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A B S T R A C T   

Under the actions of ocean currents and/or waves, deep-sea flexible risers are often subject to 
vortex-induced vibration (VIV). The VIV can lead to severe fatigue and structural safety issues 
caused by oscillatory periodic stress and large-amplitude displacement. As flexible risers have 
natural modes with lower frequency and higher density, a multimode VIV is likely to occur in 
risers under the action of ocean currents, which is considered as shear flow. To decrease the 
response level of the VIV of the riser actively, a multimode control approach that uses a bending 
moment at the top end of the riser via an LQR optimal controller is developed in this study. The 
dynamic equations of a flexible riser including the control bending moment in shear flow are 
established both in the time and state-space domains. The LQR controllers are then designed to 
optimize the objective function, which indicates the minimum cost of the riser’s VIV response and 
control input energy based on the Riccati equation of the closed-loop system under the 
assumption that the lift coefficient distribution is constant. Finally, the VIV responses of both the 
original and closed-loop systems under different flow velocities are examined through numerical 
simulations. The results demonstrate that the designed active control approaches can effectively 
reduce the riser displacement/angle by approximately 71%–89% compared with that of the 
original system. Further, for multimode control, the presented mode-weighted control is more 
effective than the mode-averaged control; the decrease in displacement is approximately 1.13 
times than that of the mode-averaged control. Owing to the increase in flow velocity as more and 
higher-order modes are excited, the VIV response of the original system decreases slightly while 
the frequency response gradually increases. For the closed-loop system, the response becomes 
smaller and more complicated, and the efficiency of the controller becomes lower at a certain 
flow velocity.   

1. Introduction 

With increasing sea depth, riser flexibility and response amplitude can increase significantly. These large-amplitude responses of 
the marine riser including the forced and random vibrations, vortex-indued vibration (VIV), collapse, and buckling, can further 
decrease the structural fatigue life and endanger the entire deep-sea oil and gas acquisition system. To avoid these issues, it is necessary 
to focus on riser vibration control in the design of the riser structure. 
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Riser vibration control includes passive control, which does not require input power, and active control, which requires input 
power [1,2]. Passive control devices include helical strakes, O-rings, fairings, axial rods, ribbons, etc. [3–5]. Because passive control is 
easier to manufacture and implement, it is used widely in offshore engineering applications [6,7]; further, helical strakes are the most 
widely used [8,9] because they reduce the VIV response by breaking regular vortex shedding along the flow direction and preventing 
coincident shedding perpendicular to the flow direction, thereby suppressing the overall response of the riser. However, the inevitable 
presence and moderate amounts of marine growth quickly negate any suppression caused by the strakes [10]. Further, suppressing the 
local response is often important. The top riser angle is limited when the riser is in service [11]. The boundary control not only reduces 
the top corner of the riser but also reduces the vibration displacement and stress amplitude of the riser; therefore, the boundary control 
in the active control has received widespread attention. 

Do and Pan [12] designed a boundary controller based on Lyapunov’s direct method and backstepping technology. Then, they 
changed the two-dimensional boundary control to three-dimensional boundary control [13]. How and Ge [11] applied the boundary 
control method to marine risers. The torque actuator controlled by Lyapunov is applied to the top of the riser, and the measurements 
required for feedback are the included angle at the top of the riser and the rate of change of the included angle. Ge and He [14] 
designed two actuators based on the Lyapunov direct method in both the horizontal and vertical directions. The control device is 
applied to the top boundary of the riser to minimize the vibration of the riser. Nguyen and Do [15] used the Lyapunov direct method to 
design the boundary controller in a two-dimensional environment. He and Zhang [16] developed an adaptive control method to 
control the marine riser installation system based on Lyapunov’s direct method. Further, Zhang and He [17] installed three actuators 
on top of the riser. The boundary control method was based on the integral-barrier Lyapunov function. The numerical analysis results 
indicate that under time-varying disturbances, the designed control device can suppress the vibration of the riser and ensure that the 
joint angles are within the constrained ranges. Further, Zhao and Liu [18] used the Lyapunov theory and backstepping method as done 
in the study by Do and Pan [12]; however, they introduced new functions: a smooth hyperbolic tangent function, an auxiliary system, 
and a Nussbaum function. This method can effectively solve input saturation and external interference; however, the choice of the 
Lyapunov function is empirical, arbitrary, and not unique, which determines whether the control is successful. In addition, it is often 
difficult to obtain the optimal Lyapunov function. 

In addition to the Lyapunov method, there are many methods for boundary control in the active control of the riser vibration. 
Shaharuddin and Darus [19] developed an auto-tuned PID controller algorithm implemented for suppressing the riser vibration. 
Further, the PID active vibration controller (PID-AVC) was developed using the iterative learning algorithm (ILA) within the MATLAB 
Simulink environment. The PID-AVC suppressed the VIV. Zhang and Li [20] proposed the use of a linear quadratic Gaussian controller 
to control the axial dynamic stress response of deep-water risers actively. They used a winch to reduce the axial dynamic stress 
response of deep-water risers, and the numerical analysis showed that the method was effective. Recently, Yu and Chen [21] set a 
torque actuator on the upper boundary of the riser and designed the control law based on the linear quadratic regulator (LQR) method. 
Their numerical simulations of the responses of the open-loop and closed-loop systems proved that this active control method is 
effective. Previous studies on the active control of marine riser vibration focused on overall vibration suppression, and not specifically 
on VIV vibration. The VIV of the riser is a major concern related to the fatigue and damage of the riser [8,22]. In addition, uniform flow 
and/or a simple sinusoidal hydrodynamic force were considered in the active control of riser vibration in most studies. However, in 
practice, the ocean current profile is nonuniform, and it is more similar to shear flow. Therefore, in this paper, a boundary control 
approach is developed based on the LQR method considering a shear flow. 

The main contributions of this paper are as follows: an LQR optimal controller considering multimode VIV is designed, and the 
responses of the closed-loop systems using mode-weighted and mode-averaged approaches are analyzed and compared. Further, the 
effect of the shear flow velocities on the closed-loop system response are studied. 

Fig. 1. Schematic of marine riser.  
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The remainder of this paper is structured as follows. In Section 2, the riser’s dynamic equations with the controlling input torque 
are developed, and a proposed lift coefficient for VIV is used to predict the VIV of the riser in the frequency domain. In Section 3, the 
control law design based on LQR is applied to suppress multimode VIV. Our numerical results and discussions are presented in Section 
4. The influences of the shear flow velocities on the closed-loop system response are examined. The conclusions drawn are presented in 
Section 5. 

