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We developed a Python-based open-source software for scientific visualization of fluid dynamics datasets. 
This software is enabled by the VTK graphic rendering library and equipped with an interactive user 
interface built upon PyQt5. The concept of “scene module” is proposed to construct the rendered 
scene for graphic analysis. In the context of fluid dynamics, scene module is defined by associating 
a manifested geometry, such as a cut plane, an iso-surface, a set of streamlines and a vector field, 
with a set of visual attributes, including rendering scalar, colormap, and opacity. In the proposed 
framework, each scene module is processed by one single VTK pipeline, and a number of modules 
can be rendered simultaneously for multivariate graphic analysis. Beyond the VTK built-in functionality, 
additional implementation efforts are taken to enhance the annotating capability, improve the display of 
coordinate axes, and load input data of various formats. Two case studies are presented to demonstrate 
the capability of PyVT, especially the visualization of multivariate fluid dynamic datasets that typically 
possess complex and interdependent flow physics.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

Visualization is an indispensable means to explore information 
in scientific data, and it is needed in almost all the research areas. 
For fluid dynamics research in particular, visualization plays a cru-
cial role in analyzing flow behaviors and extracting fundamental 
fluid characteristics and principles. For instance, visualization facil-
itates the identification of vortical structure in the wake of micro-
air vehicles [1,2]; visualization analysis helps decode the combus-
tion modality and the key controlling mechanisms in supersonic 
jet engines [3,4]; visualization analysis helps reveal some abnormal 
or unexpected flow behaviors in turbomachinery devices [5–7]; 
furthermore, visualization analysis assists in the discovery of the 
shock dynamics in different nozzle configurations and the opti-
mization of nozzle geometries to avoid undesired effects [8,9]. 
Given the numerous applications, it is of great importance to have 
powerful software tools to efficiently and effectively conduct visu-
alization tasks.

In the scientific community, ParaView and VisIt [10] are two 
open-source state-of-the-art visualization software that possess 
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powerful capabilities and a large user population. Both ParaView 
and VisIt employ Visualization Toolkit (VTK) as the data processing 
and rendering engine, and are equipped with Qt-based intuitive 
graphic user interface (GUI) to allow users conducting visualization 
and analysis tasks interactively and efficiently. In addition, both 
software applications support a variety of computer platforms, in-
cluding Windows, MacOS, and Linux workstations, and common 
distributed-memory multicomputers and clusters. To tackle dy-
namically evolving the scientific datasets, both visualization soft-
ware provide Python scripting interfaces to allow users to as-
sess the full data-processing and visualization capability under the 
Python command-line environment. Comparatively speaking, Par-
aView and VisIt are relatively heavyweight, and VisIt in particular 
has extensive dependence on third-party packages. The scripting 
interface introduces another layer of abstraction of VTK API (Ap-
plication Programming Interface) functions, which can only be uti-
lized in conjunction with the installed specific libraries. Besides the 
considable success of ParaView and VisIt, there is some latest and 
notable progress in the development of visualization software and 
tools. In particular, the popularization of scripting interface gives 
rise to a few purely VTK-based Python applications in the scien-
tific visualization landscape, of which PyVista [11] and vedo [12]
are two notable representatives. Both PyVista and vedo provide 
direct and streamlined Python API interfaces to the VTK library. 
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Fig. 1. Illustration of the conceptual design of PyVT algorithm.
Although PyVista and vedo are similar to the python scripting in-
terfaces of ParaView and VisIt in terms of functionality, the PyVista 
and vedo are much lightweight and exposes VTK functions to users 
in a more straightforward manner. At the present stage, the major 
limitation of PyVista and vedo is that they lack GUI support and 
require users to be sufficiently familiar with their API functions for 
sophisticated visualization tasks.

The objective of our work is to develop a new visualization tool 
that overcomes some of the limitations of aforementioned visu-
alization applications. The software we developed is called PyVT 
(Python-based Visualization Tool), for which VTK is used as the 
rendering engine and PyQt is employed to provide the interac-
tive GUI. To satisfy the needs of modern visualization requirement, 
PyVT is able to run in either GUI mode or script mode. More-
over, PyVT features: i) a module-based, fine-tuned and highly ef-
ficient workflow to visualize and analyze multivariate dataset; ii) 
an easy-to-understand, purely pythonic wrapper of the VTK filters 
and mappers to utilize VTK visualization pipeline; and iii) an in-
tuitive and highly interactive GUI to allow CFD users to define, 
preview and intermix geometric representations of CFD data. Since 
PyVT is built purely upon a modern and dynamic programming 
platform—Python3, thereby it possesses a concise code structure 
and the high-level language characteristics, and also preserves ex-
cellent portability, maintainability and extendibility.

