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a b s t r a c t 

In this paper, a hybrid computational aero/hydro-acoustic approach is proposed to deal with acoustic 

scattering and flow-induced noise problems based on the sharp interface immersed boundary method 

(IBM). For the flow field, the incompressible Navier–Stokes equations are solved by an in-house direct 

numerical simulation solver. The acoustic field is predicted by solving acoustic perturbation equations 

(APEs). Both flow and acoustic solid boundaries with complexity and mobility are dealt with by the sharp 

interface IBM. Benchmark acoustic problems with varied scatterers in two and three dimensions are pre- 

sented to validate the accuracy of the acoustic codes and boundary treatments. Then, the feasibility and 

accuracy of the present hybrid approach are validated by considering the problem of flow past a circular 

cylinder at a Reynolds number of 200. Subsequently, the present method is used to predict the noise 

generated by flow around a four-cylinder array in two-dimensions with two arrangements (i.e., square 

array and diamond array), and the flow and acoustic physics are investigated in detail. The results show 

that the square array retains a monopole-like sound-radiation shape, while the directivity pattern of the 

diamond array produces a dipole-like shape. In both the square and diamond arrays, the propagation of 

acoustic waves is affected by the Doppler effect, and the latter array results in a larger alternation of 

the propagation angle compared with the single cylinder due to the influence of the geometric configu- 

ration. The intensity of the radiated acoustic pressure is much greater for the diamond array compared 

to the square one in most circumferential directions, and the acoustic intensity of both arrays is greater 

than that of the single cylinder. The spectrums of the far-field acoustic pressure indicate that the two 

arrays and the single cylinder have similar peak frequencies and profiles, with vortex shedding playing 

the predominant role in noise generation in all three configurations. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

Studies on sound generation and propagation by unsteady flow 

re important in practical applications such as jet noise, ma- 

ine propellers, and turbomachinery. Recently, much research has 

een conducted on the fluid dynamics inspired by fast and effi- 

ient propulsion [1-4] , due to the great potential of applications 

n biomimetics. However, research on noise prediction has not 

eceived adequate attention. Investigations of flow-induced noise 

lay an important role in the design of quiet drones and bio- 

nspired robots. Besides, underwater acoustic propagation can also 

e applied in underwater navigation systems and ocean depth 
easurement. 
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In previous studies, theoretical methods [ 5 , 6 ], experimental 

easurements [ 7 , 8 ], and numerical simulations [9-19] have been 

sed to investigate acoustic scattering and flow-induced noise 

roblems. Compared with the former two methods, numerical 

imulation has particular advantages in multiple aspects, such as 

arametric studies and mechanism research. Numerical techniques 

or acoustic simulation include direct numerical simulation (DNS) 

 11 , 14 , 18 ] and a hybrid method; the latter is widely applied due to

he high cost of DNS [20] . In the hybrid approach, the acoustic field

s decoupled from the flow field and is solved by deriving acous- 

ic governing equations. The hybrid method can be mainly classed 

nto the acoustic analogy method [15] , linearized Euler Equations 

LEEs) [ 13 , 21 ], and the hydrodynamic/acoustic splitting approach 

 9 , 10 , 22 , 23 ]. Compared with the acoustic analogy method, the

ther two methods can obtain the noise source and can consider 

he convection as well as refraction effects of the non-uniform flow 

https://doi.org/10.1016/j.compfluid.2021.105032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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n the acoustic field, which is more suitable for the mechanism 

nalysis of sound generation and propagation. 

Previously, Hardin and Pope [9] proposed an acoustic/viscous 

plitting technique for the numerical analysis of aerodynamic noise 

eneration, and the approach was validated by sound generation in 

 two-dimensional cavity. Additionally, Bailly and Juve [21] studied 

coustic propagation problems by solving LEEs with various source 

erms and compared them with analytical solutions to check the 

ccuracy of the numerical simulations. To suppress the instability 

f LEEs due to entropy and vorticity waves, Ewert and Schröder 

10] formulated a family of acoustic perturbation equations (APEs) 

or the simulation of flow-induced acoustic fields and used this 

ethod to predict the trailing edge noise [24] . Seo and Moon 

12] studied low-Mach number flow-induced sound by solving lin- 

arized perturbed compressible equations (LPCEs) and validated 

he method for various dipole and quadruple vortex-sound prob- 

ems. 

As demonstrated by the aforementioned references, research on 

coustic problems has seen renewed activity in recent years. How- 

ver, one challenge for acoustic simulation is the boundary treat- 

ent, especially for complex and moving boundaries. The use of 

n unstructured grid or an overset grid are two methods that can 

e applied to deal with this condition. However, unstructured grid 

s difficult to extend to high-order accuracy. Overset grid method 

onsists of two non-coincident grids in the overlap region and the 

oupling between them is accomplished using interpolation. How- 

ver, the generation of the overset grid and the data exchange is 

till very complicated for complex geometry. An important method 

o deal with complex geometry and moving boundary problems 

n computational fluid dynamics (CFD) is the immersed boundary 

ethod (IBM), which has been successfully applied to solve many 

io-inspired problems [25-28] . For acoustic problems, Seo and Mit- 

al [29] studied acoustic wave scattering and low-Mach number 

ow-induced sound by solving LPCEs with a high-order IBM based 

n a weighted least-squares error method, and this method was 

hen applied to study the effect of wing flexibility on sound gener- 

tion [30] . However, when the ghost point is close to the immersed 

oundary, a scenario may occur in which most of the interpola- 

ion points are covered by the solid itself. Under this condition, the 

adius of the local support region must be increased to ensure a 

ufficient number of fluid points; thus, the interpolation efficiency 

ay be lost, and even leading to numerical instabilities during the 

nterpolation process [31] . Fukushima et al. [32] developed a LEE 

olver using a block-structured Cartesian mesh to address complex 

eometry and validated the acoustic scattering around a sphere, 

nd subsequently applied the method to compute the noise propa- 

ation from the JT15D nacelle; however, the acoustic sources were 

rtificial. Dhamankar et al. [33] implemented a similar ghost-point- 

ased sharp IBM via a compressible large eddy simulation (LES) 

ethod to simulate jet aeroacoustics; however, this method has 

 weakness in that it has a high computational cost and is hard 

o apply on very low-Mach number problems such as underwater 

coustics. 

