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configurational-thermodynamic-dynamic space
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Optimizing materials’ properties and functions by controlling defects in the crystalline phase has been a
cornerstone of materials science and condensed matter physics. However, this paradigm has yet to be established
in the broadly defined amorphous materials, which implies the identification of very subtle structural features
in an otherwise uniformly disordered medium. Here we propose and define a new integrated glassy defect
(IGD), based on machine learning strategy informed by atomistic physics, and also by an extremely wide
configurational, thermodynamic, and dynamic variables space of the disordered state. The IGD simultaneously
includes positional topology and vibrational features, as well as the local morphology of the potential energy
landscape. This unprecedented combination gives rise to a much more comprehensive and more effective
definition of the “glassy defect,” much beyond the conventional, purely structural input. IGD can be used not
only as an efficient predictor of athermal plasticity but is also transferable to detect both short-time vibrational
anomalies (the boson peak), and long-time relaxation and diffusion dynamics in glasses. The integrated strategy
is instrumental to build the long-sought structure-property relationship in complex media.
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I. INTRODUCTION

Owing to plenty of attractive mechanical, physical and
chemical properties and a wide range of potential structural
and functional applications, the metallic glasses (MGs) are
both of engineering significance and great scientific relevance
for the broad communities of materials science and con-
densed matter physics [1–5]. Despite decades of relentless
pursuit, establishment of the structure-property relationship
in such disordered materials is still one of the most elusive
yet most intriguing unsolved problems up to date [6–13]. In
contrast with their crystalline counterparts, whose structural
defects are easily identified from the periodic arrangement of
atoms in the lattice, the atomic-scale structure of amorphous
materials is usually featureless. The structure of glass lacks
either translational or rotational periodicity, with each atom
residing in its own, individual atomic environment. Thus it
is rather difficult to find a physics-motivated descriptor, like
the Burgers’ vector of dislocation in crystal, that is capable of
characterizing the possible structural defects in glasses, which
act as plasticity-carriers under external mechanical and/or
thermal stimuli [14]. The lack of a priori structural defects
thus prevents establishing an intuitive one-to-one structure-
property relationship in the widespread domain of amorphous
materials.
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Great efforts have been devoted to identifying possible
structure-property relationships in the disordered materials
over the past decades. Among these attempts, the most suc-
cessful representatives include the mean-field free volume
[15] and shear transformation zone (STZ) models [16–18].
However, no structural defects that could play the same role
as dislocations in crystals, have been reported in the litera-
ture about glassy materials [19]. Until recent years, a few
effective structural descriptors have been used to explain
the observed dynamics of amorphous materials. Such struc-
tural signatures can be categorized into three groups. The
first category is based on purely static structure, such as the
short-range Voronoi polyhedra [7,20] and the related local
five-fold symmetry parameter [21,22], as well as the Voronoi
cell anisotropy [23,24], the inversion symmetry breaking [25],
the two-body excess entropy [26,27], the local coordina-
tion number [28], and other structural order metrics [29–31],
etc. The second class involves descriptors of thermodynamic
response, e.g. soft vibrational modes [32–34], vibrational
mean-squared displacement (vMSD) or Debye–Waller factor
[35,36], the flexibility volume [37,38], and finally the local
thermal energy [39]. The third group contains further dy-
namic features, which includes the local yield stress [40],
the gradient along the minimum energy pathway of STZ
on the potential energy landscape (PEL) [41], etc. However,
these physics-motivated parameters usually partially fore-
cast the nature of the localized plastic flow in glasses. And
often the prediction is either material-specific, or deformation-
protocol dependent [41].
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Instead of the conventional knowledge-driven strategy, the
new machine learning (ML) paradigm is especially suitable
for constructing a robust correlation between structures and
functions in glasses [8,42–48]. It has been set in practice
by combining a series of particle-position based symmetric
Gaussian functions, and by exploring interstice structural dis-
tributions in both short and medium range via ML models.
In all the pioneering works, the machine-learned structural
defects, e.g., the glass “softness” [43], the “quench-in soft-
ness” [45], and the “structural flexibility” [48] are strongly
correlated with the elementary excitation in different glasses.
However, the protocols are only based on purely static struc-
ture. The lack of high-order features may cause incomplete
description of the dynamics in glass. For example, strong spa-
tiotemporal correlation has been found between structure and
dynamics in model glasses [29,31], which suggests opening
up a new avenue of research, where an overarching structure-
property “super-relationship” can be developed based on even
broader physical input and not just the structural features.
Actually, the recent concept of the flexibility volume [37]
goes in this direction as it combines both structural (Voronoi
volume) and thermodynamic (vibrational) feature of a specific
atom to predict dynamics.

Therefore a novel proposition about a structure-property
super-relationship must simultaneously account for all (struc-
tural, thermodynamic, dynamic) physical aspects that are
associated with properties of glass. To this end, we propose
a machine-learning integrated glassy defect (IGD) of MGs
via extraction of all configurational, thermodynamic and dy-
namic features that are coupled and coexisting in the inherent
configuration of disordered phase. The extensive ML pro-
cess is conducted by using atomic coordinates, vibrational
analysis and the PEL morphology, respectively, as different
but equally important fingerprints of the underlying glass
physics. The integrated defect via ML—termed integrated
glassy defect—serves as an unprecedented signature of the
athermal local structural deformation (plasticity), as well as
thermal short-time vibrational anomalies, long-time diffusion,
and slow relaxation dynamics in the amorphous alloys.

II. METHODOLOGY

A. Molecular dynamics

All of the molecular dynamics (MD) simulations here
are performed by using the open source LAMMPS code [49],
with the Finnis-Sinclair-type embedded-atom method empir-
ical potential [50] being adopted to describe the interatomic
interaction of the Cu50Zr50 metallic glasses. We prepare ten
independent glass samples and each of them contains 19 652
atoms, with 3D dimensions of ∼70 × 70 × 70 Å. For the
glass structure preparation, the samples are first melted from
their crystalline phases (B2 phase, body-centered cubic) from
0 K to 2000 K, and then being equilibrated for 2 ns at
2000 K before being quenched to the glassy state at 0 K,
with a cooling rate of 1010 K/s. Periodic boundary condi-
tions (PBCs) and NPT ensemble (constant number of atoms,
constant pressure, and constant temperature) are applied for
all the atomistic simulations. Temperature is controlled by
the Nosé–Hoover thermostat [51]. Stress tensor is kept zero

FIG. 1. The radial distribution function of a Cu50Zr50 metallic
glass. The split of the second peak in RDF indicates glass nature of
the atomic model.

within the Parrinello–Rahman barostat [52]. The MD time
step is 2 fs to numerically integrate Newton’s equation of
motion. Figure 1 gives the radial distribution function (RDF)
of one Cu50Zr50 sample. It clearly indicates the nature of glass
structure by the split of second peak.