2. Analysis methodology and numerical models 

2.1. Dynamics of marine riser 

The reference frame for the riser is shown in Fig. 1. The governing differential equation of the riser dynamics is [11]. 

EI
∂4y(z, t)

∂z4 − T
∂2y(z, t)

∂z2 +mz
∂2y(z, t)

∂t2 + c
∂y(z, t)

∂t
− f (z, t) = 0 (1)  

where y, z, t, EI, T, mz, c, and f(z,t) denote the transverse displacement of the riser, length position, time, bending stiffness, tension, 
uniform mass per unit length of the riser, damping coefficient per unit length including structural damping and hydrodynamic 
damping, and transverse force per unit length, respectively. 

The boundary conditions are 

y(0, t) = 0 (2)  

EI
∂2y(0, t)

∂z2 = 0 (3)  

y(L, t) = 0 (4)  

EI
∂2y(L, t)

∂z2 − τ(t) = 0 (5) 

The ocean current acts on the three-dimensional riser, and the external load generated is divided into the in-line drag force FD(z, t)
and the oscillating lift FL(z, t) [23,24]. 

FL(z, t) is expressed as 

FL(z, t)=
1
2

ρCL

(
A
D

)

U2(z)D cos(2πfυt+ϕ) (6)  

where CL(A /D), A, D, ρ, U (z), and ϕ denote the spatially varying lift coefficient, displacement, diameter of riser, sea water density, 
velocity of the current, and phase angle, respectively. Further, fυ denotes the nondimensional vortex shedding frequency expressed as 

fυ =
StU
D

(7)  

where St denotes the Strouhal number; it usually takes the value of 0.2. 
Setting the external force f(z,t) in Eq. (1) to 0 without considering damping, we obtain 

EIy’’’’(z, t) − Ty’’(z, t) + mzÿ(z, t) = 0 (8)  

where ′ represents the derivative of z, and ‧ represents the derivative of time t. 
Using the method of separating variables to solve Eq. (8), the solution based on the mode superposition method is 

y(z, t)=
∑∞

i=1
ψi(z)qi(t) (9)  

where ψ i(z) denotes the i-th vibration mode, and qi(t) represents the amplitude of the i-th vibration that changes with time. 
Substituting Eq. (9), and the boundary conditions in Eqs. (2)–(4) into Eq. (8), we obtain its eigenvalues and eigenfunctions as 

ωi =
iπ
L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

EI
mz

(
iπ
L

)2

+
T
mz

√

(10)  

ψi(z)=
̅̅̅
2
L

√ (

sin(αz) −
sin(αL)
sinh(βL)

sinh(βz)
)

(11)  
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α =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

mzωi

EI
+

1
4

(
T
EI

)2
√

−
1
2

(
T
EI

)2

√
√
√
√ β =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

mzωi

EI
+

1
4

(
T
EI

)2
√

+
1
2

(
T
EI

)2

√
√
√
√

Substituting Eq. (9) into Eq. (8), then multiplying each term in Eq. (8) by ψ j(z), and then integrating 0 to L along the Z direction, we 
get 

EI
∫ L

0
ψ ’’’’

iψ jdz − T
∫ L

0
ψ ’’

iψ jdz −
∫ L

0
mzω2

i ψ iψjdz = 0 (12) 

The trigonometric functions have orthogonality, and therefore, the shape of vibration ψ i(z) have the orthogonality 
∫ L

0
ψi(z)ψj(z)dz=

{
0 i ∕= j
1 i = j (13) 

We used the principle of virtual work. The governing equations of simply supported beams with a moment τ(t) at the boundary are 
established [26]. 

∫ L

0
mzÿδydz +

∫ L

0
(EIy’’’’ − Ty’’)δydz +

∫ L

0
cẏδydz =

∫ L

0
f (z, t)δydz − τ(t)δ

(
y’

z=L

)
(14) 

Variational processing on Eq. (9) gives 

δy(z, t) =
∑∞

i=1
ψi(z)δqi(t) (15) 

Substituting Eq. (11), Eq. (13), and Eq. (15) into Eq. (14), 

∑∞

i=1

(

mzq̈i + ciq̇i + mzω2
i qi −

∫ L

0
f (z, t)ψi(z)dz+ τ(t)ψ ′

i(L)
)

δqi = 0 (16)  

where ci = 2mzωiζi and ζi = ζsi + ζhi, where ζi, ζsi, and ζhi denote the modal damping ratio, modal structural damping ratio, and modal 
hydrodynamic damping ratio. 

Here, we consider the first few modes; the infinite series in Eq. (9) can then be truncated into a finite one as 

y(z, t)=
∑N

i=1
ψi(z)qi(t) (17)  

where N represents the number of first several modes considered. Therefore, the partial differential equation (PDF) in Eq. (16) is 
reduced to N ordinary differential equations (ODEs) as 

∑N

i=1

(

mzq̈i + ciq̇i + mzω2
i qi −

∫ L

0
f (z, t)ψi(z)dz+ τ(t)ψ ′

i(L)
)

δqi = 0 (18)  

2.2. Lift coefficient and mode overlap elimination of VIV 

The VIV modeling method follows the contents of SHEAR7 V4.4 [25]. However, the fundamental differences from SHEAR7 V4.4 
are the lift coefficient curve and the overlap elimination of power-in regions. 

The relevant VIV experimental results show that the lift coefficient CL(A /D) is affected by the amplitude of the riser as shown in 
Fig. 2. The empirical lift curve obtained through a large number of experiments is adopted by many software packages (SHEAR7, 

Fig. 2. Typical lift coefficient curve.  
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VIVANA) [25]. However, before the numerical analysis, the amplitude of the riser is unknown, and the lift coefficient can only be 
obtained by iterative calculation. 

