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Abstract The dynamic characteristics of a railway

vehicle system under unsteady aerodynamic loads are

examined in this study. A dynamic analysis model of

the railway vehicle considering the influences of

aerodynamic loads was established. The model not

only considers the forced excitation effect of unsteady

aerodynamic loads but also accounts for the effect of

unsteady aerodynamic loads on the change of the

wheel–rail contact normal forces as well as changes of

the wheelset creep coefficients and creep forces/mo-

ments. Therefore, this model also considers the

influences of unsteady aerodynamic loads on the

self-excited vibration characteristics of the vehicle

system. The time-history curves, phase trajectory

diagrams, Poincaré sections, and Lyapunov exponents

of the vehicle system running on a smooth straight

track under unsteady aerodynamic loads were deter-

mined. The results show that when the critical speed is

exceeded, the vehicle system usually performs quasi-

periodic motion under unsteady aerodynamic loads,

which is significantly different from the periodic

motion under steady aerodynamic loads. In different

cases, the amplitude and phase of motion are

significantly different. The amplitude of the motions

can be increased by more than 159%, and the

difference of phase can be up to 173�. (The phase is

almost reversed.) The dynamic responses of the

vehicle system under unsteady aerodynamic loads

contain abundant frequency components, including

the frequency of the self-excited vibration, the

frequency of the forced excitation, and combinations

of their integer multiples. The vibration forms corre-

sponding to the main harmonic components under

unsteady and steady aerodynamic loads were com-

pared, and the self-excited vibration component of the

vehicle system under unsteady aerodynamic loads was

identified. The variations in the critical speed with

various parameter combinations were computed. The

variation range of the critical velocity can reach 73%.

Keywords High-speed railway vehicle � Unsteady
aerodynamic loads � Self-excited vibration � Forced
vibration � Quasi-periodic motion

1 Introduction

The dynamic characteristics of railway vehicles are

important to the train operation. The hunting stability

and ride comfort of railway vehicles are related to the

self-excited and forced vibrations, respectively. There

have been many studies on vehicle self-excited and
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forced vibrations that did not consider the effects of

aerodynamic loads.

Many studies related to the hunting stability and

the critical speed in the self-excited vibrations of

vehicles have been conducted. Some of this research

focused on wheelsets and bogies [1–4]. To analyze

the dynamics of railway vehicles more comprehen-

sively and accurately, a complete dynamic analysis

model including the wheelset, frame, and car body

can be established. Kim and Seok [5] used the

multiple scales method to conduct bifurcation anal-

ysis of a nonlinear railway vehicle with dual bogies to

examine the coupling effect of bogies on the vehi-

cle’s hunting behavior. Di Gialleonardo et al. [6]

analyzed the effect of track modeling on railway

vehicle stability. True [7] summarized the different

methods that can be used to calculate the critical

speed. He proposed that the nonlinear critical veloc-

ity of a vehicle system could be accurately calculated

by the path following method or the ‘True Strategy.’

Iwnicki et al. [8] summarized the development

history of railway freight vehicles, and they intro-

duced the most common current train bogies in detail

and new methods to simulate the dynamic perfor-

mances of railway vehicles. Zboinski and Dusza [9]

studied the nonlinear stability of railway vehicles on

a curved track. They pointed out that this problem is a

self-excited vibration problem in nature and studied

its Hopf bifurcation characteristics. Zeng et al. [10]

studied the influences of the wheelset gyroscopic

action on the hunting stability of vehicle systems.

Sun et al. [11] conducted observations and experi-

ments on the hunting instability of an electric

locomotive under the condition of low wheel–rail

contact conicity and studied the optimization of the

suspension parameters.

There have also been many studies on the forced

vibrations of vehicles. Antolin et al. [12] established a

vehicle–bridge coupled dynamics model considering

nonlinear wheel–rail contact forces and analyzed the

dynamic interactions between a high-speed train and a

bridge. Xu and Zhai [13] proposed a stochastic

analysis and reliability evaluation model for a vehi-

cle–track coupled system considering earthquakes and

random track irregularities to study the dynamic

responses. Sadeghi et al. [14] studied the impact of

ballast-less track irregularities on the ride perfor-

mances of high-speed trains. Yang et al. [15] used

three-dimensional modal theory to analyze the

dynamics of a train–track coupled system. Cheng

and Wu [16] studied the influences of the suspension

parameters, wheel tread conicity, and wheel radius on

the derailment safety and ride comfort of railway

vehicles. Bokaeian et al. [17] applied the equivalent

linearization method to analyze the ride comfort of a

car body considering the traction rod. Dumitriu and

Stănică [18] investigated the effects of an anti-yaw

damper on the vertical vibrations and ride comfort of

the car body. Ma et al. [19] analyzed the medium- and

high-frequency dynamic resonance due to the inter-

actions of multiple flexible wheels and rails of high-

speed railways. Some other developments in structural

dynamics response modeling and analysis can be

found in studies by Keshtegar et al. [20], Fei et al.

[21, 22], and Lu et al.[23].

For the most part, the above studies did not consider

the influences of aerodynamic loads. The aerodynamic

loads acting on a train are proportional to the square of

the operating speed. With the continuous increase in

the train running speed, the aerodynamic loads have

more and more significant effects on the hunting

stability and dynamic responses of high-speed railway

vehicles. In recent years, more research has been

conducted to study the effects of aerodynamic loads on

the dynamic responses of high-speed trains.

Some research mainly focused on the flow field

distributions around high-speed trains and the aero-

dynamic loads acting on the vehicles [24–26]. These

studies did not involve the dynamic responses of the

vehicle systems under aerodynamic loads. There have

also been studies on the dynamic responses of vehicles

under aerodynamic loads. Baker et al. [27] proposed a

method to generate the aerodynamic load time histo-

ries acting on a train and then analyzed the dynamic

responses of the vehicle. Thomas et al. [28] simulated

the effects of crosswinds by applying lateral excita-

tions on the car body and studied the dynamic

responses of railway vehicles under aerodynamic

loads experimentally and numerically. Xu and Zhai

[29] investigated the dynamic behaviors and statistical

responses of vehicle systems considering unsteady

aerodynamics and track irregularities. Montenegro

et al. [30] studied the influences of random turbulent

wind on the dynamics of vehicle–bridge systems. Neto

et al. [31] conducted a numerical study on the safety of

train operation under crosswind conditions.

The above-mentioned research on the dynamic

responses of high-speed trains under unsteady
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aerodynamic loads only used aerodynamic loads as a

forced excitation and analyzed the forced vibration

responses of the vehicles. The influences of aerody-

namic loads on the inherent characteristics of vehicle

systems were not considered. However, aerodynamic

loads not only affect the forced vibration responses of

the train through external forced excitations but also

by changing the inherent characteristics of the dynam-

ical system, such as its damping and stiffness, thus

affecting the hunting stability of the train (self-excited

vibration characteristics). The aerodynamic load com-

ponents in various directions can change the creep

coefficients by changing the normal force of the

wheel–rail contact. The change of the normal force

will also change the gravitational stiffness and the

gravitational angular stiffness. Therefore, the exis-

tence of aerodynamic loads changes the damping and

stiffness matrices on the left side of the vehicle system

dynamics equation and changes the inherent charac-

teristics of the high-speed train dynamical system. The

quantitative analysis results of Zeng et al. [32–34]

showed that these changes caused by steady aerody-

namic loads have a significant influence on the hunting

stability of high-speed trains. According to the mech-

anism described above, the unsteady aerodynamic

loads will certainly affect the self-excited vibration

characteristics of the vehicle. In addition, the unsteady

aerodynamic loads also act as forced excitations to the

vehicle dynamical system.

Steady aerodynamic loads are just a simplified case

of unsteady aerodynamic loads. Not only is there a

significant difference between the two cases in terms

of the numerical values, but the combined action of the

self-excited and forced vibrations under the action of

unsteady aerodynamic loads will also lead to a

dynamic response of the nonlinear vehicle system

with richer harmonic components, where each har-

monic component corresponds to a vibration form

with a large difference in amplitude and phase. The

internal mechanisms that create different harmonic

components vary.

We briefly summarize the literature review above in

Table 1. Many studies on the dynamic responses of

railway vehicles did not consider the effects of

aerodynamic loads. In other studies, the effect of

aerodynamic loads was considered on either self-

excited vibrations or only forced excitations. How-

ever, unsteady aerodynamic loads will lead to the

combined action of both self-excitation and forced

excitations, so it is prudent to consider this combined

action during analysis. In the dynamics equations, the

stiffness and damping matrices on the left side of the

equation are changed by the aerodynamic loads, and

the non-homogeneous terms caused by unsteady

aerodynamic loads are added on the right side of the

equation. This combined action will change not only

the magnitude of the vehicle dynamic responses but

also the inherent properties of the responses. However,

there has been little research on the combined effect of

self-excitation and forced excitations on railway

vehicle systems, and this remains an open problem.

In view of this, the present study examines these

issues.

In this paper, Sect. 2 explains the impacts of

unsteady aerodynamic loads on the vehicle dynamics

equations and presents the equations. In Sect. 3, we

study the forced and self-excited vibration responses

of a railway vehicle system running on a smooth

straight track under unsteady aerodynamic loads in

detail. Furthermore, we obtain the quasi-periodic

solution, which is significantly different from the

periodic solution under steady aerodynamic loads. We

analyze and compare the vibration forms of the main

harmonic components in the case of unsteady and

steady aerodynamic loads and identify the self-excited

vibration components of the vehicle system under

unsteady aerodynamic loads. Finally, the conclusions

are presented in Sect. 4.