Athermal quasistatic shear (AQS) simulations [53] with
simple xy, yz, and zx shearing deformation protocols are per-
formed at a step size of �γ = 1 × 10−5. Each deformation
increment is followed by operation of energy minimization
to remove all the thermal effect. In this way, the strain rate
effect on the mechanical response is avoided in the shear
deformation and, thus, reflecting intrinsic nature of the local
plastic event carried out by the atomic rearrangement—shear
transformation.

B. Construction of the structural-thermodynamic-dynamic
space

1. Structural features

We adopt a family of symmetric Gaussian functions to
describe the information embedded in the structural space.
The structural descriptor G − i for each atom, which has been
used to calculate the “softness” [43] and details the potential
energy landscape for complex materials [42], is defined as

Gi =
Ni∑
j

exp[−(Ri j − μ)2/L2]. (1)

Here Ri j denotes the distance between atom i and j. Ni is the
number of the neighboring atoms around the ith atom. μ and
L are constants that need to be tested and optimized. Actually,
the Gaussian structural function is a weighted sum of a group
of the Gaussian functions. Parameter μ controls the position
of the highest weight and L is a broadening coefficient. Ac-
cording to the RDF of the present Cu50Zr50 model glass as
shown in Fig. 1, the parameter μ is set from 1.5 to 7.5 Å
with an interval of 0.2 Å. It makes sure that all the effective
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structural information from short-range to medium-range or-
der is contained in the ML model. Moreover, the parameter L
is set as 3.5 Å for each Gaussian structural function. Therefore
there are altogether 31 Gaussian structural functions included
in the machine learning model. Gaussian functions at longer
distance has been tested but make trivial contribution to the
effectiveness of IGD and therefore not considered in the ML
model.

A new purely static structure feature proposed here is the
two-body excess entropy at single-particle level, which natu-
rally encompasses positional information and their correlation
in space. It is defined as the two-body term of the infinite-term
expansion of the excess entropy, which represents the loss
of configurational entropy with respect to the ideal gas state
owing to the positional correlation in some ordered phase [26].
This two-body approximation has been applied to account for
the structure-dynamic relationship of the glass-forming liq-
uids [54]. Therefore it is certainly an intriguing pure positional
feature that can enrich the information of the structural space
in the machine learning model. The two-body excess entropy,
or the local structural entropy, of the ith atom is calculated
according to the equation

S2,i = −1

2

∑
v

ρv

∫ rcutoff

0

{
guv

i (r) ln guv
i (r)−[

guv
i (r) − 1

]}
dr.

(2)
Here u and v represent the types of particles (Cu or Zr atoms
in the present case), ρv is the number density of the v type
particles, and guv

i denotes the local RDF between the particle
i of type u and other particles of type v. The cutoff distance
for the integration is set from 3 to 15 Å with step of 0.5 Å.
Furthermore, the freedom of choice in the cutoff distance
provides immense room to construct the structural spaces for
machine learning. On the basis of two-body entropy, another
25 structural features are augmented to the Gaussian func-
tions.

2. Thermodynamic features

To detail the thermodynamic information in a quantitative
manner, the vibrational mean-squared displacement (vMSD),
or the Debye–Waller factor, is defined according to the equa-
tion:

〈
�r2

i

〉 = 〈|ri(t ) − ri,equil|2〉τ . (3)

Here ri(t ) is the instantaneous position at different times dur-
ing tracing for τ = 100 ps at different temperatures, from 25
to 500 K with an interval of 25 K. ri,equil is the equilibrium
position of the ith atom in the inherent structure after energy
minimization. The angular brackets imply the time average.
This appropriate time duration ensures that the atoms vibrate
around their thermodynamic equilibrium positions without
dynamic hopping from one energy basin to another. Thus
we obtain 20 features to construct the thermodynamic space
preparing for the machine-learning model. The wide tempera-
ture range enables inclusion of possible anharmonic nature of
the local energy basin.

3. Dynamic features

To assign a series of meaningful dynamic properties to the
atoms in glass, the activation-relaxation technique nouveau
(ARTn) [55,56] is adopted to extract the single-atom acti-
vation energies. In the framework of ARTn, the “activation”
is initiated by imposing a random small displacement to the
local cluster centered on a chosen atom. In the present work,
the perturbation is restricted to a specific atom by setting
the cutoff distance to be 2 Å, which is shorter than the first
maximum of RDF, g(r), of the Cu50Zr50 glass, as shown
in Fig. 1. The activation direction for a possible event is
chosen randomly, with magnitude of the perturbation dis-
placement being fixed 0.1 Å. Then the activation is driven
along the minimum Hessian direction. The increment move-
ment is 0.15 Å. When the lowest eigenvalue of Hessian matrix
is less than −0.30 eV/Å2, the system is pushed towards a
connecting saddle point by using the Lanczos algorithm. Dur-
ing the “relaxation” process, the maximum force tolerance
of 0.05 eV/Å is used for converging to the saddle point. As
shown in Fig. 2(e), the wide distribution of energy barriers for
an atom indicates the complexity, or multiplicity, of the acti-
vation paths on the PEL. Therefore single activation energy
of an atom is not enough to detail the local topology of PEL
where initial state resides. For statistical purpose, each atom
is furthermore activated for 24 times with random initial per-
turbation direction. Consequently, 24 activation energies for
each atom is arranged in order according to their magnitude as
{�Q1,�Q2, . . . ,�Q24}, where �Q1 < �Q2 < · · · < �Q24.
Finally, we adopt such arrangement to detail the distribution
of activation energies for an atom. We therefore obtain 24
features accounting for the dynamic information of an atom by
including both difficulty (the barrier height) and multiplicity
(possible paths) of the local structural excitations.

