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Lateral–directional stability is a critical issue for the design of any kind of aircraft. For the hypersonic waverider,

the nonaxisymmetric, flat, and slender geometric feature makes it susceptible to the problem of lateral–directional

instability. Therefore, the influence of geometric feature on the lateral–directional static and dynamic stability of

hypersonicwaverider is studied so as to enable the designer to consider this problem in the preliminary aircraft design

stage. A series of power-lawwaveriders is generated at a given design space of the leading-edge parameters. Then, the

variation of the static and dynamic derivatives with the design parameter is obtained by use of a surrogatemodel. It is

found that increasing the dihedral angle of the lower surface can improve both the lateral and directional static

stability of the total waverider. Furthermore, the dynamic instability mechanisms are analyzed in detail based on the

approximate formulas derived from the linearized small-disturbance equations ofmotion. Especially, a concept of the

Dutch-roll dynamic derivative CnpDYN is proposed, which plays an important part in the damping of the Dutch roll.

Finally, it is found that increasing the dihedral angle can also improve the damping of the dynamic modes, including

the roll, spiral, and Dutch roll.

Nomenclature

b = width of waverider, m
Cl; Cn,
CY

= roll moment, yaw moment, and side force coeffi-
cients

Clp = dynamic derivative of roll moment with respect to
roll rate, rad−1

Clr = dynamic derivative of roll moment with respect to
yaw rate, rad−1

Clβ = lateral static derivative, rad−1

Cnp = dynamic derivative of yaw moment with respect to
roll rate, rad−1

Cnr = dynamic derivative of yaw moment with respect to
yaw rate, rad−1

Cnβ = directional static derivative, rad−1

CnpDYN = Dutch-roll dynamic derivative, Eq. (29), rad−1

CnβDYN = dynamic directional-stability parameter, Eq. (13),

rad−1

f = motion frequency, Hz
g = acceleration of gravity, m∕s2
H = flight altitude, km
I = IxxIzz − �Ixz�2

Ixx, Izz = moments of inertia with respect to Cartesian coor-
dinates, kg ⋅m2

Ixz = produce of inertia, kg ⋅m2

kw = R0∕Rs, design parameter of leading edge
L = total length of waverider, m
LJ = total length of Joint Computational/Experimental

Aerodynamics Program model, m
M∞ = freestream Mach number
m = mass of waverider, kg
P = static pressure, Pa
P0 = total pressure, Pa
p = roll rate, rad/s
q∞ = freestream dynamic pressure, Pa
r = yaw rate, rad/s
R0 = Y intercept of base curve in Fig. 5, m
Rs = radius of shock wave circle at base surface in

Fig. 5, m
S = reference area, m2

T = nondimensional motion period
T0 = total temperature, K
V∞ = freestream velocity, m∕s
Xcg = relative position of center of gravity, 0.59L
x; y; z = spatial coordinates, m
α = angle of attack, deg
β = angle of sideslip, deg
Γ = sweep angle in Fig. 15, deg or rad
Δt = physical time step for unsteady numerical simula-

tion, s
η = intersection angle in Fig. 5, design parameter of

leading edge, deg or rad
ηDR = damping, or real component of Dutch-roll eigen-

value
Λ = dihedral angle in Fig. 15, deg or rad
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λR = eigenvalue of roll mode
λS = eigenvalue of spiral mode
ρ∞ = freestream density, kg∕m3

τ = slenderness of power-law body
Φ = roll angle, rad
φ = azimuth angle in Fig. 5, design parameter of leading

edge, deg or rad
ωDR = circular frequency, or imaginary component of

Dutch-roll mode, rad/s

I. Introduction

WAVERIDER is a promising candidate configuration in the
design of hypersonic vehicles due to its excellent aerodynamic

efficiency. The shockwave can be attached to the entire leading edge of
the waverider at the design condition, thus preventing the leakage of
high-pressure gas from the lower surface onto the upper surface. Such
flow physics lends the waverider to evident advantage of lift-to-drag
ratio over other traditional configurations. The concept of waverider
was first proposed by Nonweiler [1], and various design and optimi-
zationmethods have beendeveloped rapidly since the 1980s, including
the viscous optimized waverider [2,3], the osculating cone waverider
[4], the osculating flowfieldwaverider [5], star-bodywaverider [6], the
quasi-waverider [7], and so on. Potential application of waveriders for
various hypersonic vehicles has also been widely discussed, including
the airbreathing hypersonic cruise vehicles [8], hypersonic entry
vehicles [9], second stage for two-stage-to-orbit systems [10],missions
on other planets [11], and so on. More detailed overviews of research
on waverider design methodology are given by Ding et al. [12] and
Zhao et al. [13].
Lateral–directional stability design is critical for any kind of air-

craft. The nonaxisymmetric, flat, and slender geometric feature
makes thewaverider susceptible to the problem of lateral–directional
instability. For traditional aircraft, the vertical tail is generally respon-
sible for the yaw stability and control [14]. However, to alleviate the
serious aerothermal heating problem of hypersonic vehicles, espe-
cially for long-time flight, the vertical tail is generally restrained in
size strictly or even fully removed [10]. This would make the
improvement of the yaw stability and control power rather difficult.
In this case, the lateral–directional stability of the waverider itself
would be extremely important.
Eggers et al. [15] have investigated the influence of the cross-

section camber and wing aspect ratio on the lateral–directional static
stability of osculating cone waveriders. Cockrell et al. [16] have
compared the aerodynamic performance of two waveriders with a
straight and cranked wing, respectively, and found that the latter
configuration has better lateral stability. Rasmussen [17] has further
elaborated on the mentioned results by analyzing two other configu-
rations and found that waveriders with finlets or positive dihedral
tend to be stable in rolling-sideslip modes. Strohmeyer [18] has
discussed the behavior of static lateral stability characteristics for
osculating cone waveriders in sub- and transonic flow. Pezzella et al.
[19] have analyzed the lateral–directional static and dynamic stability
of the HEXAFLYwaverider vehicle with and without vertical tails in
detail. Knittel [20] has given very good interpretation about the
influence of geometric features on the lateral–directional static sta-
bility of asymmetric starbody waveriders, which are also found to
have significantly improved stability behavior than the chosen oscu-
lating waveriders. Maxwell [21] has pointed out that it is critical to
consider the dynamic stability earlier in the design process and then
characterized the effect of off-design orientation on the static and
dynamic stability of a viscous optimizedwaverider. Bykerk et al. [22]
have conducted a detailed lateral–directional stability analysis of a
hypersonic waverider under subsonic flight conditions. However,
existing research is still not enough to instruct the stability design,
especially the directional stability. What is more, only a few analyses
were conducted on the lateral–directional coupled dynamic stability
for hypersonic waveriders.
A commonmethod to study the mechanism of dynamic stability is