2 Analysis model for railway vehicles

under unsteady aerodynamic loads

2.1 Vehicle system

In this paper, a high-speed vehicle dynamics model

considering aerodynamic loads was established. Fig-

ure 1 shows a schematic diagram of the vehicle

dynamical system. The vehicle dynamical model is

simplified into a multi-rigid-body dynamical system

composed of wheelsets, frames, the car body, and the

suspension systems. The vehicle system has 27 rigid-
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body degrees of freedom: the lateral displacement ywi,

pitch bwi, and yaw wwi of the wheelset (i = 1, 2, 3, 4);

the lateral displacement yfi, vertical displacement zfi,

roll /fi, pitch bfi, and yaw wfi of the frame (i = 1, 2);

and the lateral displacement yc, vertical displacement

zc, roll /c, pitch bc, and yaw wc of the car body. These

are collectively expressed in the vector Y1:

Table 1 Brief summary of literature review

Content Applications Category proposed

approaches

Similarities and differences with

current work, constraints, and

objectives

References

Research on flow

field characteristics

Aerodynamic

performance

optimization, energy

saving, and drag

reduction

Theoretical analysis,

numerical simulation (LES,

DES, DDES, and RANSa),

wind tunnel tests, and full-

scale field tests

The authors mainly studied the

characteristics of the flow field

around the vehicle system and

did not include the dynamic

responses of the vehicle

system under the aerodynamic

loads

[24–26]

Forced vibrations Ride quality, ride

comfort and running

safety

Theoretical analysis,

numerical simulation

The authors mainly studied the

dynamic responses of vehicle

systems under forced

excitations, such as

aerodynamic loads and track

irregularities. The self-excited

vibrations of the vehicle were

not studied

[12–19, 27–31]

Self-excited

vibrations

Hunting stability

without aerodynamic

loads

Theoretical analysis,

numerical integration,

continuation algorithm,

shooting method, and

eigenvalue analysis

Railway vehicle self-excited

vibrations, bifurcation, chaos

analysis. The effects of

aerodynamic loads were not

considered

[1–11]

Hunting stability with

steady aerodynamic

loads, periodic

solution

Theoretical analysis,

numerical integration, and

eigenvalue analysis

The self-excited vibrations and

periodic solution of the

vehicle system under steady

aerodynamic loads were

studied. However, the

influences of unsteady

aerodynamic loads were not

considered

[32–34]

Self-excited

vibration ? forced

vibration

Dynamic responses

with unsteady

aerodynamic loads,

hunting stability,

quasi-periodic

solution

Theoretical analysis,

numerical integration, and

eigenvalue analysis

The influences of unsteady

aerodynamic loads were

studied. The present study

showed that the dynamic

responses of high-speed

railway vehicles change

significantly in terms of the

characteristics and numerical

values when the combined

action of self and forced

excitations caused by unsteady

aerodynamic loads is

considered. The mechanism of

the quasi-periodic solution

was revealed

The present

study

aLES Large-eddy simulation, DES detached-eddy simulation, DDES delayed detached-eddy simulation, RANS Reynolds-averaged

Navier–Stokes
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The meanings of the other symbols in Fig. 1 are

defined in ‘‘Appendix B’’. It is assumed that the high-

speed railway vehicle runs on a straight track without

any irregularities at a constant speed V, and the track is

set to be rigid. Assuming that there is no wheel lift and

that the wheels are always in contact with the rails, the

vertical displacement zwi and roll /wi of the wheelset

are determined by the wheel–rail geometry con-

straints. These are related to the vehicle lateral

displacement and yaw and are not independent

degrees of freedom.

The wheelsets and the frame are connected by the

primary suspension, and the frames and the car body

are connected by the secondary suspension. In addi-

tion, both the secondary lateral damping and the yaw

damping are modeled by series-connected springs and

dampers (Maxwell model). There are lateral displace-

ments yhx(L,R)i of the spring–damper connection point

of the secondary lateral damper (i = 1, 2). There are

longitudinal displacements ysx(L,R)i of the spring–

damper connection point of the secondary yaw damper

(i = 1, 2). These degrees of freedom can be expressed

collectively by the vector Y2:

Y2 ¼ yhxL1 yhxR1 yhxL2 yhxR2 ysxL1 ysxR1 ysxL2 ysxR2½ �T:

ð2Þ

The dynamics equations of the vehicle system on a

smooth straight track without any forced excitations

can be expressed in matrix form as follows:

xc

zc

βc

yc

zc

φc

φ f

yf
zf

yw
zw

φw

βf2 βf1

2lc

Hcsx

Hfsx

Hchx

Hfhx

Hcb

Hbf

Hfw

2dw

2dw 2ds2dsx

E

E

Fig. 1 Schematic diagram of the railway vehicle dynamical system

Y1 ¼
yw1 yw2 yw3 yw4 ww1 ww2 ww3 ww4 bw1 bw2 bw3 bw4

yf1 yf2 zf1 zf2 /f1 /f2 bf1 bf2 wf1 wf2 yc zc /c bc wc

" #T

: ð1Þ
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M1 0
0 0

� �
€Y1

0

� �

þ C1
_Y1;Y1

� �
0

C2
_Y1; _Y2

� �
C3

_Y1; _Y2

� �� �
_Y1
_Y2

� �

þ K1
_Y1;Y1

� �
K2

K3 K4

� �
Y1

Y2

� �
¼

0

0

( )
; ð3Þ

where M1, C1, and K1 are the generalized inertia

matrix, damping matrix, and stiffness matrix, respec-

tively; C2 and C3 are the damping matrices of the

lateral and yaw dampers, respectively; K2, K3, and K4

are the supporting stiffness matrices of the spring–

damper connection point of the lateral and yaw

dampers. The detailed differential equations of motion

for the vehicle system given by Eq. (3) are listed in

‘‘Appendix A’’. The nomenclature used in the dynam-

ics equations is given in ‘‘Appendix B’’.

Equation (3) is the conventional vehicle dynamics

equation that does not account for aerodynamic loads.

The effects of unsteady aerodynamic loads are con-

sidered in this study, so Eq. (3) is modified. The

influences of unsteady aerodynamic loads on the

dynamics equations can be divided into two cate-

gories. The first is forced excitation forces added to the

right side of Eq. (3), which make the dynamics

equations of the vehicle system on a smooth straight

track non-homogeneous. The second is that the

aerodynamic loads change the wheel–rail normal

forces, the geometric parameters (such as rolling

circle radius of wheel–rail contact point), and the

creep forces/moments, resulting in changes in the

damping and stiffness matrices on the left side of

Eq. (3). This will be explained in detail below.

2.2 Influences of aerodynamic loads

The distribution of the pressure and shear stress on the

car body surface of a high-speed train in high-speed

airflow can form resultant forces Fi (i = 1, 2, 3), called

the aerodynamic drag force, aerodynamic lateral

force, and aerodynamic lift force, which act in the

longitudinal, lateral, and vertical directions, respec-

tively.Mi (i = 1, 2, 3) represents the aerodynamic roll

moment around the x-axis, the aerodynamic pitch

moment around the y-axis, and the aerodynamic yaw

moment around the z-axis, respectively. The forces

and moments are expressed as follows:

where q, A, and L are the air density, reference area,

and reference length, respectively; V and U are the

velocity vectors of the running speed of the vehicle

and the crosswind, respectively; Ci (i = 1, 2, 3)

represents the coefficients of the aerodynamic drag

force, aerodynamic lateral force, aerodynamic lift

force, respectively; CMi (i = 1, 2, 3) represents the

coefficients of the aerodynamic roll moment, pitch

moment, and yaw moment, respectively; Csi and CMsi

(i = 1, 2, 3) are the steady parts of the coefficients of

the unsteady aerodynamic forces and moments,

respectively;Cui andCMui (i = 1, 2, 3) are the unsteady

parts of the coefficients of the unsteady aerodynamic

forces and moments, respectively; fi and fMi (i = 1, 2,

3) are the excitation frequencies of the unsteady

aerodynamic forces and moments, respectively; uc

anduMci (i = 1, 2, 3) represent the initial phase angles.

2.2.1 Wheel–rail contact geometry

The geometric relation of the wheel–rail contact is one

of the most important nonlinear factors in railway

vehicle systems. In this study, the wheel–rail contact

point coordinates were calculated using three-

Fi ¼
1

2
qACi V þ Uj j2 Ci ¼ Csi þ Cui � sin 2pfit þ ucið Þ i ¼ 1; 2; 3ð Þ

Mi ¼
1

2
qALCMi V þ Uj j2 CMi ¼ CMsi þ CMui � sin 2pfMit þ uMcið Þ i ¼ 1; 2; 3ð Þ;

ð4Þ
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dimensional space contact theory [35]. After obtaining

the contact point coordinates, the corresponding

vertical displacement zw and roll /w of the wheelset

as well as the geometric parameters, such as the rolling

circle radius Rw, contact angle dw, wheel cross-

sectional radius of curvature rw, and track cross-

section radius of curvature rr at the contact point, were

obtained. These geometric parameters were then used

to calculate the creep forces/moments.

In conventional vehicle dynamics analysis, the

influences of aerodynamic loads on the geometric

parameters of the wheel–rail contact are not consid-

ered. In this study, the influences of aerodynamic loads

on these geometric parameters are considered. The

steady components of the aerodynamic loads change

the static equilibrium position of the vehicle, causing

the coordinates of the wheel–rail contact points in the

static balance position to change, and then all the

geometric parameters described above change due to

the influences of the aerodynamic loads. The unsteady

components in the aerodynamic loads make the

vehicle vibrate around the new static equilibrium

position. The coordinates of each instantaneous

wheel–rail contact point and other wheel–rail contact

geometry parameters are affected jointly by the steady

and unsteady components. In this study, the influences

of the aerodynamic loads mentioned above were taken

into account when calculating the wheel–rail contact

geometry parameters at each instant. In Sect. 2.2.3, it

will be shown that the aerodynamic loads can further

affect the creep forces by changing the wheel–rail

contact geometry parameters.

2.2.2 Wheel/rail normal force

In conventional vehicle dynamics analysis, the influ-

ences of aerodynamic loads on the wheel–rail normal

forces are not considered. Compared with the case

where the aerodynamic loads are not considered, the

normal wheel–rail contact forces change after consid-

ering the aerodynamic loads. The positive/negative

aerodynamic lift force reduces/increases the axle load,

the aerodynamic lateral force and aerodynamic roll

moment cause the normal forces of the left and right

wheel–rail contact points to be different, and the

aerodynamic resistance and aerodynamic pitching

moment cause the normal forces of the wheel–rail

contact points of wheelsets in different longitudinal

positions to be different. The aerodynamic loads

change the restoring forces/moments of the vehicle

system by changing the wheel–rail contact normal

forces, thereby changing the gravitational stiff-

ness/gravitational angular stiffness of the system. This

will change the inherent characteristics of the system.