The distributions of activation energies for all the atoms,
Cu atoms and Zr atoms are shown in Figs. 2(a)–2(c), respec-
tively. It shows that the activation energy is distributed over a
very broad range, indicating a strong dynamic heterogeneity
as frequently reported in the literature, whereas the distribu-
tion for the Cu atoms is more concentrated than that of the Zr
atoms. This is because the coordination number of Zr atoms
is higher than that of Cu atoms, resulting in a greater diversity
in the local structural environment of Zr atoms. Compared
with Cu atoms, the peak position of the Zr barrier distribution
shifts to the right. This is due to that Zr atoms are heavier
than Cu atoms, and the former are difficult to be activated
under the same external conditions. In other words, compared
with Cu atoms, Zr atoms require a longer time to relax into
stable positions corresponding to the deeper basin of PEL.
This phenomenon may be the result of the larger constraints
that Zr atoms undertake in CuZr glass than Cu atoms.

In Fig. 2(d), we show the spatial distribution of �Q1 in a
slice chosen on the x-y plane of the model. This plot shows
the topological information on activation energy and indicates
the spatial heterogeneity of the PEL in glass.

C. Supervisory signal for classification—shear transformation

To identify the atoms that have undergone structural rear-
rangement, we use the nonaffine squared displacement D2

min
[17] and monitor its jump as global strain evolves. To calculate
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FIG. 2. Dynamic features in Cu50Zr50 metallic glass shown by potential energy landscape. The distribution of activation energies for (a) all
atoms, (b) Cu atoms, and (c) Zr atoms, respectively. (d) Color map of the spatial distribution of atomic activation energies. The shown slice is
normal to the z direction with a thickness of 5 Å. (e) The wide distribution of activation barriers for two specific atoms. Each atom has been
activated for 24 times along random directions.

the parameter, the first step is to optimize a local affine trans-
formation matrix, Ji, that best maps {d0

ji} → {d ji}, ∀ j ∈ Ni,
where Ni is the number of the nearest neighbors of the ith
atom, and d0

ji and d ji are the bond vectors for the reference and
the current configurations between the jth and ith (central)
atoms, respectively. The local nonaffine squared displacement
of the central atom i relative to its nearest neighbor atoms j,
is then defined as

D2
i,min = 1

Ni

∑
j

(
d ji − Jid0

ji

)2
. (4)

In the present simulations, we monitor a flow reference
�D2

min to compare two configurations that are close by to one
another, i.e., consecutive configurations separated by a global
shear strain difference of �γ = 0.01% under AQS. A typical
example is shown in Fig. 3(a), where �D2

min of specific atoms
is plotted as a function of shear strain up to γ = 5%. Atoms
I and II can be observed to undertake obvious jump at about
γ = 1.6% and 1.8%, respectively, whereas atom III exhibits
no jump seen by �D2

min. Figure 3(b) shows the distribution of
the maximum �D2

min of the atoms. Here, we chose the turning
point of 0.05 Å2 as the threshold to judge whether atoms are
taken to be the ones that have undertaken rearrangement or
not. For each sample (as we have ten samples), we perform
AQS along xy, yz, and zx directions, respectively. The �D2

min
for each atom in the three AQS loading protocols is monitored
and, once the value of �D2

min exceeds the threshold of 0.05 Å2,
the corresponding atom will be labeled as a rearranged atom.
As shown in Fig. 3(b), where the position of the threshold
value is marked using dashed line, the rearranged particles
contain about 5% of all atoms.

FIG. 3. (a) �D2
min as a function of the global shear strain for three

specific atoms in Cu50Zr50 under AQS to a shear strain γ = 0.05.
�D2

min evaluates the nonaffine displacement between two configu-
rations that are close by to one another with shear strain difference
of γ = 0.01%. Atoms I and II have apparently experienced obvious
jumps in �D2

min (and likely local structural excitation) but not atom
III. (b) Distribution of the maximum jump of �D2

min with the blue
line denoting the frequency for different �D2

min, whereas the red line
characterizing the cumulative frequency.
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FIG. 4. Contour plot of cross-validation accuracy. The RBF
(Gaussian) kernel function is used and predictions from models with
different parameters are shown. The x-axis is log2C and the y-axis
is log2γ . The best model is identified to be the one with the largest
cross-validation accuracy. And thus parameters are set as C = 4 and
γ = 0.03125.

D. Support vector machine model

The training set is given as the form of
{(x1, y1), . . . , (xN , yN )}, where N denotes the number of
atoms and xi = {x1

i , . . . , xM
i }T describes the feature space of

atom i, with M denoting the number of features. In the present
work, M = 100. Here, yi = 1 if the ith atom have undergone
obvious shear transformation, while yi = −1 for the atoms
that are marked as nonrearranged ones. The aim of our SVM
model is to find a hyperplane in the high-dimensional feature
space that can separate data points with different value of yi as
preciously as possible. For this purpose, the SVM algorithm
of the LIBSVM package [57] is used to solve the following
primal optimization problem:

min
ω,ξ ,b

1

2
ωT ω + C

N∑
i=1

ξi

subject to yi(ω
T φ(xi ) + b) � 1 − ξi,

ξi � 0, i = 1, . . . , N, (5)

Here, φ(xi ) maps xi into a higher-dimensional space, ω is the
vector variable used to construct the hyperplane, and C > 0 is
the regularization parameter. Due to the high dimensionality
of ω, this dual problem is always solved by defining the kernel
function as K (xi, x j ) = φ(xi ) · φ(x j ). In the present work, the
radial basis function (RBF, Gaussian) kernels with the form
of K (xi, x j ) = exp{−γ ‖xi − x j‖2} are adopted. So (C, γ ) are
the flexible parameters to be decided. We provide a possible
interval of C and γ in the grid space. The tunable parame-
ters are then optimized through cross-validation in order to
obtain the highest accuracy. The heat map of cross-validation
accuracy for different (C, γ ) parameters is shown in Fig. 4. It
indicates that the cross-validation accuracy is found to have a
maximum value when C = 22 and γ = 2−5. These values are
therefore used in the present SVM model for classification.

FIG. 5. Phonon features for the Cu50Zr50 metallic glass. (a) The
VDOS for the system. (b) The reduced VDOS g(ω)/ω2 for the
system. It confirms the existence of boson peak in Cu50Zr50 with
the dashed line identifying the Debye level. (c) VDOS for several
specific atoms. (d) The reduced VDOS g(ω)/ω2 or intensity of boson
peak for several different atoms.