to derive the approximate formulas based on the linearized small-
disturbance equations of motion. The literal expressions involving

aerodynamic derivatives and inertial data can provide physical
insight into the behavior of the aircraft motion and are also well
suited for the optimization of flight control systems [23]. Using this
method, many researchers have studied the mechanism of lateral–
directional dynamic stability for traditional aircraft operating at
subsonic, transonic, and supersonic conditions [23–27]. Never-
theless, the special flight condition and slender shape make hyper-
sonic vehicles rather distinct from the conventional aircraft. As a
result, the instability mechanism cannot be analyzed directly in terms
of traditional theories. For example, the usual approximation for
Dutch roll is obtained by assuming the motion consists solely of
sideslip and yaw, neglecting the roll terms. Phillips [28] has pointed
out that this approximation is an asymptotic solution that is only valid
in the limit of infinite roll damping, but an aircraft seldom possesses
sufficient roll damping to eliminate the rolling oscillations from
Dutch roll. This is especially true for hypersonic vehicles, whose
rollingmotionmay even play a dominant role in theDutch-roll mode.
Breitsamter et al. [29] have derived the approximate expressions of a
hypersonic vehicle and found that a high roll–yaw coupling in
combination with weak roll damping can be a main reason for the
stability deficiencies of lateral dynamics in hypersonic flight. How-
ever, the characteristics of the lateral–directional motion vary evi-
dently with different configurations and flight regimes. Therefore,
the instability mechanism of hypersonic waverider needs further
investigation, and then the influence of geometric feature on the
dynamic stability can be analyzed.
To provide systematic guides for lateral–directional stability design,

based on an initial study in Ref. [30], this paper tries to conduct a more
comprehensive parametric study on the lateral–directional stability of
hypersonic power-law waverider. First, for the given design space of
the leading-edge parameters, a series of training samples is generated
by the full-factorial experiment design, and the lateral–directional
static anddynamicderivatives are obtainedbasedon the computational
fluid dynamics (CFD) results. A surrogate model is constructed to
achieve the static and dynamic derivatives for all the samples at the
design space. Then, the eigenvalues are solved from the lateral–direc-
tional linearized small-disturbance equations. Furthermore, the
approximate formulas are derived based on the physics of the modes.
Finally, the influence of geometric feature on the lateral–directional
static and dynamic stability is analyzed in detail.

II. Computational Fluid Dynamics Solver and
Validation

A. Numerical Methods

An in-house CFD solver GMFlow is used in the paper [31]. A cell-
centered finite volume scheme is employed to solve the compressible
Euler, Navier–Stokes (for laminar flow), or Reynolds-averaged
Navier–Stokes (RANS) equations. The AUSM+ spatial discretization
scheme is adopted [32], with an implicit lower–upper symmetric
Gauss–Seidel scheme for the temporal integration to accelerate con-
vergence [33]. The minmod limiter is used for shock capture. The
viscous terms are discretized using the second-order central differences.
For the unsteady calculations, the governing equations are solved using
the dual-time-steppingmethod, and local time steppingwith the fourth-
order Runge–Kutta scheme is used at the subiteration. Besides, the
governing equations are solved in Arbitrary Lagrangian–Eulerian
(ALE) framework to deal with the unsteady rigid grid motion. More
details about the CFD solver can be found in Refs. [31,34].
The paper mainly focuses on the flight condition ofM∞ � 15 and

H � 50 km. For a 4 m waverider, the Reynolds number at this

condition is 1.2 × 106. The following correlation by DiCristina
[35] can be used to calculate the local transition Reynolds number:

log10 Rext � 6.421 exp�1.209 × 10−4M2.641
e � (1)

For the lower surface of waveriders in the current paper, at
0 ∼ 10 deg angle of attack, the typical range of local edge Mach
number and corresponding transition Reynolds number are [5,10]

and �2.99; 5.89� × 106, respectively. Therefore, the fully laminar flow
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model is adopted to evaluate the aerodynamic performance of the

waveriders.

B. Validation of Hypersonic Laminar Flow

To verify the accuracy of the current solver, the Mach 8 laminar

experimental result of a spherically blunted cone with a planar slice

on the aft section (parallel to the longitudinal axis) is used here

[36,37], shown in Fig. 1. This configuration was studied experimen-

tally at the Sandia National Laboratories hypersonic wind-tunnel

facility under the Joint Computational/Experimental Aerodynamics

Program (JCEAP). The test conditions are listed in Table 1. Similar to

the distribution suggested by Roy et al. [37], a grid of 240 × 240 ×
105 cells (105 nodes along the azimuthal direction) is employed for

half of themodel due to symmetry, which is shown in Fig. 2. The first

grid spacing normal to the wall is 0.005 mm to satisfy y� ≤ 1. A
constant wall temperature of 316.7 K is used, and the calorically

perfect gas (nitrogen, γ � 1.4) is assumed. The comparison of pres-

sure distribution along the symmetry plane between the experiment

and CFD is illustrated in Fig. 3. It shows that the CFD result is quite

close to the experimental result, demonstrating that the current solver

is reliable for hypersonic laminar flow simulation.

C. Validation of Dynamic Derivative

Awidely used identification method based on the forced oscilla-

tion technique is employed in this paper to evaluate the lateral–

directional dynamic derivatives [38]. The specific expressions are

8>>>>>><
>>>>>>:

Clp � 2V∞
L ⋅ 2

ωTdΦ

R T∕2
−�T∕2� Cl cos�ωt� dt

Cnp � 2V∞
L ⋅ 2

ωTdΦ

R T∕2
−�T∕2� Cn cos�ωt� dt

Clr � 2V∞
L ⋅ 2

ωTdψ

R T∕2
−�T∕2� Cl cos�ωt� dt

Cnr � 2V∞
L ⋅ 2

ωTdψ

R T∕2
−�T∕2� Cn cos�ωt� dt

(2)

where dΦ or dψ is the motion amplitude of roll and yaw, ω is the

circular frequency, and T is the period. A detailed derivation is given

in Ref. [39].

To validate the computational accuracy of the dynamic derivative

for the current solver, the experiment result of the basic Finner

configuration at M∞ � 2.49 �Red � 1.86 × 105; P0 � 44;816 Pa;
T0 � 311.1 K� in Ref. [40] is used here. The result also showed that
there is no Reynolds number effect onClp for two Reynolds numbers

tested [41]. Both inviscid and fully turbulent numerical results have

been compared with the experiment in past research [42–45]. Here,

the inviscid, laminar, and fully turbulent (using a realizable k-ε

Fig. 1 JCEAP model geometry.