In this study, we have considered the above-mentioned

effects of unsteady aerodynamic loads when calculat-

ing the wheel–rail contact forces at each instant. In the

next section, it will be shown that the aerodynamic

loads can further affect the creep forces by changing

the wheel–rail contact normal forces.

2.2.3 Wheel–rail creep force

In this study, Kalker’s linear creepage theory is used to

calculate the creep forces/moments [36], and then a

nonlinear creep model is used to modify the creep

forces/moments [35]. The influences of unsteady

aerodynamic loads on the creep forces/moments are

not considered in conventional analysis. It will be

shown in this section that the aerodynamic loads

change the creep forces/moments in terms of both the

creep coefficients and the correction factor.

According to Kalker’s linear creepage theory, the

wheel–rail contact creep forces/moment are as

follows:

Fx ¼ �f11nx
Fy ¼ �f22ny � f23n/
Mz ¼ �f32ny � f33n/;

ð5Þ

where Fx, Fy, and Fz are the longitudinal creep force,

lateral creep force, and spin creep moment in the

wheel–rail contact plane, respectively; fij is the creep

coefficient; nx, ny, and n/ are longitudinal, lateral, and

spin creepages, respectively.

The creep coefficient fij is related to the contact

normal force and geometric parameters at the contact

point, such as the rolling circle radius Rw, contact

angle dw, wheel cross-sectional radius of curvature rw,
and track cross-sectional radius of curvature rr at the

contact points. As mentioned in Sect. 2.2.1, the above

geometric parameters are all affected by aerodynamic

loads, so the creep coefficients and creep forces/mo-

ment in Eq. (5) are also affected by aerodynamic

loads.

Kalker’s linear creepage theory is only applicable

to the situation of a small linear creep and small spin.

For this reason, a nonlinear correction can be used so
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that the calculation of the wheel–rail creep forces can

be widely applied to the case of an arbitrary creepage

value and small spin. We made the following correc-

tions to the creep forces:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y

q
; ð6Þ

F0 ¼ lN
F

lN
� 1

3

F

lN

	 
2

þ 1

27

F

lN

	 
3
" #

ðF� 3lNÞ

lN ðF[ 3lNÞ

8><
>: ;

ð7Þ

where F, N, and F0 are the synthetic creep force,

normal force, and modified synthetic creep force,

respectively, and l is the friction coefficient between

the wheel and the rail. As mentioned in Sect. 2.2.2, the

normal force N is also affected by unsteady aerody-

namic loads.

The correction factor e is introduced, which is

defined as follows:

e ¼ F0

F
: ð8Þ

Components of the modified creep forces/moment

are obtained as follows:

F0
x ¼ e � Fx

F0
x ¼ e � Fy

M0
z ¼ e �Mz:

ð9Þ

The above-mentioned creep forces/moment com-

ponents are defined on the contact plane, and the

dynamics equations in ‘‘Appendix A’’ are defined in

the vehicle system coordinate system. Therefore, after

calculating the above creep forces/moment compo-

nents, a coordinate transformation is required to

express the creep force/moment components as the

components along the axes of the vehicle coordinate

system.

In this study, we consider the unsteady aerody-

namic loads described above when calculating the

wheel–rail creep forces/moments at each instant.

There are items related to the creep forces/moment

in the damping and stiffness matrices of the vehicle

dynamical system, so the change of the creep

forces/moments will change the damping and stiffness

matrices. This means that the unsteady aerodynamic

loads will affect the inherent characteristics of the

vehicle system by changing the creep forces/moments.

2.3 Equations of motion considering unsteady

aerodynamic loads

In summary, the unsteady aerodynamic loads change

the damping and stiffness matrices of the vehicle

system dynamics equations by changing the wheel–

rail contact geometry parameters, wheel–rail normal

forces, and wheel–rail creep forces/moments. After

considering the unsteady aerodynamic loads, Eq. (3)

becomes the following:

where Pair is the vector of the aerodynamic loads, and

C1 Csi;Cui;CMsi;CMui;V;U; _Y1;Y1

� �
and

K1 Csi;Cui;CMsi;CMui;V;U; _Y1;Y1

� �
are the damping

and stiffness matrices considering the effects of

aerodynamic loads, respectively. The definitions of

the other symbols are the same as those in Eq. (3).

A comparison of Eqs. (3) and (10) shows that after

considering the unsteady aerodynamic loads, the

forced excitation vector due to the aerodynamic loads

is added to the right side of the vehicle system

dynamics equations, and the damping and stiffness

matrices on the left are affected by the unsteady

aerodynamic loads. In other words, the unsteady

M1 0

0 0

� �
€Y1

0

( )
þ

C1 Csi;Cui;CMsi;CMui;V;U; _Y1;Y1

� �
0

C2
_Y1; _Y2

� �
C3

_Y1; _Y2

� �
" #

_Y1

_Y2

( )

þ K1 Csi;Cui;CMsi;CMui;V;U; _Y1;Y1

� �
K2

K3 K4

" #
Y1

Y2

� �
¼

Pair Csi;Cui;CMsi;CMui;V;U; tð Þ
0

� �
;

ð10Þ
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aerodynamic loads not only add a forced excitation but

also change the self-excited vibration characteristics

of the vehicle system.

3 Numerical results and discussions

We have previously studied the influences of the

steady aerodynamic loads on the stability of high-

speed trains [32–34]. These studies showed that steady

aerodynamic loads change the hunting stability of the

train, causing significant changes in the critical speed.

In the actual operation process, the aerodynamic loads

acting on the railway vehicle are unsteady. Therefore,

the influences of unsteady aerodynamic loads on the

dynamic response of the vehicle system are analyzed

in this study. The results showed that the vehicle

dynamic response under unsteady aerodynamic loads

includes both self-excited and forced vibration char-

acteristics. This is fundamentally different from a

vehicle under steady aerodynamic loads. The unsteady

aerodynamic loads change the vehicle dynamic

responses from periodic motion to quasi-periodic

motion, increase the number of frequency compo-

nents, change the vibration form, and change the

critical velocity. This section presents these results in

(a) (b)Fig. 2 Comparison of the

results of this study and Ref.

[37]: a V = 500 km/h and

b V = 800 km/h

(a) (b)Fig. 3 Comparison of the

results of this study and Ref.

[38]: a time history at

322 km/h and b shift

velocity versus

displacement at 322 km/h

Fig. 4 Comparison of the results of this study and Ref. [39].

The effect of natural frequency and damping ratio on the

bifurcation speed
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detail and analyzes the mechanism of the phenomena

described above.

For verification, we compared the results with

several published examples. The first two examples of

the vehicle dynamic responses were taken from Refs.

[37] and [38], which provided the time-history curves

and phase trajectories of the wheelset at different

speeds without aerodynamic loads. We recalculated

the results for these two examples, and the results are

shown in Figs. 2 and 3, where the solid line represents

the results of this study and the triangular symbol

represents the results from Refs. [37] and [38]. The

results of the present study and Refs. [37] and [38]

agree closely. The third example was from Ref. [39],

which provided the bifurcation point of the vehicle

system without aerodynamic loads. We recalculated

this example, which is shown in Fig. 4. The compar-

ison of the results showed good agreement. The fourth

example was taken from Ref. [34], which considered

the influences of steady aerodynamic loads and

provided the time-history curves of the 1st wheelset

and front frame in this case. We recalculated this

example, which is shown in Fig. 5. The comparison of

the results showed good agreement.

We also made a comparison with experimental

results. In Ref. [40], the critical speed of a vehicle with

a new type of independently rotating wheelset with a

(a) (b)Fig. 5 Comparison of the

results of this study and Ref.

[34]. Time history for a

vehicle moving at a speed

V = 280 km/h and under a

centrifugal crosswind

Vf = 10.7 m/s: a lateral

displacement of the first

wheelset and b lateral

displacement of the front

frame

Fig. 6 Variation of the critical speed with the longitudinal

stiffness from the results of this study and Ref. [40]

(a) (b)Fig. 7 Comparison of the

results from our nonlinear

wheel–rail subroutine with

those from Ref. [41]:

a radius difference and

b contact angle difference of

the wheels
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negative tread conicity was studied experimentally

using 1/10-scaled model roller rig. During the exper-

iment, except for the rotation of the wheelset, the

vehicle model had no forward speed, so it was hardly

affected by aerodynamic loads. Ref. [40] showed the

variation of critical speed with the suspension stiff-

ness. We recalculated the results and compared them

with the experimental results in Ref. [40], as shown in

Fig. 6. Black solid points and error bars represent

experimental values, and the blue solid line represents

the results of the present study. Compared with Ref.

[40], reasonably good agreement was obtained

between our results and the experimental data.

The influences of unsteady aerodynamic loads on

the dynamic responses of high-speed trains will be

analyzed in detail. The fourth-order Runge–Kutta

method was used to solve Eq. (10) during the com-

putations. The details of Eq. (10) are given in ‘‘Ap-

pendix A’’. The vehicle dynamics parameters are

provided in ‘‘Appendix B’’. The wheel–rail treads are

LMA/CHN60, and the wheel–rail contact geometry

parameters, such as the radius difference and contact

angle difference associated with this type of tread, are

shown in Fig. 7. The solid lines and the triangular

symbols are the results of this study and Ref. [41],

respectively, and they are in good agreement.

The unsteady aerodynamic loads were computed by

Eq. (4), where uci = uMci = 0 (i = 1, 2, 3). The

frequency corresponding to the highest peak in the

graph of the power spectral density versus frequency is

between 0.5 and 4.0 Hz [42]. In this study, fi =

fMi = 1.0 Hz (i = 1, 2, 3) was taken as the

Fig. 8 Bifurcation diagram under steady aerodynamic loads

Table 2 Aerodynamic coefficients

Aerodynamic coefficients Cs1 = 5Cu1 Cs2 = 5C u2 Cs3 = 5Cu3 CMs1 = 5CMu1 CMs2 = 5CMu2 CMs3 = 5CMu3

Value 0.23784 0.08892 0.28304 - 0.00391 - 0.00337 - 0.44691

123

Nonlinear dynamic responses of high-speed railway vehicles 3035



representative frequency, and the analysis process is

the same for other frequencies.