E. Short-time vibrational anomaly—boson peak

To test the correlation between IGD and the short-time
thermal properties of metallic glass, we propose and imple-
ment a single-atom level intensity of boson peak, which is
the excess vibrational mode in the low frequency domain of
phonons in glass, compared with the Debye squared model.
First of all, the vibrational, or phonon, density of states
(VDOS) for the system are calculated by direct diagonal-
ization of the Hessian matrix, which is evaluated at a local
energy minimum position of the potential energy landscape—
an inherent structure. The Hessian matrix are constructed by
evaluating the spring constants of each atom from the empir-
ical potential. The single-atom VDOS of the atom i is then
formulated as [58],

gi(ω) = 1

3N

∑
j

δ(ω − ω j )
∣∣ei

j

∣∣2
. (6)

Here, N is the number of atoms in the system. ω j and
e j give the normal model frequency and the corresponding
polarization vector of the vibrational mode j, respectively.
Compared with the Debye squared model, i.e., g(ω) ∝ ω2,
the intensity of the single-particle boson peak IBP is obtained
by finding the maximum value of the reduced VDOS, i.e.,
IBP = max[gi(ω)/ω2].

Figure 5(a) shows the VDOS of Cu50Zr50 metallic glass. In
Fig. 5(b), we show the reduced VDOS by the Debye-squared
model, g(ω) ∼ ω2 (the VDOS divided by ω2). It indicates
the existence of a boson peak in the system and shows that
the boson peak can be clarified at around 5 THz. Figure 5(c)
shows the calculated single-particle VDOS for several atoms
and the corresponding boson peaks for the specific atoms are
shown in Fig. 5(d).
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FIG. 6. Long-time dynamics for Cu50Zr50 metallic glass. (a) The
static structure factor of Cu50Zr50. (b) The mean-squared displace-
ment at 700 K for all atoms in the system. (c) The non-Gaussian
parameter at 700 K for all atoms. (d) Self-intermediate scattering
function with wave vector q = 2.7 Å−1 and temperature T = 700 K
for all atoms.

F. Long-time dynamics—diffusion and relaxation

1. Diffusive mean-squared displacement

A commonly used long-time diffusive feature of amor-
phous solids is the mean-squared displacement (MSD), which
quantifies how far a particle has moved with respective to its
initial position as a function of time, i.e.,

�r2
i (t ) = 〈[ri(t ) − ri(0)]2〉. (7)

Here ri(t ) and ri(0) denote the positions of the particle i at the
current and the initial configuration, respectively. The angle
bracket 〈· · · 〉 represents an ensemble average. Here MSD is
calculated at 700 K for the Cu50Zr50 sample. Note that the
diffusive MSD is different from the vibrational MSD as shown
in Eq. (3), the latter describes a thermodynamic response.

The diffusive mean-squared displacement as a function of
time at 700 K for Cu50Zr50 sample is shown in Fig. 6(b). It
indicates that MSD in metallic glass shows three stages. At
very short timescales, particle motion is free from the influ-
ence of the neighboring atoms and therefore show ballistic
behavior with MSD is proportional to t2. As the timescale in-
creases, neighboring atoms function as obstacle and block the
further movement of the central atom. Therefore topological
excitation for particles become difficult and there is certainly
a plateau shown in Fig. 6(b). Eventually, atoms will break
away from the bondage of the surrounding atoms and undergo
random walk diffusive motion.

2. Non-Gaussian parameter

The non-Gaussian parameter is commonly used to measure
the dynamical heterogeneity of a disordered system. While the
diffusive MSD [�r2

i (t )] is related to the second order of the
local atom position, the non-Gaussian parameter is calculated

by the fourth order of the particle’s position. It is defined as

α2(t ) = 3
〈∑N

i [ri(t ) − ri(0)]4
〉

5
〈∑N

i [ri(t ) − ri(0)]2
〉2 − 1. (8)

Here N is the number of atoms in the system. For Brownian
motion, the atomic displacement follows Gaussian distribu-
tion. The non-Gaussian parameter therefore characterizes the
degree of deviation from the Gaussian distribution of par-
ticle motion. Thus α2(t ) = 0 for Brownian motion. For the
present metallic glass, the distribution of atomic displace-
ments becomes non-Gaussian at intermediate times as shown
in Fig. 6(c). This is due to the development of balance between
the mobile and immobile atoms in the system. Therefore α2(t )
is always positive at any time. The maximum value of α2(t )
measures the heterogeneity of diffusion, and the time when
αmax

2 (t ) appeared indicates the duration of heterogeneity es-
tablishment.

3. Self-intermediate scattering function and the α-relaxation time

To understand the feature of relaxation dynamics, we in-
vestigate the self-intermediate scattering function (SISF) and
the α relaxation time of the present Cu50Zr50 metallic glass.
The generalized form of SISF is defined as

Fs(q, t ) = 1

N

N∑
l

〈exp {−iq · [rl (t ) − rl (0)]}〉, (9)

where N is the number of atoms, q is the wave-vector corre-
sponding to the main peak of the static structure factor S(q).
In the present work, the wave-vector is chosen 2.7 Å−1 as
shown in Fig. 6(a). The evolution of SISF is similar to that of
the diffusive MSD. Figure 6(d) shows the SISF of the whole
Cu50Zr50 glass sample as a function of time. It shows a feature
of two-step relaxation, i.e., the short-time β-relaxation and the
long-time α-relaxation. The α-relaxation time τα is thereafter
defined as the timescale when SISF decays to e−1, as labeled
by a horizontal dashed line in Fig. 6(d).

III. RESULTS

A. Framework of machine learning

Our goal is to develop a supervisory model, using the
atomistically-informed machine learning, to simultaneously
include the structural, thermodynamic, and dynamic aspects
of the glass physics. Crucially the model should be capable
of distinguishing “fertile” atoms that are responsible for the
plastic rearrangements from those “sessile” atoms that are not.