Table 1 Test conditions for

JCEAP pressure experiments [36]

Flow parameter Mean value

M∞ 7.841

P0 2.4724 × 10−6 Pa

T0 632.8 K

P∞ 290.9 Pa

T∞ 47.7 K

Re∕m 6.88 × 106∕m

Fig. 2 Grid of the JCEAP model (240 × 240 × 105 cells).

X/LJ

P
/P

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6
Experiment[36]
CFD-Upper
CFD-Lower

Fig. 3 Comparison of pressure distribution along the symmetry plane.
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turbulence model [46]) simulations are all conducted to evaluate the

dynamic derivatives.
Referred to the unsteady calculation parameters used by

Bhagwandin [45], the baseline numerical attributes are listed in

Table 2. Note that for the current case the inner iterations of ni �
30 generally results in about one to two orders of magnitude reduc-

tion for the inner residuals. The forced oscillation is simulated for two

periods, and the result of the last one is used to evaluate the dynamic

derivatives.
The computational grids are shown in Fig. 4, which consists of

10.48 million structured hexahedral cells. The first grid spacing

normal to the wall is 0.01 mm, satisfying the y� ≤ 1 criterion for

adequate boundary-layer resolution. In addition, a finer grid with

21.2 million elements is generated by refining the wall surface and

near field domain. Then, the turbulent results of the finer grid are

obtained to validate the grid independence.
The results are listed in Table 3. The comparison of the two

turbulent results shows that the coarse grid with 10.48 million

elements is enough for this problem. And according to the results

of the coarse grid, it can be inferred that the influence of viscous

effects on the dynamic derivativeClp is very little. In addition, all the

calculation results match the experiment results well, with the maxi-

mum relative error being only 5.56% (fine grid, k-ε, α � 5 deg),
which is acceptable for evaluating the dynamic characteristics.

III. Research Object and Database Construction

A. Generation of Power-LawWaverider

ACFD based waverider design approach is employed here, which

can allow arbitrary generating flowfields to be used in waverider

design [47]. An axisymmetric power-law body is chosen as the basic

body in that the derived power-law waveriders are generally more

voluminous [48]. The flowfield is obtained by solving the compress-

ible two-dimensional axisymmetric Euler equations. The generation

process is illustrated in Fig. 5, inwhich the power-law curve at theXZ

plane is defined as

z � c0�Lbasic − x�m (3)

To obtain waveriders with slender shape and big volume, the follow-

ing parameters are used: Lbasic � 200 m, c0 � 1.0, and m � 0.7.
The base curve is determined by the following third-order polyno-

mials:

z �
�
a� by2 − cy3�y ≤ 0�
a� by2 � cy3�y > 0� (4)

To depict the base curve more intuitively, define a design parameter
kw � R0∕Rs, where R0 is the Y-intercept of the base curve and Rs is
the radius of the shock wave circle at the base surface. In Fig. 5, the
design parameter φ represents the azimuthal angle, and η represents
the angle between the tangent line and Y axis at the point where the
base curve intersects the shock curve. Then, given the three design
parameters kw,φ, and η, the coefficients of Eq. (4) can be determined
solely as follows:8>>>>><

>>>>>:

a � kw ⋅ Rs

b � −
sinφ tan η − 3 cosφ� 3kw

Rssin
2φ

c � 2 cosφ − sinφ tan η − 2kw

R2
ssin

3φ

(5)

Based on the numerical solution, the shock wave is identified
numerically where the pressure change between two points along
the normal direction is the maximum in the flowfield. There are
numerous linearized models for inviscid flow of power-law flowfield
solutions [49,50]. Rasmussen and Duncan [51] employed the ana-
lytic approximations based on hypersonic small-disturbance theory
to generate the power-law waveriders. According to the approxima-
tions derived by the hypersonic limit hypothesis [51], namely, the
hypersonic similarity parameter Kτ � M∞τ → ∞, the shock wave
shape for the current power-law body can be depicted as

zs � �Lbasic − x�0.7∕0.854 (6)

For comparisonwith the analytic solution, threeMach numbers are
chosen to identify the shock wave around the power-law body. The
results are illustrated in Fig. 6. It can be seen that as theMach number
(alsoKτ) increases the identified shock wave gets closer and closer to
the analytic solution. And at M∞ � 45, the shock wave is almost
identical to the analytic one, demonstrating that the current identi-
fication method of the power-law shock wave is credible.
After the shock wave and the leading edge are determined, the

lower surface can be generated by tracing the streamlines in the
axisymmetric generating flowfield downstream from each point
along the leading edge, and the upper surface is aligned with the
freestream direction. All the power-law waveriders in the paper are
finally scaled up to the same length L � 4 m. The design Mach
number is M∞ � 15, and the main flight altitude is assumed to be
H � 50 km. From the inviscid pressure contour depicted in Fig. 7,

Fig. 4 Grid of the missile (10.48 million cells).

Table 2 Baseline numerical
attributes

Parameter Value

Frequency f 40 Hz

Reduced frequency kd 0.01

Physical time step Δt 1 × 10−5 s

Iterations per period N 2500

Total iterations 2 N 5000
Inner time steps ni 30

Table 3 Comparison of Clp between the experiment and
calculation

α Experiment [40]

Coarse grid Fine grid

Euler Laminar k-ε k-ε

0° −17.4 −16.89 −16.97 −16.98 −16.82
10° −19.6 −18.52 −18.89 −18.60 −18.51
20° −21.3 −20.45 −21.16 −20.54 −20.39
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good shockwave attachment along the leading edge can be observed,

which validates the implementation of the described construction

method for the power-law waverider.

B. Linearized Small-Disturbance Model

For a straight and level flight condition, assuming the flight-path

angle is zero, the lateral–directional system matrix from the linear-

ized small-disturbance equations of motion is given by [52]

A �

2
6664
Y 0
β sin α − cos α g cos α∕V∞

L 0
β L 0

p L 0
r 0

N 0
β N 0

p N 0
r 0

0 1 tan α 0

3
7775 (7)

where

L 0
i � �IzzLi � IxzNi�∕I; N 0

i � �IxxNi � IxzLi�∕I;
L 0
β � �IzzLβ � IxzNβ�∕I; N 0

β � �IxxNβ � IxzLβ�∕I;
Y 0
β � Yβ∕�mV∞�

where i ∈ fp; rg. Note that the dynamic derivatives Y 0
p and Y 0

r are
neglected in that the two terms are very small.
According to the flight condition and the geometric feature, the

following values are assigned for the mass and inertia:m � 500 kg,

Ixx � 75 kg ⋅m2; Izz � 750 kg ⋅m2, and Ixz � 0. And the relative
position of the center of gravity Xcg is assumed to be 0.59L.