To the authors’ knowledge, no study has ever combined APEs 

ith IBM. Though the equations of APEs are similar to those of 

EEs, the APE system can render stable solutions even in flows 

here hydrodynamic instabilities are present by suppressing en- 

ropy and vorticity waves. Besides, the APE system is very effi- 

ient comparing with LPCEs as the velocity vector is constant in 

ime. However, the instantaneous flow velocity must be updated 

or LPCEs, which leads to additional computational requirements. 

or flow-induced noise problem, the expression of acoustic source 

or LPCEs are also more complicated than those of APEs. The source 

erm of LPCEs is the substantial time derivative of the pressure 

12] for vortex sound problems, while the dominant source term 

f APEs is given by the spatial derivative of the perturbation pres- 
2 
ure [10] . In terms of the IBM, the boundary conditions on the 

mmersed surface can be precisely satisfied at the actual location, 

hich allows for a sharp representation of the immersed bound- 

ry. Besides, the interpolation efficiency and numerical instability 

an be retained even for complex geometries. The primary contri- 

ution of the present work is that it presents a unique combination 

f APEs with immersed boundary treatment and uses numerical 

mplementation to simulate acoustic scattering and flow-induced 

oise problems. The APE system is solved by optimized computa- 

ional aeroacoustic (CAA) numerical schemes and techniques, with 

coustic sources imported from the flow field, which is obtained 

rom the CFD solver. The sharp interface IBM is used in both 

he CFD and CAA solvers. Benchmark two- and three-dimensional 

roblems in acoustic scattering are shown in order to test the 

resent acoustic codes. Subsequently, the sound generation by a 

wo-dimensional circular cylinder in a uniform flow is computed. 

inally, the flow and acoustic field of flow past a four-cylinder ar- 

ay in two different arrangements are investigated in detail. 

. Computational method 

.1. Governing equations 

In this paper, a hybrid method is applied to simulate the flow 

nd acoustic field. The flow field is first simulated to obtain the 

coustic sources, and then the acoustic field is computed by solv- 

ng acoustic equations. The governing equations for fluid flow are 

he incompressible Navier–Stokes (NS) equations, which can be 

ritten in vector form as follows: 

 · u = 0 (1) 

∂u 

∂t 
+ ( u · ∇ ) u = − 1 

ρ0 

∇ P + ν0 ∇ 

2 u (2) 

here ρ0 , u , and P are the incompressible flow density, velocity 

ector, and pressure, respectively. ν0 is the kinematic viscosity of 

he fluid. The non-slip, adiabatic wall boundary conditions are used 

n the solid wall for the incompressible NS equations, which can 

e expressed as follows: 

∂P 

∂n 

= 0 , u = 0 (3) 

The propagation of acoustic waves in a non-uniform flow is 

sually calculated using the LEEs. This accounts for the effects of 

oth refraction and convection caused by the non-uniform mean 

ow. However, LEEs also support the propagation of vorticity and 

ntropy waves. If the entropy or vorticity modes are excited by the 

ource terms, especially in flows where hydrodynamic instabilities 

re present, the LEEs can return unstable solutions. 

In order to remove hydrodynamic instabilities and obtain stable 

olutions, Ewert and Schröder [10] reformulated the wave prop- 

gation model by assuming that the acoustic field is irrotational 

nd isentropic such that vorticity and entropy modes no longer ap- 

ear, and they obtained a system of APEs for the acoustic modes 

nly. The equations of APEs are excited by source terms deter- 

ined from the simulation of the compressible or incompressible 

ow problem. 

The equations of APEs can be derived by decomposing the 

rimitive perturbation variables into a time-averaged part and a 

uctuating part as follows [10] : 

(x , t) = ρ̄(x , t) + ρ ′ (x , t) , 
 (x , t) = ū (x , t) + u 

′ (x , t) = ū (x , t) + u 

v (x , t) + u 

a (x , t) , 
p(x , t) = p̄ (x , t) + p ′ (x , t) , 

 (x , t) = h̄ (x , t) + h 

′ (x , t) 

(4) 

here p is the pressure, ρ is the density, u is the velocity, h is the

nthalpy, primed quantities denote perturbation quantities, the bar 
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s

ymbol denotes time-averaged quantities, u 

v is a solenoidal vor- 

ical perturbation, and u 

a is an irrotational acoustic perturbation. 

he continuity equation and momentum equation written with the 

nthalpy h and the velocities u as variables can be expressed as 

ollows [10] : 

∂ρ

∂t 
+ ∇ � (ρu ) = 0 (5) 

∂u 

∂t 
+ ∇h = −(u �∇ ) u + 

∇ � τ
ρ

+ T ∇ s (6) 

here T is the temperature, s is the entropy, and the stress ten- 

or is denoted by τ . Take equations (4) into Eqs. (5) and (6) and

eglect the non-linear acoustic terms. In the continuity equation, 

he perturbation density is replaced by the perturbation pressure 

ia the first-order form of the second law of thermodynamics. In 

he momentum equations, assume an irrotational acoustic pertur- 

ation velocity, i.e., ω 

a = ∇ × u 

a = 0, and substitute the perturba- 

ion pressure for the perturbation enthalpy using the second law of 

hermodynamics. Then, the complete system of APEs can be writ- 

en in vector form as follows [10] : 

∂ p ′ 
∂t 

+ c̄ 2 ∇ � ( ̄ρu 

a + ū 

p ′ 
c̄ 2 

) = c̄ 2 S cont (7) 

∂ u 

a 

∂t 
+ ∇( ̄u � u 

a ) + ∇( 
p ′ 
ρ̄

) = S mom 

(8) 

ith sources 

 cont = −∇ρ · u 

v ︸ ︷︷ ︸ 
I 

+ 

ρ̄

c p 

D̄ s ′ 
Dt ︸ ︷︷ ︸ 

II 

(9) 

 mom 

= ∇ �p ︸ ︷︷ ︸ 
I I I 

+ ∇ q ω̄ ︸︷︷︸ 
IV 

+ T ′ ∇ ̄s − s ′ ∇ ̄T ︸ ︷︷ ︸ 
V 

(10) 

here ̄D /Dt = ∂ /∂ t + ū �∇denotes the substantial time derivative, 

nd terms III and IV follow 

 

2 �P = −∇ �
[ 

∂ u v 

∂t 
+ ( ̄u �∇) u v + ( u v �∇) ̄u + (( u v �∇) u v ) ′ −

(∇ � τ
ρ

)′ ] 

(11) 

 

2 q ω = −∇ � ( ̄ω × u 

a ) (12) 

The left-hand sides of APEs describe the wave propagation and 

efraction in a non-uniform mean flow. The right-hand terms S cont 

nd S mom 

are acoustic sources in the continuity and momentum 

quations, respectively. 