Figure 7 shows the workflow illustrating the classification
process via machine learning. The first step consists of col-
lecting the dataset: we simulate a binary Cu50Zr50 system
and 10 independent glass configurations are prepared by a
rapid cooling method, with each sample containing 19 652
atoms. This composition has been shown to be the most
challenging one for predictions of glassy and plastic behav-
ior, owing to a lower degree of both structural and dynamic
heterogeneity compared to other stoichiometries [48]. There-
fore it provides an upper threshold for predictability. But
this choice, on the other hand, represents the best ground to
demonstrate the validity of the ML strategy. As shown in
Fig. 7, there are three categories of the input features. First,
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FIG. 7. Machine-learning encoding of the integrated glassy defect. A fingerprint vector of each atom—xi—is constructed from the
combined configurational, thermodynamic, and dynamic spaces. Then, all the descriptors are trained by the SVM model, which classifies
the atoms to be either structural defect or glassy matrix, with the nonaffine atomic strains as the supervisory signal.

the radial symmetry Gaussian functions and the two-body
excess entropy are used to characterize the static structural
features of each atom. These quantities naturally include
both radial and structural-order information about the glassy
structures. Second, the vMSD, or the Debye–Waller factor,
at different temperature is utilized to characterize the ther-
modynamic fingerprints of each atom. Deviations from the
harmonic approximation (higher-order thermal response) be-
come prominent with increasing temperature. Third, a series
of meaningful dynamic properties can be captured by the
local topologies of the PEL. A series of activation energies
provide information about steepness (or height) and multiplic-
ity (or width) of the possible shear transformation pathways.
A recent work [59] pointed out the importance of the PEL
topology, and has included the arithmetic mean energy barrier
as the supervisory signal of ML to predict β-relaxation in a
metallic glass from purely static structure. In contrast, here
we employ a hierarchically-sorted list of activation energies
of possible structural excitations as the learning descriptors
relevant to the topology of PEL. All together, we have built
an abundant configurational-thermodynamic-dynamic phase
space of glass for ML classification. The couplings between
the different features have been considered. Specifically, we
construct a dataset consisting of 56 structural (31 Gaussian
functions and 25 two-body entropies), 20 thermodynamic, and
24 dynamic descriptors for each atom, respectively. Conse-
quently, the feature vector reads xi = {x1

i , · · · xM
i }T = {Gi(r1),

· · · Gi(r31); S2,i(r1), · · · S2,i(r25); �r2
i (T1), · · · �r2

i (T20);
�Q1, · · · �Q24 }T with M = 100.

To identify an essential structural rearrangement, AQS
deformation [53] is conducted up to a global shear strain

magnitude of 0.05. We track possible STZ events by moni-
toring the instantaneous jump in the nonaffine displacement
D2

i,min [17], which plays the role of a supervisory signal in
local plastic events. The next task is to select, at random, a
subset of atoms as the training set and label the atoms with
an index either yi = −1 or 1. As shown in Fig. 3(b), an atom
i is labeled as yi = 1 if it rearranges within �D2

i,min is higher
than 0.05 Å, and yi = −1 if it does not. Approximately, 5%
of all atoms have undergone structural rearrangements after
AQS loading up to 5%. The training set is constructed by
selecting all the atoms that have undergone rearrangements
(∼10 000 atoms), and an equal number of atoms that do not
experience rearrangement in the first nine samples (among
total ten samples). In this work, we train our machine-learning
architecture using the support-vector machine (SVM) scheme,
which builds a hyperplane in the multidimensional space to
best separate the data points with different labels. Once this
hyperplane is established for the training set, the tenth sample
is treated as the testing set for calibration.

B. Predicting plastic atoms via machine learning

Figure 8 illustrates the capability of the proposed ML
model in identifying whether an atom is susceptible to plastic
rearrangement (or equivalently, belongs to flow defects) or
not. Figure 8(a) visualizes the spatial distribution of the atoms
that have undergone, or not, plastic rearrangements: among
them, purple spheres mark the atoms that are predicted to act
as defects by the ML model, while yellow spheres represent
the atoms in the glassy matrix which remain inactive during
the deformation. It implies that atoms identified as defects
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FIG. 8. Prediction of athermal excitation. (a) Spatial distribution
of the atoms that have undergone shear transformations, in which the
purple ones are predicted as rearranged. (b) Contour map of �D2

min

in a slice of thickness 3.5 Å. White spots are ML predicted arranged
ones. (c) The probability that an atom is predicted as active versus
�D2

min.

by the SVM model are very likely to participate in plastic
deformation.

For the testing sample, the prediction accuracy is 78.4%;
and the ML model captures 76.4% of the real rearrangements
up to global shear strain magnitude of 5%. Figure 8(b) shows
the contour map of the magnitude of the instant jumps in
nonaffine displacement, �D2

min, under AQS deformation. We
notice that the distribution of �D2

min is inhomogeneous—
atoms with high �D2

min tend to aggregate spatially into
clusters, which are responsible for initiating the plastic shear
transformations. For a direct comparison, white spots are
superimposed to mark the positions of the atoms that are
predicted as defects by ML model. The good overlap implies
that the spatial distribution of the rearranged atoms is also
heterogenous and, interestingly, almost coincides with the
regions of high �D2

min. This indicates that plastic rearrange-
ments have a high propensity to originate from the plastically
active regions predicted by the ML model. Figure 8(c) shows
the probability of an atom will undergo plastic deformation,
which goes up with increasing �D2

min and saturates at a value
of approximately 0.87 after �D2

min = 0.1 Å2. This is mean-
ingful since the more plastically active the atom is, the more
likely it is to be predicted as glassy defect by the ML model.

C. Integrated glassy defect

The value of the integrated glassy defect—IGD that is a
parameter assigned for the ith atom—is quantified by the deci-
sion value of the ML model. It distinguishes the glassy defects
from the inert glassy matrix. This scalar value is proportional
to the orthogonal distance between a given position in the
input space and the hyperplane constructed by the ML model,
with the same scale factor for all atoms. Notably, when IGD >

0, the corresponding data point in the input space lies on the
glassy defect side of the hyperplane; and IGD < 0 otherwise.