C. Grid Independence Validation

For the fully laminar numerical simulation, an isothermal wall
condition with Tw � 1000 K is employed. For the calculation of the
dynamic derivatives in Sec. V, the time consumed for each case on a
64-cell-CPU platform (AMDEPYC 7452,2.35 GHz) is about 13.4 h.
The final parametric study includes 561 cases, and the total compu-
tation time is up to about 7517.4 h. Therefore, considering the large
amount of calculation and in order to capture the dominant geomet-
rical influence on stability, the paper adopts the calorically perfect gas
model and neglects the real gas effect.
Different structured grids are generated to conduct the grid inde-

pendence analysis. The detailed number of surface and total elements
is given in Table 4, and the moderate grid is illustrated in Fig. 8. The
first grid spacing normal to the wall is 0.5 mm to satisfy y� ≤ 1, and
the near field domain around the lower surface is specially refined to
better capture the shock wave. Taking the waverider shown in Fig. 7
as an example, the result of the static derivatives for different grids is
listed in Table 4 and plotted in Fig. 9, which are calculated by the
linear interpolation of steady CFD results at β � 1 deg. It can be
found that the difference between the moderate and Refined 2 grid is
veryminor, and the relative errors are all lower than 1.0%. Therefore,
the moderate grid scale can be considered to be adequate to calculate
the static derivatives.
For the evaluation of dynamic derivatives by the forced oscillation

technique described in Sec. II, larger frequency and the physical time
step can improve the prediction efficiency but may influence the
convergence and calculation accuracy. Therefore, the suitable selec-
tion of the two parameters is important to balance the accuracy and
efficiency.
First, based on the moderate grid in Fig. 8, the rolling dynamic

derivatives L 0
p andN

0
p for a series of motion frequency are evaluated

(f � 400; 160; 80; 40, and 20 Hz). The time step and inner-iteration

step are chosen to be Δt � 5 × 10−5 s and ni � 50, respectively,
which can result in about two orders of magnitude reduction for the
inner residuals. The forced oscillation is simulated for two periods,
and the result of the last one is used to calculate the dynamic
derivatives. According to the variation plotted in Fig. 10, the differ-
ence between f � 20 Hz and f � 40 Hz is almost negligible for
both derivatives at all angles of attack. Therefore, the frequency f �
40 Hz is chosen here to improve the calculation efficiency.
Furthermore, the variation of dynamic derivatives with time step is

plotted in Fig. 11. It can be found that only the derivativeL 0
p is a little

sensitive to the time step and Δt � 1 × 10−4 s is small enough to
obtain convergent results.

Fig. 7 Inviscid pressure contour at the design condition
(kw � 0.4;φ � 45 deg, η � 0 deg).

X (m)

Z 
(m

)

-200 -150 -100 -50 0
0

20

40

60
M∞=15
M∞=30
M∞=45
Analytic solution[51]

body

Fig. 6 Comparison of shock wave shape.

Fig. 5 Generation of power-law waverider.
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Finally, the dynamic derivatives from different grids are compared

in Table 5 and plotted in Fig. 12. Similar to the static derivatives, the

difference between the moderate and refined-2 grid is also very

minor, with the largest relative difference being only 0.86% (N 0
p at

α � 0 deg). Therefore, the moderate grid scale is also considered to

be enough to calculate the dynamic derivatives.

Based on the previously mentioned procedure for grid independ-

ence analysis and unsteady calculation parameter selection, the

moderate grid is finally employed in this paper to conduct the para-

metric study. In addition, themotion frequency and physical time step

for unsteady numerical simulation are chosen to be f � 40 Hz and
Δt � 1e − 4 s, respectively.

D. Surrogate Model

To obtain the stability distribution at the given design space, the

Kriging-based surrogate model is employed [53], along with the full-

factorial experiment design method. The parameters kw and φ are

chosen as the design variables, and η is kept unchanged (η � 0 deg)
because the former two parameters have amore sensitive influence on

the shape variation of waveriders. This can be observed from Fig. 13.

The range of kw and φ is set to be [0.3, 0.5] and [35, 55 deg],

respectively, which is a tradeoff between the amount of computations

and diversity of shapes. For each flight condition, the levels of the two

variables are both 9, meaning that the training samples consist of 81

waveriders at the design space, as shown in Fig. 14. After the static

and dynamic derivatives of the training samples are evaluated accord-

ing to the CFD results, the corresponding values of other samples are

obtained by the surrogate model.

Another five waveriders are selected randomly as the test sam-

ples by Latin Hypercube Sampling. The distribution is also given

in Fig. 14. The results of two derivatives are listed in Table 6.

Table 4 Comparison of static derivatives from different grids

Number of elements α � 0 deg α � 5 deg α � 10 deg

Grid Surface (thousand) Total (million) L 0
β N 0

β L 0
β N 0

β L 0
β N 0

β

Coarse 1 12.09 1.46 −19.307 2.297 −63.147 3.591 −93.752 4.155

Coarse 2 12.09 2.98 −19.843 2.300 −63.278 3.585 −94.010 4.088

Moderate 26.14 6.42 −20.916 2.274 −65.556 3.558 −95.082 4.081

Refined 1 50.12 12.19 −21.017 2.274 −65.891 3.558 −95.017 4.064

Refined 2 50.12 24.32 −21.050 2.274 −65.891 3.558 −95.015 4.054

Fig. 8 Grid of waverider (moderate, 6.42 million elements)

Number (million) Number (million)
5 10 15 20-100

-80

-60

-40

-20

0 α=0 deg
α=5 deg
α=10 deg

5 10 15 202

3

4

5 α=0 deg
α=5 deg
α=10 deg

L β

N

a) L β
' b) Nβ

'

' ' β

Fig. 9 Variation of the static derivative with mesh number.

         

f (Hz)
0 100 200 300 400 0 100 200 300 400

-0.016

-0.012

-0.008

-0.004 α=0 deg
α=5 deg
α=10 deg

f (Hz)

0

0.0002

0.0004

0.0006

0.0008
α=0 deg
α=5 deg
α=10 deg

L
p'

N
p'

a) L '
p b) N '

p

Fig. 10 Variation of the dynamic derivative with frequency.
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Compared to the results by CFD, the maximum relative errors of

L 0
β and L 0

p obtained by the surrogate model are only 1.64 and

1.99%, respectively, demonstrating the reasonable interpolation

accuracy.