For a crosswind speed of 10 m/s and a wind

direction perpendicular to the forward direction of the

train, the aerodynamic force and moment coefficients,

which were obtained based on the results given in Ref.

[42], are shown in Table 2.

3.1 Dynamic responses under steady aerodynamic

loads

Before proceeding to the study of the vehicle dynamic

responses under unsteady aerodynamic loads, we first

analyze the dynamic responses under steady aerody-

namic loads to serve as the basis for understanding the

unsteady results. The comparison between the two can

also clearly show new vehicle dynamic responses

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Time-history curves of the lateral displacement and

phase trajectories in the phase plane for each part of the vehicle

moving at a speed V = 550 km/h considering steady

aerodynamic loads: a, b lateral displacements of the wheelsets,

c, d lateral displacements of the frames, and e, f lateral

displacement of the car body
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under unsteady aerodynamic loads and help to reveal

the mechanism behind these responses in depth.

Based on the method presented in Ref. [34], we

obtained the bifurcation diagram of the high-speed

vehicle under steady aerodynamic loads, as shown in

Fig. 8. The influences of the steady aerodynamic loads

on the wheel–rail forces and creep coefficients were

considered in the computations. Figure 8 shows the

variation in the amplitude of the lateral displacement

limit cycles of the wheelsets, frames, and car body

with the running speed of the vehicle. The nonlinear

critical speed of the vehicle was 524 km/h when

considering the steady aerodynamic loads. We then

examined the responses of the wheelsets, frames, and

car body above the nonlinear critical speed. As

expected, the computations showed that the response

amplitudes are determined by the running speed,

which reflects the self-excited vibration characteristics

of the system. Figure 9 shows the time-history curves

of the lateral displacement and the phase trajectories in

phase plane of each component at a speed of 550 km/

h.

The time-history curves and phase trajectories

show that the lateral displacement amplitudes (that

is, half the peak-to-peak values) of the 1st and 2nd

wheelsets on the front frame are approximately the

same, with values of 8.38 and 8.15 mm, respectively.

The lateral displacement amplitudes of the 3rd and 4th

wheelsets on the rear frame are about half the lateral

displacement amplitudes of the 1st and 2nd wheelsets,

with values of 3.80 and 4.56 mm, respectively. The

lateral displacement amplitude of the front frame is

8.63 mm, and the amplitude of the rear frame is

4.70 mm, which is 54.46% of the amplitude of the

front frame. The lateral amplitude of the car body is

about half the lateral amplitude of the rear frame,

which is 2.32 mm. In this case, each degree of freedom

of the vehicle system forms an isolated closed-phase

trajectory in the phase plane, namely a limit cycle.

We then investigated the Poincaré mapping of the

vehicle dynamic responses under steady aerodynamic

(a) (b) (c)

(d) (e) (f)

Fig. 10 Projections of the intersection points of the motion

trajectory and the Poincaré section on several two-dimensional

planes, under steady aerodynamic load conditions: a yw1–yw2

plane, b yw1–yw3 plane, c yw1–yw4 plane, d yw1–yf1 plane, e yw1–
yf2 plane, and f yw1–yc plane
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load conditions. The Poincaré section r ¼
y;Vð Þ 2 R54 � R yw1 ¼ 0;j _yw1\0

� �
was used to

observe the projection of the intersection point of the

motion trajectory and the hyperplane on the two-

dimensional plane, as shown in Fig. 10. There is only

one fixed point on each projection plane in this case, so

the vehicle system is in periodic motion.

We now examine the frequency spectrum of the

dynamic responses of the vehicle system. A fast

Fourier transform (FFT) was applied to the time-

history curve of the lateral displacement of the 1st

wheelset to obtain its spectrum. In Fig. 11, the red line

represents the spectrum of the lateral displacement of

the 1st wheelset under steady aerodynamic load

conditions; both the abscissa and ordinate are

expressed in logarithmic coordinates. The red curve

has multiple spikes, where the highest spike corre-

sponds to the frequency fs, indicating that the

frequency of the harmonic component with the most

significant amplitude is fs. The amplitude of this

harmonic component is more than 17 times those of

the other harmonic components. The frequencies

corresponding to other spikes are integer multiples

of fs. The reason for the appearance of these integer

multiples of the harmonics is as follows: when the

equilibrium position is in the center of the two tracks,

nonlinear factors, such as the wheel–rail relationship,

lead to the occurrence of odd multiples of the

harmonics, and when the steady aerodynamic loads

cause the equilibrium position to deviate from the

center of the two tracks, both odd and even multiples

appear [34]. A similar analysis can be performed on

the other degrees of freedom to obtain the same result.

Thus, the self-excited vibrations of the vehicle

considering the influences of steady aerodynamic

loads is a periodic solution with a frequency fs.

In summary, the time-history curve of the response

for each degree of freedom of the wheelset, frame, and

car body under steady aerodynamic loads is a periodic

curve, and the phase trajectories in the phase plane

form a limit cycle determined by the vehicle operating

speed. This is shown as a single fixed point on the

Poincaré section. The frequency spectrum is a discrete

spectrum composed of a single peak with a frequency

of fs and small peaks at integer multiples of fs. The

dynamic response of the vehicle system considering

the influences of the steady aerodynamic loads

exceeding the nonlinear critical speed is a self-excited

vibration with a period of 1/fs, and its amplitude is

determined by the running speed.

Fig. 11 Frequency

spectrum of lateral

displacement of 1st wheelset

under aerodynamic loads at

a speed of 550 km/h
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 12 Time-history

curves and phase trajectories

in the phase plane of the

vehicle moving at a speed

V = 550 km/h considering

unsteady aerodynamic

loads: lateral displacements

of the a–e wheelsets, f–g
frames, and h–i car body
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3.2 Dynamic responses under unsteady

aerodynamic loads

The case with unsteady aerodynamic loads is signif-

icantly different from that with steady aerodynamic

loads. In the case of unsteady aerodynamic loads,

external excitations varying with time appear on the

right side of the vehicle system dynamics equations,

and the system dynamic responses become the

dynamic responses under the combined action of the

self-excited and forced excitations, which can also be

said to be the forced vibration responses of the self-

excited vibration system.

We next examine the time-history curves and phase

trajectories in the phase plane of the response for each

degree of freedom of the vehicle system under the

action of unsteady aerodynamic loads. We performed

simulations for many cases at different speeds, and the

results show that although the numerical values of the

responses of the vehicle system are different at

different speeds, these results have similar dynamic

characteristics. To facilitate the comparison with the

case of steady aerodynamic loads in Sect. 3.1, the

dynamic response of the vehicle system under

unsteady aerodynamic loads at a speed of 550 km/h

is specifically analyzed in this section.

Figure 12, like its counterpart from the case of

steady aerodynamic loads (Fig. 9), shows the time-

history curves and phase trajectories of the unsteady

aerodynamic load case at a speed of 550 km/h. The

phase trajectories in the phase plane shown in Fig. 12

(unsteady aerodynamic loads conditions) and Fig. 9

(steady aerodynamic loads conditions) are both pro-

jections of high-dimensional phase trajectories on a

two-dimensional plane. The dynamical system under

unsteady aerodynamic loads is a non-autonomous

system. As is well known, a non-autonomous system

can be turned into an autonomous system by adding

additional dimensions. Therefore, the dynamical sys-

tem under the unsteady aerodynamic loads can also be

regarded as a higher-dimensional autonomous system

than that under steady aerodynamic loads.

The computations show that, different from the

case of steady aerodynamic loads, the displacement

time-history curves of the wheelsets, frames, and car

body lose periodicity under unsteady aerodynamic

loads. The corresponding phase trajectory projection

curves are no longer closed curves but are entangled

with a finite width. Figure 12 shows the time-history

curves of the lateral displacement of each component

and the corresponding phase trajectory projections.

Because there is no periodicity, we use half the

difference between the ordinates of the maximum and

minimum extreme points of Fig. 12 as the nominal

amplitude to measure the vibration magnitude of each

component. The nominal amplitudes of the 1st and

2nd wheelsets on the front frame are 8.61 and

8.45 mm, respectively, and the nominal amplitudes

of the 3rd and 4th wheelsets on the rear frame are 4.95

and 6.33 mm, respectively. The nominal amplitudes

of the front and rear frames are 8.96 and 6.27 mm,

respectively. The nominal amplitude of the car body is

3.31 mm. Compared with the case under steady

aerodynamic loads, the lateral displacement ampli-

tudes of the front frame and the 1st and 2nd wheelsets

on it did not change significantly, increasing by 3.82%,

2.74%, and 3.68%, respectively. However, the lateral

displacement amplitudes of the rear frame, the 3rd and

4th wheelsets on it, and the car body changed

significantly, with increases of about 33.40%,

30.26%, 38.82%, and 42.67%, respectively. This

indicates that the unsteady aerodynamic loads signif-

icantly increase the amplitudes of the components

with smaller vibrations under steady loads. In fact,

according to Fig. 7b, when the lateral displacement of

the wheelset reaches 6.67 and 8.88 mm, the contact

angle difference of the wheelset increases signifi-

cantly. Once the lateral displacement of the wheelset

exceeds these two values, the restoring force increases

dramatically, which limits the increase in the lateral

displacement of the wheelset. Therefore, the lateral

displacements of the 1st and 2nd wheelsets do not

increase much under unsteady aerodynamic loads, but

the absolute value at the minimum point slightly

exceeds 8.88 mm instantaneously. Although the lat-

eral displacements of the 3rd and 4th wheelsets

increase significantly, the lateral displacement of 3rd

wheelset does not exceed 6.67 mm. The maximum

value of the 4th wheelset exceeds 6.67 mm instanta-

neously, but does not exceed 8.88 mm.