This paper details our software development efforts and demon-
strates the capability of PyVT software. The remainder of the paper 
is organized as follows. Section 2 focuses on the conceptual design 
of the algorithm, especially a module-based strategy for compos-
ing a multicomponent scene. Followed by that, Section 3 provides 
the implementation details, including the VTK wrapper, the flexi-
bly annotating capability, the improve display of coordinate axes, 
and the input/output (IO) interface. Section 4 introduces the GUI. 
Moreover, case studies are carried out to demonstrate the capabil-
ity of PyVT in Sec. 5. The paper finishes with concluding remarks 
in Sec. 6.

2. Conceptual design

Data visualization is a process of transforming the information 
stored in scientific dataset to graphic manifestation. To perform 
this task, in particular for fluid dynamics dataset, it requires the al-
gorithms to be capable of exhibiting multivariate information, and 
a variety of geometric representations. To elaborate the conceptual 
design of PyVT algorithm, we first introduce three important defi-
nitions:

• Geometric element. A geometric element is a graphic repre-
sentation of a convenient and meaningful subset of a given 
2

dataset, which can be a cut plane, an iso-surface, a set of 
streamlines, a vector field, or a whole volumetric field. In or-
der to allow the user to prescribe the geometric elements, a 
dialog process is designated to collect necessary input param-
eters from the user.

• Scene module. A scene module is defined by associating a set 
of geometric element (not necessary the same type) with the 
rendering attributes, such as the scalar field to be used in ren-
dering, color transfer function, and opacity. Scene module is a 
basic graphic unit in the final scene which is the result of the 
visualization task.

• Scene. A scene is a rendered view produced for a specific vi-
sualization task. A scene might consist of multiple scene mod-
ules, including the auxiliary ones such as coordinate axes and 
annotations.

The conceptual design of our module-based visualization algo-
rithm is illustrated schematically in Fig. 1. The essential unit in 
the scene creation is the so-called scene module, which is defined 
by associating a set of rendering attributes with the included ge-
ometrical elements. In the context of PyVT, geometric element is 
considered as the geometric representation of the entire or cer-
tain convenient subset of the three-dimensional dataset. For CFD 
applications, the input dataset is typically the numerical solution 
on a structured or unstructured grid, and the subset of the in-
put data for visualization purpose can be a two-dimensional plane 
cut, an iso-surface of certain scalar field, a bundle of streamlines, 
or a vector field that can be defined from the input data or the 
aforementioned subset(s) of the input data. In each scene mod-
ule, after geometric elements are defined, the user can specify a 
set of attributes, including the scalar to render with, the range of 
the scalar, the style of colormap, and the opacity, so as to cre-
ate a rendered module. It is worth mentioning that each scene 
module is able to include multiple geometric elements, as long as 
the geometric elements share the same rendering attributes, and 
the rendering of each module is handled by a single visualization 
pipeline in the backend. This unique algorithmic design allows us 
to minimize the use of computer resource, which preserves the op-
timal efficiency during the human-computer interaction. Overall, a 
rendered scene module is deemed as a building block of the final 
scene. To efficiently and effectively manifest the physical informa-
tion contained in the input dataset, the final scene can include 
a number of rendered scene modules. In addition, for the clarity 
in graphic representation and analysis, the final scene, might also 
contain a set of auxiliary modules that are responsible for display-
ing coordinate axes, orientation axes, colormap legends, annotation 
texts, annotation arrows, and so on.
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Table 1
Geometric elements, their required input parameters, and the corresponding VTK Filter functions.