To speed up the iteration and maintain stability, the relationship between lift coefficient vs. the A/D curve is represented as a cubic 
curve instead of two parabolas, which can be expressed as 

CL

(
A
D

)

=CL0 + a
(

A
D

)

+ b
(

A
D

)2

+ c
(

A
D

)3

(19)  

where CL0 denotes the initial lift coefficient. Here, a, b, and c represent the corresponding coefficients. A new lift curve is fitted with the 
values of the key points (initial value CL0, peak value CLmaxAmax, and A0 when CL = 0) of the original lift curve. The solutions of a, b, and 
c are 

a=
3A2

0CL0 − 2A3
0CL0 − 3A2

0CL0 + 2A3
0CLmax − 3A2

maxCL0 + 2A3
maxCL0

A0Amax
(
A2

0 + A0Amax − 3A0 − 2A2
max + 3Amax

)

b=
A3

0CL0 − A3
0CLmax + 3A2

maxCL0 − A3
maxCL0 − 3A0AmaxCL0 + 3A0AmaxCLmax

A0A2
max

(
A2

0 + A0Amax − 3A0 − 2A2
max + 3Amax

)

c=
−
(
A2

0CL0 − A2
0CLmax + A2

maxCL0 − 2A0AmaxCL0 + 2A0AmaxCLmax
)

A0A2
max

(
A2

0 + A0Amax − 3A0 − 2A2
max + 3Amax

)

A sketch of the overlap region excited by the i-th and j-th modes is plotted in Fig. 3. If there is an overlap between adjacent power-in 
regions, the power-in region length of each mode involved in the overlap shrinks equally until the overlap disappears in SHEAR7. Here, 
a method is used to reduce the overlap length of each mode by half. Table 1 lists the relationships between the length of the power-in 
regions. 

2.3. Prediction of VIV 

Assume that in the i-th mode, the input and output power are balanced as 

Ai

D
=

∫

Li
1
2 ρCL

(
A
D

)

U2(z)|ψi(z)|dz
∫

L− Li Rh(z)ψ2
i (z)ωidz +

∫ L
0 Rs(z)ψ2

i (z)ωidz
(20)  

where Ai denotes the modal displacement amplitude of the structure for mode i. The lift coefficient CL(A /D) in Eq. (20) is assigned an 
initial value. Then, the iterative calculation is started, and the simplified lift coefficient curve in Eq. (8) is used to accelerate the 
convergence speed until the A/D reaches the convergence error, i.e., the error between the previous step A/D and the current step A/D 
is less than 0.001. 

The low reduced velocity damping model is given as 

Rh =CrlρDU(z) + Rsw  

where Crl and Rsw denote an empirical coefficient and the still water contribution, respectively. 

Rsw =
ωπρD2

2

(
2

̅̅̅
2

√

̅̅̅̅̅̅̅̅
Rew

√ +Csw

(
A
D

)2)

Fig. 3. Sketch of overlap region excited by i-th and j-th modes.  
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where Rew = ωD2/ν, ν denotes the kinematic viscosity of the fluid. 
The high reduced velocity damping model is given by 

Rh =
CrhρU2(z)

ω  

where Crh denotes an empirical coefficient. 
The modal damping ratio ζi = ζhi + ζsi 

ζhi =

∫

L− Li Rh(z)ψ2
i (z)dz

2mzωi 

The structural response is included in both the resonant and nonresonant modes [25]. From the mode superposition method, we 
obtain 

y(z)=
∑∞

i
y(z,ωi)=

∑∞

i

∑∞

j
ψ i(z)fjiHji

(
ωj

ωi

)

(21)  

where y(z) and fji denote the displacement response and the model force, respectively. Further, Hji(ωj /ωi) represents the frequency 
response function. 

fji =

∫ L

0

1
2

sgn(ψi(z))ψj(z)ρCL

(
A
D

)

DU2(z)dz  

sgn(ψi(z))=

⎧
⎨

⎩

− 1 ψi(z) < 0
0 ψi(z) = 0
1 ψi(z) > 0

Hji

(
ωj

ωi

)

=
1

mzω2
i

1

1 −

(
ωj
ωi

)2

+ Im
(

2ζi
ωj
ωi

)

3. Control law design 

3.1. State-space expressions 

Based on the calculation of VIV, we planned to control the participating vibration modes; i.e., ω = {ω1,ω2,⋯,ωm,ωm+1,⋯,ωN− 1,

ωN}, where N denotes the equal total number of participating vibration modes in Eq. (18). 

mzq̈1 + c1q̇1 + mzω2
1q1 −

∫ L

0
f (z, t)ψ1(z)dz + τ(t)ψ ′

1(L) = 0

mzq̈2 + c2q̇2 + mzω2
2q2 −

∫ L

0
f (z, t)ψ2(z)dz + τ(t)ψ ′

2(L) = 0

⋮

mzq̈m + cmq̇m + mzω2
mqm −

∫ L

0
f (z, t)ψm(z)dz + τ(t)ψ ′

m(L) = 0

mzq̈m+1 + cm+1q̇m+1 + mzω2
m+1qm+1 −

∫ L

0
f (z, t)ψm+1(z)dz + τ(t)ψ ′

m+1(L) = 0

⋮

mzq̈N− 1 + cN− 1q̇N− 1 + mzω2
N− 1qN− 1 −

∫ L

0
f (z, t)ψN− 1(z)dz + τ(t)ψ ′

N− 1(L) = 0

mzq̈N + cNq̇N + mzω2
NqN −

∫ L

0
f (z, t)ψN(z)dz + τ(t)ψ ′

N(L) = 0

(22) 

Table 1 
Power-in regions in SHEAR7 and Present method.  

Type Modes Power-in regions Overlap region Eliminated power-in regions 

Present ith I1+I2 I2 P1+P2 
Present jth I2+I3 I2 P5+P6 
SHEAR7 4.4 ith I1+I2 I2 S1+S2 
SHEAR7 4.4 jth I2+I3 I2 S5+S6 

Note: I1 = P1 = S1 + S3, I2/2.0 = P2 = P3 = P4 = P5, I2 = S2 + S3 = S4 + S5, I3 = P6 = S6 + S4, S2 = S4, S3 = S5. The different methods of 
eliminating overlapping power-in regions affect the distribution of power-in regions, and thus, the lift coefficient. Furthermore, the numerical results 
show that the presented approach can provide an acceptable agreement with the experiment. 
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We discussed the above problem in the state space and let the state vector be {xc} = [q1, q2,⋯, qm, qm+1,⋯, qN− 1,

qN, q̇1, q̇2,⋯, q̇m, q̇m+1,⋯, q̇N− 1, q̇N]
T. Further, Eq. (22) can be converted into the state-space form as 

{
ẋc = Axc + Bu + F

y = Cxc
(23)  

where  

A =

⎡

⎣

diagN×N(0) diagN×N(1)

diagN×N(− ω2
1, − ω2

2,⋯, − ω2
m, − ω2

m+1,⋯ − ω2
N− 1, − ω2

N) diagN×N

(

− c1
mz
, − c2

mz
,⋯, − cm

mz
, − cm+1

mz
,⋯, − cN− 1

mz
, − cN

mz

)

⎤

⎦

2N×2N

, 

diagN×N denotes an N-dimensional diagonal matrix. 