Based on the surrogate model, a total of 200 × 200 samples are

selected, and the distribution of all the derivatives at the design space

can be obtained. Furthermore, the eigenvalues are calculated by

Eq. (5), along with the corresponding lateral–directional coupled
dynamic modes, including the roll, spiral, and Dutch roll.

IV. Lateral–Directional Static Stability

For conventional aircraft, the dihedral and sweep angle of thewing
mainly affect the lateral static stability [54]. However, the special

         

Δt(10-4s)

0 1 2 3 4
-0.016

-0.012

-0.008

-0.004 α=0 deg
α=5 deg
α=10 deg

Δt(10-4s)

0 1 2 3 4
0

0.0002

0.0004

0.0006

0.0008
α=0 deg
α=5 deg
α=10 deg

L
p' N

p'

a) L '
p b) N '

p

Fig. 11 Variation of the dynamic derivative with time step.

Table 5 Comparison of dynamic derivatives from different grids (f � 40 Hz, Δt � 1 × 10−4 s)

α � 0 deg α � 5 deg α � 10 deg

Grid L 0
p N 0

p L 0
p N 0

p L 0
p N 0

p

Coarse 1 −6.990 × 10−3 1.025 × 10−4 −9.937 × 10−3 2.761 × 10−4 −1.364 × 10−2 4.447 × 10−4

Coarse 2 −7.053 × 10−3 1.051 × 10−4 −9.942 × 10−3 2.763 × 10−4 −1.385 × 10−2 4.508 × 10−4

Moderate −7.087 × 10−3 1.089 × 10−4 −9.846 × 10−3 2.818 × 10−4 −1.395 × 10−2 4.576 × 10−4

Refined 1 −7.097 × 10−3 1.092 × 10−4 −9.850 × 10−3 2.810 × 10−4 −1.396 × 10−2 4.578 × 10−4

Refined 2 −7.116 × 10−3 1.099 × 10−4 −9.885 × 10−3 2.801 × 10−4 −1.401 × 10−2 4.582 × 10−4

Number (million)
5 10 15 20

Number (million)
5 10 15 20

-0.015

-0.01

-0.005
α=0 deg
α=5 deg
α=10 deg

0

0.0002

0.0004

0.0006
α=0 deg
α=5 deg
α=10 deg

L
p'

N
p'

a) L '
p b) N '

p

Fig. 12 Variation of the dynamic derivative with mesh number.

Fig. 13 Variation of shape with different parameters.
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geometric feature of waverider makes an accurate definition of the

two angles difficult. Instead, a simplified definition is presented here

and illustrated in Fig. 15, in which the dihedral angle Γ and sweep

angle Λ are calculated at the base plane and horizontal projection

plane, respectively. The expressions are as follows:

Γ � arctan�2h∕b�;Λ � arctan�2L∕b� (8)

Note that the dihedral angle is determined according to the shape of

the lower surface. This is due to the fact that the upper surface usually

has a minor influence on the total aerodynamic performance of

hypersonic waverider at nonnegative angles of attack [55].
The distribution of the dihedral and sweep angle is depicted in

Fig. 16. As the parameter kw or φ increases, the dihedral angle turns

bigger, whereas the sweep angle turns smaller. The variation trend of

the two angles is just opposite.

At the design condition, the distribution of the static derivative L 0
β

at three typical angles of attack is given in Fig. 17. For the standard
coordinate, L 0

β < 0 indicates that the waverider is statically stable in

the lateral direction. It can be seen that as the design parameter kw or
φ increases, the lateral stability turns stronger, which is consistent
with the variation of dihedral angle. Such a result is not difficult to
predict and can be easily explained via the traditional theory of flight
dynamics. One should also note the inconsistent distribution between
the sweep angle and lateral stability. By further inspecting the lower
and upper limit of the two angles shown in Fig. 16, the reason for this
phenomenon should be that the relative variation range of the sweep
angle is much smaller than that of the dihedral angle. As a result, the
influence of the sweep angle is covered by the dihedral angle.
In addition, the dashed line in Fig. 17a is a boundary between the

stable and unstablewaveriders. At the two larger angles of attack, the
waveriders at the design space are all stable. This is because increas-
ing the angle of attack improves the dihedral effect.
The distribution of the nondimensional static derivativeN 0

β at three
typical angles of attack is shown in Fig. 18. For the standard coor-
dinate, N 0

β > 0 indicates that the waverider is statically stable in the

directional direction. Thewaveriders at the design space are all stable
at three angles of attack. And as the design parameter kw or φ
increases, the directional stability turns stronger, which is also con-
sistent with the dihedral angle. This result is different from that of a
conventional aircraft, for which the effect of dihedral on the direc-
tional stability is almost negligible mainly because the wing usually
has small side area and is located near the center of gravity.
To explain the mentioned phenomenon, the shape and static

stability of three waveriders are compared in Figs. 19 and 20,
respectively, along with the separate contribution of the upper and
lower surfaces. The distribution of the total side area along the
longitudinal axis is almost the same for the threewaveriders because
they share the same streamline in the symmetry plane. However, it
can be seen that as the dihedral angle increases the side area of the
lower surface becomes larger, especially near the base. This varia-
tion improves the directional stability of the lower surface signifi-
cantly, as shown in Fig. 20b. Correspondingly, the directional
stability of the total waverider is improved. In addition, from
Fig. 20a, the separate upper surface is lateral unstable due to the
anhedral effect (negative dihedral effect), but the contribution to the
total waverider is minor.
Therefore, based on the given analysis, modest alteration of the

dihedral angle would be a major method to improve both the lateral
and directional static stability for hypersonic waveriders.

V. Lateral–Directional Coupled Dynamic Stability

After the static and dynamic derivatives of the waveriders at the
design space are obtained, the eigenvalues can be calculated by
Eq. (7). Then, the corresponding lateral–directional coupled dynamic
modes can be obtained.
The distribution of the roll and spiralmodes atα � 0 deg is shown

in Fig. 21, in which “Div.” and “Conv.” indicate themode is divergent
and convergent, respectively. It can be observed that the roll or spiral
mode is divergent for some waveriders. The result at the other two
angles of attack is not given here because the two modes are both
convergent. The distribution of the Dutch mode is shown in Fig. 22,
which is distinctly different at the three angles of attack.