Figure 9 shows the features of the IGD. Figure 9(a) is
a 3D snapshot with atoms colored according to the magni-
tude of their IGD parameter value. We notice that the spatial
distribution of IGD is heterogeneous with a strong spatial
correlation. Figure 9(b) displays the probability distribution
of IGD for the rearranged (red), nonrearranged (blue), and
all atoms (black), respectively. There exists a two-peak fea-
ture in the total distribution, with the right peak denoting
the defect atoms. The rearranging and nonrearranging atoms
are separated fairly well in the IGD distribution. Compared
with the nonrearranging atoms, the peak position of the re-
arranging atoms shifts to the right. This indicates that the
machine-learned scalar parameter, IGD, is indeed an effective
predictor of the atomic plastic rearrangements. It is indeed
a physically-relevant measure of the degree of structural de-
fect in glass. Besides, IGD is distributed over a very broad
range, indicating strong structural heterogeneity as commonly
observed in experimental characterizations [19], which also
resembles the inhomogeneous distribution of the nonaffine
displacements shown in Fig. 3(b). It should be noted that
the distribution of IGD is different from that of softness in
Ref. [44], the latter shows a symmetric distribution peaked at
the origin. The broad distribution of IGD mainly comes from
the additional input features beyond “softness.” For example,
vMSD usually exhibits some distributions with a Gaussian
core and non-Gaussian tails [37]. Such non-Gaussian tail is
usually the physical origin of the dynamic heterogeneity in
glasses [60,61] and is the cause for the broad and asymmetric
feature of distribution of IGD.

To measure the universal spatial distribution of IGD, we
define a normalized spatial autocorrelation functions, C(r) =

FIG. 9. Features of the integrated glassy defect. (a) A 3D snapshot with particles colored by the magnitude of IGD. A small fraction
of the atoms on the cubic corner was removed to see the inner atomic environement. (b) IGD distribution for different atoms. (c) Spatial
autocorrelation function versus distance for �D2

min and IGD.
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FIG. 10. Partial RDFs for the group of atoms having the lowest
10% and the highest 10% IGD in a Cu50Zr50 metallic glass.

〈�Pr0 �Pr0+r〉−〈�Pr0 〉2

〈�P2
r0

〉−〈�Pr0 〉2 , where P represents a physical entity. The

angle brackets 〈· · · 〉 denote ensemble average. Pr0 and Pr0+r

are the values of P for the central atom at reference position
r0, and the one at a distance of r from the reference atom,
respectively. The operator � denotes the deviation from the
ensemble average value. The calculated data for �D2

min and
IGD are plotted in Fig. 9(c). They both decay exponentially
with respect to r. We adopt an empirical function C(r) ∝
exp(−r/ξ ) to fit the correlation data, which brings about ξ

as the physically spatial correlation length. The spatial corre-
lation lengths for �D2

min and IGD are almost identical, with
ξ�D2

min
= 3.1 Å and ξIGD = 3.2 Å, respectively. This supports

the validity of the IGD as a signature of plasticity. Both corre-
lation lengths are approximately 1.2d , where d is the effective
diameter of a single particle. Here d = 2.7 Å as determined
from the position of the first peak in the RDF, which has been
shown in Fig. 1. It indicates that the sweeping scale of IGD
is consistent with the rearrangement size. The conclusion is
consistent with a previous report from Cubuk et al. [8].

In Fig. 10, we compare the radial distribution functions
(RDFs) of two extreme cases—the 10% atoms with the high-
est IGD values and those 10% with the lowest IGD values. It
indicates that high-IGD atoms present a lower first peak which
simultaneously moves to shorter distance compared with that
of the low-IGD atoms. Thus the formers are alike the liquid
atoms with high mobility.

D. Capacity of IGD in predicting athermal structural excitations

To get deeper insights into the correlation between IGD
and the irreversible atomic rearrangements, we compare the
spatial distribution of IGD with the nonaffine deformation
field in Fig. 11(a). The white bubbles represent the atoms
which have undergone shear transformations. The bubble size
is proportional to the magnitude of �D2

min. It is clearly seen
that most of the shear transformations take place in the re-
gions with high values of IGD. The machine-learned IGD
thus identifies glassy defect with great propensity to undergo

FIG. 11. Capacity of IGD in predicting athermal shear trans-
formations. (a) Contour map of IGD. White bubbles indicate the
location of events, and the bubble size is proportional to �D2

min.
(b) Correlation between IGD and �D2

min in the testing set. Each data
point represents an average value of 0.25% of all atoms. The inset
includes both training and testing set.

shear transformations. As such, the IGD could be regarded as
a quantitative parameter to identify defect in glass, in analogy
to the Burgers’ vector in crystals. Note that not all high-IGD
regions should experience plastic rearrangement, which is a
stochastic phenomenon and sensitive to the loading protocol
and thermal fluctuation [41,62]. It is the anisotropic inter-
action between the glassy defect and the high-dimensional
loading direction that cooperatively determines if a glassy
defect would lead to real shear transformation. As a result, the
rationale for the structure-property relationship in an amor-
phous system is expected to be statistical. The statistics is
shown in Fig. 11(b), with atomic-resolution �D2

min being plot-
ted against IGD. Each data point denotes a coarse graining
of 0.25% of all atoms, with nearly ∼50 atoms in each bin.
There exists a strong correlation between IGD and �D2

min.
The atoms with higher values of IGD contribute more to the
nonaffine deformation. This result is consistent for both the
testing set shown in the main plot, and for the training plus
testing set shown in the inset of Fig. 11(b). The agreement
once again shows that there exists a robust correlation between
the IGD parameter and the plastic deformation in glass.
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FIG. 12. (a) The prediction accuracy of models with different in-
put descriptors: excess entropy S2,i, Gaussian structural function Gi,
activation energy �Qi, and vibrational mean-squared displacements
vMSD. (b) Absolute value of the predictive power factor for IGD in
comparison with the other four physical descriptors.

To demonstrate the efficiency of the integrated strategy
in predicting plasticity of glass, we compare IGD with the
existing individual physical models/parameters, each taking
only one physical aspect (either configurational, thermody-
namic, or dynamic) into account. Following the training and
prediction protocol as mentioned above, models with only one
of {vMSD, �Q, G and S2} as input descriptors are developed.
As shown in Fig. 12, model prediction accuracy for the testing
set differs largely with different input descriptors. The predict-
ing accuracy for vMSD is 72.5%, followed by 64.2% for �Q,
61.5% for G, and 55.4% for S2, respectively. Thus the ther-
modynamic feature is most relevant to structural excitation.
Note that the predictor learned from only a family of Gaussian
functions is exactly the definition of the “softness” metric
[43]. Compared with the L-J model there, the Cu-Zr metallic
glass described by the many-body EAM potential sets up an
upper bound of difficulty for prediction via machine learning.
The improved predictability demonstrated by IGD stresses
the necessity of including extra thermodynamic and dynamic
input for predicting the physical properties of generic, real,
and complex structural materials.