The vehicle dynamical system under unsteady

aerodynamic loads is a non-autonomous system. Thus,

we can adopt the stroboscopic method [43], that is,

sample the phase trajectory at a certain interval, to

investigate the dynamic characteristics of the system.

We performed a large number of computations in the

frequency region where the values of the aerodynamic

loads were large. The results showed that, overall, the
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dynamic response properties of the vehicle system

caused by unsteady aerodynamic loads at different

frequencies were similar. Therefore, the response of

the vehicle system under unsteady aerodynamic loads

with a period of 1 s is taken as a typical representative

for analysis. We sampled every 1 s and projected the

sampling points into the three-dimensional space, as

shown in Fig. 13. The black points in Fig. 13 represent

the sampling points projected into the three-dimen-

sional space, and the red, blue, and green points

represent the sampling points further projected on the

two-dimensional planes. The sampling points on

different two-dimensional planes are shown in

Fig. 14 in more detail. The blue five-pointed stars,
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 Stroboscopic points(b)Fig. 13 Distribution of the

stroboscopic sampling

points in three-dimensional

space: a yw1–yw2–yw3 and
b / f2–wf2–wc

(a) (b) (c)

(d) (e) (f)

Fig. 14 Projection of stroboscopic sampling points on several two-dimensional planes: a yw1–yw2 plane, b yw2–yw3 plane, c yw3–yw4
plane, d yw4–yf1 plane, e / f2–wf2 plane, and f /c–wc plane
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red circular dots, and black points in Fig. 14 represent

the cases with 20, 60, and 10,000 sampling points,

respectively. With the increase in the number of

sampling points, projections of the intersections of the

phase trajectory and the Poincaré section on a two-

dimensional plane form a clearly defined closed curve,

which is not blurred at all. This indicates that the

dynamic response of the vehicle system under

unsteady aerodynamic loads has a quasi-periodic

solution.

We can also determine the dynamic characteristics

of the system by calculating the Lyapunov exponent

spectrum of the vehicle dynamical system under

unsteady aerodynamic loads. In this study, the BBA

method [44] was used to determine the Lyapunov

exponent spectrum of the reconstructed time series,

and the first three largest Lyapunov exponents were

obtained. The longer the time series used to calculate

Lyapunov exponents is, the better the convergence of

the obtained Lyapunov exponents to the true value

becomes. Figure 15 shows the variations of the first

three Lyapunov exponents with the length of the time

series. The left ordinate indicates the values of the first

three Lyapunov exponents with conventional Carte-

sian coordinates; the right ordinate has logarithmic

coordinates to represent the maximum Lyapunov

exponent, and the abscissa represents the length of

the time series in logarithmic coordinates. When the

length of time series increases, both the largest and the

second largest Lyapunov exponents tend to zero, while

the third largest Lyapunov exponent is always less

than zero, which indicates that the response of the

system is quasi-periodic.

3.3 Mechanism analysis

In this section, the mechanism of the quasi-periodic

response under unsteady aerodynamic loads is ana-

lyzed. We investigate the amplitude frequency spec-

trum of the vehicle dynamic response. Figure 11

shows the spectrum of the lateral displacement of the

1st wheelset, in which the red line represents the

spectrum under steady aerodynamic conditions and

the black line represents the spectrum under unsteady

aerodynamic conditions. Figure 11 shows that, in the

case of steady aerodynamic loads, when the critical

speed is exceeded, the vehicle system undergoes self-

excited vibrations with fs as the fundamental fre-

quency, and the amplitude of the harmonic component

of the frequency fs is much larger than that of other

frequencies nfs (n = 2, 3, 4, …). Because the fre-

quency of each harmonic component is commensu-

rable, the vehicle system vibrates periodically under

steady aerodynamic loads.

However, for a vehicle system under unsteady

aerodynamic loads, the situation is completely differ-

ent. Under this circumstance, not only have the

inherent dynamic characteristics of the system chan-

ged, as mentioned above, but the system is also

subjected to the external excitation of the unsteady

aerodynamic loads with a frequency fa. Figure 11

shows that the height and position of the highest peak

of the black line are very close to the red line, and the

Fig. 15 Convergence of the first three largest Lyapunov exponents k1, k2, and k3 with the length of the time series
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highest peak of the black line is significantly higher

than other peaks of the black line. This indicates that

the vehicle system response under unsteady aerody-

namic loads still has a harmonic component whose

amplitude far exceeds those of other components, and

the frequency fu of this harmonic component is very

close to the fundamental frequency fs for the case of

steady aerodynamic loads. This implies that the

vibration forms corresponding to the above two

frequencies will be the same, which is further analyzed

below. The other lower peaks of the black line show

that the corresponding frequencies of these peaks are

integer multiples pfu (p = 2, 3, 4, …) of fu, integer

multiples qfa (q = 1, 2, 3, 4, …) of fa, and combined

frequencies of fu, pfu, and qfa, such as fu - 2fa, fu - fa,

2fu - fa, fu ? fa, fu ? 2fa, and 2fu ? fa. The above

harmonic components are combined to form the

vehicle dynamic responses under unsteady aerody-

namic loads. The mutual coupling of each degree of

freedom of the vehicle system and the existence of

nonlinear terms leads to the appearance of the

combined frequencies, which is a typical characteristic

of multi-degree-of-freedom nonlinear systems.

Further analysis shows that the vibration form

corresponding to the frequency fu is closely related to

the self-excited vibration of the homogeneous equa-

tion, and therefore, fu is highly related to the inherent

characteristics of the vehicle dynamical system. fu is a

real and usually an irrational number (e.g., fu is

proportional to the square root of the tread slope for a

free wheelset with a cone-shaped tread). The fre-

quency fa is completely determined by the character-

istics of the external flow field, and its value is

independent of the inherent characteristics of the

vehicle dynamics system. The value range of fa is also

a real number field. In this study, we do not consider

the exceptional case in which fu and fa were commen-

surable or near-commensurable. fu and fa are indepen-

dent of each other and can take values continuously

within the real number range, so in general, the ratio of

fu to fa is an irrational number. Therefore, the function

composed of fu, pfu (p = 2, 3, 4,…), qfa (q = 1, 2, 3, 4,

…), and other frequency harmonic components must

be quasi-periodic. This shows that the dynamic

response of the vehicle system under the action of

unsteady aerodynamic loads is a quasi-periodic

(a)

(b)

Fig. 16 a Time-history

curves. b Vector diagram
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solution, which is consistent with the previous results

obtained by the Poincaré section and Lyapunov

exponents.

The amplitude of the harmonic component of the

frequency fu is significantly higher than those of the

other components, and thus, it is the most important

component in the case of unsteady aerodynamic loads.

We next analyze the vibration form corresponding to

the frequency fu. The values of fu (& 2.29 Hz) and fs
(& 2.33 Hz) are very close, differing by only 1.75%,

which indicates there is a close relationship between

the vibration forms corresponding to these two

frequencies. To facilitate the comparison of the

vibration forms later, we introduce a vector diagram

to represent the vibration form and illustrate it with

Fig. 16. The time-history curves of the lateral dis-

placements yw1 and yw3 of the 1st and 3rd wheelsets,

respectively, under steady aerodynamic loads were

filtered to obtain the time-history curves of a1 and a3 of

the 1st and 3rd wheelsets, respectively, containing

only frequency fs. The black and red cosine curves in

Fig. 16a correspond to a1 ¼ Re A1e
ia1ei2pfst

 �
and

a3 ¼ Re A3e
ia3ei2pfst

 �
, respectively. For simplicity,

the two cosine curves in Fig. 16a are represented by

two vectors in Fig. 16b, which represent the amplitude

and phase difference of the lateral displacements of the

1st and 3rd wheelsets corresponding to the same

frequency harmonic component, and thus, they reflect

the vibration form at this frequency. Figure 16b shows

that the 1st and 3rd wheelsets underwent periodic

motions of frequency fs. The amplitudes of these two

motions are A1 and A3, respectively, and the corre-

sponding phases are a1 and a3. The amplitude ratio of

the 3rd wheelset to the 1st wheelset is A3/A1, and the

phase of the 3rd wheelset is a3 - a1 ahead of the 1st

wheelset. Thus, the two vectors in Fig. 16b can be

used to represent the vibration forms of the harmonic

components of the 1st and 3rd wheelsets correspond-

ing to the frequency fs. This representation is used in

the following sections to compare the vibration forms

by comparing vectors in different cases.

The vibration forms of the dynamic responses of the

vehicle system in the cases with unsteady and steady

aerodynamic loads are represented by vector diagrams

in Fig. 17. Figure 11 shows that the dominant com-

ponents of the vehicle system’s dynamic response

under unsteady and steady aerodynamic loads were

the components corresponding to two towering peaks

at frequencies fu and fs, respectively. Therefore,

Fig. 17 shows the vector diagrams corresponding to

harmonic components of fu and fs, in which numbers

1–4 represent the lateral displacements of the four

wheelsets and 5–7 represent the lateral displacements

of the front and rear frames and the car body,

respectively. The numbers 8–11 represent the yaw of

the four wheelsets, 12 and 13 represent the roll of the

(a) (b)

Fig. 17 Vector diagrams for translational and rotational displacements corresponding to frequencies fs (red) and fu (black):

a translational degrees of freedom and b rotational degrees of freedom
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front and rear frames, respectively, 14 and 15 repre-

sent the yaw of the front and rear frames, respectively,

and 16 and 17 represent the roll and yaw of the car

body, respectively. Figure 17a, b show vector graphs

of the translational displacement and rotational dis-

placement, respectively. When the vectors of the

vibration forms of various degrees of freedom are

drawn in Fig. 17, the phase of the lateral displacement

of the 1st wheelset under steady aerodynamic loads

(being set to zero without loss of generality) is used as

a reference to determine the phase of each degree of

freedom; the amplitudes of the lateral displacement

and yaw angle of the 1st wheelset under steady

aerodynamic loads are used as references to determine

the amplitudes of each translational and rotational

degree of freedom. The dominant components of each

degree of freedom (that is, the harmonic component

corresponding to fu and fs) are close to each other in

both amplitude and phase in the cases of unsteady and

steady aerodynamic loads.