The source terms I and III are functions of the solenoidal per- 

urbation velocity u 

v , while the terms II and V involve entropy 

nd temperature fluctuations, respectively. If combustion noise is 

ot considered, these two terms are discarded. Furthermore, in the 

ow-Mach number limit, ρ → ρ0 and ∇ρ → 0 hold such that 

ource term I drops. Term IV describes sound generation due to 

coustic/mean–vorticity interaction, which can be negligible for ex- 

ernal flow problems [10] . For vortex sound, term III is the major 

ource term, which is determined by the solution of the Poisson 

roblem. As can be seen from the terms in brackets on the right- 

and side of Eq. (11) for small Mach numbers, the �P is equal 

o P ’/ ρ0 , where P ′ = P − P̄ is the incompressible perturbation pres- 

ure, and ρ0 is the constant mean flow density. Term III can be 

valuated by the following equation: 

 �p � 

∇ P ’ 

ρ0 

= 

∇ 

(
P − P 

)
ρ0 

(13) 
3 
As the flow is assumed to be inviscid for acoustic simulation, 

he slip boundary conditions are used on the solid wall. These can 

e expressed as follows: 

∂ρ ′ 
∂n 

= 0 , 
∂ p ′ 
∂n 

= 0 , u 

′ · n = 0 (14) 

here n is the unit wall-normal vector, and the initial conditions 

re ρ′ = 0 , u 

′ = 0 , and p′ = p ′ 
0 
. 

.2. Numerical methodology 

A second-order central difference based on a sharp interface 

BM solver [25] is employed to solve the incompressible Navier–

tokes equations. The equations are discretized in space by a 

econd-order central difference scheme and integrated in time us- 

ng the fractional step method. The convective terms and diffusion 

erms are performed with an Adams–Bashforth scheme and an im- 

licit Crank–Nicolson scheme, respectively. This method can pro- 

ide second-order accuracy in both space and time and has been 

uccessfully applied for solving bio-inspired problems with com- 

lex geometry and moving boundaries [26-28] . 

In acoustic simulations, the acoustic waves are non-dispersive 

nd non-dissipative in propagation, which can be achieved by 

igh-order finite-difference schemes. The standard way to create 

uch schemes is to use a Taylor series truncation to obtain the 

aximum possible order of accuracy. However, this type of central 

ifference scheme is not constructed from a dispersive perspec- 

ive. Tam and Webb [34] constructed a seven-point fourth-order 

ispersion relation preserving (DRP) scheme based on a minimal- 

zation of the dissipation and dispersion errors. The Runge–Kutta 

RK) scheme is the most commonly used type of high-order time 

cheme. Hu et al. [35] optimized the coefficients of the RK scheme 

nd proposed a low-dissipation and low-dispersion Runge–Kutta 

LDDRK) scheme to minimize the dissipation and dispersion errors. 

or a symmetric stencil, the first derivative of DRP scheme can be 

ritten on the uniform mesh as follows: 

∂ f 

∂x 
( x 0 ) � 

1 

�x 

3 ∑ 

j= −3 

a j f ( x 0 + j�x ) (15) 

here a j are the coefficients listed in Table 1 [ 34 , 36 ]. 

Near the solid boundary, a standard central difference scheme 

s applied. At the first fluid nodes adjacent to the solid boundary 

see Fig. 1 ), the second-order central difference scheme is used, 

hereas the second fluid nodes adjacent to the solid boundary are 

omputed by the fourth-order central difference scheme. At the 

omain boundary, backward difference stencils [36] are applied. 

The spatial derivative of the non-uniform Cartesian grid can be 

valuated by the following transformation: 

∂ f 

∂x 
= 

∂ξ

∂x 

∂ f 

∂ξ
= 

1 

∂ x/∂ ξ

∂ f 

∂ξ
(16) 

here ξ is an arbitrary uniform grid. The spatial derivative at the 

 th grid point yields 

∂ f 

∂x 
( x m 

) � 

1 ˜ �x 

3 ∑ 

j= −3 

a j f m + j , with ̃

 �x = 

3 ∑ 

j= −3 

a j x m + j (17) 

As the metric, ∂ ξ/∂ x = 1 / (∂ x/∂ ξ ) , is also computed with the

igh-order DRP schemes, the order of accuracy can be retained. A 

imilar transformation was also used by Bogey and Bailly [37] . 

The time evolution equation can be written as follows: 

∂U = F (U) (18) 

∂t 
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Table 1 

Coefficients of the dispersion relation preserving scheme ( a − j = − a j ) . 

a 0 a 1 a 2 a 3 

0 0.77088238051822552 −0.166705904414580469 0.02084314277031176 

Solid boundary 

Scheme   

Filtering  

D4   

F10   

D4   

F10   

D4   

F10   

D4   

F8   

D4   

F6  

C4   

F4   

C2   

F2   

Fluid node   

Solid node

Fig. 1. Schematic of the numerical scheme and filtering on the Cartesian nodes. 

Table 2 

Coefficients of the six-stage low-dissipation and low- 

dispersion Runge–Kutta scheme. 

