.5 seconds smoothly.
Fig. 10 shows the airgap velocity and its estimation results.
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Fig. 9. Simulation results of airgap error with disturbance.

Fig. 10. Simulation results of airgap velocity and estimate value.

Fig. 11. Simulation results of disturbances and its estimation.

In less than 0.1 seconds, the estimate value x̂2 coincides
with the airgap velocity x2. It can be seen that the proposed
ESO can estimate the airgap velocity quickly and accurately.
Fig. 11 shows the disturbance and its estimation value. It can
be learned that the observer can estimate the disturbance
accurately and quickly, which guarantees the stability and
control accuracy of the system. In summary, the propose
control strategy can estimate the airgap velocity and unknown
external interference effectively and rapidly, while ensuring
the stable suspension within the bounded airgap range during
the whole suspension process.

TABLE I

SIMULATION RESULTS COMPARISON WITH EXTERNAL DISTURBANCE

Fig. 12. Full-scale experimental maglev vehicle system.

In order to show superiority of the proposed DBN semi-
supervised control (DBN-SSC), the performance of DBN-SSC
is validated in simulation with compared with the PID [45],
output-constrained controller (OCC), sliding mode controller
(SMC) [45] and modified fuzzy controller[2]. The simulation
results of applying external disturbance in (43) are listed
in Table I.

VI. EXPERIMENTAL IMPLEMENTATION AND RESULTS

After sufficient simulation tests, much effort have been put
to perform experiments with the aim of examining the practical
performance of the proposed deep belief network based semi-
supervised controller. The experiments are implemented on a
full-scale maglev system testbed [23], whose core parts are
illustrated in Fig. 12. The maglev control system includes
eddy airgap sensor, A/D acquisition card, acceleration sensor
and chopper. The maglev test line is about 1.7 km. The track
irregularity disturbance is made in advance on the test line
track. The USB-CAN is utilized to design a debugging system
and PC human-machine interface is written in C#.

The sampling frequency of the testbed is 1000 Hz. The
target airgap of the full-scale maglev vehicle during operation
is 8mm, and the initial airgap is 16mm. So, the bounded
airgap range is

(
0, 16mm

)
and the values of test parameters

of proposed deep learning controller are the same as the values
in the simulation section. Experiments are implemented to
investigate and verify the disturbance rejection capacity of
the presented deep learning semi-supervised control method
compared with the widely used PID controller. Two sets of
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Fig. 13. Airgap response with PID controller.

Fig. 14. Current response with PID controller.

Fig. 15. Acceleration response of electromagnet with PID controller.

Fig. 16. Airgap response with deep learning semi-supervised controller.

experiments are performed to verify the vertical security and
the control performance.

Experiment 1: The maglev vehicle is running under
the track irregularity disturbance with the PID controller.
The experimental results of Experiment 1 are provided
in Figs. 13-15.

Experiment 2: The maglev vehicle is running under the
track irregularity disturbance with the proposed deep learn-
ing semi-supervised controller. The experimental results of
Experiment 2 are recorded in Figs. 16-18.

By summarizing the foregoing two experiments 1-2, it is
concluded that the proposed deep learning semi-supervised
control strategy can achieve better control performance over
PID controller with track irregularity disturbance. In partic-
ular, by comparing Figs. 13 and 15, we see that the airgap
of the system with PID reaches 16mm, which means the
maglev vehicle collides with the track (called “rail smash-
ing”). But the airgap of proposed semi-supervised controller
is within 6∼9mm without “rail smashing” and “magnet smash-
ing”, which is more stable than that of the PID method.
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Fig. 17. Current response with deep learning semi-supervised controller.

Fig. 18. Acceleration response of electromagnet with semi-supervised controller.

TABLE II

EXPERIMENTAL RESULTS COMPARISON

Moreover, the control inputs of PID and deep learning semi-
supervised controller are compared in Figs. 14 and 17. We can
learn that the control input of deep learning semi-supervised
controller is smaller than PID controller mainly due to feed-
forward compensation by the ESO. The acceleration response
of electromagnet with PID controller is greater than that
of the deep learning semi-supervised control method, which
means deep learning semi-supervised can provide more ride
comfort for passengers. These experiment results demonstrate
satisfactory robustness of the presented control strategy based
on deep learning, which can guarantee the airgap state within
the bounded airgap range. The experimental results analysis
of different controllers is shown in Table II.

Thus, we can conclude that the proposed deep learning
based semi-supervised control is more effective to guarantee
the bounded airgap in actual operation of the maglev train.

VII. CONCLUSION

Aiming at the problem of the vertical security with external
disturbance, unmeasurable airgap velocity and limited airgap
rang, this paper develops an expanded state observer (ESO)
to estimate the airgap velocity x2(t) and generalized dis-
turbance f (t) online, which can be utilized as feedforward

compensation of the controller for the maglev system. The
output-constraints and ESO estimates are fused to design the
control law based on backstepping control method, and then
stability analysis is carried out based on symmetric Barrier
Lyapunov function. The deep belief network is utilized to
combine with output-constraints controller to develop a deep
learning semi-supervised control strategy. According to the
actual situation of the magnetic suspension system of maglev
vehicle, the simulation with specify parameters and experiment
are carried out respectively to examining the practical perfor-
mance of the proposed deep learning semi-supervised con-
troller. The simulation and experimental results demonstrate
that the proposed control method can effectively deal with
the unmeasurable airgap velocity and unknown generalized
disturbance simultaneously. The proposed controller has strong
robustness and ensures that the output airgap is within the
physical limit all the time, which can solve the problem of
maglev train crashing to rail in the train operation.
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