A. Modal Approximation

Themodal approximation allows us tomore easily inspect how the
static and dynamic derivatives affect the dynamic modes and gain
better physical insight into the instability mechanism. To develop
approximations of lateral–directional modes, consider the standard
factorization of the characteristic polynomial,

det�sI −A� � s4 � a3s
3 � a2s

2 � a1s� a0

� �s2 � 2ξωns� ω2
n��s − λR��s − λS� (9)

where

kw

ϕ

0.3 0.35 0.4 0.45 0.5
35

40

45

50

55

Training sample
Test sample

Fig. 14 Distribution of training and test samples.

Table 6 Relative errors of L 0
β and L 0

p for test samples, α � 0 deg

CFD Surrogate model
Relative
errors

kw φ L 0
β L 0

p L 0
β L 0

p L 0
β , % L 0

p, %

0.45 36.3 −3.31 −5.16 × 10−3 −3.36 −5.22 × 10−3 1.51 1.16

0.38 45.8 −20.91 −6.73 × 10−3 −20.82 −6.74 × 10−3 0.43 0.15

0.49 48.9 −58.73 −1.50 × 10−2 −58.90 −1.51 × 10−2 0.29 0.53

0.35 54.5 −47.90 −9.12 × 10−3 −47.87 −9.11 × 10−3 0.06 0.11

0.31 38.5 1.24 −3.52 × 10−3 1.22 −3.45 × 10−3 1.64 1.99

Fig. 15 Definition of the dihedral and sweep angle.
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a0 � �L 0
βN

0
r − L 0

rN
0
β�g∕V∞ ⋅ cos α� �L 0

pN
0
β − L 0

βN
0
p�g∕V∞ ⋅ sin α

a1 � �L 0
βN

0
p − L 0

pN
0
β − L 0

βg∕V∞� cos α
� �L 0

βN
0
r − L 0

rN
0
β − N 0

βg∕V∞� sin α
a2 � N 0

β cos α − L 0
β sin α� L 0

pN
0
r − L 0

rN
0
p � Y 0

β�L 0
p � N 0

r�
a3 � −Y 0

β − N 0
r − L 0

p

With regard to the eigenvalue magnitude of the Dutch roll and rol l∕s
piral, it can be usually assumed that jλDRj ≫ jλS;Rj, which is also the
case for the current waveriders. Then, a second-order polynomial

concerning the spiral and roll eigenvalues can be separated from the

fourth-order characteristic determinant. After further neglecting

some less important high-order terms, we have

a2s
2 � a1s� a0 � 0 (10)

where

a0 � L 0
βN

0
r

g

V∞
cos α − L 0

rN
0
β

g

V∞
cos α − L 0

βN
0
p

g

V∞
sin α

� L 0
pN

0
β

g

V∞
sin α

� �L 0
βN

0
r − L 0

rN
0
β�

g

V∞
cos α� �L 0

pN
0
β − L 0

βN
0
p�

g

V∞
sin α

a1 � L 0
βN

0
p cos α − L 0

pN
0
β cos α� L 0

βN
0
r sin α − L 0

rN
0
β sin α

− L 0
β

g

V∞
cos α − N 0

β

g

V∞
sin α

�
�
L 0
βN

0
p − L 0

pN
0
β − L 0

β

g

V∞

�
cos α

�
�
L 0
βN

0
r − L 0

rN
0
β − N 0

β

g

V∞

�
sin α

a2 � N 0
β cos α − L 0

β sin α

Fig. 17 Distribution of the static derivative L 0
β.

Fig. 19 Comparison of three waveriders (kw � 0.4; η � 0 deg).

Fig. 16 Distribution of the dihedral and sweep angle.

Fig. 18 Distribution of the static derivativeN 0
β.
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Furthermore, the condition jλDRj ≫ jλS;Rj also holds for the waver-

iders. Therefore, the spiral eigenvalue can be obtained by neglecting

the second-order terms:

λS � −
a0
a1

� −
g

V∞

�L 0
βN

0
r − L 0

rN
0
β� cos α

L 0
β�N 0

p − g∕V∞� cos α − N 0
βL

0
p cos α

� N 0
r

g

V∞

L 0
β∕N 0

β − L 0
r∕N 0

r

L 0
p − L 0

β∕N 0
β�N 0

p − g∕V∞�
(11)

From Eqs. (10) and (11), we have

λR � −
a0
λSa2

� −
a1
a2

� −
L 0
β�N 0

p − g∕V∞� cos α − N 0
βL

0
p cos α

N 0
β cos α − L 0

β sin α

� N 0
β cos α

N 0
βDYN

�
L 0
p � L 0

β

N 0
β

�
g

V∞
− N 0

p

��
(12)

where

N 0
βDYN � N 0

β cos α − L 0
β sin α � q∞SL

Izz

�
Cnβ cos α −

Izz
Ixx

Clβ sin α

�

� q∞SL

Izz
CnβDYN (13)

α(deg) α(deg)
0 5 10-200

-100

0

100

200
WR1-upper
WR1-lower
WR1-total
WR2-upper
WR2-lower
WR2-total
WR3-upper
WR3-lower
WR3-total

0 5 100

5

10

15 WR1-upper
WR1-lower
WR1-total
WR2-upper
WR2-lower
WR2-total
WR3-upper
WR3-lower
WR3-totalL

β'

N
β'

a) L 'β b) N 'β

Fig. 20 Comparison of the lateral and directional stability.

Fig. 21 Distribution of the roll and spiral modes, α � 0 deg.

Fig. 22 Distribution of the Dutch-roll mode.
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Note that CnβDYN is the well-known dynamic directional-stability

parameter, or the Dutch-roll static derivative [56,57].
Expanding Eq. (9), we obtain

ξωn � 1

2

�
a3 −

a1
a2

�
(14)

Then, the real component of the Dutch-roll eigenvalue, namely, the
Dutch-roll damping, can be expressed as

ηDR � −ξωn � −
1

2

�
a3 −

a1
a2

�
(15)

Equation (15) consists of too many terms, making it difficult to
analyze the main influence factor of the Dutch-roll damping. Further
approximation is necessary to improve the analyzability.
Taking the waverider WR2 in Fig. 19 as an example, the aerody-

namic derivatives are listed in Table 7.
For a1, we have

�L 0
βN

0
p − L 0

pN
0
β − L 0

βg∕V∞� cos α � 0.199;

�L 0
βN

0
r − L 0

rN
0
β − N 0

βg∕V∞� sin α � 0.0069 (16)

Neglecting the second term,

a1 � �L 0
βN

0
p − L 0

pN
0
β − L 0

βg∕V∞� cos α (17)

The expression of a2 in Eq. (9) can also be approximated as

a2 � N 0
β cos α − L 0

β sin α (18)