β1 β2 β3 β4 β5 β6 

0.169193539 0.1874412 1/4 1/3 1/2 1 
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Fig. 2. Schematic of the solid boundary treatment. 
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An explicit six-stage LDDRK from the n th to the ( n + 1)th iter-

tions is given as follows: 

 

0 = U 

n 

 

l = U 

n + βl �tF ( U 

l−1 ) for l = 1 , .. ., 6 

 

n +1 = U 

6 

(19) 

here the values of β l are as listed in Table 2 [35] . 

When a central finite difference scheme was used to approx- 

mate the spatial derivative, the wave number of the finite dif- 

erence scheme was related to the actual wave number. The long 

aves behave like the corresponding wave component of the ex- 

ct solution. However, the short waves have different propagation 

haracteristics such that the wave number of the finite difference 

cheme differs from the true wave number. Therefore, the short 

aves, which can be generated by discontinuous initial conditions, 

re numerical contaminants of a computed solution. These short 

aves can cause spurious high-frequency oscillations and can lead 

o instabilities. To eliminate the grid-to-grid oscillations and main- 

ain numerical stability, 10th-order spatial filtering [37] is applied 

t every iteration, and reduced-order spatial filtering (8th-, 6th-, 

th-, and 2nd-order) is used near the boundaries [38] . Applying a 

entral, 2 N + 1 point stencil filter provides: 

 f ( x ) = σd 

N ∑ 

j= −N 

d j f ( x 0 + j�x ) (20) 

here d j are the coefficients shown in Table 3 , and σ d is a constant

etween 0 and 1. 

The numerical scheme and spatial filtering of the grids are pre- 

ented in Fig. 1 . The DRP scheme, central difference scheme, and 

ltering are denoted by “Dn”, “Cn”, and “Fn”, respectively, and “n”

s the order of the scheme and filtering. 

As the computational domain is finite in the simulation, a spe- 

ial treatment must be applied at the domain boundary to sup- 

ress numerical reflection. In this paper, the radiation conditions 

roposed by Tam and Dong [39] , and developed for 3D by Bo- 

ey and Bailly [40] , are used. The far-field equations are solved in 

oundary regions, three ghost nodes are constructed outside the 

hysical domain, and backward DRP schemes are applied on these 

odes. 
a

4 
.3. Immersed boundary treatment 

In this paper, both flow-field and acoustic-field boundaries use 

he immersed boundary treatment based on ghost points [25] . The 

reatment is described as follows. Firstly, the domain points are 

lassified as fluid points, solid points, and ghost points, respec- 

ively. The solid points are the points inside the solid body, the 

uid points are those outside the body, and the ghost points are 

he points that are inside the solid body but with at least one 

eighboring fluid point. Then, a line segment is extended from the 

host point to the fluid point that intersects normally with the 

olid boundary. The position of the image point is defined such 

hat the boundary intercept is midway between the ghost point 

nd the image point, as shown in Fig. 2 . The variables on the im-

ge point ( ϕIP ) are then computed by bilinear/trilinear interpola- 

ion from surrounding fluid nodes, namely, 

 IP = 

∑ 

βi ϕ i (21) 

here β i are the interpolation weights of the surrounding nodes. 

nce the value at the image point is obtained, the value of a vari- 

ble at the ghost point is computed by using a central-difference 

pproximation along the normal probe such that the prescribed 

oundary condition at the boundary intercept is incorporated. 

hus, the formulae for Dirichlet and Neumann boundary conditions 

re: 

 GC = 2 ϕ BI − ϕ IP 

nd ϕ GC = ϕ IP + �l ( δϕ ) BI 
(22) 
δn 



C. Zhao, Y. Yang, T. Zhang et al. Computers and Fluids 227 (2021) 105032 

Table 3 

Coefficients of the filters ( d − j = d j ). 

d 0 d 1 d 2 d 3 d 4 d 5 

10th-order 63/256 −105/512 15/128 −45/1024 5/512 −1/1024 

8th-order 35/128 −7/32 7/64 −1/32 1/256 

6th-order 5/16 −15/64 3/32 −1/64 

4th-order 3/8 −1/4 1/16 

2nd-order 1/2 −1/4 

r

t

p

s

s

e

3

m

p

w

p

a

a

t

s

p

i

3

p  

t

c

a  

w

d

c

s  

i  

t  

fl

p

t

t

d

d

 

u

m  

n

L

w

p

o  

a

i

(

t

a

p

s

s

a

3

a  

s

o

w

g  

T

A  

(

s

p

t

r

a

s  

i

l

i

a

a  

T

a

t

s

p

m

f

S

p

d

s

a

w

o

a

espectively, where ϕ is the value of a generic variable and �l is 

he length of the normal line segment extending from the ghost 

oint to the image point. The subscripts ’GC’, ’IP’, and ‘BI’ repre- 

ent the ghost point, image point, and body intercept point, re- 

pectively. Using this procedure, a second-order accuracy can be 

nsured for the boundary conditions in the computations [25] . 

. Results and discussion 

In this section, to test the present method and boundary treat- 

ent, the Gaussian pulse wave propagation and several benchmark 

roblems in acoustic scattering are first considered and compared 

ith analytical solutions. Subsequently, the noise induced by flow 

ast a circular cylinder is validated. Then, the current method is 

pplied to simulate the acoustic field of flow past a four-cylinder 

rray with two configurations. In this section, the acoustic equa- 

ions are non-dimensionalized by reference length l , the speed of 

ound c 0 , and the ambient density ρ0 . Therefore, the time and 

ressure are non-dimensionalized with l / c 0 and ρ0 c 
2 
0 

, unless spec- 

fied in context. 