It should be noted that the prediction accuracy here is
not a superior indicator to evaluate the prediction power of

plasticity of our simulation results. As there is only 5% of
atoms in the testing set that are labeled as plastic ones, even
an unintelligent model which predicts all atoms as nonre-
arranged ones will achieve 95% prediction accuracy in the
testing set. To further quantify the predictive capability of
metrics in assessing glassy plasticity, a power factor is further
introduced as χ = PR (Xi>Xtop5% )

PR (Xi<Xlow5% ) , as there is nearly 5% of all
atoms are recognized as rearranged ones in our simulations.
Here, Xi is the magnitude of the feature X for the particle
i. PR(Xi > Xtop5%) denotes the probability that a particle re-
arranges with Xi higher than the top 5% of all atoms, and
PR(Xi < Xlow5%) otherwise. Thus the predictive power factor
is the ratio of the probability of rearrangements for the atoms
with highest Xi with respect to that for atoms with the lowest
Xi. It should be noted that this equation only suits for pa-
rameters PR(Xi ) that monotonically increase with Xi. When
PR(Xi ) and Xi are inversely proportional or anticorrelated, χ is
replaced by its reciprocal. The higher the magnitude of χ , the
better the predictor X in discriminating between plastically
active and inactive atoms.

The predictive power factor of different ML models is cal-
culated and plotted in Fig. 12(b), where IGD shows the highest
bar. It shows that IGD is superior to any other physical model
in predicting plasticity. Even if the basic predictors are of
poor predictive power when considered separately, once they
are all integrated into IGD via the present ML protocol, the
predictive powder does improve drastically. This observation
implies that the structural, thermodynamic and dynamic de-
scriptors are neither orthogonal nor absolutely correlated with
each other. If they were absolutely correlated, there would
be no room to improve the prediction power via integration
and, thus, there would be no synergy when they are combined
together. We also noticed that vMSD and �Q serve as the
most important descriptors in the machine-learning process,
while models with only structural features, i.e., G or S2, repre-
sent poor performance in predicting plasticity. It demonstrates
the necessity of including extra thermodynamic and dynamic
features as done in our ML process. The inclusion of the
thermodynamic and dynamic components not only enhances
the classification (since the prediction accuracy of ML model
with all of vMSD, �Q, G, and S2 is nearly 80%, as opposed
to ∼60% accuracy achieved by the scheme with only struc-
tural features), but also improves the predictive capability of
plasticity in metallic glasses.

Our interpretation to this argument is in term of the spa-
tial autocorrelation of the SVM models with different input
descriptors, as shown in Fig. 13. It implies that predictors
learned from structural features decreases very quickly with
increasing distance. Indeed, it exhibits a decay length of only
1.9 Å for S2 and 2.0 Å for G, which is much shorter than the
size of atom rearrangement—3.1 Å as shown Fig. 9(c). This
is presumably a possible explanation for the poor predictive
capability of the purely structural function, which lacks in-
formation about medium- to long-range interactions. Besides,
atomic structures vibrate under the influence of thermal fluc-
tuations, therefore the definition of glassy defect from static
structure might be not unique. In a real thermal glass, the
relationship between structure and property is rather com-
plex such that unstable phonon saddles are important, as
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FIG. 13. Semi-logarithmic plot of the spatial autocorrelation
function versus distance for the predictors learned from (a) vMSD,
(b) �Q, (c) G and S2, respectively. (d) The dashed lines are the best
fits according to the empirical equation C(r) ∝ exp(−r/ξ ), defining
correlation length ξ .

evidenced by the instantaneous normal mode analysis of the
mechanical stability [63]. This is also the reason why the
flexibility volume [37] instead of Voronoi volume correlates
strongly with structural excitation owing to the fact that the
former has crucially incorporated the thermodynamic Debye–
Waller factor.

E. Transferability of IGD

The remaining question is whether the IGD—learned from
supervised machine learning with athermal mechanical ex-
citation as supervisory signal—can be transferred to predict
also the thermal (or dynamic) properties of glasses. The latter
properties are important for many applications and for routine
material characterization. We test the IGD by correlating it
with several important short-time and long-time properties
that have not been considered at all in the ML protocol thus
far. The dynamic properties include the vibrational boson
peak, diffusion heterogeneity and the α relaxation, which are
properties that span multiple time scales.

1. Correlating IGD with boson peak

First of all, we begin with the correlation between IGD
and boson peak, the latter of which is a universal short-time
vibrational anomaly—with extra soft modes over the Debye
squared law—in a wide range of amorphous solids [24,64].
For this purpose, we calculate an atomistically resolved bo-
son peak intensity in terms of the partial vibrational mode
anomaly at atomic scale. The intensity of boson peak is repre-
sented by the peak value of the reduced vibrational density of
states [VDOS, g(ω)] for a single atom. As shown in the section
methodology, the normal mode analysis is performed by di-
rectly diagonalizing the dynamical matrix (or Hessian matrix)
of the system. Once the whole vibrational spectra are avail-
able, they are projected onto a single atom i, i.e., gi(ω). Since
the Debye model gives a quadratic distribution of the normal-

FIG. 14. Transferability of IGD in predicting dynamic properties
of glass. (a) Reduced VDOS for the atoms with different values of
IGD. (b) Correlation between the boson peak intensity and IGD.
Each data point denotes the average value of 2.5% of all atoms.
(c) Long-time diffusive MSD of atoms with different values of IGD
at 700 K. (d) Non-Gaussian parameter corresponding to (c). Inset:
αmax

2 vs IGD. (e) Self-intermediate scattering function of atoms with
different IGD. (f) α-relaxation time as a function of IGD.

mode frequency—g(ω) ∝ ω2, the single-particle intensity of
boson peak can be derived as the height of the peak in the
reduced VDOS over the Debye model IBP = max[gi(ω)/ω2].