For a3, there is almost an order of magnitude between the term �Y 0
β �

N 0
r� and L 0

p. Hence, a3 can be simplified as

a3 � −L 0
p (19)

Substituting Eqs. (17–19) into Eq. (15), we have

ηDR � 1

2

�
a1
a2

− a3

�

� 1

2

�L 0
βN

0
p − L 0

pN
0
β − L 0

βg∕V∞� cos α
N 0

β cos α − L 0
β sin α

� 1

2
L 0
p

� L 0
β

2N 0
βDYN

�
�N 0

p cos α − L 0
p sin α� −

g

V∞
cos α

�
(20)

Referring to the expression ofN 0
βDYN (orCnβDYN), the concept of the

dimensionalized Dutch-roll dynamic derivative can be defined:

N 0
pDYN � N 0

p cos α − L 0
p sin α (21)

Then, a concise expression for Dutch-roll damping can be obtained:

ηDR � L 0
β

2N 0
βDYN

�
N 0

pDYN −
g

V∞
cos α

�
(22)

The imaginary component of the Dutch-roll eigenvalue is typically

much larger than the real component and the roll and spiral eigen-

values.Hence, the gravity and damping terms can be neglected for the

characteristic matrix. Then, Eq. (9) is transformed into

s2�s2 − Y 0
βs� N 0

βDYN� � �s2 � 2ξωns� ω2
n��s − λR��s − λS�

(23)

Furthermore, we have

ωDR ≈
�����������������������
ω2
DR � η2DR

q
� ωn �

��������������
N 0

βDYN

q
(24)

B. Roll and Spiral Mode

The eigenvalue distribution of the two modes is plotted in Figs. 23

and 24. Based on these results, the relative error of the approximate

expressions can be evaluated at the whole design space and is shown

in Fig. 25 at α � 10 deg. It is found that themaximum relative errors

of the roll and spiral mode are no more than 3.7 and 14%, respec-

tively, demonstrating that the previously mentioned modal approxi-

mation is reasonable. The latter error is a little larger because the

magnitude of the spiral eigenvalue is too small.
Themechanism for divergence of the twomodes at α � 0 deg can

be analyzed byEqs. (11) and (12).According to the distribution of the

static derivatives, the following condition holds for all thewaveriders

at the design space:

N 0
β cos α

N 0
βDYN

> 0 (25)

Hence, from Eq. (12), the convergence criterion for the roll mode can

be further simplified as

L 0
p � L 0

β

N 0
β

�
g

V∞
− N 0

p

�
< 0 (26)

Fig. 23 Eigenvalue distribution of the roll mode.

Table 7 Aerodynamic derivatives of the
waveriderWR2, α � 10 deg

Derivative Value

L 0
β −95.08

N 0
β 4.08

L 0
p −1.40 × 10−2

N 0
p 4.58 × 10−4

L 0
r 3.83 × 10−3

N 0
r −6.67 × 10−4

Y 0
β −7.12 × 10−4
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By comparing Figs. 17a and 21a, it is found that the divergent region
of the roll mode is located within the lateral unstable region. The
distribution of different derivatives in Eq. (26) is shown in Figs. 26–
28. At the current flight condition, g∕V∞ � 0.002. Hence, we have
g∕V∞ − N 0

p > 0. At the region near the lower-left corner, the term

L 0
β∕N 0

β becomes positive, and the rolling damping turns smaller (the

absolute value of L 0
p is smaller) gradually. The combined effect leads

to a divergent roll mode.
Figures 29 and 30 illustrates the distribution of another two

derivatives L 0
r and N 0

r. Note that N 0
r is negative. In addition,

the denominator in Eq. (11) is generally negative for conventional

aircraft, which also holds for the waveriders here. Therefore, the

convergence criterion for the spiral mode can be simplified as

L 0
β∕N 0

β < L 0
r∕N 0

r (27)

Generally, the condition L 0
r > 0 and N 0

r < 0 holds for an aircraft

with regular damping characteristics. Therefore, according to

Eq. (27), lateral static instability will lead to a divergent spiral

Fig. 26 Distribution of L 0
p.

Fig. 27 Distribution ofN 0
p.

Fig. 25 Relative error of the approximate expressions, α � 10 deg.

Fig. 24 Eigenvalue distribution of the spiral mode.
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mode. However, near the lower-left corner in Fig. 2b, a region with

convergent spiral mode also exists, which is mainly caused by the

negative L 0
r. At the other angles of attack, the two modes at the

design space are convergent mainly because the lateral stability is

improved.

Therefore, increasing the lateral static stability and rolling damp-

ing can be a major way to improve the roll mode, and the former can

also improve the spiral mode, which can be realized by increasing the

dihedral angle of the waverider.

C. Dutch-Roll Mode

The Dutch roll is the most complex lateral–directional mode, and

the instability mechanism is usually a high-priority research for any

kind of aircraft. The distribution of the accurate and approximate

damping of Dutch roll is plotted in Figs. 31 and 32, which is obtained

by solving Eqs. (7) and (22), respectively. A rather close distribution

between the two results can be found. The direct relative error is not

given here because it is too large near the Dutch-roll boundary

between convergence and divergence. Instead, the comparison of

Fig. 30 Distribution of N 0
r .

Fig. 31 Distribution of the Dutch-roll damping.

Fig. 29 Distribution of L 0
r .

Fig. 28 Distribution of L 0
β∕N

0
β.
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the boundary is plotted in Fig. 33, where “Approx.” indicates the

approximate results and “A” indicates the angle of attack. The

boundaries obtained from the two methods match well, demonstrat-

ing that the approximation of Dutch-roll damping is reasonable.
We should also note that the quantitative error of the approximate

formula is mainly introduced by neglecting the term �Y 0
β � N 0

r� in a3
of Eq. (9). For other configurations operating at different flight

regimes, the magnitude between the term �Y 0
β � N 0

r� and L 0
p should

be compared carefully to make sure if the approximation is reason-

able or not.
For a statically stable waverider, the convergence criterion for the

Dutch roll can be further simplified as

N 0
pDYN >

g

V∞
cos α (28)

From Eq. (28), the Dutch-roll dynamic derivative N 0
pDYN plays an

important role in the Dutch-roll stability.
The distribution ofN 0

pDYN andL 0
β∕N 0

βDYN is shown in Figs. 34 and

35.Affected by the distribution ofL 0
p andN

0
p, theDutch-roll dynamic

derivative turns larger as the dihedral angle increases. Then, based on

the criterion by Eq. (22) or Eq. (28), the reason for divergence of the

Dutch roll at all the three angles of attack can be easily analyzed. At

α � 0 deg, the term �N 0
pDYN − g∕V∞ ⋅ cos α� is negative at the

design space, and thus the lateral instability renders the Dutch roll

convergent. At α � 5 deg and α � 10 deg, the Dutch roll is con-

vergent for the waveriders at the upper-right corner region in

that N 0
pDYN > g∕V∞ ⋅ cos α.