.1. Acoustic propagation of a Gaussian pulse 

In this case, the propagation of a two-dimensional Gaussian 

ulse in a uniform mean flow ( Ma = 0.5) [41] is computed to test

he numerical schemes and the far-field non-reflecting boundary 

onditions. The computational domain is −50 ≤ ( x, y ) ≤ 50, and an 

rtificial acoustic pulse is put in the center of the domain x = y = 0

ith initial conditions as follows: 

p ′ = exp 

[
−(ln 2) 

x 2 + y 2 

3 

2 

]
, u 

′ = v ′ = 0 (23) 

The APEs are solved on a 100 × 100 uniform mesh with 

x = dy = 1.0 and CFL-number 0.75. The LEEs are also solved to 

ompare with APEs. The instantaneous pressure contours and pres- 

ure perturbations along y = 0 at t = 30 and 50 are presented

n Fig. 3 . The results show that the pulse propagates in all direc-

ions at a velocity equal to the sum of the speed of sound and the

ow velocity. When the wave arrives at the domain boundary, the 

ulse leaves the computational domain without noticeable reflec- 

ions. Both pressure perturbations of APEs and LEEs along y = 0 at 

he corresponding time agree well with the analytical solutions, in- 

icating that the numerical schemes and radiation boundary con- 

itions are appropriate. 

The uniform grids with dx = dy = 1.0, 0.5, 0.25, and 0.125 are

sed to test the grid convergence. The time step is set as 0.005 to 

inimize the effects of time on the solution. The L 1, L 2, and L inf

orms of the error are calculated as follows: 

 1 = 1 

N 

N ∑ 

n =1 

∣∣∣p ′ ana 
n − p′ num 

n 

∣∣∣, L 2 = 

√ √ √ √ 

1 

N 

N ∑ 

n =1 

(p ′ ana 
n − p′ num 

n ) 
2 
, L inf = max 

1 ≤n ≤N 

∣∣∣p ′ ana 
n − p ′ num 

n 

∣∣∣
(24) 

here p′ ana 
n and p′ num 

n are the analytical and numerical pressure 

erturbations at point n , and N is the number of grids. Three kinds 

f error at t = 30 are presented in Fig. 4 (a). The results show that
5 
ll the convergence rates of the simulations are about 4.0, which 

s the order of the DRP scheme. Besides, the root mean squares 

RMSs) of the acoustic pressures for all grid points at different 

imes are computed and compared with analytical solutions [41] , 

s presented in Fig. 4 (b). When the acoustic wave leaves the com- 

utation domain at about t = 150, the RMSs of the numerical 

imulations and analytical solutions are still in good agreement, 

howing that the present far-field radiation boundary conditions 

re suitable for acoustic radiation. 

.2. Acoustic wave scattering by a circular cylinder 

In order to test the acoustic immersed boundary treatment, the 

coustic wave scattering by a rigid circular cylinder ( Fig. 5 ) [42] is

imulated. A cylinder with diameter D = 1 is placed in the center 

f domain (0, 0). The acoustic source is a Gaussian pulse at (4, 0) 

ith the following initial conditions: 

p′ = exp 

[
−(ln 2) 

(x − 4) 
2 + y 2 

0 . 2 

2 

]
, u ′ = v ′ = 0 (25) 

The computational domain is −6.0 ≤ ( x, y ) ≤ 6.0, the uniform 

rid with dx = dy = 0.02 is used, and the CFL number is set to 0.5.

he time histories of pressure fluctuation at four points, namely 

 ( x = 2, y = 0), B ( x = 2, y = 2), C ( x = 0, y = 2), and D

 x = −2, y = 0), are recorded and compared with the analytical 

olutions. The pressure fluctuation contours at different times are 

resented in Fig. 6 . As shown in the figure, the wave propagates 

owards the boundaries, and the waves that are reflected from the 

ight surface of the cylinder propagate towards the right bound- 

ry. The front wave deflects at the left surface of the cylinder. The 

ound pressures at four positions from t = 0 to t = 10 are shown

n Fig. 7 ; good agreements can be observed between the simu- 

ation results and analytical solutions, indicating that the present 

mmersed boundary treatment is effective and accurate. 

The uniform grids with dx = dy = 0.08, 0.04, 0.02, and 0.01 

re used to test the grid convergence including immersed bound- 

ry. The L 1, L 2, and L inf norms of the error are presented in Fig. 8 .

he results show that the convergence rates of the simulations are 

bout 2.3, which is lower than those in the DRP scheme due to 

he lower-order treatments of the boundary conditions on the solid 

urface. 

The second problem is the same as previous cylinder scattering 

roblem except that the acoustic source is defined by a time har- 

onic Gaussian monopole source on the right hand of Eq. (7) as 

ollows: 

 cont = exp 

[
−(ln 2) 

( x − 4 ) 
2 + y 2 

0 . 2 

2 

]
� sin ( 8 πt ) (26) 

In order to test non-uniform grids with acoustic scattering 

roblems, stretched grids are used. A fine uniform grid with 

x = dy = 0.005 is applied near the solid boundary, and the grid 

tretching ratio is set as 1.005. The maximum grid size is 0.032 

t the domain boundary; this corresponds to about 7.8 points per 

avelength (PPW), which is slightly higher than the grid resolution 

f the DRP scheme [34] . The total number of grids is 990 × 990 

nd the domain size is about −6.1 ≤ ( x, y ) ≤ 6.1. A uniform 
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Fig. 3. Pressure perturbation contours at (a) t = 30, (b) t = 50 and the corresponding pressure perturbation along y axis at (c) t = 30, (d) t = 50. 
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Fig. 4. (a) Convergence curve of pressure perturbation. (b) RMS of the acoustic pressure for all grid points from t = 0 to t = 300. 
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artesian grid with dx = dy = 0.01 (1200 × 1200) is also com- 

uted to compare the results. The pressure perturbation contour 

t time t = 42 is presented in Fig. 9 (a) (uniform grid), while the

irectivity patterns, which are the RMSs of acoustic pressure in 

he time-periodic state, at r = 0.55 and r = 5.0 for uniform/non- 

niform grids are plotted along with the analytical solution [42] in 

igs. 9 (b) and 9(c), respectively. In general, both the uniform grid 

nd the non-uniform grid correspond well with the analytical so- 

utions at r = 0.55 (near the boundary) and r = 5.0. However, in

ost numerical simulations, more grids are needed near the solid 

oundary to offset the reduced order and interpolation error, es- 

ecially for a complex structure. The uniform grid significantly in- 

reases the total number of grids; thus, the non-uniform stretch- 
6 
ng grid is more effective and has better potential for dealing with 

omplex geometry problems. 