Figure 14(a) displays the reduced VDOS, gi(ω)/ω2, for
the atoms with different mean values of IGD. As seen in
Fig. 14(a), atoms with different values of IGD display differ-
ent intensity of boson peaks. These boson peaks are arranged
from the weakest to the strongest as IGD increases. It indicates
that defects characterized by high value of IGD have lower
tendency to participate in the high-frequency vibrations, thus
giving rise to a relatively high intensity of boson peak at lower
frequency. To further confirm the correlation, we directly plot
the intensity of boson peak, IBP, versus IGD using a bin size
of 500 atoms, which is nearly equal to 2.5% of all atoms
in the testing sample. As shown in Fig. 14(b), a good linear
correlation exists between IGD and IBP. Therefore IGD can
be also used to predict the boson peak in glasses, with even
better predictability than our earlier proposed purely structural
metric—the short-range orientational order parameter defined
as the longest vector from a central atom to its Voronoi poly-
hedron vertex [24].
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2. Correlating IGD with diffusion heterogeneity

We can now consider how the IGD parameter correlates
with the long-time diffusion dynamics. Here, the diffusive
MSD is utilized to benchmark a direct link between IGD
and the slow dynamics. Figure 14(c) depicts the diffusive
MSD at 700 K for the atoms with different values of IGD.
Obviously, the atoms with the highest IGD are these ones
first escape from the caging plateau. In other words, they
are the most active atoms that contribute to the diffusion
dynamics. At the same time, the slowing down of dynam-
ics for the low-IGD atoms is accompanied by an increasing
dynamic heterogeneity, which is signaled by the rise of the
non-Gaussian parameter α2 with decreasing IGD, as shown
in Fig. 14(d). Generally, the peak value of the non-Gaussian
parameter, αmax

2 , can be used to quantify the degree of dy-
namic heterogeneity. As seen in the inset of Fig. 14(d), we
indeed find a strongly inverse correlation between the value
of IGD and the magnitude of αmax

2 . It actually reveals the
liquid-like nature of the atoms with high value of IGD, and
the solid-like nature of the low-IGD atoms. This is in agree-
ment with the common sense that dynamic heterogeneity of
a disordered material diminishes with increasing temperature
upon crossing the glass-to-liquid transition [65,66]. Finally,
αmax

2 of the low-IGD atoms rises on a longer time-scale. This
phenomenon means that the low-IGD atoms are in relatively
deep glassy state, which takes a longer time to escape from
the relatively deep basin of the β relaxation on the PEL.

3. Correlating IGD with the α relaxation

The other long-time dynamic feature to be examined is
the slow relaxation behavior. To this end, we investigate the
self-intermediate scattering function [SISF, Fs(q, t )] of the
atoms with different values of IGD. The results are shown
in Fig. 14(e). It is evident that the relaxation dynamics slows
down dramatically with decreasing value of IGD, represented
by an extended plateau on the SISF curve, which corresponds
to the secondary β-relaxation process. This trend indicates
that motion of the low-IGD atoms is highly confined by the
neighboring atoms, displaying a significant cage effect [67].
The revealed scenario for relaxation is consistent with that of
diffusive MSD shown previously in Fig. 14(c), as both of them
have the same origin in the local basin climbing process on the
PEL.

In general, the characteristic timescale of the relaxation dy-
namics can be quantified by the α-relaxation time τα , which is
defined as the time where SISF has decayed to e−1, as marked
by the horizontal dashed line in Fig. 14(e). The α-relaxation
times for those atoms with different value of IGD are shown
in Fig. 14(f). A very strong correlation is revealed between
IGD and the α-relaxation time. Thus one can treat IGD as an
effective indicator of the relaxation propensity at atomic scale.

In short sum, the newly developed IGD parameter proves
highly versatile in being able to predict the short-time
boson peak vibrational phenomenon, the long-time thermally-
activated diffusion and the α-relaxation dynamics. Surpris-
ingly, these dynamic features have never been considered in
the supervised machine learning model in which only ather-
mal shear transformation is implemented as the supervisory
signal. In this sense, the proposed concept of integrated glassy

defect can serve as a generalized “superdefect,” in analogy
to the conventional crystalline imperfections—like vacancies,
dislocations, grain boundaries etc.—to identify the carriers of
plasticity in amorphous solids [14].

IV. CONCLUDING DISCUSSION

In conclusion, we identified a “superdefect”– termed
IGD—to build possible structure-property relationship for
the disordered materials by using extensive machine learning
classification from a wide, intricate and partially entangled
configurational-thermodynamic-dynamic space of data. IGD
is glassy defect in the sense that the atom with high value
of IGD has the highest propensity to undergo plastic shear
transformation under athermal mechanical perturbations. As
a step beyond the usual purely static structural descriptors,
the present machine-learned IGD incorporates also thermody-
namic and dynamical features characterized by the vibrational
excitations and the thermal-activation events from probing the
morphology of local potential energy landscape. Information
from a single physical input can only partially capture the
nature of the plastic deformation. In the case of complex
media, it is the synergistic cooperation of both structural and
thermodynamic-dynamic fingerprints that jointly determines
the properties.

The integrated defect also allows one to disentangle the
respective roles of different sectors of the overall phase space
in governing the properties of glasses. Amongst the versa-
tile descriptors is the thermodynamic feature that is crucial
for predicting (athermal) structural excitation in glasses, and
also provides a physical foundation for the successes of the
vibrational amplitude and the flexibility volume as effective
signatures of glass dynamics. In addition to the plastic defor-
mation, the IGD is also shown to be a quantitative metric for
other important and general thermal properties, such as the
short-time low-frequency vibrational anomaly—the intensity
of boson peak, as well as the long-time α-relaxation and
diffusion heterogeneity in amorphous alloys.

Our method relies on static structure, thermodynamics as
well as dynamics of a group of atoms. Thus the methodology
is applicable directly to other glass systems, where Gaussian
functions, two-body excess entropy, vibrational mean-squared
displacement as well as activation energies can be calcu-
lated at atomic scale. The “softness” with only Gaussian
functions as input has been tested vastly in different sys-
tems, such Lennard-Jones (LJ) mixture, Oligomer as well
as Granular materials, and all shows acceptable predicting
capacity [8,43]. Here, the present strategy suggests that the
combination of configurational-thermodynamic-dynamic fea-
tures can construct comprehensive atomic environment and
yield a powerful predictability of IGD. Thus one can reliably
infer that the IGD will perform as well for other disordered
systems since the real-atom CuZr system always represents
an upper bound of prediction for the property of glasses [48].

The proposed concept of IGD opens up new opportunities
to optimize the physical properties of disordered materials
by modulating the material processing conditions, besides the
straightforward chemical-design of material structure.
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