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A B S T R A C T

Prediction of wave-induced instantaneous (oscillatory or momentary) liquefaction is particularly important for
the design of offshore foundations. Most previous studies applied the linear Darcy model to characterize the
porous flow in a seabed. This treatment was found to cause fallacious tensile stresses in a non-cohesive seabed.
In this study, to overcome such shortcomings of previous models, a non-Darcy flow model is proposed based
on a Karush–Kuhn–Tucker (KKT) condition. In the KKT condition, the primal constraint arises from the fact
that the tensile behavior does not exist in a non-cohesive seabed, while the dual condition arises from the
physical evidences that the pore-fluid velocity increases during liquefaction. The non-linearity of the present
model is handled by the Newton–Raphson method within the standard finite element framework, without
coding constrained variational principle. This highlights the convenience for numerical implementation. The
difficulties in treating the nonlinearity by previous dynamic permeability model are also eliminated by the non-
Darcy flow model. The merits of the proposed model are validated by examining four numerical treatments
and two liquefaction criteria. The liquefaction depth by the present model is found to be roughly 0.73 times
of the value by the linear Darcy model.
1. Introduction

For offshore foundations and coastal structures located in the wave-
dominated zones, seabed liquefaction associated with wave-induced ex-
cess pore pressure is one of key concerns because it threatens the struc-
tural stability (Sumer, 2014; Jeng, 2018). The wave-induced seabed
liquefaction is also closely associated with sediment erosion or re-
suspension (Mory et al., 2007; Jia et al., 2014; Zhang et al., 2018b; Tian
et al., 2019; Du et al., 2021). In general, the seabed liquefaction can
be divided into two categories, based on laboratory experiments and
field measurements reported in the literature (Zen and Yamazaki, 1990;
Jeng, 2003): (1) the instantaneous liquefaction caused by the transient
(or oscillatory) pore pressure; (2) the residual liquefaction caused by
the residual (or accumulated) pore pressure. This study focuses on the
instantaneous liquefaction in a non-cohesive seabed.

In this scenario, the poro-elasticity assumption can be applied to
describe the seabed behavior, because the loose soil has rearranged
to a dense state after a long period of ‘wave-induced compaction
or solidation’ (Miyamoto et al., 2004; Sumer et al., 2006; Sumer,
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2014), making the subsequent wave loading fall into the reloading–
unloading stage. The phenomenon of the fluid–seabed interactions has
been analytically investigated under various conditions without a struc-
ture (Yamamoto et al., 1978; Madsen, 1978; Hsu and Jeng, 1994; Zhang
et al., 2013). When a structure is considered, the complicated boundary
conditions make the numerical analyses indispensable, such as subma-
rine pipelines (Jeng and Lin, 1999; Gao et al., 2003; Zhao et al., 2014;
Zhao and Jeng, 2016; Lin et al., 2016; Duan et al., 2017; Li et al., 2019;
Liang et al., 2020; Liang and Jeng, 2021), breakwaters (Jeng et al.,
2013; Zhang et al., 2018a; Celli et al., 2019), coastal slopes (Young
et al., 2009), offshore wind turbine foundations (Chang and Jeng, 2014;
Qi and Gao, 2014; Sui et al., 2016; Lin et al., 2017; Zhao et al., 2017;
Li et al., 2018) and immersed tunnels (Han et al., 2019; Chen et al.,
2021) etc. The structure–seabed interactions may introduce additional
complexities, e.g. the excess pore pressure induced by structure rocking
motion (Kudella et al., 2006; Sumer et al., 2008; Cuéllar et al., 2014;
Liao et al., 2019), the principal stress rotation (Wang et al., 2017;
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Zhu et al., 2019), nonlinear contact behavior at the structure–seabed
interface (Qi et al., 2020). Despite that complicated factors have been
considered for instantaneous liquefaction, Qi and Gao (2015, 2018)
found that existing works can lead to tensile behavior in the liquefied
zone. This phenomenon should not occur in a non-cohesive seabed
and can lead to a consequence that the liquefaction depths predicted
by different liquefaction criteria depart from each other (Qi and Gao,
2015, 2018).

Once this topic is taken into discussion, one can reasonably argue
that the porous-medium theory for liquefied soil should be replaced
by micro-mechanical discontinuum-based models (Scholtès et al., 2014;
Fukumoto and Ohtsuka, 2018; Narsilio et al., 2009; Martin et al., 2020)
and then the continuum-based framework for instantaneous liquefac-
tion should be rebuilt. These models motivate the present study to
explore the liquefaction mechanism studied from discontinuum-based
simulations to present a specified continuum-based model for instan-
taneous liquefaction. In order to build a bridge from micro scale to
engineering scale without expensive computational cost, an alternative
approach treating the liquefied soil as a non-Newtonian fluid with a
viscosity is proposed (Towhata et al., 1992), in which the liquefied zone
should be predetermined. To capture the progressive transition from a
two-phase porous medium to a single-phase fluid material, Wang et al.
(2020) described the liquefied soil as a thixotropic fluid which was
also adopted to describe the non-liquefied soil by changing the model
parameters. The difference between the present study and previous
investigations is to preserve the two-phase porous-medium assumption
for both liquefied and non-liquefied soils. To this end, we need to
address the following issue.

If the porous-medium theory is assumed to be still valid for the
liquefied soil, the linear elastic assumption could no longer be used.
Then, the poro-elastoplastic models (Sassa and Sekiguchi, 2001; Jeng
and Ou, 2010; Wang et al., 2014; Ye et al., 2015; Elsafti and Oumeraci,
2016; Wang et al., 2021), which are usually required in the analysis
of residual pore pressure, can be applied to analyze the instantaneous
liquefaction. However, this extension will pose an ill-condition issue
to the global matrix system due to the loss of solid-phase resistance
in the liquefied zone. Recently, Zhou et al. (2020b) tried to model the
instantaneous liquefaction from a new perspective, i.e. characterizing
the fluid-phase flow as a dynamic permeability model instead of the
Darcy’s law with constant permeability. This treatment preserves the
clean poro-elasticity assumption for the solid phase and also avoids
handling ill-condition difficulties. The idea is motivated by the litera-
ture (Wu and Jeng, 2019; Wu et al., 2020), which characterized the soil
permeability 𝑘𝑠 being a function of the pore pressure 𝑝. The difference
is that the previous dynamic permeability model (Wu and Jeng, 2019;
Wu et al., 2020) was found to disagree with the permeability increase
during soil liquefaction (Arulanandan and Sybico, 1992; Ha et al.,
2003; Haigh et al., 2012; Wang et al., 2013; Shahir et al., 2014; Ueng
et al., 2017), which was reproduced by Zhou et al. (2020b). Never-
theless, the dynamic permeability model (Zhou et al., 2020b) poses
difficulties in nonlinear convergence. Numerical divergence can even
occur when using large model parameters or fine computational mesh
or simulating the seabed under two-dimensional (2D) wave loading,
making the application limited.

To address this issue, Zhou et al. (2021) modeled the instanta-
neous liquefaction problem in physics as a nonlinear complementarity
problem (NCP) in mathematics. The improvements over the dynamic
permeability model (Zhou et al., 2020b) are apparent. Within the NCP
treatment (Zhou et al., 2021), a Karush–Kuhn–Tucker (KKT) condition
is constructed specified for instantaneous liquefaction. It is treated by
the Lagrange multiplier method and the primal–dual active set strat-
egy (PDASS) (Kunisch and RöSch, 2002). For the saddle-point system
arising from the Lagrange multiplier method, the Direct delta function
is used to interpolate the multipliers which can therefore be statically
condensed to guarantee the computational efficiency. These treatments,
2

however, are neither standard nor modular within the finite element
framework, making the reproducing effort nontrivial in existing codes
(e.g. PORO-FSSI-FOAM, Liang et al. (2020) and Liang and Jeng (2021)).
It is therefore not convenient to extend NCP to more general scenarios,
e.g. partially-buried pipelines (Zhao and Jeng, 2016; Duan et al., 2017),
monopile foundations (Sui et al., 2016; Lin et al., 2017) and gravity
foundations for offshore wind turbines (Li et al., 2018).