.3. Acoustic wave scattering by a sphere 

In this subsection, to test the numerical method for dealing 

ith three-dimensional problems, the acoustic wave scattering by 

 stationary sphere [ 29 , 32 , 43 ] is simulated. A sphere with diame-

er D = 1 is placed at the coordinate origin (0, 0, 0), and a periodic

onopole Gaussian source is given as follows: 

 cont = exp 

[
−(ln 2) 

( x − 4 ) 
2 + y 2 + z 2 

0 . 2 

2 

]
� sin ( 6 πt ) (27) 
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Fig. 5. Schematic position of acoustic scattering by a cylinder. 
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In order to minimize the computational cost, a set of non- 

niform Cartesian grids is applied in this case. The uniform grid is 

till used in the center of the domain to capture the solid bound- 

ry, and the stretching mesh is used away from the solid. Note that 

he maximum grid size should be smaller than the acoustic reso- 

ution limit, which means that there must be at least 6–8 PPW 

or the DRP scheme. For this case, the minimum uniform grid size 

ear the boundary is 0.012 and the stretching ratio is 1.02. In or- 

er to maintain the accuracy of the DRP scheme, the uniform grid 

s used when the grid size reaches 0.04, which is about 8.3 PPW. 

he total number of grids is 430 × 280 × 280 and the computa- 

ion domain is about −6.4 ≤ x ≤ 6.4, −3.2 ≤ ( y, z ) ≤ 3.2. The time

tep is set as 0.006. A snapshot of the pressure perturbation field 
Fig. 6. Pressure perturbation contours at (a) t

7 
t t = 24 and the directivity pattern at r = 2 on z = 0 section are

hown in Fig. 10 . Good agreements are found with the analytical 

olution [43] , indicating that the present methods have relatively 

ood performance for the three-dimensional case and non-uniform 

rids. 

.4. Sound generation by a circular cylinder 

In previous cases, all the acoustic sources are artificial sources 

nd the flow field is uniform. In this subsection, a realized flow- 

nduced noise problem is presented. The flow field is first simu- 

ated by an incompressible DNS solver, with the sharp interface 

BM [25] , and the time-averaged flow field and acoustic sources are 

nput into APEs. The reference lengths for both the flow and acous- 

ic simulations are the cylinder diameter D . The Reynolds number 

ased on cylinder diameter ( Re = U ∞ 

D/ ν) is 200, and the Mach

umber ( Ma = U ∞ 

/C ∞ 

) is 0.2 [ 22 , 23 , 29 ]. In the present case, the

ame Cartesian grid and computational domain are applied for the 

ow and acoustic fields. However, the two grids and computational 

omain can be different considering the different requirements be- 

ween the flow field and acoustic simulations, and mesh interpo- 

ation is necessary under this condition. High-resolution grids are 

enerated in the vicinity of the cylinder and in the wake to bet- 

er resolve the vorticial structures in the flow. The uniform grid 

ith dx = dy = 0.03 D is used around the cylinder, and the uni-

orm mesh is also applied to resolve acoustic waves when the grid 

ize increases to 1.4 D , which is about 18.0 PPW; the computational 

rids are shown in Fig. 11 . The total number of grids is 512 × 512,

nd the computation domain is approximately 0 ≤ ( x, y ) ≤ 240 D . 

or this case, a much larger domain is designed in order to cap- 
 = 2, (b) t = 4, (c) t = 6, and (d) t = 8. 
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8 
ure the sound in the far-field and reduce the effect of the bound- 

ry on the acoustic field. The time step of the flow simulation is 

.005 D / U ∞ 

, as the non-dimensional time is different for the flow 

eld and the acoustic field; the time step for the acoustic sim- 

lation is 0.005 D / C ∞ 

, which is one-fifth of the time step for the

ow simulation. In the low-Mach number limit where only vortex 

ound is considered, the major acoustic sources can be expressed 

s follows: 

 cont = 0 , 

 mom 

= 

∇P′ 
ρ0 

= 

∇(P−P̄ ) 
ρ0 

(28) 

The time-dependent acoustic source during the acoustic simu- 

ations obtained by linear interpolation between two adjacent flow 

ime steps. 

The time histories of the drag coefficient and lift coefficient are 

resented in Fig. 12 (a). The mean drag coefficient is about 1.284, 

hich agrees well with the value of 1.290 obtained by Russell 

t al. [44] . The maximum lift coefficient of 0.65 is the same as 

hat obtained by Rosenfeld et al. [45] . The vorticity field around 

he cylinder is presented in Fig. 12 (b), in which the von Kár- 

án vortex street is observed in the wake. The Strouhal number 

 St ) is 0.187, which agrees well with the values obtained exper- 
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mentally by Williamson (0.185) [46] and Le et al. [47] (0.187). 

he instantaneous acoustic pressure field is shown in Fig. 13 (a), 

n which a dipole source caused by the periodic vortex shedding 

an be seen. In the figure, the measured non-dimensional wave- 

ength along the y -direction is about 27 D , which is very close to

he theoretically predicted value of 1/( Ma � St ) = 26.7 D . The pres-
9 
ure fluctuation along the center line ( x = 120) above the cylin- 

er is plotted in Fig. 13 (b) and matches well with the results 

f Seo and Mittal [29] . The comparison between the flow field 

nd the acoustic field demonstrates the feasibility and accuracy 

f the present hybrid method for dealing with flow-induced noise 

roblems. 
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Fig. 11. (a) Computational grids of flow and acoustic simulation. (b) Densified grids around the cylinder. 
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Fig. 12. (a) Time histories of drag and lift coefficient. (b) The vorticity field of the flow. 
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Fig. 14. The schematic layouts of the array (a) square arrangement, (b) diamond arrangement. 