B=

⎡

⎢
⎢
⎢
⎣

0, 0,⋯, 0, 0,⋯, 0, 0, −
ψ ′

1(L)
mz

, −
ψ ′

2(L)
mz

,⋯, −
ψ ′

m(L)
mz

,

−
ψ ′

m+1(L)
mz

,⋯, −
ψ ′

N− 1(L)
mz

, −
ψ ′

N(L)
mz

⎤

⎥
⎥
⎥
⎦

T  

F =

⎡

⎢
⎢
⎢
⎢
⎣

0, 0,⋯, 0, 0,⋯, 0, 0, −
∫ L

0 f (z, t)ψ1dz
mz

, −

∫ L
0 f (z, t)ψ2dz

mz
,⋯, −

∫ L
0 f (z, t)ψmdz

mz
,

−

∫ L
0 f (z, t)ψm+1dz

mz
,⋯, −

∫ L
0 f (z, t)ψN− 1dz

mz
, −

∫ L
0 f (z, t)ψNdz

mz

⎤

⎥
⎥
⎥
⎥
⎦

T  

C= [ψ1(z),ψ2(z),⋯,ψm(z),ψm+1(z),⋯,ψN− 1(z),ψN(z), 0, 0,⋯, 0, 0,⋯, 0, 0]

u(t)= τ(t)

3.2. Control law design through LQR optimization 

The LQR cost function is given by 

J =
1
2

∫ ∞

0

[
xT

c (t)Qxc(t)+ uT(t)Ru(t)
]
dt (24)  

where Q, R, and xT
c (t)Qxc(t) denote the positive-semi-definite and symmetric matrix, positive-definite weighting and symmetric matrix, 

and the state response of the entire system. Further, uT(t)Ru(t) corresponds to the energy cost of the control system. The ratio of Q and 
R affects the weights of the state response and the required input, and their values significantly affect the final control effect of the 
closed-loop system. If the matrix elements of Q are weighed, the system response or state xc(t) will be smaller. Similarly, if the values of 
R are larger than Q, the required control input u(t) will be smaller. Theoretically, this implies that larger values of Q result in poles, and 
the closed-loop system matrix (A − BG) is left in the s-plane. The state response will then attenuate faster and become smaller. A larger 
R implies that less control effort is required, and therefore, the poles are generally larger, which results in larger values of the state 
xc(t). 

For simplicity, Q and R are selected as diagonal matrices. The choices of Q and R are arbitrary, empirical, and not unique. For the 
specific problem, we compare the results to determine Q and R through the trial calculations of different Q and R. To ensure that Q and 
R have significant physical meaning, we set the values of Q and R as 

Q= cc1 ×

[
diagN×N

(
ω2

1,ω2
2,⋯,ω2

m,ω2
m+1,⋯,ω2

N− 1,ω2
N

)
diagN×N(0)

diagN×N(0) diagN×N(1)

]

2N×2N

R = cc2, (25)  

where cc1 and cc2 are constants. Substituting Eq. (25) into Eq. (24), we get 
∫ ∞

0
xT

c (t)Qxc(t)dt=
∫ ∞

0

∑N

i=1
cc1

(

ω2
i q2

i + q̇2
i

)

dt (26)  

∫ ∞

0
uT Rudt =

∫ ∞

0
cc2u2dt (27) 

Eqs. (26) and (27) represent the entire energy of the system (including the kinetic energy and potential energy) and the energy cost 
of the active control system, respectively. The ratio cc1: cc2 determines the weight of the state response and the required input. For 
simplicity, cc2 (i.e., R) is set as 1 [27,28]. Compared to the system without the control, when cc1 is relatively small, the bending moment 
input is small, and this has a little effect on the state response. However, when cc1 is large, the bending moment input becomes more 
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extensive, and the state response changes significantly. 
The optimal controller is designed to determine the control input u(t) so as to minimize the LQR cost function J. To obtain the gain 

matrix G, it is assumed that there exists a constant matrix P given by 

d
dt
(
xT

c Pxc
)
= − xT

c

(
Q+GT RG

)
xc (28) 

Then, substituting Eq. (28) into Eq. (24) yields 

J = −
1
2

∫ ∞

0

d
dt
(
xT

c Pxc
)
dt=

1
2
xT

c (0)Qxc(0) (29)  

where u(t) = − Gxc(t). The closed-loop system should be stable so that xc(t) moves to its original position as time t changes. Eq. (29) 
suggests that J is a constant that depends only on matrix P and the initial conditions. To differentiate Eq. (28) and substitute into ẋc =

(A − BG)xc, Eq. (28) can be rewritten as 

ẋT
c Pxc + xT

c Pẋc + xT
c Qxc + xT

c GT RGxc = 0 or xT
c

(
(A − BG)

T P+P(A − BG)+Q+GT RG
)
xc = 0  

AT P+PA + Q + GT RG − GT BT P − PBG = 0 (30) 

Eq. (30) denotes a matrix quadratic equation. After setting G = R− 1BTP, we have 

PA+AT P − PBR− 1BT P + Q = 0 (31) 

Eq. (31) denotes the algebraic Riccati equation (ARE), and matrix P denotes the positive semi-definite solution. Because Q is 
positive-semi-definite and R is positive-definite, matrix P is available. Next, the closed-loop system (A − BG) is asymptotically stable. 

Substituting u(t) into Eq. (23), we can obtain the state equations of the closed-loop system 
{

ẋc = (A − BG)xc + F
y = Ck (32) 

As there are many calculation processes, the entire calculation process is shown in Fig. 4. The primary process is described as 
follows. First, the VIV of the riser is calculated in the frequency domain to determine the distribution of lift coefficients and damping 
coefficients along the riser. Then, the dynamic system is transformed into a time-domain state equation, and the lift and damping 
forces—obtained by calculating the distribution of lift coefficients and damping coefficient along the riser—are applied to the riser. 
Finally, the LQR optimal controller applies a bending moment at the riser’s top end to reduce the top corner and VIV vibration 
displacement. The lift coefficient distribution remains unchanged during the control process to facilitate the solution of the algebraic 
Riccati equation of the LQR state equation. 