To minimize the implementation effort and at the same time ob-
tain numerical performances close to the NCP treatment (Zhou et al.,
2021), this study establishes a non-Darcy flow model specified for
instantaneous liquefaction, on the basis of physical evidences (e.g., mi-
cro mechanisms, laboratory experiments and field trials). In order to
avoid any unnecessary misleading of the existing non-Darcy models
determining the limits of Darcy’s law validity by means of Reynolds
number (e.g. Forchheimer model Girault and Wheeler, 2008, Hansbo
model Hansbo, 2001), it is clarified here that the present model is
derived based on a new concept, wherein the liquefaction criterion
is revised as a primal constraint based on micro-scale simulations
and field observations. The primal constraint is first imposed by the
Lagrange multiplier method to make clear the physical meaning of the
Lagrange multiplier, so as to find a dual complementarity condition
to check and then correct the assumed liquefied zone. The primal–
dual pair forms a Karush–Kuhn–Tucker (KKT) condition, removing the
requirement that the liquefied zone should be predetermined (Towhata
et al., 1992).

It is noted that the KKT condition is a mathematical concept within
non-linear complementarity problem (NCP). It was previously applied
to model multi-body contact behavior (Wriggers, 2006; Popp et al.,
2013; Zhou et al., 2018), multiple cracks (Zheng et al., 2015) and
the non-associative plasticity with non-smooth yield surfaces (Zheng
et al., 2020) etc. Motivated by these works, Zhou et al. (2021) pre-
sented a KKT condition for instantaneous liquefaction and treated the
KKT condition by constrained variational principle. In this work, we
construct a new type of KKT condition that is different from the KKT
condition presented in Zhou et al. (2021). Furthermore, by means of
the penalty method and variational equivalence, the KKT condition
constructed here turns out to be clear in physics as a concise non-
Darcy formulation, which can be conveniently treated by the standard
Newton–Raphson method. Thus, the implementation effort becomes
trivial, due to that coding constrained variational principle for NCP,
as implemented in Zhou et al. (2021), is no longer required. The
difficulties of the dynamic permeability model (Zhou et al., 2020b) in
nonlinear convergence are also well addressed by the new non-Darcy
model.

Without losing rigorousness in mathematics, Section 2 starts from
the construction of NCP and its weak forms by using Lagrange multi-
plier method and penalty method, respectively. The physical evidences
for the primal constraint are also provided in this section. By modeling
the NCP as a non-Darcy flow model, Section 3 provides the physical
evidences for the dual condition. Exemplary results are provided under
one-dimensional (1D) and 2D wave loading conditions in Sections 4 and
5, confirming that the nonlinear convergence of the present model is
superior. Two liquefaction criteria widely applied in ocean engineering
are discussed in detail and found to become unified by the new model.
Effects of the soil and wave parameters as well as the penalty param-
eter introduced by the non-Darcy model are also investigated. Finally,
several conclusions are drawn in Section 6.

2. Nonlinear complementarity problem arising from
instantaneous liquefaction

2.1. Basis of wave–seabed interactions and liquefaction criteria

Fig. 1 shows the wave–seabed interactions and associated seabed
liquefaction, wherein the seabed thickness, water depth and wave
height are denoted by 𝑑, ℎ and 𝐻 , respectively. The coordinate 𝑧 equals

to zero at the seabed surface and all the other positions in seabed
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Fig. 1. Schematic of the wave–seabed interactions involving instantaneous liquefaction.

correspond to positive values of 𝑧. Note that the wave is shown as linear
in Fig. 1. If large waves in shallow water are involved, then Stokes
wave (Gao et al., 2003) or cnoidal wave (Zhou et al., 2014) should
be applied to account for the nonlinear effect. For simplicity, the linear
wave theory (Dean and Dalrymple, 1984) is applied in this study:

𝑃𝑏 = 𝑝0 cos
( 2𝜋
𝐿

𝑥 − 2𝜋
𝑇

𝑡
)

, (1)

where 𝑃𝑏 is the periodic wave pressure applied at the seabed surface,
i.e. 𝑧 = 0. The amplitude of 𝑃𝑏 is denoted by 𝑝0. 𝐿 and 𝑇 denote the
wavelength and wave period, respectively. 𝐿 and 𝑝0 are determined by:

𝐿 =
𝑔𝑇 2

2𝜋
tanh

(2𝜋ℎ
𝐿

)

, 𝑝0 =
𝛾𝑤𝐻

2 cosh (2𝜋ℎ∕𝐿)
, (2)

where 𝑔 is the acceleration of gravity and 𝛾𝑤 is the weight of water per
unit volume.

When instantaneous liquefaction occurs, the considered seabed do-
main 𝛺 is decomposed into two non-overlapping sub-domains:

𝛺 = 𝛺𝐿 ∪𝛺𝑁𝐿, 𝛺𝐿 ∩𝛺𝑁𝐿 = ∅. (3)

where 𝛺𝐿 and 𝛺𝑁𝐿 denote the instantaneously liquefied and non-
liquefied zones, respectively.

The liquefied zone (𝛺𝐿) can be determined by several criteria,
among which two criteria widely applied in ocean engineering are as
follows (Qi and Gao, 2018):

𝑝 − 𝑃𝑏 ≥ 𝛾 ′𝑧, (4)

𝑗𝑧 ≥ 𝛾 ′, (5)

where 𝑝 is the wave-induced excessive pore pressure. Its gradient along
the vertical direction is denoted by 𝑗𝑧 = 𝜕𝑝∕𝜕𝑧. 𝛾 ′ is the buoyant unit
weight of the seabed and can be determined by: 𝛾 ′ =

(

𝐺𝑠 − 1
)

(1 − 𝑛) 𝛾𝑤,
where 𝐺𝑠 is the specific gravity of sand particles and 𝑛 is the sand
porosity. The porosity 𝑛 has a relation with the void ratio 𝑒 (the ratio
of the void volume to the volume of solid particles): 𝑛 = 𝑒∕(1+𝑒).

The criterion by Eq. (4) was deduced by Zen and Yamazaki (1990),
based on the force analysis on the vertical soil column. When wave
trough arrives, the excess pore pressure 𝑝 and the wave pressure 𝑃𝑏
become both negative. Instantaneous liquefaction occurs when the
difference 𝑝 − 𝑃𝑏 exceeds the overburden seabed pressure 𝛾 ′𝑧. The
extension of this criterion to three-dimensional scenarios was presented
by Jeng (1997).

The criterion by Eq. (5) was proposed by Bear (1972) from the
perspective of soil-element scale. The positive value of 𝑗𝑧 can be in-
terpreted as the upward seepage force. If the upward seepage force
exceeds the critical value (usually chosen as 𝛾 ′), the soil layer will reach
a instantaneously-liquefied state.
3

2.2. Revising the liquefaction criterion as a primal constraint

Generally, the liquefied zones determined by the above two criteria
can be different. This issue was recently discussed by Qi and Gao
(2018) and was found to be caused by the tensile behavior occurring in
𝛺𝐿. This phenomenon was stated as nonphysical (Qi and Gao, 2018),
according to the evidences shown in Fig. 2.