Geometric element Input parameters VTK filter(s) Observations

original 3D data None vtkPassThroughFilter Only the boundary surfaces rendered 
by the VTK convention

2D cut-plane(s) plane origin, plane normal, number of cuts, 
and signed offset

vtkCutter number of cuts and offset required 
for defining more than one 
cut-planes

iso-surface(s) Specific scalar variable, rescaled range of scalar 
magnitude, number of iso-values, or a single 
value

vtkContourFilter Input a single value define a single 
iso-surface; otherwise, specify 
number of iso-values for multiple 
iso-surfaces

streamlines Source type: (1) Point: coordinate, radius, No. 
of seeds; (2) Line: coordinates of point A and 
point B and No. of seeds along the AB line; or 
(3) Plane: coordinates of origin (point O), 
points A and B, and No. of seeds along OA and 
OB dimensions. Tracer integration direction, 
matching distance, and step size

vtkStreamTracer Only one type of source specified at 
a time; integration direction can be 
forward, backward or both.

vector field parameters of associated geometric element(s), 
vector variable name, skip ratio and scaling 
factor

vtkGlyph3D
vtkMaskPoints

defined based on the original dataset, 
2D cut-plane(s), iso-surface(s) or 
streamlines
Fig. 2. VTK pipeline and description of each component.

3. Algorithmic implementations

In this section, we will present the implementation details of 
PyVT, explaining how a rendered scene module is algorithmically 
generated using the VTK pipeline. In addition, we also take ef-
fort to improve the display of coordinate axes, and enable a flex-
ible annotating capability. The programming details will also be 
given.

3.1. Implementation of scene module

Our implementation is based on Python3 and VTK library of 
the latest release. To help elaborate the details, the visualization 
pipeline of VTK is first revisited. As shown in Fig. 2, the VTK Filter 
plays a central role in the pipeline as it is used to obtain geometric 
elements of various types. Each type of geometric element requires 
a specific VTK Filter. In Table 1, we listed all geometric-element 
types used in PyVT, their required input parameters, and the corre-
sponding VTK Filter functions. The defined geometric elements can 
3

1 # scene module class
2 class Scene_Module():
3
4 scalar_name = ’’
5 scalar_range = None
6 relative_range = None
7 opacity = 1
8 colormap = ’’
9 cutplane = None

10 cutplane_param = None
11 isosurf = None
12 isosurf_param = None
13 streamline = None
14 streamline_param = None
15 vectorfield = None
16 vectorfield_param = None
17 geomcombine = None
18 mapper = None
19 actor = None
20
21 def __init__(self):
22 pass
23
24 def write(self, fp):
25 ......
26
27 def render(self, input_data):
28 ......
29
30 def load(self, fp):
31 ......

Listing 1: Python pseudo-code of the Scene Module Class.

be rendered with various attributes to manifest physical informa-
tion. One of key attributes is the so-called active scalar–a selected 
physical quantity in the dataset. For CFD applications, the active 
scalar can be density, pressure, temperature, velocity magnitude, 
etc. Once the active scalar is chosen, its quantitative information 
is attached onto the associated geometric element and manifested 
through colors. The color-coding is accomplished through the VTK 
Mapper, with which the style of colormap and the mapping rela-
tion between scalar value and digitized color code are specified. 
Besides, the opacity property is another attributed. All rendering 
attributes are specified by the user. Once the geometric element 
and all the corresponding attributes are prescribed, a scene mod-
ule is defined, and can then be rendered by the VTK Actor and 
revealed in the Render window. It is noted that multiple VTK Ac-
tor can be defined in the same Render window, allowing various 
overlapping modules to be shown simultaneously. As for the algo-
rithmic implementation, we provide a pseudocode of the python 
class definition of one scene module in Listing 1. It can be seen 
that the scene module class includes a number of class variables 
to store the geometric elements and attributes, and three major 
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Fig. 3. Illustration of rendering-quality improvement on coordination axes manifestation with extended implementation (note that all quantities are non-dimensionalized).
class methods: i) write–output all module information into a jour-
nal file; ii) load–input all module information from a journal file; 
and iii) render–execute the VTK visualization pipeline.

3.2. Improvement of coordinate axes manifestation

The x-, y- and z-coordinate axes are an important and nec-
essary component in most fluid dynamic scenes, illustrating the 
dimensions of a rendered geometric element. In the default 
VTK implementation, the vtkCubeAxesActor class is desig-
nated to generate the coordinate axes with a large number of 
user customization options. However, the title and label texts 
of vtkCubeAxesActor are rendered in the 3D mode, which 
does not lead to a high-quality manifestation. The application of
vtkCubeAxesActor2D class may, to some extent, mitigates this
issue with the improved antialiasing performance, but does not al-
low users to fully customize the axes. One notable limitation is 
that the number of labels in the vtkCubeAxesActor2D must 
set to be the same for all the three different axes.