4. Numeric analysis and discussions 

4.1. VIV response of original system 

To verify the effectiveness of the proposed approach, the results are compared with SHEAR7 4.3e [29]. The Mechanical properties 
of the riser are listed in Table 2. The transverse force was simulated using the oscillating lift FL(z, t) in Eq. (6) with the initial value CL0 

CL
R

CL
R

Fig. 4. Flowchart of the LQR designing of riser VIV.  
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= 0.3, peak value CLmax = 0.70 when Amax = 0.3, zero position A0 = 1.1. St = 0.18 was adopted for the subcritical flow. U(z) denote the 
shear current, velocity at the top of the riser is U(L) = UTop = 0.9144 m/s, and the velocity at the bottom of the riser is U(0) = UBottom =

0.3048 m/s Crl = 0.18, Csw = 0.2, and Crh = 0.2. The cut-off for eliminating unimportant modes was set to 0.1. 
A comparison of the eigenvalues is illustrated in Fig. 5; the error is small, and the maximum error is 1% in the 21st mode. A 

comparison of the lift force coefficient in the power-in region between SHEAR7 and the presented approach is shown in Fig. 6. Ac-
cording to the cut-off value (0.1) of the elimination mode, several modes (modes 9, 10, 11, 12, 13, and 14) involved in the vibration are 
defined. 

The length of the modal power-in region determines the distribution length of the modal lift coefficient, and the value of the lift 
coefficient corresponds to the mode shape of the modal power-in region. The node of the vibration mode shape (0 amplitude) at the 
position where the vibration mode intersects with 0 in the lateral direction, and the lift coefficient at A0 in the lift curve is CL0. The 
antinode of the vibration mode is the maximum amplitude, which is the maximum or minimum value of the lift curve in the vibration 
mode, and its lift coefficient needs to be calculated iteratively. 

The results of the dominant excited mode and length of the lift force coefficient as predicted by the proposed method are the same 
as those obtained using SHEAR7. However, compared with the position of the lift coefficient of the presented approach, the position of 
the same excitation mode of SHEAR7 is closer to the top of the riser, and the values of the lift coefficient are larger than those of the 
present method. The lift coefficient curves are different: a cubic curve in this study and two parabolas in SHEAR7. In this case, the cubic 
curve overestimates the lift coefficient, i.e., the peak value is 0.90 at A/D = 0.6. Further, there is an overlap between the adjacent 
power-in regions; the different overlapping elimination methods affect the length of the power-in regions, which affects the lift co-
efficient. A comparison of the nondimensional root mean square (RMS) displacement and RMS acceleration is shown in Figs. 7 and 8, 
respectively. The values in SHEAR7 are in general agreement with the values in the proposed approach in this example. The maximum 
RMS displacement is 8.9% larger than that of SHEAR7. Moreover, the maximum RMS acceleration is more massive (approximately 
9.8%) than that of SHEAR7. 

The second verification is a comparison with the experimental results [30]. The riser parameters are listed in Table 3. The initial 
value CL0 = 0.5, the peak value CLmax = 0.75 when Amax = 0.35, and the zero position A0 = 1.1. The cubic curve fits the lift coefficient 
well. Moreover, other data are the same as in the above example. 

The RMS displacement under shear current (the velocity at the top of the riser is UTop = 2.4 m/s and UTop = 3.2 m/s; the velocity at 
the bottom of the riser is UBottom = 0 m/s) is shown in Figs. 9 and 10, respectively. The experimental results of the displacement are in 
agreement with the numerical results in this example. Moreover, the maximum displacement differed by 10%; thus, the accuracy of the 
numerical prediction of VIV is acceptable. 

4.2. Active suppression based on LQR controller 

The VIV of a marine riser is suppressed by applying the LQR controller. The number model riser is a typical marine top tensioned 
riser (TTR). The system parameters [21] are listed in Table 4. U(z) denotes the shear current, UTop = 0.9 m/s, and UBottom = 0 m/s. CL0 
= 0.5, CLmax = 0.75 when Amax = 0.35, and A0 = 1.1. The initial state of the riser is stationary. The time-domain analysis adopts the 
explicit fourth-order Runge–Kutta method with a time step of 0.05 s. 

We present the simulation results of the closed-loop control system (CLCS) and the original system (OS). Here, the CLCS is the 
dynamics system of the riser with bending moment input τ(t) control, while the OS is the dynamic system of the riser without the 
bending moment input τ(t) control. 

The estimated input power ratios in the second, third, fourth, and fifth modes are 0.0084, 0.0936, 1, and 0.0120, respectively, while 
the input power ratios in the other modes are close to zero. Since the cut-off value is 0.1, the potentially excited mode is modal four, as 
shown in Fig. 11. Only one mode is excited, and therefore, the reduced velocity bandwidth ΔUB is 0.4. The RMS displacement in Fig. 12 
shows that mode four is the dominant mode, where there are four peaks. The maximum peak is close to the top of the riser. 

4.2.1. Mode-weighted control vs. mode-averaged control 
The vibration of the riser not only has a resonance mode contribution but also a nonresonance mode contribution. Therefore, Case 

A, which is mode-weighted control (excited mode, mode four), and Case B, which is mode-averaged control (the first ten modes), are 
considered during the LQR active control. In Cases A and B, only parameter Q is different, and the other parameters are the same. Q 
represents a 20 × 20 matrix. On substituting Eq. (26), one can obtain. 

Case A: 

Table 2 
Mechanical properties of the riser.  

Parameters of the physical system Value Units 

Length of riser (L) 60.96 m 
Mass per unit length (mz) 2.0313 kg/m 
Outer diameter (D) 0.033274 m 
Sea water density (ρ) 1024 kg/m3 

Structural modal damping ratio (ζs) 0.3% 1 
Tension (T) 3558.5776 N 
Flexural rigidity (EI) 425.754 Nm2  
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Fig. 5. Eigenvalue.  

Fig. 6. Lift force coefficient.  