The first evidence is the temporal effective stress obtained by the
simulations using the discrete element method (DEM) coupled with
a pore-scale finite volume (PFV) scheme (Scholtès et al., 2014), as
presented in Fig. 2(a). The effective stress by the numerical simulations
stays non-negative even liquefaction occurs. The micro-mechanical in-
vestigation of liquefaction of granular media by cyclic DEM tests (Mar-
tin et al., 2020) produces similar conclusions. This motivates revising
the liquefaction criterion by Eq. (4) as the following primal constraint:

𝑝 − 𝑃𝑏 = 𝛾 ′𝑧 in 𝛺𝐿. (6)

The second evidence is the field trials by Mory et al. (2007)
wherein 47 instantaneous liquefaction events were observed, as shown
in Fig. 2(b). Despite that the wave height varies from 0.75 m to 1.8 m,
the upward seepage force (𝑗𝑧) generally approximates to a threshold
value, i.e. the buoyant unit weight (𝛾 ′). A further increase of wave
height could not induce higher seepage force in the liquefied zone. This
motivates revising the liquefaction criterion by Eq. (5) as the following
primal constraint:

𝑗𝑧 = 𝛾 ′ in 𝛺𝐿. (7)

Eq. (6) has been numerically handled by Zhou et al. (2021). This
study focuses on dealing with the primal constraint by Eq. (7) in
a numerical manner. With Eq. (7) as an additional constraint, the
boundary value problem can be given as:

∇ ⋅
(

𝝈′ − 𝑝𝐈2×2
)

+ 𝐛 = 0 in 𝛺, (8a)

𝜕𝜀𝑣
𝜕𝑡

+ 𝑛𝛽
𝜕𝑝
𝜕𝑡

− ∇ ⋅
(

𝑘𝑠
𝛾𝑤

∇𝑝
)

= 0 in 𝛺, (8b)

𝑗𝑧 = 𝛾 ′ in 𝛺𝐿, (8c)

𝐮 = �̂� on 𝛤𝑢, (8d)

𝝈 ⋅ 𝐧𝜎 = �̂� on 𝛤𝜎 , (8e)

𝑝 = �̂� on 𝛤𝑝, (8f)

𝐯𝑤𝐧𝑣 = �̂�𝑛𝑤 on 𝛤𝑣. (8g)

where the former two equalities arise from the poro-elastic theory (Biot,
1941) and represent the equilibrium of the solid–fluid mixture and
the conservation of mass, respectively. In Eq. (8a), 𝝈′ is the effective
stress, 𝐈2×2 is a second-order unit tensor and 𝐛 is the body force per
unit volume. In Eq. (8b), 𝜀𝑣 is the volumetric strain, 𝑡 denotes time,
𝛽 is the pore fluid compressibility and 𝑘𝑠 is the Darcy’s coefficient of
permeability. The pore fluid compressibility is determined by (Verruijt,
1969):

𝛽 = 1
𝐾𝑤0

+
1 − 𝑆𝑟
𝑃abs

, (9)

where 𝐾𝑤0 is the true bulk modulus of pore water and can be taken
as 2.0 × 109 Pa (Yamamoto et al., 1978). 𝑆𝑟 denotes the degree of
saturation and 𝑃abs is the absolute water pressure.

The latter four equalities in Eq. (8) represent the boundary condi-
tions. 𝛤𝑢 and 𝛤𝜎 are Dirichlet and Neumann boundaries of the solid
phase, respectively. In Eq. (8d), 𝐮 is the displacement vector and �̂� is
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Fig. 2. Evidences for the primal constraints: (a) DEM-PFV simulations (Scholtès et al., 2014); (b) field trials (Mory et al., 2007).
the constrained displacement. In Eq. (8e), 𝝈 is the total stress tensor, 𝐧𝜎
is the outward unit normal vector of 𝛤𝜎 and �̂� is the boundary traction.
𝛤𝑝 and 𝛤𝑣 are Dirichlet and Neumann boundaries of the fluid phase,
respectively. In Eq. (8f), �̂� is the constrained pore pressure. In Eq. (8g),
𝐯𝑤 is the pore-fluid velocity vector, 𝐧𝑣 is the outward unit normal vector
of 𝛤𝑣 and �̂�𝑛𝑤 denotes the boundary Darcy velocity.

2.3. Finding the dual condition complementary to the primal constraint

The primal constraint in Eq. (8) is still insufficient to obtain ex-
pected results, because the liquefied zone 𝛺𝐿 is undetermined as well
as time-dependent. Therefore, a dual condition is needed to check and
then correct 𝛺𝐿. To this end, the Lagrange multiplier method is used to
impose the primal constraint, with the Lagrange multiplier 𝜆 introduced
as an additional unknown field. The trial and weighting spaces are
defined as:

𝒱𝑢 =
{

𝐮 ∈
[

𝐻1 (𝛺)
]3
|

|

|

𝐮|𝛤𝑢 = �̂�
}

, 𝒱𝛷 =
{

Φ ∈
[

𝐻1 (𝛺)
]3
|

|

|

Φ|𝛤𝑢 = 𝟎
}

,

(10a)

𝒱𝑝 =
{

𝑝 ∈
[

𝐻1 (𝛺)
]

|

|

|

𝑝|𝛤𝑝 = �̂�
}

, 𝒱𝜙 =
{

𝜙 ∈
[

𝐻1 (𝛺)
]

|

|

|

𝜙|𝛤𝑝 = 0
}

,

(10b)

𝒱𝜆 =
{

𝜆 ∈
[

𝐻1 (𝛺)
]

|

|

|

𝜆|𝛺𝑁𝐿
= 0

}

,

𝒱𝑤 =
{

𝑤 ∈
[

𝐻1 (𝛺)
]

|

|

|

𝑤|𝛺𝑁𝐿
= 0

}

,
(10c)

where 𝐻1 is a Sobolev space of degree one. Φ, 𝜙 and 𝑤 are variations
of 𝐮, 𝑝 and 𝜆, respectively.

The weak form can therefore be stated as finding (𝐮, 𝑝, 𝜆) ∈ 𝒱𝑢×𝒱𝑝×
𝒱𝜆 such that there holds:

∫𝛺
∇Φ ∶

(

𝝈′ − 𝑝𝐈2×2
)

d𝛺 + ∫𝛺
Φ ⋅ 𝐛 d𝛺 + ∫𝛤𝜎

Φ ⋅ �̂� d𝛤 = 0, (11a)

∫𝛺
𝜙
(

𝜕𝜀𝑣
𝜕𝑡

+ 𝑛𝛽
𝜕𝑝
𝜕𝑡

)

d𝛺 + ∫𝛺
𝑘𝑠
𝛾𝑤

∇𝜙 ⋅ ∇𝑝 d𝛺

+ ∫𝛤𝑣
𝜙�̂�𝑛𝑤 d𝛤 + ∫𝛺𝐿

𝜕𝜙
𝜕𝑧

𝜆 d𝛺 = 0, (11b)

∫𝛺𝐿

𝑤
(

𝜕𝑝
𝜕𝑧

− 𝛾 ′
)

d𝛺 = 0, (11c)

for all (Φ, 𝜙,𝑤) ∈ 𝒱𝛷 ×𝒱𝜙 ×𝒱𝑤.
Eq. (11c) is the weak form of the primal constraint Eq. (7). Eq. (7)

further introduces another additional variational term into the weak
form, i.e. the last term in Eq. (11b). This term represents the virtual
work in the liquefied zone contributed by the Lagrange multiplier (𝜆),
4

whose physical meaning can therefore be presented as a fictitious pore-
fluid velocity. Existing works found that soil liquefaction can speed up
the pore-fluid flow and regarded this phenomenon as the permeability
increase. Among these, Arulanandan and Sybico (1992) reported that
the sand permeability during liquefaction increased to 6–7 times its
initial value. The permeability was observed by Haigh et al. (2012)
to increase 1.1–5 times the original value, as the effective stress ap-
proached zero. Other studies indicated the ratio of permeability during
liquefaction to its initial value as 1.4-5 (Ha et al., 2003), 4 (Wang et al.,
2013), or 4-5 (Ueng et al., 2017), etc. This motivates constructing the
dual complementary condition as follows:

𝜆 ≥ 0 in 𝛺𝐿. (12)

The above equation means that the additional pore-fluid velocity (𝜆)
should be non-negative in the liquefied zone, so as to help the excessive
pore pressure decreasing appropriately in an implicit manner such that
tensile behavior never occurs. Now that the primal constraint (𝑗𝑧 = 𝛾 ′)
and its dual condition (𝜆 ≥ 0) have been obtained for the liquefied zone,
the KKT condition for instantaneous liquefaction can therefore be given
as:

𝑗𝑧 ≤ 𝛾 ′, 𝜆 ≥ 0,
(

𝑗𝑧 − 𝛾 ′
)

𝜆 = 0, in 𝛺, (13)

2.4. Weak form by using the penalty method

The penalty method (Meng and Yang, 2010) is another classic
technique for imposing the KKT condition. Compared with the Lagrange
multiplier method, the penalty method imposes the constraints in an
approximate manner but is more convenient for numerical implemen-
tation. With the use of this method, a penalty factor 𝜅 is introduced
to build a connection between the primal and dual variables. The KKT
condition by Eq. (13) is then rewritten as a penalized form:

𝜆 = 𝜅
(

𝑗𝑧 − 𝛾 ′
)

, with 𝜅 =

{

0, if 𝑗𝑧 < 𝛾 ′

𝜅∞, if 𝑗𝑧 ≥ 𝛾 ′,
(14)

where 𝜅∞ is the penalty parameter used in the liquefied zone. If 𝜅∞
equals to ∞, Eq. (14) is equivalent to Eq. (13). However, ∞ is not
possible to achieve during the numerical procedure and hence 𝜅∞ is
usually chosen as a large value. Eq. (14) is an approximate version of
Eq. (13). The subscript ∞ is used here to keep in mind that 𝜅∞ should
be large enough to make the original KKT condition be approximated
with satisfactory accuracy.

By using the primal–dual relationship given by Eq. (14), the weak
form by using the Lagrange multiplier method, Eq. (11), can then be
rewritten as:

∇Φ ∶
(

𝝈′ − 𝑝𝐈2×2
)

d𝛺 + Φ ⋅ 𝐛 d𝛺 + Φ ⋅ �̂� d𝛤 = 0, (15a)
∫𝛺 ∫𝛺 ∫𝛤𝜎
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f

∫𝛺
𝜙
(

𝜕𝜀𝑣
𝜕𝑡

+ 𝑛𝛽
𝜕𝑝
𝜕𝑡

)

d𝛺 + ∫𝛺
𝑘𝑠
𝛾𝑤

∇𝜙 ⋅ ∇𝑝 d𝛺

+ ∫𝛤𝑣
𝜙�̂�𝑛𝑤 d𝛤 + ∫𝛺

𝜅
𝜕𝜙
𝜕𝑧

(

𝜕𝑝
𝜕𝑧

− 𝛾 ′
)

d𝛺 = 0. (15b)

It can be found that the primal constraint explicitly represented as
q. (11c) by using the Lagrange multiplier method is now implicitly
etermined here by the penalty factor 𝜅.

3. Reformulating the nonlinear complementarity problem as a
non-Darcy flow model

In the above section, either Eq. (11) or Eq. (15) can be adopted
to find the solution (𝐮, 𝑝). However, the constrained variational prin-
ciple may lead to barriers for numerical implementation and future
extensions, because it is neither standard nor modular within the
finite element framework. In order to provide a numerical formulation
easier to be reproduced, this section reformulates the above penalty
formulation (Eq. (15)) as an equivalent non-Darcy flow model.

3.1. Weak form with nonlinear flow

If nonlinear relation between the velocity and the pressure gradient
is considered, then the mass conservation equation, Eq. (8b), must be
modified as:
𝜕𝜀𝑣
𝜕𝑡

+ 𝑛𝛽
𝜕𝑝
𝜕𝑡

+ ∇ ⋅ 𝐯𝑤 = 0 in 𝛺. (16)

The weak form by using nonlinear flow is then given as follows:

∫𝛺
∇Φ ∶

(

𝝈′ − 𝑝𝐈2×2
)

d𝛺 + ∫𝛺
Φ ⋅ 𝐛 d𝛺 + ∫𝛤𝜎

Φ ⋅ �̂� d𝛤 = 0, (17a)

∫𝛺
𝜙
(

𝜕𝜀𝑣
𝜕𝑡

+ 𝑛𝛽
𝜕𝑝
𝜕𝑡

)

d𝛺 − ∫𝛺
∇𝜙 ⋅ 𝐯𝑤 d𝛺 + ∫𝛤𝑣

𝜙�̂�𝑛𝑤 d𝛤 = 0. (17b)

3.2. Non-Darcy flow model arising from the nonlinear complementarity
problem

Keeping in mind that the non-Darcy model is a variationally equiv-
alent version of the penalized KKT condition, Eq. (17b) should be
identical to Eq. (15b). That is, the second term in Eq. (17b) should
equal to the sum of second and last terms in Eq. (15b). This equivalence
provides the following function to determine the pore-fluid velocity 𝐯𝑤:

𝑣𝑤𝑥 = −
𝑘𝑠
𝛾𝑤

𝜕𝑝
𝜕𝑥

, 𝑣𝑤𝑧 = −
𝑘𝑠
𝛾𝑤

𝜕𝑝
𝜕𝑧

− 𝜅
(

𝜕𝑝
𝜕𝑧

− 𝛾 ′
)

, (18)

where 𝑣𝑤𝑥 and 𝑣𝑤𝑧 are the two components of 𝐯𝑤 in the horizontal and
ertical directions, respectively. In Eq. (18), the Darcy’s law still holds
n the horizontal direction, while an apparent non-linearity arising from
he penalty factor 𝜅 appears in the vertical direction.

According to Eq. (14), it is known that the second term in 𝑣𝑤𝑧
n Eq. (18) is the Lagrange multiplier 𝜆. Therefore, the actual pore-
luid velocity in 𝛺𝐿 contains two parts, with one coming from the
onventional Darcy’s law and the other 𝜆. This makes clear again
hat the Lagrange multiplier 𝜆 means the additional pore-fluid velocity
dded into 𝛺𝐿. Noting that the pressure gradient has a relation to the
ydraulic gradient (𝛥𝑝 = 𝛾𝑤𝐢), 𝑣𝑤𝑧 can be rewritten in terms of 𝑖𝑧:

𝑤𝑧 = −𝑘𝑠𝑖𝑧 − 𝜅
(

𝑖𝑧 − 𝑖cr
)

=

{

−𝑘𝑠𝑖𝑧, if 𝑖𝑧 < 𝑖cr
−𝑘𝑠𝑖cr −

(

𝑘𝑠 + 𝜅∞𝛾𝑤
) (

𝑖𝑧 − 𝑖cr
)

, if 𝑖𝑧 ≥ 𝑖cr ,

(19)

where 𝑖cr equals to 𝛾′∕𝛾𝑤 and represents the critical value determining
hether liquefaction occurs or not. The above equation is illustrated in

he 𝑣𝑤𝑧-𝑖𝑧 space by Fig. 3, which appears clearly as a non-Darcy flow
model.
5

𝒱

Fig. 3. Schematic of the non-Darcy flow model.