We further normalized the vibration form and used

the degree of freedom with the maximum amplitude as

the reference to obtain the normalized amplitude. For

example, in the cases of steady and unsteady aerody-

namic loads, the lateral displacement amplitude A5 of

the front frame is the maximum translation amplitude,

so the normalized amplitudes of the other translational

degrees of freedom are Ai/A5 (i = 1, 2, 3, …, 7). The

yaw angle amplitude A9 of the 2nd wheelset is the

largest rotation amplitude, so the normalized ampli-

tude of the other rotational degrees of freedom is Ai/A9

(i = 8, 9, 10, …, 17). The phase of the lateral

displacement of the front frame is used as a reference

to determine the phases of the translational and

rotational degrees of freedom, so the phase of each

degree of freedom is ai - a5 (i = 1, 2, 3, …, 17). In

Fig. 18, the abscissa represents the sequence number

of the degrees of freedom of the vehicle system, and

the left and right ordinate axes, respectively, represent

the normalized amplitude and the phase of each degree

of freedom. Figure 18 shows that for the cases of

unsteady and steady aerodynamic loads, the normal-

ized amplitudes and phases of the harmonic vibrations

corresponding to fu and fs are consistent. This indicates

that the vibration forms corresponding to fu and fs are

highly consistent. The values of fu and fs are very close,

and their corresponding vibration forms are also very

similar to each other, which indicates that they are

vibrations of the same nature. Considering that the

vibration of fs corresponds to self-excited vibrations

under steady aerodynamic loads, fu and the vibration

corresponding to fu are referred to as the self-excited

vibration frequency (i.e., the frequency of hunting)

(a) (b)

Fig. 18 Normalized amplitude corresponding to fu and fs: a translational degrees of freedom and b rotational degrees of freedom
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and the self-excited vibration component under

unsteady aerodynamic loads, respectively.

A significant difference between the vehicle

dynamical system under unsteady aerodynamic loads

and that under steady aerodynamic loads is that the

former also includes a forced excitation of the

aerodynamic loads with a frequency of fa that appears

as an inhomogeneous term in the dynamics equations.

The vibration forms of the harmonic components

corresponding to the forced excitation frequency fa
and the self-excited vibration frequency fu are com-

pared in Fig. 19. When the vectors of vibration forms

of various degrees of freedom are drawn in Fig. 19, the

phase of the self-excited vibration component of the

lateral displacement of the 1st wheelset (being set to

zero without loss of generality) was used as a reference

to determine the phase of each degree of freedom; the

amplitudes of the self-excited vibration component of

the lateral displacement and yaw angle of the 1st

wheelset were used as a reference to determine the

amplitudes of each translational and rotational degree

of freedom, respectively. Figure 19a, c shows the

translational and rotational displacement vector dia-

grams, respectively, and Fig. 19b, d shows enlarged

vectors obtained by magnifying Fig. 19a, c 10 and 5

times near the origin, respectively. Figure 19 shows

(a) (b)

(c) (d)

Fig. 19 Vector diagrams for translational and rotational displacements corresponding to frequencies fu (black) and fa (blue):

a translational degrees of freedom, b enlarged drawing of (a), c rotational degrees of freedom, and d enlarged drawing of (c)
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that the amplitude and phase of the harmonic compo-

nents corresponding to fa and fu of each degree of

freedom are significantly different. More importantly,

the proportional relationship between the amplitudes

of each degree of freedom also changes essentially.

For example, for the harmonic component of the self-

excited vibration corresponding to fu, the amplitudes

of the lateral displacements of the 1st wheelset, 2nd

wheelset, and front frame are much larger than those

of the 3rd wheelset, 4th wheelset, and rear front (the

former is about 58.63%–100.69% larger than the

latter). However, for the harmonic components corre-

sponding to fa, the situation is reversed: the amplitudes

of the lateral displacements of the 1st wheelset, 2nd

wheelset, and front frame are smaller than those of the

3rd wheelset, 4th wheelset, and rear front (the former

is about 64.36%–76.14% smaller than the latter). The

same is true for the amplitudes of the other degrees of

freedom. For the phase, there are significant differ-

ences in the rotational degrees of freedom, among

which the phase difference of the roll of the frames can

reach 77.46� and 173.27�. The phase differences of the
yaw of the front frame and the roll of the car body are

also significantly different.

Using the same normalization method of the

vibration form described above, we can obtain

harmonic vibration forms of each degree of freedom

corresponding to frequencies fa and fu under unsteady

aerodynamic loads, as shown in Fig. 20. For the self-

excited vibration component corresponding to fu, the

lateral displacement amplitude A5 of the front frame is

the largest translational amplitude, and the normalized

amplitudes of the other translational degrees of

freedom are Ai/A5 (i = 1, 2, 3, …, 7). The yaw angle

amplitude A9 of the 2nd wheelset is the largest

rotational amplitude, and the normalized amplitudes

of the other rotational degrees of freedom are Ai/A9

(i = 8, 9, 10, …, 17). The phase of the lateral

displacement of the front frame is used as a reference

to determine the phase of each degree of freedom,

which is ai - a5 (i = 1, 2, 3,…, 17). For the harmonic

components corresponding to frequency fa, the lateral

displacement amplitude A4 of the 4th wheelset is the

largest translational amplitude, and the normalized

amplitudes of other translational degrees of freedom

are Ai/A4 (i = 1, 2, 3, …, 7). The roll angle amplitude

A16 of the car body is the largest rotational amplitude,

and the normalized amplitudes of the other rotational

degrees of freedom are Ai/A16 (i = 8, 9, 10, …, 17).

(a) (b)

Fig. 20 Normalized amplitudes corresponding to fu and fa: a linear displacement and b angular displacement
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The phase of the lateral displacement of the 4th

wheelset is used as reference to determine the phase of

each degree of freedom, which is ai - a4 (i = 1, 2, 3,

…, 17). Figure 20 shows that the harmonic vibration

forms corresponding to fa and fu are completely

different. The values of fa and fu are different, and

the corresponding vibration forms are different, which

indicates that the harmonic components corresponding

to fa and fu are two kinds of vibrations with completely

different properties. This is evident because the

harmonic component corresponding to fa is the forced

vibration response caused by the unsteady aerody-

namic loads, while the harmonic component corre-

sponding to fu is the self-excited vibration response, as

previously mentioned.

3.4 Critical speed with unsteady aerodynamic

loads

In the previous two sections, the difference between

the dynamic response characteristics of the vehicle

system at the same running speed when considering

unsteady and steady aerodynamic loads was mainly

investigated. In this section, the changes of dynamic

responses of the vehicle system with speed when

considering the influences of unsteady aerodynamic

loads are investigated.

We computed the dynamic responses of the vehicle

system at different running speeds. Figures 21 and 22

show the time-history curves of the wheelsets, frames,

and car body and the Poincaré sections at the running

speeds of 538 km/h (case 1) and 539 km/h (case 2).

Figure 21 shows that the vibration amplitude and

frequency of the vehicle system in case 2 are

significantly larger than those in case 1. For example,

the later displacement amplitude of the 2nd wheelset

of case 2 is 158.62% larger than that of case 1. The

frequency of each degree of freedom of Case 2 is about

2.22 Hz, while that of case 1 is 1.00 Hz. The blue five-

pointed stars and black points in Fig. 22 represent the

sampling points in cases 1 and 2, respectively. The

projections of the intersection of the phase trajectories

(a) (b)

(c) (d)

Fig. 21 Time-history

curves of the vehicle moving

at speeds V = 538 and

539 km/h: a 1st wheelset

and 2nd wheelset, b 3rd

wheelset and 4th wheelset,

c front frame and rear frame,

and d car body
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of cases 1 and 2 with the Poincaré section on the two-

dimensional plane are an isolated point and a closed

curve, respectively. This indicates that the system

dynamic response in case 1 is a periodic solution,

while the system dynamic response in case 2 is a quasi-

periodic solution. Thus, there is a critical value

between the two speeds of 538 and 539 km/h. When

the speed exceeds this critical value, the dynamic

response characteristics of the vehicle system under

unsteady aerodynamic loads will change essentially,

and the speed corresponding to this critical value is

called the critical speed under unsteady aerodynamic

loads in this study.

The frequency spectra of the two cases were also

investigated. Figure 23 shows the spectrum diagram

of lateral displacement of the 1st wheelset, in which

the blue and black lines correspond to cases 1 and 2,

respectively. In the spectrum diagram of case 1, the

highest peak, which is significantly higher than the

other peaks, corresponds to the unsteady aerodynamic

load frequency fa, and the other low peaks correspond

to the integer multiples qfa (q = 2, 3, 4, …) of the

frequency fa. The vehicle’s nonlinear factors, such as

the wheel–rail contact of the system, lead to the

appearance of these frequency components qfa. The

vehicle dynamic response in case 1 is the forced

vibration caused by unsteady aerodynamic loads.