Fig. 7. RMS displacement (A/D).  
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Q=

[
diag10×10

(
0, 0, 0,ω2

4, 0, 0, 0, 0, 0, 0
)

[0]10×10

[0]10×10 diag10×10(0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

]

× cc1,

Case B: 

Q =

[
diag10×10(ω2

1,ω2
2,ω2

3,ω2
4,ω2

5,ω2
6,ω2

7,ω2
8,ω2

9,ω2
10) [0]10×10

[0]10×10 diag10×10(1, 1,1, 1,1, 1,1, 1,1, 1)

]

× cc1. 

Therefore, based on Eq. (27); Case A: 
∫∞

0 kTQkdt =
∫∞

0 cc1(ω2
4q2

4 +q̇2
4)dt and Case B: 

∫∞
0 kTQkdt =

∫∞
0 cc1

∑10
i=1(ω2

i q2
i + q̇2

i )dt. The 
entire energy of the system in Case B is greater than that in Case A. In the gain matrix G of Case A, the fourth and fourteenth values (i.e. 
q4, q̇4 of the variable k position) are more abundant, and other values are close to 0. In the gain matrix G of Case B, all values are more 

Fig. 8. RMS acceleration(m/s2).  

Table 3 
Riser model properties.  

Parameters of the physical system Value Units 

Length of riser (L) 6.75 m 
Mass per unit length (mz) 2.4869 kg/m 
Outer diameter (D) 0.03 m 
Sea water density (ρ) 1000 kg/m3 

Structural modal damping ratio (ζs) 0.3% 1 
Tension (T) 3000 N 
Flexural rigidity (EI) 1476.76 Nm2  

Fig. 9. RMS displacement (A/D, UTop = 2.4 m/s).  
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significant; however, the fourth and fourteenth values are smaller than those in Case A. Therefore, the gain matrix G of Case B couples 
the set of decoupled equations, thereby reducing the energy proportion of mode four in the entire energy of the system compared with 
that for Case A. 

Next, the coefficient cc2 is equal to 1. To find cc1, we can perform trial calculations on cc1 = 105, 108, 1011, and 1014 in Case B. The 
calculation results are shown in Fig. 13. The results show that when cc1 = 105, the displacement is almost unchanged. When cc1 = 108, 
the maximum displacement is 75% of the maximum displacement without control. When cc1 = 1014, the numerical results 
(displacement) of the explicit fourth-order Runge–Kutta method are divergent because the eigenvalue ratio |λmax /λmin| of the CLCS 
matrix (A − BG) is considerably greater than 1. The state equation at cc1 = 1014 is a stiff equation that introduces difficulties in the 
numerical solution, and therefore, it is not considered here. Finally, cc1 = 1011 was selected; it can be seen that cc1 = 1011 is optimal in 
these four cases and does not represent the global optimal. 

Fig. 10. RMS displacement (A/D, UTop = 3.2 m/s).  

Table 4 
Numerical values of the system parameters.  

Parameters of the physical system Value Units 

Length of riser (L) 1000 M 
Mass per unit length (mz) 15 kg/m 
Outer diameter (D) 0.2 M 
Sea water density (ρ) 1024 kg/m3 

Structural modal damping ratio (ζs) 0.3% 1 
Tension (T) 1.2 × 106 N 
Flexural rigidity (EI) 4 × 109 Nm2  

Fig. 11. Lift force coefficient.  
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We used matrix eigenvalues to explain the reasons for the different effects of VIV control. The typical eigenvalues of OS and CLCS, i. 
e., those of matrix A of the OS and (A − BG) of the CLCS, are calculated and compared in Fig. 14. The figure indicates that the CLCS of 
the mode-weighted control obviously changes the natural frequency of mode four, whereas the CLCS of the mode-averaged control 
modifies not only changes the frequency of mode four but also those of modes two–three, and five–ten. However, the eigenvalue of 
mode four of the CLCS using mode-weighted control is much smaller than that of mode-averaged control, and this indicates that the 
former control has a better suppression effect on mode four than the latter. This can be proved in the following results in Figs. 18 and 
19. 

The time domain of the bending moment input τ(t) at the top end of the riser and its frequency domain from fast Fourier transform 
(FFT) are shown in Figs. 15 and 16. The τ(t) value of the CLCS of the mode-weighted control and that of the mode-averaged control is a 
sine function among the range of (− 4.5 × 105, 4.5 × 105) N⋅m and (− 2.5 × 105, 2.5 × 105) N⋅m, respectively. The dominant vibration 
frequency of the bending moment input is the fourth natural vibration frequency of the riser; i.e., only one peak value 4.5 × 105 

N⋅m⋅Hz− 1, which is located on the fourth natural vibration frequency of the riser in the CLCS of mode-weighted control. The value of 
τ(t) is close to zero at other frequencies. 

In the CLCS of the mode-averaged control, the maximum peak value is 2.5 × 105 N m Hz− 1, which is approximately 56% of the 
CLCS of mode-weighted control. This is because the eigenvalue of mode four of the CLCS of mode-averaged control is considerably 
larger than that of the CLCS of mode-weighted control, which is closer to the resonance frequency of mode four. 

To quantify the control effect, the control reduction ratio η is defined here as η = 1 − ECLCSmax
EOSmax

, where ECLCSmax denotes the maximum 
displacement or angle of the CLCS, and EOSmax denotes the maximum displacement or angle of the OS. The larger the control reduction 
ratio η, the closer to 100%, the better is the control effect. 

The top riser angles under three cases including the OS, CLCS of mode-weighted control, and CLCS of mode-averaged control, are 
shown in Fig. 17. The angle of the OS and mode-averaged control are in the range of (− 8.1 × 10− 4, 8.1 × 10− 4) rad, (− 2.4 × 10− 4, 2.4 
× 10− 4) rad. The top riser angle of the CLCS of mode-weighted control is less than that of the mode-averaged control CLCS. Further, the 

Fig. 12. RMS displacement (A/D).  