Therefore, for a statically stable waverider, the Dutch-roll stability

is mainly dependent on the magnitude of the Dutch-roll dynamic

derivative N 0
pDYN , which can also be improved by increasing the

dihedral effect.

Figure 36 shows the distribution of the Dutch-roll frequency,

namely, the imaginary component of the eigenvalue. It is found that

the approximate results by Eq. (24) are almost identical to the

accurate solutions, and thus not plotted again. Similar to the conven-

tional theory, the Dutch-roll frequency of the hypersonic waverider is

also up to the static stability and turns larger as the dihedral effect

increases.

To further validate the accuracy of the mentioned Dutch-roll

approximation, the distribution of the mode as the flight altitude

and Mach number is obtained and plotted in Figs. 37 and 38. The

ranges of altitude andMach number are taken as [50 km, 60 km] and

[10, 20], respectively. The laminar flow model is also adopted here.

And the levels of altitude andMach number are chosen to be 5 and 5,

respectively, to construct the surrogate model. In addition, the varia-

tion of gravity acceleration is neglected. It should also be noted that

the influence of centrifugal force and Coriolis force may not be small

at hypersonic conditions. However, the influence also varies with

different flight trajectory and direction. Therefore, a concrete analysis

of concrete problems should be made, and the influence is

neglected here.

The comparison of the Dutch-roll boundary at α � 10 deg is

plotted in Fig. 39. The approximate boundary agrees well with the

accurate one, demonstrating the reasonable simplification of the

Dutch-roll damping at different altitude and Mach number.

To analyze the variation of the Dutch roll with altitude and Mach

numbermore clearly, the approximate formulas are further derivedby

nondimensional derivatives. The Dutch-roll dynamic derivative can

be expanded as

Fig. 32 Distribution of the approximate Dutch-roll damping.
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Fig. 33 Comparison of the Dutch-roll boundary.

Fig. 34 Distribution of the Dutch-roll dynamic derivative N 0
pDYN.
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N 0
pDYN � N 0

p cos α − L 0
p sin α � Cnp

q∞SL

Izz

L

2V∞
cos α

− Clp

q∞SL

Ixx

L

2V∞
sinα

� 1

Izz

�
Cnp cos α −

Izz
Ixx

Clp sin α

�
⋅
SL2

2V∞
⋅
1

2
ρ∞V

2
∞

� SL2

4Izz
CnpDYN ⋅ �ρ∞V∞� (29)

where

CnpDYN � Cnp cos α −
Izz
Ixx

Clp sinα

Note that CnpDYN is the nondimensional Dutch-roll dynamic deriva-

tive. Then, the Dutch-roll damping can be rewritten as

ηDR � L 0
β

2N 0
βDYN

�
N 0

pDYN −
g

V∞
cos α

�

� 1

2

�
Cnβ

Clβ

Ixx
Izz

cos α − sin α

�−1
⋅

�
SL2

4Izz
CnpDYN ⋅ �ρ∞V∞� −

g

V∞
cos α

�

� C1

�
C2 ⋅ ρ∞V∞ −

g

V∞
cos α

�
(30)

where

C1 �
L 0
β

2N 0
βDYN

� 1

2

�
Cnβ

Clβ

Ixx
Izz

cos α − sin α

�−1
; C2 �

SL2

4Izz
CnpDYN

Generally, the variation ofC1 andC2 with altitude orMach number is

comparatively small. For a statically stable waverider, C1 < 0, the
convergence criterion for the Dutch roll becomes

Fig. 35 Distribution of L 0
β∕N

0
βDYN.

Fig. 36 Distribution of the Dutch-roll frequency.

Fig. 37 Distribution of the -roll damping as the flight altitude and Mach number.
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C2 ⋅ ρ∞V∞ −
g

V∞
cos α > 0

⇒
SL2

4Izz
CnpDYN >

g

ρ∞V
2
∞
cos α

⇒ CnpDYN >
1

q∞

2g cos α ⋅ Izz
SL2

(31)

It is clear that as the altitude reduces or theMach number increases
the dynamic pressure becomes larger, and the Dutch roll converges
more easily.
Similarly, the Dutch-roll frequency can be further expressed as

ωDR �
��������������
N 0

βDYN

q
�

�������������
q∞SL

Izz

s
⋅

����������������
CnβDYN

p
(32)

The distribution of the frequency shown in Fig. 38 can also be
explained easily by Eq. (32): as the altitude reduces or the Mach
number increases, the dynamic pressure becomes larger, and so does
the Dutch-roll frequency.
Therefore, the dihedral angle also has a significant influence on the

Dutch-roll mode, and a larger dihedral effect can improve the damp-
ing and increase the frequency.

VI. Conclusions

To provide some systematic guides for the preliminary design
of hypersonic waverider vehicles, parametric study on lateral–
directional static and dynamic stability is conducted in this paper.
By comparing the variation of the geometric feature and lateral–
directional static derivatives with the design parameter, it is found
that both the lateral and directional static stability can be improved by
increasing the dihedral angle of the lower surface. Furthermore, the
distribution of the lateral–directional coupled dynamic stability
modes is obtained. The instability mechanism of each mode is
explained based on the results of modal approximation. It is also

found that by increasing the dihedral angle the damping of roll,
spiral, and Dutch roll can be improved. In particular, the concept of
aDutch-roll dynamic derivativeN 0

pDYN orCnpDYN is proposed,which
has an evident influence on the Dutch-roll damping. The distribution
of the Dutch-roll mode as the flight altitude andMach number is also
obtained and explained with the approximate formulas.
In addition, the results of modal approximation can also be useful

for the optimization of control systems for hypersonic waverider
vehicles. For example, in order to improve the Dutch-roll damping,
it may bemore effective to feed back rolling rate to aileron, which can
increase L 0

p or N 0
pDYN as given in Eq. (22).

Finally, it should be noted that too large of a lateral static stability is
generally unfavorable for the flight control system. What is more, a
waverider with a big dihedral angle may obviously deviate from the
configurationwith the highest lift-to-drag ratio. Therefore, during the
practical design, a waverider with modest dihedral angle should be
optimized to satisfy the overall performance requirements, which
deserves further research.
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