Although the running speed of case 2 is only 1 km/h

higher than that of case 1, the response spectrum is

completely different. The black line corresponding to

case 2 is similar to the black line in Fig. 11. The

highest peak is much higher than the other peaks,

corresponding to frequency fu1; other lower peaks

correspond to other frequencies, most of which are

incommensurable with fu1. Through the same analysis

as that in Sect. 3.3, we can determine that the

Fig. 22 Projection of stroboscopic sampling points on several two-dimensional planes at speeds of 538 km/h (blue five-pointed stars)

and 539 km/h (black points): a yw1–yw2 plane, b yw2–yw3 plane, c yw3–yw4 plane, d yw4–yf1 plane, e / f2–wf2 plane, and f /c–wc plane
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Fig. 23 Frequency

spectrum of lateral

displacement of 1st wheelset

under unsteady

aerodynamic loads at speeds

of 538 and 539 km/h

Fig. 24 Bifurcation

diagram under unsteady

aerodynamic loads
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frequency corresponding to the highest peak in case 2

is the self-excited vibration frequency mentioned in

Sect. 3.3. The frequencies corresponding to the other

lower peaks in case 2 are integer multiples pfu1 (p = 2,

3, 4,…) of frequency fu1, integer multiples qfa (q = 2,

3, 4,…) of frequency fa, and the combined frequencies

of fu1, fa, pfu1, and qfa, such as fu1 - 2fa, 2fu1 - fa,

fu1 ? fa, fu1 ? 2fa, 2fu1 ? fa…. For the same reason

as that in Sect. 3.3, the vehicle system response in case

2 is quasi-periodic motion. The fundamental differ-

ence between cases 1 and 2 is that the vibration of the

vehicle system at low speeds (such as in case 1) is a

forced vibration, while the most important component

of the vehicle system’s dynamic response at high

Table 3 L25(5
6) orthogonal

array
Test Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

1 1 1 1 1 1 1

2 1 2 3 4 5 2

3 1 3 5 2 4 3

4 1 4 2 5 3 4

5 1 5 4 3 2 5

6 2 1 5 4 3 5

7 2 2 2 2 2 1

8 2 3 4 5 1 2

9 2 4 1 3 5 3

10 2 5 3 1 4 4

11 3 1 4 2 5 4

12 3 2 1 5 4 5

13 3 3 3 3 3 1

14 3 4 5 1 2 2

15 3 5 2 4 1 3

16 4 1 3 5 2 3

17 4 2 5 3 1 4

18 4 3 2 1 5 5

19 4 4 4 4 4 1

20 4 5 1 2 3 2

21 5 1 2 3 4 2

22 5 2 4 1 3 3

23 5 3 1 4 2 4

24 5 4 3 2 1 5

25 5 5 5 5 5 1

Table 4 Factors and their levels

Parameters Level 1 Level 2 Level 3 Level 4 Level 5

Factor 1 Kpx (N/m) 8.5440 9 106 9.6120 9 106 1.0680 9 107 1.1748 9 107 1.2816 9 107

Factor 2 Kpy (N/m) 5.9840 9 106 6.7320 9 106 7.4800 9 106 8.2280 9 106 8.9760 9 106

Factor 3 Ksx1 (N/m) 1.4112 9 107 1.5876 9 107 1.7640 9 107 1.9404 9 107 2.1168 9 107

Factor 4 Csy (N�s/m) 4.7040 9 104 5.2920 9 104 5.8800 9 104 6.4680 9 104 7.0560 9 104

Factor 5 fi 8.0000 9 10-1 9.0000 9 10-1 1.0000 9 100 1.1000 9 100 1.2000 9 100

Factor 6 Cu/Cs 1.6000 9 10-1 1.8000 9 10-1 2.0000 9 10-1 2.2000 9 10-1 2.4000 9 10-1
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speeds is a self-excited vibration, whose amplitude is

much larger than those of other components.

Thus, for the vehicle running on a smooth straight

track under unsteady aerodynamic loads, the variation

behavior of the dynamic responses with the running

speed is obtained as follows. When the running speed

is lower than the critical speed, the vehicle system

performs periodic forced vibrations, the vibration

frequencies are integer multiples qfa (q = 1, 2, 3, 4,…)

of the aerodynamic load frequency fa, and there are no

other frequencies. The frequency corresponding to the

harmonic component with the largest amplitude is the

external excitation frequency fa. When the running

speed exceeds the critical speed, the vehicle system

performs quasi-periodic motion, and the self-excited

vibration is excited to become the dominant compo-

nent of the vehicle system dynamic response, whereas

the amplitudes of the external excitation frequency

component and other combined frequency compo-

nents are small. Therefore, the occurrence of self-

excited vibrations can be used as the basis for judging

whether the nature of the dynamic response of the

vehicle system has changed (loss of motion stability),

and the running speed of the vehicle system when a

self-excited vibration occurs is the critical speed.

Figure 24 shows the bifurcation diagram of the

lateral displacement amplitude of the wheelset, frame,

and car body as the speed varies under unsteady

aerodynamic loads. To create the bifurcation diagram,

the amplitude of the self-excited vibration component

of the vehicle system dynamic response is used as the

ordinate of the bifurcation diagram. Figure 24 shows

that the critical velocity under unsteady aerodynamic

loads is 538 km/h, which changes compared with that

under steady aerodynamic loads, as shown in Fig. 8.

3.5 Influences of variations of parameters

on critical speed

In this sub-section, we examine the influences of the

following typical parameters on the critical velocity:

the excitation frequency of unsteady loads fi, the

fluctuation size of the unsteady aerodynamic loads Cu/

Cs, the longitudinal and lateral stiffness of the primary

suspension Kpx and Kpy, the stiffness of the spring–

damper connecting point of the yaw damper Ksx1, and

the lateral damping of the secondary suspension Csy.

To avoid high computation costs, the orthogonal test

method is used to determine which parameter combi-

nations need to be selected for the calculation. The

orthogonal array L25(5
6) is adopted, as shown in

Table 3, in which 25 is the number of parameter

combinations to be calculated, and 56 indicates that

there are six factors and five levels per factor. The

factors and their levels are shown in Table 4, in which

the values of level 3 correspond to the values in

‘‘Appendix B’’.

The calculation results of the above different

parameter combinations are shown in the form of

box-plots in Fig. 25. Figure 25a shows the maximum,

minimum, median, and upper and lower quartiles of

the critical velocity when the aerodynamic load

frequency is taken as levels 1, 2,..., 5. The box-plot

corresponding to each level is obtained from the

statistics of the calculation results of all the parameter

combinations when the aerodynamic load frequency is

at that level. Similarly, Fig. 25b shows the box-plots

corresponding to the fluctuation size of the unsteady

aerodynamic loads. When the unsteady aerodynamic

loads are considered, the critical speed of vehicle

system has a large variation range, and the maximum

(a) (b)

Fig. 25 Box-plots of a aerodynamic load frequency and b fluctuation size of unsteady aerodynamic loads
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variation range can reach 73.23% of the nominal

value.

4 Conclusion

This study shows that the influences of unsteady

aerodynamic loads on the dynamic responses of high-

speed trains are different from those of steady

aerodynamic load conditions. Based on the model

established in the present study, the time-history

curves, phase trajectories in the phase plane, Poincaré

section, and Lyapunov exponents of the vehicle

system running on an ideal straight track under the

action of unsteady aerodynamic loads were computed.

The vibration forms corresponding to the main

harmonic components under unsteady and steady

aerodynamic loads were compared, and the self-

excited vibration components of the vehicle system

under unsteady aerodynamic loads were identified.

The characteristics and numerical values of the

dynamic responses of the vehicles change significantly

when the combined action of self-excitation and

forced excitations caused by unsteady aerodynamic

loads are considered. In previous work, either the

periodic solution of forced vibrations or the periodic

solution of self-excited vibrations was given. How-

ever, the present study showed that this is not

sufficient. The findings were as follows: (1) with the

increase in the running speed, the vehicle response

under unsteady aerodynamic loads changes from a

forced vibration periodic solution to a quasi-periodic

solution, in which a self-excited vibration is the main

component; (2) the vibration amplitude increases

significantly, and the vibration frequency changes

considerably; (3) the responses of the vehicle system

include self-excited vibrations, forced vibrations, and

combined vibrations, and the frequencies of the

combined vibrations are the combination of integer

multiples of the frequencies of the first two kinds of

vibrations. The mechanisms of these phenomena were

also revealed.
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Appendix A: Details of equations of motion

The force diagrams and dynamics equations of each

component of the vehicle system are listed in detail

below [35].

For the i-th wheelset (i = 1–4) (Fig. 26).

For the front frame (n = 1) (Fig. 27).

The rear frame (n = 2) is similar to the front frame.

For the car body (Fig. 28).

The primary suspension longitudinal force is as

follows (i = 1–4):

Fxf L;Rð Þi ¼ Kpx �dwwfn þ Hfwbfn � dwwwið Þ
þ Cpx �dw _wfn þ Hfw

_bfn � dw _wwi

� �
ðA:1Þ

n = 1 when i = 1, 2 and n = 2 when i = 3, 4. The

subscript i = 1–4 represents the i-th wheelset, and

n = 1–2 represents the n-th frame, where the upper and

lower sign (‘ ? ’ or (‘ - ’) of ± and ; apply to the

left and right wheel, respectively. This convention is

also followed in similar cases later.

The primary suspension lateral force is as follows

(i = 1–4):

Fyf L;Rð Þi ¼ Kpy ywi � yfn þ Hfw/fn þ �1ð Þilfwfn

 �
þ Cpy _ywi � _yfn þ Hfw

_/fn þ �1ð Þilf _wfn

h i
:

ðA:2Þ

The primary suspension vertical force is as follows

(i = 1–4):
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Fzf L;Rð Þi ¼ Kpz zfn � zwi þ �1ð Þilfbfn � dw/wi � dw/fn

 �
þ Cpz _zfn � _zwi þ �1ð Þilf _bfn � dw _/wi � dw _/fn

h i
þ 2Mf þMcð Þg

8
:

ðA:3Þ

The secondary suspension longitudinal force is as

follows (i = 1, 2):

Fxt L;Rð Þi ¼ Ksx Hcbbc þ Hbfbfi � dswc � dswfið Þ
þ Csx Hcb

_bc þ Hbf
_bfi � ds _wc � ds _wfi

� �
:

ðA:4Þ

The secondary suspension lateral force is as follows

(i = 1, 2):

Fyt L;Rð Þi ¼ Ksy yfi � yc þ Hbf/fi þ Hcb/c þ �1ð Þilcwc

 �
þ Csy _yfi � _yc þ Hbf

_/fi þ Hcb
_/c þ �1ð Þilc _wc

h i
:

ðA:5Þ

The secondary suspension vertical force is as

follows (i = 1, 2):

Fzt L;Rð Þi ¼ Ksz zc � zfi � ds/fi � ds/c þ �1ð Þilcbc
 �

þ Csz _zc � _zfi � ds _/fi � ds _/c þ �1ð Þilc _bc
h i

þMcg

4
:

ðA:6Þ

The secondary lateral damper force is as follows

(i = 1, 2):

Fyhx L;Rð Þi ¼ Khx yfi þ Hfhx/fi � yhx L;Rð Þi � Ewfi

� �
:

ðA:7Þ

The secondary yaw damper force is as follows

(i = 1, 2):

Fsx L;Rð Þi ¼ Ksx1 �ysx L;Rð Þi � dsxwfi � Hfsxbfi
� �

:

ðA:8Þ

The bump stop force is as follows (i = 1, 2):

Fyzdi ¼ Kzd yfi � yc þ Hfzd/fi þ Hczd/c þ �1ð Þilzdwc

� �
:

ðA:9Þ

For the wheelset (i = 1–4),

Mw €ywi ¼ �FyfLi � FyfRi þ FLyi þ FRyi þ NLyi þ NRyi

ðA:10Þ

Iwz €wwi þ Iwy _/wi
_bwi �

V

r0

	 

¼ a0 FLxi � FRxið Þ þ a0wwi FLyi � FRyi þ NLyi � NRyi

� �
þMLzi þMRzi þ dw FxfLi � FxfRið Þ þ a0 NLxi � NRxið Þ

ðA:11Þ

Iwy €bwi ¼ rLiFLxi þ rLiwwi FLyi þ NLyi

� �
þ rRiFRxi

þ rRiwwi FRyi þ NRyi

� �
þ MLyi þMRyi þ rLiNLxi þ rRiNRxi:

ðA:12Þ

For the frame (i = 1, 2),

Mf €yfi ¼ FyfL 2i�1ð Þ þ FyfL 2ið Þ � FytLi þ FyfR 2i�1ð Þ
þ FyfR 2ið Þ � FytRi � FyhxLi � FyhxRi

ðA:13Þ

Mf €zfi ¼ FztLi � FzfL 2i�1ð Þ � FzfL 2ið Þ þ FztRi

� FzfR 2i�1ð Þ � FzfR 2ið Þ þMfg ðA:14Þ

Ifx _/fi ¼ � FyfL 2i�1ð Þ þ FyfL 2ið Þ þ FyfR 2i�1ð Þ þ FyfR 2ið Þ
 �

Hfw

þ FzfL 2i�1ð Þ þ FzfL 2ið Þ � FzfR 2i�1ð Þ � FzfR 2ið Þ
 �

dw

þ FztRi � FztLið Þds � FytLi þ FytRi

� �
Hbf

� FyhxLi þ FyhxRi

� �
Hfhx � FyzdiHfzd þMri

ðA:15Þ

Ify €bfi ¼ FzfL 2i�1ð Þ � FzfL 2ið Þ þ FzfR 2i�1ð Þ � FzfR 2ið Þ
 �
lf � FxtLi þ FxtRið ÞHbf

� FxfL 2i�1ð Þ þ FxfL 2ið Þ þ FxfR 2i�1ð Þ þ FxfR 2ið Þ
 �

Hfw þ FsxLi þ FsxRið ÞHfsx

ðA:16Þ

Ifz €wfi ¼ FyfL 2i�1ð Þ � FyfL 2ið Þ þ FyfR 2i�1ð Þ � FyfR 2ið Þ
 �
lf þ FxtLi � FxtRið Þds � FsxLi � FsxRið Þdsx

þ FxfR 2i�1ð Þ þ FxfR 2ið Þ � FxfL 2i�1ð Þ � FxfL 2ið Þ
 �
dw þ FyhxRi � FyhxLi

� �
E

ðA:17Þ

For the car body,

Mc €yc ¼ FytL1 þ FytL2 þ FytR1 þ FytR2 þ FyhxL1

þ FyhxL2 þ FyhxR1 þ FyhxR2 þ Fyzd1 þ Fyzd2

þ F2

ðA:18Þ
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Mc€zc ¼ �FztL1 � FztL2 � FztR1 � FztR2 þMcgþ F3

ðA:19Þ

Icx €/c ¼ � FytL1 þ FytL2 þ FytR1 þ FytR2

� �
Hcb

� FyhxL1 þ FyhxL2 þ FyhxR1 þ FyhxR2

� �
Hchx

þ FztL1 þ FztL2 � FztR1 � FztR2ð Þds
� Fyzd1þFyzd2

� �
Hczd �Mr1 �Mr2 þM1

ðA:20Þ

Icy €bc ¼ FztL1 � FztL2 þ FztR1 � FztR2ð Þ
lc � FxtL1þFxtL2þFxtR1þFxtR2ð ÞHcb

� FxsL1 þ FxsL2 þ FxsR1 þ FxsR2ð ÞHcsx þM2

ðA:21Þ

Icz €wc ¼ FytL1 � FytL2 þ FytR1 � FytR2

� �
lc þ FxtR1 þ FxtR2 � FxtL1 � FxtL2ð Þds
� FxsR1 þ FxsR2 � FxsL1 � FxsL2ð Þdsx
þ FyhxL1 � FyhxL2 þ FyhxR1 � FyhxR2

� �
lc

þ FyhxL1 þ FyhxL2 � FyhxR1 � FyhxR2

� �
E þ Fyzd1 � Fyzd2

� �
lc þM3:

ðA:22Þ

For the connecting points of the lateral dampers

(i = 1, 2),

Khx yfi þ Hfhx/fi � yhx L;Rð Þi � Ewfi

� �
¼ Chx _yhx L;Rð Þi � yc þ Hchx

_/c þ �1ð Þi lc � Eð Þ _wc

� �
:

ðA:23Þ

For the connecting points of the yaw dampers

(i = 1, 2),

Ksx1 �dsxwfi � Hfsxbfi � ysx L;Rð Þi
� �

¼ Csx1 _ysx L;Rð Þi � dsx _wc � Hcsx
_bc

� �
: ðA:24Þ

Appendix B: Nomenclature and vehicle parameters

The nomenclature used in the dynamics equations

follows [45] (Tables 5, 6, 7, 8).

Table 5 Nominal values of vehicle parameters

Nomenclature Values of parameters in this study

Mass of wheelset Mw 2000 kg

Mass of frame Mf 3200 kg

Mass of car body Mc 39,600 kg

Roll moment of inertia of wheelset Iwx 720 kg m2

Pitch moment of inertia of wheelset Iwy 84 kg m2

Yaw moment of inertia of wheelset Iwz 980 kg m2

Roll moment of inertia of frame Ifx 2592 kg m2

Pitch moment of inertia of frame Ify 1752 kg m2

Yaw moment of inertia of frame Ifz 3200 kg m2

Roll moment of inertia of car body Icx 128,304 kg m2

Pitch moment of inertia of car body Icy 1,940,400 kg m2

Yaw moment of inertia of car body Icz 1,673,100 kg m2

Longitudinal stiffness of primary suspension Kpx 1.068 9 107 N/m

Lateral stiffness of primary suspension Kpy 7.48 9 106 N/m

Vertical stiffness of primary suspension Kpz 1.176 9 106 N/m

Longitudinal damping of primary suspension Cpx 0 N�s/m
Lateral damping of primary suspension Cpy 0 N�s/m
Vertical damping of primary suspension Cpz 19,600 N s/m
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Table 5 continued

Nomenclature Values of parameters in this study

Longitudinal stiffness of secondary suspension Ksx 1.891 9 105 N/m

Lateral stiffness of secondary suspension Ksy 1.891 9 105 N/m

Vertical stiffness of secondary suspension Ksz 6 9 105 N/m

Longitudinal damping of secondary suspension Csx 0 N�s/m
Lateral damping of secondary suspension Csy 58,800 N s/m

Vertical damping of secondary suspension Csz 9800 N s/m

Stiffness of spring-damping connecting point of lateral damper Khx 1.715 9 107 N/m

Stiffness of spring-damping connecting point of yaw damper Ksx1 1.764 9 107 N/m

Half of track gauge a0 0.7465 m

Half of width of primary suspension dw 1.0 m

Half of width of secondary suspension ds 1.23 m

Half of length of primary suspension lf 1.25 m

Half of length of secondary suspension lc 8.75 m

Half of width of yaw damper dsx 1.35 m

Longitudinal distance from lateral damper to center of gravity of frame E 0.2 m

Height of center of mass of car body from track surface Hc 1.52 m

Vertical distance from primary suspension to center of gravity of frame Hfw 0.08 m

Height of secondary suspension above center of gravity of frame Hbf 0.39 m

Vertical distance from secondary suspension to center of gravity of car body Hcb 0.62 m

Height of lateral damper above center of gravity of frame Hfhx 0.281 m

Vertical distance from lateral damper to center of gravity of car body Hchx 0.719 m

Height of yaw damper above center of gravity of frame Hfsx - 0.03 m

Vertical distance from yaw damper to center of gravity of car body Hcsx 1.04 m

Height of bump stop above center of gravity of frame Hfzd 0.09 m

Vertical distance from bump stop to center of gravity of car body Hczd 0.92 m

Normal wheel radius r0 0.43 m

Rolling radius of left wheel (i = 1–4) rLi

Rolling radius of right wheel (i = 1–4) rRi

Left contact angle of i-th wheelset (i = 1–4) dLi
Right contact angle of i-th wheelset (i = 1–4) dRi
Component of creep force on left wheel along X-axis (i = 1–4) FLxi

Component of creep force on right wheel along X-axis (i = 1–4) FRxi

Component of creep force on left wheel along Y-axis (i = 1–4) FLyi

Component of creep force on right wheel along Y-axis (i = 1–4) FRyi

Component of creep force on left wheel along Z-axis (i = 1–4) FLzi

Component of creep force on right wheel along Z-axis (i = 1–4) FRzi

Component of creep moment on left wheel along X-axis (i = 1–4) MLxi

Component of creep moment on right wheel along X-axis (i = 1–4) MRxi

Component of creep moment on left wheel along Y-axis (i = 1–4) MLyi

Component of creep moment on right wheel along Y-axis (i = 1–4) MRyi

Component of creep moment on left wheel along Z-axis (i = 1–4) MLzi

Component of creep moment on right wheel along Z-axis (i = 1–4) MRzi

Component of normal force on left wheel along X-axis (i = 1–4) NLxi

Component of normal force on right wheel along X-axis (i = 1–4) NRxi

Component of normal force on left wheel along Y-axis (i = 1–4) NLyi
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