CC1

CC1

CC1

Fig. 13. RMS displacement (A/D).  
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top riser angle is significantly suppressed (by approximately η = 89%) when the CLCS of mode-weighted control is applied. 
The RMS displacements are shown in Fig. 18. In the OS, the displacements calculated in the frequency and time domains by the 

proposed method are the same. The CLCS of mode-weighted control and that of the mode-averaged control can restrain the vibration 
displacement. Compared with the OS, the maximum displacements of Cases A and B become 20% and 29% of the maximum dis-
placements of the OS, respectively. In Case A, the maximum displacement is located at Z/L = 0.93, which is close to 9/10 (the antinode 
of mode five). Five peaks decrease rapidly from the top to the bottom of the riser. In Case B, the maximum displacement is located at Z/ 
L = 0.86, which is close to 7/8 (the antinode of mode four). Four peaks decrease slowly from the top to the bottom of the riser. The 
dominant mode of Case A (blue curve) changes from mode four to mode five; however, the dominant mode of Case B (green curve) is 
still mode four as shown in Fig. 19. Further, Fig. 19 demonstrates the dimensionless RMS amplitudes of the first ten modes of the OS 
and CLCS. 

Thus, compared with the OS, the mode-averaged and mode-weighted controls can effectively reduce the displacement and angle by 
71%–80% and 70%–89%, respectively. The control reduction stage η of the displacement and angle of the presented mode-weighted 
control is respectively 1.13 and 1.27 times that of the mode-averaged control. In other words, when the VIV lift coefficient distribution 
is constant, the presented mode-weighted control is more effective than the mode-averaged control for multimode control. The energy 
of the control input is concentrated on only one mode, while the control energy of the mode-averaged control is distributed evenly to 
multiple modes. For VIV control with a couple of modes excited during the dynamic response, we can say that mode-weighted control 
would be better than the mode-averaged control. 

The displacements and dominant frequencies at different points along the riser span were examined. Two specific points, i.e., z =
500 (z = 1/2 L) and z = 875 (z = 7/8 L), were taken as examples. They respectively correspond to the node and antinode of mode four, 
respectively. Fig. 20 shows the displacement and its spectrum; the maximum displacement of the CLCS of the mode-averaged control 
decreases by approximately η = 70% at z = 500 compared with the OS. Furthermore, the maximum displacement of the CLCS of the 
mode-weighted control decreases by approximately η = 91% at z = 500 compared with the OS. The CLCS of the mode-averaged control 
and the CLCS of the mode-weighted control reduces the vibration displacement at z = 875; its control effect at z = 875 is as good as that 
at z = 500. 

The corresponding results in frequency domain are shown in Fig. 20. At z = 500 and z = 875, the responses of mode four are 
significantly suppressed. At z = 500, the fourth vibration amplitudes of the CLCS of the mode-weighted and mode-averaged controls 
are approximately 10% and 31% of the OS, respectively. At z = 875, the fourth vibration amplitude of the CLCS of the mode-weighted 
control and mode-averaged control are approximately 9% and 29% of the OS, respectively. Both the fourth vibration amplitude of the 
CLCS of the mode-weighted control and mode-averaged control decreases. Because the vibration locking frequency of the riser is at 
mode 4, z = 500 and z = 875 are the node and antinode of the fourth mode shape, and the vibration amplitude at z = 875 is more 
significant than that at z = 500. Thus, the CLCS of the mode-weighted control is better than that of mode-averaged control. 

4.2.2. Influences of flow currents on closed-systems 
Next, we analyze the influence of speed on the control effect of the CLCS of the mode-weighted control. Lift force coefficients are 

shown under different flow currents (shear flow, the velocity at the top is UTop1 = 0.9 m/s, UTop2 = 1.5 m/s, UTop3 = 2.0 m/s, the 
velocity at the end is UBottom = 0 m/s) in Fig. 21. The 0.9 m/s excited mode is only mode 4, and the reduced velocity bandwidth, ΔUB, is 
0.4. The 1.5 m/s and 2.0 m/s excited mode are modes five and six, modes six and seven, respectively. Therefore, the reduced velocity 
bandwidth ΔUB of each excited mode is 0.2. Although the sum of the reduced velocity bandwidths ΔUB of the three flow currents is 0.4, 
the power input region of 0.9 m/s is larger than the power input regions of others. The power input region of 1.5 m/s and 2.0 m/s are 
similar in location and in length. The response frequency and responding mode number increase when the excitation current becomes 

Fig. 14. Typical eigenvalues in complex space (Label number indicates the order of the mode.).  
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faster under Strouhal’s law in VIV modeling. 
Fig. 22 shows that the RMS displacement of the 0.9 m/s is the maximum, and the RMS displacement of 1.5 m/s and 2.0 ;m/s are 

approximately at the same level. The main reason is that the length of the power input region of 0.9 m/s is longer than that of the power 

Fig. 15. Control input moment at the top end in time domain.  

Fig. 16. Control input moment at the top end in frequency domain.  

Fig. 17. Top angle y′

(L, t) of the riser for the original system and closed-loop control system.  
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input region of 1.5 m/s or 2.0 m/s; however, the power input region of 0.9 m/s has only the fourth mode control without the phase 
difference, whereas the power input region of 1.5 m/s or 2.0 m/s has two mode control with a phase difference. The phase difference 
leads to the mutual hydrodynamic damping in the energy input region of the two modes that reduces the energy input and increases the 
energy consumption, thereby reducing the displacement. The displacement at a velocity of 1.5 m/s is not considerably different from 
that at a velocity of 2.0 m/s. This is because the energy input and energy consumption are similar. 

The results show that, with an increase in flow velocity, more higher-order modes are excited, and the VIV response of the original 
system slightly decreases while the response frequency gradually increases. 

The control input moment τ(t) at the top end at 0.9 m/s, 1.5 m/s, and 2.0 m/s are shown in Fig. 23. The moment at 2.0 ;m/s is larger 
than that at other flow currents. The moment at 0.9 m/s is the smallest, and it is around 36% of the moment at 2.0 m/s. The results of 
the bending moment input τ(t) at the top end of the riser in frequency domain are different at 0.9 m/s, 1.5 m/s, and 2.0 m/s, as shown 
in Fig. 24. The peak at 0.9 m/s is located in the fourth mode of the riser, and peaks at 1.5 m/s are located in the fifth and sixth modes of 
the riser. The peaks at 2.0 ;m/s are located in the sixth and seventh modes of the riser, and the peak is the highest in the excited higher 
mode. 

The results reveal that with an increase in flow velocity, the proportion of higher frequency vibration in the entire vibration in-
creases. Thus, the maximum value of the input bending moment moves from the low modal frequency to the high modal frequency. 