To address this dilemma and meet the needs of high-quality 
coordinate axes manifestation, we design and program a new class 
for coordinate axes, of which the pseudocode is presented in List-
ing 2. The new axes class employs one vtkCubeAxesActor2D
instance (although set to invisible) as a baseline entity to retrieve 
the positions of three axes in the 2D display coordinate since the 
positions vary with respect to the camera setting and object loca-
tion on the canvas. With the positions three vtkAxisActor2D
instances are used to represent the x-, y- and z-coordinates, re-
spectively. This strategy resolves the issues associated with the 
rendering of label and title texts, and also provides the user as 
many customization options as possible. As shown in Pseudocode 
2, the title name, range, number of labels, font size, label offset, 
label scaling, and visibility of each individual coordinate axis can 
be specified by the user. The improved manifestation of coordinate 
axes is illustrated in Fig. 3.

Although new implementation requires more rendering re-
sources since a few actors are included in one coordinate-axes 
instance, it is worthwhile to pay the price as our goal is to provide 
a visualization tool that can generate high-quality figures/images 
for scientific publications.
4

1 # scene module class for coordinate axes
2 class Scene_Module_FrameAxes():
3
4 title_x = ’X’
5 title_y = ’Y’
6 title_z = ’Z’
7
8 show_x = True
9 show_y = True

10 show_z = True
11
12 bounds_x = None
13 bounds_y = None
14 bounds_z = None
15
16 noflabel_x = 4
17 noflabel_y = 4
18 noflabel_z = 4
19
20 grid_on = False
21 font_factor = 1.5
22 label_factor = 0.6
23 offset = 20
24
25 actor = vtk.vtkCubeAxesActor()
26 actor2D = vtk.vtkCubeAxesActor2D()
27
28 actor2D_x = vtk.vtkAxisActor2D()
29 actor2D_y = vtk.vtkAxisActor2D()
30 actor2D_z = vtk.vtkAxisActor2D()
31
32 exponent_x = 0
33 exponent_y = 0
34 exponent_z = 0
35
36 def __init__(self):
37 pass
38
39 def write(self, fp):
40 ......
41
42 def render(self, input_data):
43 ......
44
45 def load(self, fp):
46 ......

Listing 2: Pseudocode of the scene module of coordinate axes.

3.3. Interactive annotating capability

Annotations are often required in a fluid dynamics scene in 
order to provide explanatory information. To enable annotating 
capability, three different annotation types are enabled in the 
present version of PyVT: (i) text; (ii) arrow; and (iii) colormap 
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Fig. 4. Snapshot of PyVT graphic user interface (note that all quantities are non-dimensionalized).
legend, which are implemented as instances of the vtkTex-
tActor, vtkLeaderActor2D, vtkScalarBarActor classes, 
respectively. The main algorithm challenge is to enable conve-
nient user specification of these annotations. We propose a novel 
two-step approach to achieve this objective. In the first step, 
the annotation editing mode is activated, and the user is al-
lowed to adjust the size and position of annotation on the can-
vas. To achieve this functionality algorithmically, the text and col-
ormap legend instances are encapsulated into vtkTextWidget
and vtkScalarBarWidget instances, respectively, which are 
rendered onto the canvas, so that the user can move and adjust 
the annotations by selecting and dragging via the mouse. Mean-
while, the arrow instance can be defined directly by prescribing 
two points on the canvas via the mouse. In the second step, PyVT 
exits the annotation editing mode once the appearances of anno-
tations are approved by the user and unable to be modified. In 
the algorithmic level, the widget instances for text and legend an-
notations turn disabled and the corresponding actors are shallow-
copied and left on the canvas. Push buttons are added in the GUI 
to control the on/off status of the annotation editing mode. This 
two-step approach allows the user to interactively and efficiently 
define multiple annotations of various types while not leaving ex-
cessive amount of draggable and movable but overlapped entities 
on the canvas, so as to ensure the quality of the user’s interaction 
with VTK render window.

3.4. IO interface

In the present release of PyVT, a number of data loaders are 
available to load datasets of several commonly used file formats, 
and meanwhile VTK built-in image writers are employed to ex-
port images of the created scene in a variety of file format. The 
support input and output file formats are summarized in Table 2. 
Tecplot data loader is developed based on the Tecplot data for-
mat [13], and CGNS (CFD General Notation System) data loading is 
enabled by the export tool of CGNS library [14]. Except the Tecplot 
and CGNS data loaders, other data formats are handled using the 
5

Table 2
Input and output file formats supported by PyVT.