Previous studies also observed the nonlinear 𝑣𝑤𝑧-𝑖𝑧 relationships
when seepage failure occurs, as shown in Fig. 4. Fukumoto and Ohtsuka
(2018) reported a three-dimensional direct particle–fluid simulation
model for the seepage failure of granular soils. This model couples
DEM and LBM (Lattice Boltzmann Method). The interaction between
the soil particles and the seepage flow was also considered. The failure
process induced by the seepage flow was captured with no macroscopic
assumptions. The obtained evolution of inflow velocity was plotted
as a function of the hydraulic gradient, as shown in Fig. 4(a). The
piping experiments by Skempton and Brogan (1994) provides another
evidence for the nonlinear 𝑣𝑤𝑧-𝑖𝑧 relationship during seepage failure,
as presented in Fig. 4(b). These evidences indicate that the pore-
fluid velocity can increase significantly if liquefaction occurs, which is
reproduced by the non-Darcy model, Eq. (19).

Fig. 5 provides an intuitive comparison between the permeability
increase and the non-Darcy flow model by using an imaginary test.
If the data from real laboratory experiments is used, the following
discussion can be also conducted. As shown in Fig. 5(a), when the
liquefied state is not taken into account, a linear Darcy model with
constant permeability can be obtained by fitting the points under the
non-liquefied state. If the liquefied state is considered and the Darcy
model with dynamic permeability (denoted by 𝑘𝑑 here) is applied,
see Fig. 5(b), 𝑘𝑑 will be calculated as the slope from the coordinate
origin (0,0) to each data point, because 𝑣𝑤𝑧 = −𝑘𝑑 𝑖𝑧 is adopted. It
is assumed that seven data points are measured during liquefaction.
Then, seven values of 𝑘𝑑 will be obtained, e.g. 𝑘𝑑∕𝑘𝑠 = 1, 2, 3, 4, 5, 6, 7
n Fig. 5(b). Note that one may obtain more data points (or less) under
he liquefaction state in real laboratory experiments. The point number
f seven as well as the specific values of 𝑘𝑑 are just used here for an
nstance and does not affect the conceptual comparison.

If all the data points are connected by a continuous curve, then a
i-linear function can be obtained, as shown in Fig. 5(c). According
o the primal constraint Eq. (7) in Section 2.2, the hydraulic gradient
𝑧 should not exceed the limit value 𝑖cr . Therefore, for the bi-linear
urve in Fig. 5(c), the first stage has a slope of 1 (i.e. 𝑣𝑤𝑧 = −𝑘𝑠𝑖𝑧)
nd the second stage has a slope of ∞. As aforementioned, the non-
arcy model is based on the penalty method, which fulfills the primal
onstraint in an approximate manner by taking the penalty parameter
∞ as large values. In Fig. 5(c), 𝜅∞ = 106 𝑘𝑠∕𝛾𝑤 is applied for an instance.
t can be found that this value of 𝜅∞ can reproduce the ideal bi-linear
urve with a sufficient accuracy. Section 5 will further examine the
nfluence of different values of 𝜅∞ on the numerical results as well
s the nonlinear convergence. Therefore, as shown in Fig. 5(d), the
eported permeability increases during liquefaction can be rearranged
n the 𝑣𝑤𝑧-𝑖𝑧 space and can then be regarded as the increase of pore-
luid velocity, acting as additional evidences for the non-Darcy model
q. (19).

.3. Discretization

A standard finite element partitioning of the domain 𝛺 is considered
or spatial discretization. The discrete versions of the spaces 𝒱𝑢×𝒱𝑝 and

𝛷 × 𝒱𝜙 are denoted by 𝒱𝑢,ℎ × 𝒱𝑝,ℎ and 𝒱𝛷,ℎ × 𝒱𝜙,ℎ, respectively. The
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Fig. 4. Evidences for the dual condition: (a) numerical results of non-cohesive granular soils with upward seepage flow (Fukumoto and Ohtsuka, 2018); (b) experimental results
on piping in sandy gravels (Skempton and Brogan, 1994).

Fig. 5. Conceptual comparison of different models by an imaginary test: (a) conventional Darcy model with constant permeability; (b) Darcy model with dynamic permeability;
(c) non-Darcy model; (d) reconsidering permeability increase as non-Darcy flow.
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subscript ℎ means the spatially discrete version. Therefore, Eq. (17) is
discretized as finding

(

𝐮ℎ, 𝑝ℎ
)

∈ 𝒱𝑢,ℎ ×𝒱𝑝,ℎ such that there holds:

∫𝛺
∇Φℎ ∶

(

𝝈′
ℎ − 𝑝ℎ𝐈2×2

)

d𝛺 + ∫𝛺
Φℎ ⋅ 𝐛 d𝛺 + ∫𝛤𝜎

Φℎ ⋅ �̂� d𝛤 = 0, (20a)

∫𝛺
𝜙ℎ

( 𝜕𝜀𝑣,ℎ
𝜕𝑡

+ 𝑛𝛽
𝜕𝑝ℎ
𝜕𝑡

)

d𝛺−∫𝛺
∇𝜙ℎ ⋅𝐯𝑤,ℎ d𝛺+∫𝛤𝑣

𝜙ℎ�̂�
𝑛
𝑤 d𝛤 = 0. (20b)

or all
(

Φℎ, 𝜙ℎ
)

∈ 𝒱𝛷,ℎ ×𝒱𝜙,ℎ.
For temporal discretization, the backward Euler method is applied.

pplying a time integration to Eq. (20b), the fully discrete variational
ormulation can be obtained:

∫𝛺
∇Φℎ ∶

(

𝝈′𝑡
ℎ − 𝑝𝑡ℎ𝐈2×2

)

d𝛺 + ∫𝛺
Φℎ ⋅ 𝐛 d𝛺 + ∫𝛤𝜎

Φℎ ⋅ �̂� d𝛤 = 0, (21a)

∫𝛺
𝜙ℎ

(

𝜀𝑡𝑣,ℎ + 𝑛𝛽𝑝𝑡ℎ
)

d𝛺 − 𝜏 ∫𝛺
∇𝜙ℎ ⋅ 𝐯𝑡𝑤,ℎ d𝛺 + 𝜏 ∫𝛤𝑣

𝜙ℎ�̂�
𝑛
𝑤 d𝛤

= ∫𝛺
𝜙ℎ

(

𝜀𝑡−𝜏𝑣,ℎ + 𝑛𝛽𝑝𝑡−𝜏ℎ

)

d𝛺. (21b)

where 𝜏 denotes the time step.

3.4. Linearization by the Newton–Raphson method

In the present model, the nonlinearity comes from the nonlinear
relationship between the pore-fluid velocity 𝐯𝑤 and the hydraulic gra-
ient 𝐢. Applying the Newton–Raphson method to the current discrete
elocity 𝐯𝑡𝑤,ℎ, its linearization can be obtained as follows:

𝑡,𝑘
𝑤,ℎ = 𝐯𝑡,𝑘−1𝑤,ℎ + 𝐯′𝑤

(

𝐢𝑡,𝑘ℎ − 𝐢𝑡,𝑘−1ℎ

)

= 𝐯𝑡,𝑘−1𝑤,ℎ +
𝐯′𝑤
𝛾𝑤

(

∇𝑝𝑡,𝑘ℎ − ∇𝑝𝑡,𝑘−1ℎ

)

, (22)

where the subscripts 𝑘 and 𝑘 − 1 represents the current and previous
iterations, respectively. 𝐯′𝑤 denotes the partial derivative of 𝐯𝑤 to 𝐢 and
can be derived from Eq. (19) as follows:

𝐯′𝑤 =
𝜕𝐯𝑤
𝜕𝐢

=
[

−𝑘𝑠 0
0 𝑣′𝑤𝑧

]

, 𝑣′𝑤𝑧 =
𝜕𝑣𝑤𝑧
𝜕𝑖𝑧

=

{

−𝑘𝑠, if 𝑖𝑧 < 𝑖cr
−𝑘𝑠 − 𝜅∞𝛾𝑤, if 𝑖𝑧 ≥ 𝑖cr .