Fig. 15. Comparison of instantaneous flow field around two kinds of four-cylinder array: (a) vorticity by present method (left) and Lam et al. (simulation, right, reprinted 

with permission from [49] ) for SA; (b) vorticity by present method (left) and flow visualization by Lam et al. (experiment, right, reprinted with permission from [48] ) for 

DA. 
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.5. Sound generation by a four-cylinder array 

Flow past multiple cylinders is a very common phenomenon 

n engineering applications, for example, in the landing gear of 

irplanes, offshore platforms, bridge piers, and heat exchangers. 

here are flow interactions of adjacent cylinders, and these af- 

ect the flow patterns and the acoustic field around the struc- 

ures at different arrangements. The typical flow fields of cylin- 

er arrays have been investigated in previous experimental and 

omputational studies [48-53] . However, the acoustic field char- 

cteristics of such arrays remain unclear. In this subsection, the 

ound generation by a four-cylinder array is simulated to demon- 

trate the ability of the present method to deal with complex ge- 

metry problems, and, furthermore, the acoustic characteristics of 

he models are explored, which provides the fundamental image 

f the typical cases in a low-Reynolds-number flow regime. Two 

asic types of array arrangement are investigated—the square ar- 
11 
angement (SA) and the diamond arrangement (DA)—as shown in 

ig. 14 . The diameter of the cylinder is D and the distance between 

djacent cylinders is L = 4 D . The two layouts have the same four-

ylinder distribution but have angles of attack that differ by 90 °
he boundary conditions and incoming flow parameters are the 

ame as in the single-cylinder case in the previous section, where 

he free-stream Mach number is 0.2 and the Reynolds number 

 Re = U ∞ 

D/ ν) is 200. The computation domain is approximately 0 

( x, y ) ≤ 240 D , and the total number of grids is 640 × 640 with

60 × 324 uniform grids near the cylinder array. The time steps of 

he cylinder array are 0.0 05 D / U ∞ 

and 0.0 05 D / C ∞ 

for flow field and

coustic field, respectively. 

The instantaneous vorticity fields of the two arrays and their 

omparisons with existing results are presented in Fig. 15 . The flow 

atterns of the two configurations are significantly different. 

For the SA, the free shear layers of the two upstream cylinders 

cylinders 1 and 4) are well-developed, and the shedding vortices 
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Table 4 

Comparison of simulation results for the flow over a four-cylinder array, Re = 200. 

Square array Diamond array 

Lam et al. [49] Gao et al. [52] Han et al. [53] Present study Lin et al. [51] Han et al. [53] Present study 

C̄ D1 1.413 1.304 1.318 1.154 1.273 1.191 1.073 

C̄ D2 0.482 0.466 0.500 0.471 1.543 1.382 1.212 

C̄ D3 0.785 0.883 0.500 0.471 0.602 0.547 0.464 

C̄ D4 1.449 1.293 1.318 1.154 1.543 1.382 1.216 

C̄ L1 0.081 0.080 —— 0.080 0.001 —— 0.008 

C̄ L2 0.050 0.037 —— 0.038 0.048 —— 0.046 

C̄ L3 −0.080 0.022 —— −0.038 −0.013 —— −0.01 

C̄ L4 −0.100 −0.074 —— −0.080 −0.048 —— −0.051 

St 1 0.189 0.186 0.186 0.173 0.200 0.195 0.187 

St 2 0.190 0.187 0.186 0.173 0.200 0.195 0.187 

St 3 0.189 0.177 0.186 0.173 0.200 0.195 0.187 

St 4 0.190 0.177 0.186 0.173 0.200 0.195 0.187 
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mpinge on the downstream cylinders (cylinders 2 and 3); this 

henomenon is called the vortex shedding flow pattern in refer- 

nce [49] , which featured that there is little interaction between 

he flow around the two pairs of tandem cylinders (cylinders 1 and 

 and cylinders 3 and 4). This flow pattern is slightly different from 

he typical von Kármán vortex street produced by a single cylinder. 

ote that the flow patterns of the SA computed using the present 

ethod and those computed by Lam et al. [49] are different from 

he flow patterns obtained experimentally [ 4 8 , 4 9 ] due to the effect

f strong three-dimensional characteristics in the experiment. For 

he DA, the wake of cylinder 1 rolls up in the gaps and impinges

irectly on cylinder 3 and then slides past the surface. The shear 

ayers of cylinder 3 separate immediately when a strong upstream 

ortex arrives before the formation of a complete Kármán vortex, 

ausing a wider wake with a nearly anti-symmetrical shape behind 

ylinder 3. Additionally, the vortex shedding of cylinders 2 and 4 

ecomes in-phase with the presence of the middle cylinders 1 and 

. 

Table 4 presents a comparison between the main flow vari- 

bles (the mean drag coefficient ( ̄C D ), the mean lift coefficient 

 ̄C L ), and the Strouhal number ( St )), of the four-cylinder arrays ob- 

ained in the present work and those obtained by other researchers 

 49 , 51-53 ]. Generally, the present results match well with the re-

ults reported in the literatures. However, as shown in Table 4 , the 

alue of C̄ D3 shows significant differences for square array between 

resent results (0.471) and the results (0.785) obtained by Lam 

t al., which could be due to the effect of a low cycle bistable wake

ow behind the downstream cylinders [49] . For diamond array, Lin 

t al. [51] computed the flow field using a 3D model, while the 

resent solution was computed in 2D, resulting in a larger differ- 

nce. However, the differences between the present solutions and 

he results obtained by Han et al. [53] are relatively small. 

The instantaneous acoustic pressure fields of SA and DA config- 

rations are presented in Fig. 16 . 