Input data file Output image file

VTK legacy format (.vtk) Portable Network Graphics format (.png)

XML unstructured grid format (.vtu) Encapsulated PostScript format (.eps)

XML structured grid format (.vts) Joint Photographic Group format (.jpg)

stereolithography format (.stl) Tagged Image File format (.tiff)

Plot3D Meta file format (.p3d) Bitmap Image format (.bmp)

Tecplot ASCII data format (.dat)

Tecplot binary data format (.plt)

CGNS data format (.cgns)

VTK built-in data loaders. It is worth noting that there are some 
other VTK built-in data loaders to handle data format of popular 
CFD software, such as ANSYS FLUENT and OpenFOAM. However, 
as the software further develops and the version evolves, those 
data loader might be up to date. If needed, the user might sim-
ply extend our implementation with those data loaders and use 
them cautiously. For the output, the size of the scene canvas can 
be enlarged by rescaling for better visual quality. Furthermore, for 
checkpointing and recovery, all the parameters of a scene can be 
stored into a journal file (.jou), which can be used to restore the 
scene after reopening in the GUI mode or directly generate the 
scene image in the script mode.

4. Graphic user interface

The GUI is designed under the principle of maximizing the clar-
ity and simplicity and minimizing users’ interaction burdens. It is 
implemented based on PyQt5 [15], one of the state-of-the-art and 
most stable GUI-development frameworks. Fig. 4 presents a snap-
shot of the graphic interface of PyVT, illustrating the three major 
regions of the GUI, namely the top toolbar, the left sidebar, and the 
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right VTK render window. In the following we will provide their 
implementation details individually.

The top toolbar consists of a list of push buttons implemented 
using the QAction class, and the associated actions are to pro-
vide necessary capabilities, such as input-output (IO) operations, 
data manipulations, prescriptions of frame axes, colormap legends, 
text and arrow annotations, additions of orientation axes, feature 
outline, bounding box, and grid mesh, and some view adjustment 
functionalities. The colormap legend, arrow, and text are consid-
ered as annotation entities in PyVT, and multiple and diverse en-
tities of this type can coexist to meet the needs of sophisticated 
visualization tasks. Their inputs are collected through a two-step 
process as detailed in Sec. 3.3, for which their corresponding but-
tons serve as controllers to activate and deactivate the editing 
mode.

In the left sidebar, the first ribbon from the top is used to spec-
ify the attributes of scene modules, including, respectively, a drop-
down list (QComboBox) for choosing scalar variables to render 
geometric element, a double-handle ranger slider (the QRangeS-
lider adapted from [16]): to adjust the range of scalar mag-
nitude, a drop-down list (QComboBox) for selecting colormap, 
and a single-handle slider (QSlider) to specify the value of 
opacity. Below that is the ribbon where the user can specify 
the geometric elements. For each type of geometric element, a 
pop-up dialog (QWidget) is activated with the left push-button 
(QToolButton); once proper parameters are input by the user, 
the geometric element can then be previewed and imported into 
the corresponding drop-down list (QComboBox) in the main win-
dow for further processing. Below the ribbon of defining geometric 
elements are three push buttons (QToolButton) that allow the 
user to preview the defined scene module, add the defined module 
into the container, and reset view and GUI options for module defi-
nition. The module is defined individually with the aforementioned 
GUI items, and all defined modules are shown in the container 
(QListWidget) located at the bottom part of the left-split of 
the main window. There is no limit on the number of modules 
in the final scene as long as they can be rendered properly by VTK 
visualization engine. Three addition operations through push but-
tons (QToolButton) allow the user to render, delete and conceal 
module(s) selectively, which offers extra forgiveness for the user. 
The right window is the window to show rendered VTK entities, 
which is implemented with the QVTKRenderWindowInterac-
tor of VTK library. Examples of PyVT dialogs are demonstrated in 
Fig. 5.

In comparison to the ParaView GUI, the main advantage of PyVT 
GUI is that it does not explicitly expose the concept of VTK Filters 
to the user, which reduces some cognitive burdens. The user is able 
to work directly with the PyVT geometric elements (cut-plane, iso-
surface, streamline and vector field), which are conceptually more 
familiar to the fluid dynamists.