(23)

With the use of Eq. (22), Eq. (21) is linearized as:

∫𝛺
∇Φℎ ∶ 𝝈′𝑡,𝑘

ℎ d𝛺 − ∫𝛺
∇Φℎ ∶ 𝑝𝑡,𝑘ℎ 𝐈2×2 d𝛺

+ ∫𝛺
Φℎ ⋅ 𝐛 d𝛺 + ∫𝛤𝜎

Φℎ ⋅ �̂� d𝛤 = 0, (24a)

∫𝛺
𝜙ℎ𝜀

𝑡,𝑘
𝑣,ℎ d𝛺 + ∫𝛺

𝜙ℎ𝑛𝛽𝑝
𝑡,𝑘
ℎ d𝛺 − 𝜏 ∫𝛺

∇𝜙ℎ ⋅
𝐯′𝑤
𝛾𝑤

∇𝑝𝑡,𝑘ℎ d𝛺

+ 𝜏 ∫𝛤𝑣
𝜙ℎ�̂�

𝑛
𝑤 d𝛤 =

∫𝛺
𝜙ℎ𝜀

𝑡−𝜏
𝑣,ℎ d𝛺 + ∫𝛺

𝜙ℎ𝑛𝛽𝑝
𝑡−𝜏
ℎ d𝛺 − 𝜏 ∫𝛺

∇𝜙ℎ ⋅
𝐯′𝑤
𝛾𝑤

∇𝑝𝑡,𝑘−1ℎ d𝛺

+ 𝜏 ∫𝛺
∇𝜙ℎ ⋅ 𝐯

𝑡,𝑘−1
𝑤,ℎ d𝛺.

(24b)

It is apparent that the above non-Darcy formulation is intrinsically
ifferent from the dynamic permeability formulation derived in Zhou
t al. (2020b). The difference can be compared by the linearized
quations, or alternatively, the conceptual comparison in Fig. 5 can
e recalled here to provide an intuitive representation. In the non-
arcy model, 𝐯′𝑤 used in Eq. (24) is the tangential slope of the 𝐯𝑤-𝐢

elationship, as discussed in Fig. 5(c). However, dynamic permeability
𝑘𝑑) is the secant slope of the 𝐯𝑤-𝐢 relationship, as shown in Fig. 5(b).
t is therefore not surprising that the tangential slope will obtain better
onvergences, i.e. the non-Darcy model can overcome the convergence
7

ifficulties induced by dynamic permeability.
.5. Algebraic representation

To obtain the algebraic representations for numerical implementa-
ion, 𝐝𝑢 and 𝐝𝑝 are used to denote the discrete unknown vectors for
he displacement (𝑢) and the excessive pore pressure (𝑝). Their shape
unction matrices are denoted by 𝐍𝑢 and 𝐍𝑝, respectively. By employing
he standard Galerkin method, 𝐍𝑢 and 𝐍𝑝 are also the weighting
unction vectors. Eq. (24) can then be rewritten as the following matrix
ystem:
[

𝐊 𝐆
𝐆T 𝐇 + 𝐋

]{

𝐝𝑡,𝑘𝑢
𝐝𝑡,𝑘𝑝

}

=
{

𝐅𝑢
𝐅𝑝

}

, (25)

here

𝐊 = ∫𝛺
𝐁T
𝑢𝐃𝐁𝑢 d𝛺,

𝐆 = −∫𝛺
𝐁T
𝑢𝐦𝐍𝑝 d𝛺,

𝐇 = −∫𝛺
𝑛𝛽𝐍T

𝑝𝐍𝑝 d𝛺,

𝐋 = 𝜏
𝛾𝑤 ∫𝛺

𝐁T
𝑝 𝐯

′
𝑤𝐁𝑝 d𝛺,

𝐅𝑢 = −∫𝛺
𝐍T
𝑢𝐛 d𝛺 − ∫𝛤𝜎

𝐍T
𝑢 �̂� d𝛤 ,

𝐅𝑝 = 𝐆T𝐝𝑡−𝜏𝑢 +𝐇𝐝𝑡−𝜏𝑝 + 𝐋𝐝𝑡,𝑘−1𝑝 + 𝜏 ∫𝛤𝑣
𝐍T
𝑝 �̂�

𝑛
𝑤 d𝛤 − 𝜏 ∫𝛺

𝐁T
𝑝 𝐯

𝑡,𝑘−1
𝑤,ℎ d𝛺,

(26)

ith

𝑢 = ∇𝐍𝑢, 𝐦 = {1, 1, 0, 0}T , 𝐁𝑝 = ∇𝐍𝑝. (27)

Based on the above algebraic representations, one can easily derive
he iterative procedure for finding the solution

(

𝐝𝑡𝑢,𝐝
𝑡
𝑝

)

, because the

Newton–Raphson method is standard in the conventional finite element
framework. The present model is implemented in the in-house finite
element code (Zhou et al., 2016a,b, 2018; Wang et al., 2019; Zhou
et al., 2020a,b, 2021; Yin et al., 2021). It is highlighted here again that
the present model does not require coding constrained variational prin-
ciple and can be therefore conveniently incorporated into other codes,
e.g. PORO-FSSI-FOAM (Liang et al., 2020; Liang and Jeng, 2021). This
is a main improvement over our previous NCP treatment (Zhou et al.,
2021).

4. Cylinder tests under one-dimensional (1D) wave loading

4.1. Computational model

In this section, the present model is used to reproduce the cylinder
tests (Liu et al., 2015). The boundary conditions are shown in Fig. 6.
On the bottom and both sides of the seabed, the displacement and pore-
fluid flow along the normal direction are constrained as zero. At the
seabed surface, the pore pressure of the fluid phase is constrained as the
wave pressure 𝑃𝑏 = 𝑝0 cos (2𝜋𝑡∕𝑇 ), and 𝑃𝑏 is also applied as a distributed
ressure to the solid phase. The element size along the 𝑧 direction is

taken as 0.12 m. For the temporal discretization, one wave period is
divided into 40 time steps.

Liu et al. (2015) reported 24 cylinder tests under 1-D wave loading
conditions using a 1.8 m thick sandy deposit, by changing the soil
porosity 𝑛, soil saturation 𝑆𝑟, wave period 𝑇 and pressure amplitude
𝑝0. Twelve of these tests were simulated by Zhou et al. (2020b). It
was reported that removing tensile behavior in numerical method
provided a better agreement with the experimental results. Zhou et al.
(2021) investigated six tests by Liu et al. (2015) and obtained a similar
conclusion. It is therefore not necessary to repeat comparing numerical
results with that many tests. In this study, two tests (i.e. ‘Test 2’ and

‘Test 20’ Liu et al., 2015) are considered.
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Fig. 6. Boundary conditions of the cylinder tests.

Fig. 7. The pressure amplitude |𝑝|∕𝑝0 versus the soil depth 𝑧∕𝑑 of ‘Test 20’.

During the simulation, four numerical treatments are investigated:
CP (the conventional Darcy model using Constant Permeability), DP
(Dynamic Permeability model Zhou et al., 2020b), NCP (Nonlinear
Complementarity Problem using the Lagrange multiplier method
Zhou et al., 2021) and ND (non-Darcy model presented in this study).
DP model uses the parameters 𝑐1 = 100, 𝑐2 = 1 and 𝑟cr𝑢 = 1, which
are recommended by Zhou et al. (2020b). ND model takes the penalty
parameter as 𝜅∞ = 106 𝑘𝑠∕𝛾𝑤. Note that NCP (Zhou et al., 2021) is a
parameter-free treatment.

4.2. Pore pressure and corresponding liquefaction analysis

First, the ‘Test 20’ (Liu et al., 2015), where liquefaction was ob-
served, is simulated. Fig. 7 gives the vertical distribution of pressure
amplitude as well as the computational parameters. CP model is found
to achieve a good agreement with the analytical solution (Hsu and
Jeng, 1994), validating the in-house code developed in this study.
Other three numerical models (DP, NCP and ND) obtain nearly identical
results, which also coincide with the experimental data in a reasonable
sense. The difference between these four numerical models in the
pressure amplitude is not significant, but can become apparent by
comparing other results, e.g., Fig. 8.