The results show that the acoustic field of the SA is symmet- 

ic along the transverse axis of symmetry ( y = 120), while the DA 

s nearly anti-symmetric about the y = 120 axis, which is more 

imilar to the single-cylinder case. In general, the sound radiated 

y the SA acts more like a monopole source and that radiated by 

he DA has a dipolar nature. However, both acoustic pressure fields 

how differences between the upstream and downstream, which 

s caused by the Doppler effect. Generally, the Doppler effect af- 

ects the wavelength, acoustic pressure amplitude, and propagation 

ngle. As the direction of the incoming flow is along the x -axis, 

he wavelengths for the SA and DA in the positive and negative 

 -directions are constant; both are equal to their theoretical wave- 

ength based on the vortex shedding frequency, which is expressed 

s 1/( Ma � St ). In the downstream and upstream directions, the 

avelengths of the two arrays both shift with the ratio of (1 + Ma )
 d  

12 
nd (1 −Ma ), 35 D and 23 D for the SA case and 32 D and 22 D for the

A case. For the pressure amplitude, the Doppler effect has similar 

ffects on the two arrays (i.e., the acoustic pressure gets stronger 

n the upstream direction and weaker in the downstream direc- 

ion). The direction of the main radiation lobe in the upper half 

lane for DA is marked by dotted line in Fig. 16 (b). Large differ-

nces can be observed, which may be caused mainly by the differ- 

nce in geometrical configuration compared with a single-cylinder 

onfiguration. Inoue et al. [18] noted that the propagation angle θp 

or a single cylinder is mainly affected by the Doppler effect and 

an be well approximated by the relation θp = cos −1 Ma , which 

s ± 78.5 ° for Ma = 0.2. Our results show that the pressure pulses 

f SA propagate in all directions, and the non-uniformity of the 

coustic wave in different directions could be attributed to convec- 

ive effects. Compared with the single-cylinder case, the propaga- 

ion direction for the DA case is more biased to the upstream, with 

p = ± 60 °, indicating that DA significantly affects the propagation 

ngle. 

The time history of acoustic pressure at monitoring point P m 

n Fig. 16 ( x = 120, y = 200) is recorded to show the acous-

ic characteristics of its far-field radiation. Using the fast Fourier 

ransform (FFT), the power spectral densities (PSDs) of the acoustic 

ressure and the PSDs of the lift coefficients for the four cylinders 

n the diamond arrangement were determined and are presented 

n Fig. 17 (a). The peak frequency of the acoustic pressure is 0.182, 

hich is very close to its St of 0.187, indicating that the vortex- 

hedding and lift variation are the dominant noise sources. The 

SDs of acoustic pressure for the three arrangements (i.e., square 

rray, diamond array, and single cylinder) at monitoring points are 

lotted in Fig. 17 (b). As shown in the figure, the dominant peaks 

t the monitoring point are very close between the SA, DA, and 

ingle-cylinder cases, with values of 0.173, 0.182, and 0.187, re- 

pectively. The results indicate that the peak frequency of acoustic 

ressure is less affected by the difference in array configuration. 

The directivity patterns of the sound pressure level ( SPL ) for the 

bove cases at r = 100 are presented in Fig. 18 , where the single-

ylinder case is also shown for comparison. The SPL is calculated 

y the following equation: 

P L = 20 log ( p ′ RMS / p ref ) dB (29) 

here p ref is 2 × 10 −5 Pa in the air and p’ RMS is the effective sound

ressure. 

As shown in Fig. 18 , in the single-cylinder case, a clear dipole 

ound source with figure-of-eight shape is observed. The results 

how that the curves of the two array cases are very close in the 

ownstream directions, while there are differences in most other 

irections. The directivity profile of the SA is monopole-like, while 

he DA exhibits a more dipole-like pattern, which have been in- 

icated as above in Fig. 16 . It is noticeable that each of the ar-
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Fig. 16. Instantaneous acoustic fields of flow-induced noise of the four-cylinder (a) square array, (b) diamond array. The dotted line indicates the direction of the main 

radiation lobe. 

(a)                                                            (b)
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Fig. 17. (a) Power spectral densities of acoustic pressure and lift coefficients for diamond array case. (b) Power spectral densities of acoustic pressure for cases of single 

cylinder and cylinder arrays at point P m . 

Fig. 18. Directivity patterns for single cylinder and cylinder arrays at r = 100. 
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ay cases has a visible perturbation of the lobe in the downstream 

irection, which does not appear for the single-cylinder case. Be- 

ides, as shown in Fig. 18 , for most circumferential directions, the 

ntensity of the generated acoustic pressure is greater for DA than 

A, and those of both array cases are larger than that of the single- 

ylinder case. The arithmetic average values of SPL at circumfer- 

ntial observation points for the single-cylinder, square array, and 

iamond array cases are 106 dB, 111 dB, and 121 dB, respectively. 

In this subsection, only two configurations are considered, and 

he distance between cylinders is constant. From our numerical ex- 

eriments for two kinds of cylinder arrays, it is found that the ar- 

ay had a dominant influence on the acoustic field configuration. 

ore numerical experiments involving various configurations or 

ylinder distances, and even moving boundary problems, will be 

onducted in the future. 

. Conclusions 

In this paper, a unique combination of APEs and the sharp in- 

erface immersed boundary method is implemented to deal with 

coustic scattering and flow-induced noise problems within a hy- 

rid computational aero/hydroacoustic approach. An incompress- 
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ble DNS solver is utilized to compute the flow field, and then 

he acoustic field is predicted by solving the APEs. All the equa- 

ions are solved on a body non-conformal Cartesian grid, which 

an achieve a simple and robust algorithm for complex geome- 

ry. A series of benchmark acoustic scattering problems are used to 

alidate the acoustic code with two- and three-dimensional prob- 

ems. The present results coincide well with the analytical solu- 

ions. Furthermore, the accuracy of the proposed method is eval- 

ated, the numerical example shows that the convergence rate of 

he present method with IBM is about 2.3. Then, a realized prob- 

em of noise induced by flow past a cylinder is simulated and 

alidated. Finally, the sound generation by a four-cylinder array 

ith two basic arrangements is investigated in detail. The follow- 

ng conclusions for this investigation are drawn: (1) the square 

nd diamond arrays have monopole- and dipole-like noise shapes, 

espectively. In both of the two arrays, the acoustic propagation 

s altered by the Doppler effect, and the diamond configuration 

xhibits a larger propagation angle compared with the single- 

ylinder case; (2) the generated sound intensity of the diamond 

rray is much greater than that of the square one in most circum- 

erential directions, and the generated sound intensity in both of 

hese two arrays is greater than that in the single-cylinder case; 

3) the spectrums of the sound pressure level of the radiated 

coustic fields for the four-cylinder arrays and the single-cylinder 

onfiguration show that they have similar profiles and peak fre- 

uencies, which indicates that they have the same mechanisms of 

oise generation (i.e., vortex shedding dominates the noise source 

eneration). 
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