5. Case study

First of all, for the simple visualization tasks (e.g., that shown 
in Fig. 4), one module is sufficient, and the module container func-
tionality might not be employed in PyVT. Fluid dynamic datasets 
are typically multivariate and contain complex physical informa-
tion. PyVT’s module-based visualization approach is particularly 
suited for visualizing and analyzing the datasets of this kind. To 
illustrate the capability of PyVT, we will consider two examples 
in this case study, one related to aerodynamic application and the 
other one related to jet propulsion application. It is worth noting 
that the focus of this study is placed on demonstrating the capabil-
ity of PyVT, and therefore the specific visualizations are not meant 
to be exclusive.
6

Fig. 5. Design of pop-up dialogs for prescribing cut-planes (a) and coordinate axes 
(b) in PyVT.

5.1. Graphic analysis of CFD results of a NASA common-research aircraft 
model

PyVT is used to perform graphic analysis of CFD results of a 
NASA common-research aircraft model. In this case, the aerody-
namic calculation was performed using the SU2 software [17] and 
the results were stored as a 3D volumetric dataset in a VTK file. 
This particular analysis includes four major scene modules de-
fined in Table 3, which best exemplifies the capability of PyVT. As 
shown in Fig. 6, the pressure field on the aircraft surface is visual-
ized through the filled contour plot (Module 1), in which we can 
identify regions experiencing high structural stress. The flow field 
around the aero-wing is illustrated using the streamlines (Mod-
ule 3) and the associated vector field (Module 4). As visualized by 
these scene modules, the flight condition operates with a minimal 
angle of attack so that the flow is nearly parallel to the aircraft 
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Table 3
Specification of major scene modules for Case 1.

Module No. Geometric element Parameters Scalar variable for color-coding

1 domain boundary none pressure

2 iso-surface variable: Mach number
number of iso-value: 1
value: 1

Mach number

3 streamlines seed type: plane
origin: (900 100 150)
point A: (1700 1200 150)
point B: (900 100 270)
direction: forward
max. distance: 4000
initial step size: 0.1

streamwise velocity

4 vector field
(linked to Module 3)

vector variable: velocity
skip factor: 20
scaling factor: 40

streamwise velocity

Fig. 6. Visualization of CFD results of a NASA common-research model with PyVT. Contour surface and streamline are color-coded by pressure and streamwise velocity; and 
the translucent surface corresponds to iso-surface of unity Mach number; note that all quantities are non-dimensionalized.
body; furthermore, flow accelerates on the upper surface of the 
aero-wing leading to the presence of a supersonic region which is 
illustrated via translucent iso-surfaces (Module 2). Disturbance on 
the flow, which is introduced by the wing tip, is also manifested 
at the same time.

In this example, pressure and velocity information are displayed 
simultaneously with different scene modules. The use of different 
colormaps makes two kinds of flow information distinguished vi-
sually, and the corresponding legends can be placed and arranged 
in an orderly and tidy manner with PyVT’s flexibly annotating ca-
pability. The iso-surface of unity Mach number is laid on top of 
the pressure contour, and made translucent by adjusting the opac-
ity of scene module. In addition, the scene is complemented with 
the annotations of arrow and text to provide necessary interpreta-
tive information.

5.2. Graphic analysis of simulation results of a jet-engine combustor

In this case study, the graphic analysis is performed by using 
PyVT to gain insights to the combustion field in a model gas-
turbine combustor. The dataset of this case is taken from a VTK 
7

tutorial and stored in a plot3D (.p3d) file. To render the 3D data, 
several major scene modules are defined in Table 4 to illustrate the 
complex flow and thermal fields. Since vector can show both di-
rection and magnitude information, the vector field is employed as 
primary means of visualizing the flow field. To this end, a cut plane 
at the combustor exit (Module 1) and a set of streamlines initiated 
inside the combustor (Module 3) are specified at first, and then the 
arrows are attached to them to display the vector-represented flow 
fields (Module 2 & 4). As shown in Fig. 7, the rotating flow patten 
near the primary burner injector is clearly manifested; moreover, 
the rotation leads to the presence of a recirculation zone (reversed 
flow) which is illustrated through the translucent iso-surfaces of 
zero streamwise velocity (Module 5).

In Fig. 7(b), the top view of the scene manifests important in-
formation about the overall flow direction. It can be seen from the 
streamlines that the overall flow field shows a left-turning pattern, 
and experiences a significant acceleration along the streamwise 
direction due to the geometric contraction, which can be clearly 
observed from the variation in the length of arrows. It can also 
be seen that the left-turning behavior is diminishing along the 
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Table 4
Specification of scene modules for Case 2.