Fig. 8(a) gives the liquefaction depths determined by the criterion
Eq. (4). The liquefaction depths by DP, NCP and ND are almost the
same and smaller than that by CP. For a typical instant of 0.425𝑇
shown in Fig. 8(a), Fig. 8(b) and Table 1 further provides the vertical
effective stress 𝛾 ′𝑧−

(

𝑝 − 𝑃𝑏
)

. The maximum tensile stress by CP model
is −1367.30 Pa. This tensile stress is nonphysical in a non-cohesive
seabed (Qi and Gao, 2018) and is reduced by DP, NCP and ND to
8

Table 1
Vertical effective stress at 𝑡 = 0.425𝑇 during the numerical simulation of ‘Test 20’.
𝑧 (m) 𝑧∕𝑑 𝛾 ′𝑧 −

(

𝑝 − 𝑃𝑏
)

(Pa)

CP DP NCP ND

0.00 0.00 0 0 0 0
0.12 0.07 −596.54 −7.93 0 −0.0008
0.24 0.13 −1022.96 −10.74 0 −0.0014
0.36 0.20 −1278.54 −12.59 0 −0.0019

0.48 0.27 −1367.30 −8.85 0 −0.0022

0.60 0.33 −1296.75 −3.97 0 −0.0023

0.72 0.40 −1076.81 21.79 24.98 24.97
0.84 0.47 −718.78 206.93 209.44 209.43
0.96 0.53 −234.60 542.73 544.68 544.68

1.08 0.60 363.83 1017.74 1019.27 1019.27
1.20 0.67 1065.25 1619.57 1620.79 1620.79
1.32 0.73 1859.42 2336.12 2337.12 2337.12
1.44 0.80 2737.55 3156.53 3157.37 3157.37
1.56 0.87 3692.52 4071.77 4072.51 4072.51
1.68 0.93 4719.11 5075.15 5075.83 5075.83
1.80 1.00 5814.12 6162.53 6163.19 6163.19

Liquefaction depth (m) 1.007 0.618 0.600 0.600

Table 2
Vertical effective stress at 𝑡 = 0.45𝑇 during the numerical simulation of ‘Test 2’.
𝑧 (m) 𝑧∕𝑑 𝛾 ′𝑧 −

(

𝑝 − 𝑃𝑏
)

(Pa)

CP DP NCP ND

0.00 0.00 0 0 0 0
0.12 0.07 −5212.26 −93.87 0 −0.0100
0.24 0.13 −8733.08 −151.41 0 −0.0185
0.36 0.20 −10 637.49 −192.80 0 −0.0256
0.48 0.27 −11 240.89 −199.46 0 −0.0312
0.60 0.33 −10 914.84 −179.65 0 −0.0353
0.72 0.40 −9996.78 −127.28 0 −0.0380
0.84 0.47 −8751.18 −43.47 0 −0.0392

0.96 0.53 −7362.50 150.94 162.63 162.61
1.08 0.60 −5945.02 1136.63 1145.28 1145.27
1.20 0.67 −4559.45 2463.49 2472.71 2472.70
1.32 0.73 −3230.09 3873.81 3884.12 3884.11
1.44 0.80 −1959.72 5254.20 5265.26 5265.25
1.56 0.87 −740.78 6566.01 6577.46 6577.45

1.68 0.93 436.83 7802.55 7814.16 7814.15
1.80 1.00 1580.87 8966.55 8978.20 8978.19

Liquefaction depth (m) 1.007 0.618 0.600 0.600

−12.59 Pa, 0 and −0.0023 Pa, respectively. From an engineering point
of view, the error by ND is negligible. If higher accuracy is required,
larger penalty parameter 𝜅∞ is suggested. Note that large parameters
in DP will lead to numerical instability (Zhou et al., 2020b). Therefore,
only NCP and ND are promising.

Then, the ‘Test 2’ (Liu et al., 2015), where the saturation degree
𝑆𝑟 equals to 0.951, is simulated. The only difference from ‘Test 20’
(𝑆𝑟 = 0.996) is the saturation. As illustrated in Fig. 9, the results by DP,
NCP and ND are still close to each other. The liquefaction depth by CP is
overestimated, because abnormally large tensile stress occurs. As shown
in Table 2, the maximum tensile stress by CP reaches to −11 240.89 Pa,
which is reduced by DP, NCP and ND to −199.46 Pa, 0 and −0.0392
Pa, respectively. Although the tensile value (−0.0392 Pa) by ND here
in ‘Test 2’ is larger than that in ‘Test 20’ (−0.0023 Pa), it is still close
to zero and hence can be also neglected.

4.3. Hydraulic gradient and corresponding liquefaction analysis

The above liquefaction analysis is conducted based on using the
criterion Eq. (4). In this subsection, another criterion Eq. (5) is inves-
tigated and compared with Eq. (4). Considering that Eq. (5) is given
in terms of the hydraulic gradient, a finer mesh with 𝑧-directional
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Fig. 8. Liquefaction analysis of ‘Test 20’ by the criterion Eq. (4): (a) temporal liquefaction depth; and (b) vertical distribution of 𝛾 ′𝑧 −
(

𝑝 − 𝑃𝑏
)

at the instant of 0.425𝑇 .
Fig. 9. Liquefaction analysis of ‘Test 2’ by the criterion Eq. (4): (a) temporal liquefaction depth; and (b) vertical distribution of 𝛾 ′𝑧 −
(

𝑝 − 𝑃𝑏
)

at the instant of 0.45𝑇 .
m
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m
t

lement size of 0.01 m is used here to guarantee the accuracy. With this
esh, DP and NCP models are not considered, due to the following two

onsiderations. First, DP model was found to cause numerical instability
n this fine mesh, as demonstrated in Section 4.4. Second, the above
esults have clearly shown that the difference between ND and NCP is
ot significant. Therefore, only CP and ND models are discussed in this
ubsection.

As presented in Fig. 10(a), if CP model is used, Eq. (5) obtains
pparently smaller liquefaction depth than Eq. (4). In contrast, when
D model is used, the liquefaction depths determined by the two
riteria become unified. For the instant of 0.425𝑇 , Fig. 10(b) provides
he vertical distributions of 𝛾 ′𝑧−

(

𝑝 − 𝑃𝑏
)

and 𝛾 ′−𝑗𝑧, where the negative
alues mean the tensile stresses induced in the volumetric soil element
r across the surface of the vertical soil column. This nonphysical
ehavior is nearly removed by ND model. Fig. 11 shows the numerical
esults of ‘Test 2’. For seabed under lower saturation, CP model leads
o larger discrepancy between the two criteria which are unified again
y ND model presented in this study.

.4. Nonlinear convergence performances

Among the four numerical treatments, CP model is linear. Hence,
he non-linear convergence performances of the other three models,
.e. DP, NCP and ND, are discussed in this subsection by simulating ‘Test
’ (Liu et al., 2015). Fig. 12 shows the iteration numbers cost by each
ime step by using the coarser mesh in Section 4.2 and the finer mesh
n Section 4.3, whose 𝑧-directional element sizes are 0.12 m and 0.01
9

, respectively. The liquefaction depth is provided in this figure as a
eference. With the use of coarser mesh, NCP and ND both require only
–5 iterations to achieve the convergence, while DP poses apparently
ore iterations. The performance of DP model is even worse by using

he finer mesh, when the algorithm diverges at the instant of 0.4𝑇 . For
the finer mesh, NCP takes a little more iterations than ND, because ND
is treated by Newton–Raphson method and NCP is handled by PDASS,
which is not as smooth as Newton–Raphson method.