The top riser angles y’(L,t) for CLCS and OS at 0.9 m/s, 1.5 m/s, and 2.0 m/s are shown in Fig. 25. With an increase in flow velocity 
in both CLCS and OS, the amplitude of the top riser angle decreases, and the frequency of the top angle vibration increases. Compared 
with the OS, the top riser angle y’(L,t) of CLCS is significantly decreased, and it is reduced by approximately η = 89%, 82%, and 81% in 
the three cases. The control effect decreased as the flow velocity increased. 

Fig. 26 shows the nondimensional RMS displacement with different velocities. The displacements of the OS in the frequency 
response are the same as those of the OS in the state space. This implies the presented state-space equations are satisfied. 

The displacement of the CLCS is smaller than that of the OS. In addition, the number of displacement peaks of CLCS is different from 

Fig. 18. RMS displacement (A/D).  

Fig. 19. RMS modal amplitude versus mode number.  
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that of OS. Hence, the dominant control modes were effectively suppressed. UTop1 = 0.9 m/s, UTop2 = 1.5 m/s, and UTop3 = 2.0 m/s; the 
number of displacement peaks of CLCS changes from four, six, and seven of the OS to five, eight, and nine, respectively. The structural 
response includes the resonant and nonresonant modes [25]; however, the dominant mode is successfully suppressed, and the 

Fig. 20. Riser displacement of the original and closed-loop systems.  

Fig. 21. Lift force coefficient.  
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contribution of other modes may become larger (see Figs. 19, 27 and 28). The amplitudes of modes six, seven, and eight are slightly 
larger than those of the OS, and, the amplitude of mode 5 becomes larger than that of mode four at flow velocity UTop1 = 0.9 m/s. In this 
case, mode 5 becomes the dominant mode, instead of mode four in the OS. The final response of the VIV displacement is a combination 

Fig. 22. RMS displacement (A/D).  

Fig. 23. Control input moment at the top end in time domain.  

Fig. 24. Control input moment at the top end in frequency domain.  
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of the first ten modes. 
One crucial observation should is that at 1.5 m/s and 2.0 m/s, the maximum displacement of CLCS appears at the second peak, 

while the maximum of the OS is at the first peak. Displacement peaks are ordered from the top to the bottom of the riser. The location of 
the maximum fatigue damage moves downward from the upper part of the riser, which deserves our attention. 

The maximum displacement at 0.9 m/s is the smallest in the CLCS among the three velocities. The control reduction ratio η of 
displacement is equal to 80%, 57%, and 69% at 0.9 m/s, 1.5 m/s, and 2.0 ;m/s, respectively. Therefore, the control effect is the best at 
0.9 m/s, followed by the control effect at 2.0 m/s; the worst is at 1.5 m/s in Fig. 29. At different velocities, the decrease in the angle is 
slightly greater than the decrease in the displacement. In other words, angular control is easier to implement than displacement 
control, which is expected because the angle at the top of the riser is closer to controlling the bending moment; the controlled 
displacement is the maximum displacement of the full length of the riser. 

5. Conclusion 

The active control of the flexible riser’s multimode VIV in shear flow is studied through the LQR controller. Dynamic models of both 
the original system and closed-loop system, i.e., the riser with active bending control to the top-end angle, were developed. Further, the 
approach of LQR designing for a riser VIV with the assumption that the lift coefficient distribution is constant is presented. The re-
sponses of closed-loop systems with mode-weighted and mode-averaged approaches are compared with the original systems. The 
numerical results show that our approach can effectively suppress the response level of riser VIV. The main conclusions can be 
summarized as follows:  

1. Compared with the OS, the displacement and angle of the CLCS are significantly reduced. The case study shows that compared with 
the original system, the designed active control approaches can effectively reduce displacement and angle (by 71%–80% and 70%– 
89%, respectively).  

2. The presented mode-weighted control was more effective than the mode-averaged control because the input energy contributed to 
the dominant mode of the multimode VIV response. Furthermore, the case study showed that the displacement and angle drops by 
72% and 67%, respectively. Alternatively, the decreases in the displacement and angle can be respectively 1.13 and 1.27 times of 
the mode-averaged control.  

3. The effect of the LQR control can be affected by flow velocity. With an increase in flow velocity, the effect of the LQR control 
changes. In particular, as the flow velocity rises from 0.9 m/s to 2.0 m/s, the control effect is the best at 0.9 m/s, e.g., the 
displacement decreases by 80%, while the control effect approaches the lowest at 1.5 m/s. Further, the maximum displacement 
approaches the smallest value at 0.9 m/s velocity. Therefore, for the VIV of the closed-loop system, the response can be suppressed, 
the control effect becomes slightly complicated, or the efficiency of the controller may be lower at a certain flow velocity. 

Fig. 25. Top riser angle y’(L,t) for the original and closed-loop system.  
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Fig. 26. RMS displacement (A/D).  

Fig. 27. RMS modal amplitude versus mode number.  

Fig. 28. RMS modal amplitude versus mode number.  
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Fig. 29. Maximum displacement and maximum angle.  

J. Song et al.                                                                                                                                                                                                            

http://refhub.elsevier.com/S0951-8339(21)00102-7/sref1
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref2
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref2
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref3
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref4
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref5
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref6
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref6
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref7
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref7
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref8
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref8
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref9
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref9
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref10
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref10
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref11
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref12
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref13
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref14
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref15
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref16
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref17
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref18
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref19
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref20
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref21
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref21
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref22
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref22
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref23
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref24
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref25
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref26
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref27
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref28
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref28
http://web.mit.edu/shear7/shear7.html.%20MIT
http://refhub.elsevier.com/S0951-8339(21)00102-7/sref30

	LQR control on multimode vortex-induced vibration of flexible riser undergoing shear flow
	1 Introduction
	2 Analysis methodology and numerical models
	2.1 Dynamics of marine riser
	2.2 Lift coefficient and mode overlap elimination of VIV
	2.3 Prediction of VIV

	3 Control law design
	3.1 State-space expressions
	3.2 Control law design through LQR optimization

	4 Numeric analysis and discussions
	4.1 VIV response of original system
	4.2 Active suppression based on LQR controller
	4.2.1 Mode-weighted control vs. mode-averaged control
	4.2.2 Influences of flow currents on closed-systems


	5 Conclusion
	Declaration of competing interest
	Acknowledgments
	References