Module No. Geometric element Parameters Scalar variable for color-coding

1 cutplane (invisible) origin (16, 0, 0)
normal (1, 0, 0)

none

2 vector field
(linked to Module 1)

vector variable: velocity
skip factor: 10
scaling factor: 0.1

streamwise velocity

3 streamlines seed type: plane
origin: (5 -5 22)
point A: (5 5 22)
point B: (5 -5 32)
direction: both
max. distance: 400
initial step size: 0.1

streamwise velocity

4 vector field
(linked to Module 3)

vector variable: velocity
skip factor: 100
scaling factor: 0.1

streamwise velocity

5 iso-surface variable: streamwise velocity
number of iso-value: 1
value: -0.1

streamwise velocity

6 iso-surface variable: density
number of iso-value: 40
value: [0.336, 0.71]

density

Fig. 7. Visualization of CFD results of a model jet-engine combustor with PyVT. Volume rendering is provided using density; the single translucent iso-surface corresponds to 
the zero streamwise velocity; and the vector-field is color-coded by streamwise-velocity. The burner is equipped with a single primary stream inlet and five pairs of secondary 
stream holes (ten in total); as labeled, two pairs of secondary stream are issued upstream near the primary inlet and the other three pairs are issued at downstream. Note 
that all quantities are non-dimensionalized.
streamline and the flow at the combustor exit becomes almost 
streamwise and rather homogeneous.

As for the thermal field, the density field is shown using pseudo 
volume rendering technique based on translucent iso-surfaces. In 
this case, a number of iso-surfaces are rendered simultaneously 
with a small opacity and a distinct colormap so that the den-
sity information is manifested in a volumetric sense. From Fig. 7, 
we can see that the combustor chamber is occupied with burnt 
low-density hot gas, cold gas is issued through the secondary air 
injectors and the penetration length of the secondary air streams 
is about two diameters of the injector hole. The rendered scene 
is also complemented with the text/arrow annotations to highlight 
8

the injector positions, important physical phenomena, and the co-
ordinates axes that illustrate the size of the combustor.

6. Concluding remarks

A new open-source visualization software–PyVT is developed 
for the visualization and graphic analysis of fluid dynamics dataset. 
In the conceptual design, the concept of scene module is proposed 
as the building block to construct the scene which is the result 
of visualization. Detailed python algorithms are provided to enable 
rendering of scene module by making use of the VTK visualiza-
tion pipeline. Special efforts are taken to implement the annotating 
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capability, improve the display quality of coordinate axes, and pro-
vide input-output interface for data formats of various types.

A intuitive GUI is developed based on PyQt5 to allow the user 
to create scene modules in an efficient and interactive manner. The 
GUI offers the user the full control over the selection of phys-
ical variables, colormap style, scalar display range, and opacity. 
Moreover, a dialog-based inquiry approach is employed to collect 
parameters from the user so that graphic elements, such as cut 
plane, iso-surface, streamline, and vector field, can be defined effi-
ciently.

VTK and PyQt5 are two major building blocks of PyVT. Apart 
from those, PyVT does not have other significant dependences, 
which makes PyVT lightweight and very portable. PyVT is effi-
ciently implemented in Python3; with the Python3 toolchain, all 
functional components are efficiently integrated and the capabil-
ities can be easily extended with the future development efforts. 
Our case-study shows that PyVT is able to serve as a general vi-
sualization tool for the analysis of fluid dynamic datasets. The 
capability of PyVT in displaying multivariate information is well 
demonstrated through case studies.

PyVT of the current release has not been able to exploit the 
parallel and decomposed visualization strategy, and handle multi-
block datasets (currently it relies on the user to merge the multi-
block data to a single-block one). In the next release, we will im-
plement the parallel rendering capability so that PyVT can more 
efficiently visualize large datasets on multi-threaded computers. 
Meanwhile, we will also extend the PyVT to load multi-block 
datasets and allow the user to display specific block(s) selectively. 
In addition, the supplementary capability to visualize certain spe-
cial data, such as multiphase simulation data, will be enabled in 
PyVT in the near future.

Finally, we would like to mention that although the main pur-
pose of developing PyVT is to enrich the landscape of scientific 
visualization, the PyVT software may also aid in delivering basic 
knowledges about VTK and PyQt for instructional or educational 
purposes.
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Software Availability

PyVT is available at https://github .com /lvyu -imech /PyVT.git. The 
data of the case study is also included.
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