4.5. Parametric study on the instantaneous liquefaction depth

According to the above discussions, CP model generally leads to ten-
sile stresses in the liquefied zone. To improve the prediction accuracy,
a concise suggestion is presented for the engineering applications as
below. First, CP model is used to determine whether there is liquefac-
tion or not. If there is no liquefaction, ND model will provide identical
results with CP model and therefore is not needed. If liquefaction
occurs, then ND model is required to remove the unreasonable tensile
stresses. In this subsection, the effects of ND model on the liquefaction
depths are investigated by conducting a parametric study.

During the parametric study, the computational model of the cylin-
der test shown in Fig. 6 is adopted and a benchmark test is set. The
computational parameters of the benchmark test are listed in Table 3.
Four soil parameters (Young’s modulus 𝐸, permeability coefficient 𝑘𝑠,
saturation degree 𝑆𝑟 and soil porosity 𝑛) and three wave parameters
(wave period 𝑇 , water depth ℎ and wave height 𝐻) are tested. The
seabed thickness 𝑑 is also tested. Note that the buoyant unit weight 𝛾 ′
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o

Fig. 10. Liquefaction analysis of ‘Test 20’ by the criteria Eqs. (4) and (5): (a) temporal liquefaction depth; and (b) vertical distributions of 𝛾 ′𝑧−

(

𝑝 − 𝑃𝑏
)

and 𝛾 ′ − 𝑗𝑧 at the instant
f 0.425𝑇 .
Fig. 11. Liquefaction analysis of ‘Test 2’ by the criteria Eqs. (4) and (5): (a) temporal liquefaction depth; and (b) vertical distribution of 𝛾 ′𝑧 −
(

𝑝 − 𝑃𝑏
)

and 𝛾 ′ − 𝑗𝑧 at the instant
of 0.45𝑇 .
Fig. 12. Iteration number and liquefaction depth versus time step during the numerical simulation of ‘Test 2’ by using: (a) coarser mesh; and (b) finer mesh.
changes with 𝑛 and is determined by: 𝛾 ′ =
(

𝐺𝑠 − 1
)

(1 − 𝑛) 𝛾𝑤, with 𝐺𝑠
given as 2.67 in this paper. In the benchmark test, 𝛾 ′ equals to 9.41
kN/m3 and the Poisson’s ratio 𝜈 is taken as 0.3. It is also notable that
the wave parameters herein may be beyond the linear wave theory. The
influence of wave non-linearity will be included in our future works.
10
Considering that the criterion by Eq. (4) is the most widely applied
one for seabed liquefaction, this section uses Eq. (4) to determine the
liquefaction depths for both CP and ND models. As shown in Fig. 13,
the liquefaction depth increases with the increase of 𝐸, 𝑛, 𝑇 and 𝐻
but decreases with the increase of 𝑘𝑠, 𝑆𝑟 and ℎ. These tendencies
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Fig. 13. Liquefaction depths versus (a) Young’s modulus 𝐸; (b) permeability coefficient 𝑘𝑠; (c) saturation degree 𝑆𝑟; (d) soil porosity 𝑛; (e) wave period 𝑇 ; (f) water depth ℎ; (g)
wave height 𝐻 ; (h) seabed thickness 𝑑.
Table 3
The computational parameter of the benchmark test in the parametric study.

Parameter 𝐸 (MPa) 𝑘𝑠 (m/s) 𝑆𝑟 (–) 𝑛 (–) 𝑇 (s) ℎ (m) 𝐻 (m) 𝑑 (m)

Value 50 1 × 10−4 0.99 0.425 9 5 3.5 1.8

are well corroborated by the general characteristics of wave–seabed
interactions (Jeng, 2018). Moreover, when the liquefaction depth is
11
larger, the difference between the CP and ND models becomes more
apparent. It is notable that the influence of seabed thickness 𝑑 on the
liquefaction depth is insignificant in the parametric study presented
here but can become significant under some 2D wave conditions (Jeng,
2018).

The liquefaction depths predicted by the two models are then plot-
ted in Fig. 14, wherein all the results of Fig. 13 are collected together.
In Fig. 14, the abscissa 𝑧CP denotes the liquefaction depth by CP model.
The ordinate 𝑧 denotes the liquefaction depth by ND model. A
ND
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Fig. 14. Relationship of the liquefaction depths by CP and ND models.

linear relationship is found to fit well with the numerical results. The
correlation coefficient is 𝑅2 = 0.94. The instantaneous liquefaction
depth by ND model is roughly 0.73 times the value by CP model.
This relationship can be used as a quick reference for engineering
practice because the analytical solution for CP model is available in
the literature (Hsu and Jeng, 1994) and commonly used in offshore
geotechnical engineering industry. It should be noted that this quick
12
estimation is obtained herein for a sandy seabed in shallow marine
settings under the assumption of linear waves. If more general scenarios
need to be considered, systematical studies are required to include more
factors, or alternatively, one can use our non-Darcy model to conduct
numerical simulations for specific applications.

5. Two-dimensional (2D) wave–seabed interactions

5.1. Computational model and parameters

This section applies the present non-Darcy flow model to analyze
the 2D wave–seabed interactions. Fig. 15 shows the adopted computa-
tional mesh. Due to that there is no structure here, the liquefaction
analysis will focus on the shallow layer. Therefore, smaller element
sizes are used in the relevant regions. The computational parameters
are given in Fig. 15, which are the same to those in ‘Test 2’ (Liu et al.,
2015). The penalty parameter in ND model is taken as 𝜅∞ = 106 𝑘𝑠∕𝛾𝑤.
CP, DP and NCP models are used in the simulation for comparative
study. The DP parameters (𝑐1 = 10, 𝑐2 = 1, 𝑟cr𝑢 = 1) used in 2D
simulation by Zhou et al. (2020b) are also applied here in the DP model.
NCP model needs no additional parameters.

The seabed thickness is taken as 100 m, which is larger than the
wavelength (𝐿 ≈ 61.4 m here). This setup can be used to simulate
Fig. 15. Computational mesh, parameters and boundary conditions used in the 2D pure-seabed simulation.
Fig. 16. The vertical effective stress 𝛾 ′𝑧−
(

𝑝 − 𝑃𝑏
)

(kPa) by: (a) CP; (b) DP with parameters of 𝑐1 = 10, 𝑐2 = 1 and 𝑟cr𝑢 = 1; (c) NCP; (d) ND with penalty parameter of 𝜅∞ = 106 𝑘𝑠∕𝛾𝑤.
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Fig. 17. Vertical distribution of the vertical effective stress 𝛾 ′𝑧−
(

𝑝 − 𝑃𝑏
)

along the line
f 𝑥 = 1.5𝐿. Note: the analytical solution: Yamamoto et al. (1978).

seabed with infinite thickness (Yamamoto et al., 1978; Hsu et al.,
993). The seabed length is set as three times of the wavelength
(Ye and Jeng, 2012) to minimize the influence of the 𝑥-directional

boundary and meanwhile minimize the computational effort. Fig. 15
also illustrates the boundary conditions, which are similar to those
given in Fig. 6. The only difference is that the wave pressure 𝑃𝑏 here is

function of both 𝑥-axis and time 𝑡, as given by Eq. (1).

.2. Numerical results

The liquefaction analysis focuses on a region around 𝑥 = 1.5𝐿,
where the wave trough arrives at 𝑡 = 𝑇 . Therefore, the numerical results
are given at the instant of 𝑡 = 𝑇 . Fig. 16 presents the contours of the
ertical effective stress 𝛾 ′𝑧 −

(

𝑝 − 𝑃𝑏
)

obtained by four models. Their
ertical distributions along the line of 𝑥 = 1.5𝐿 are given by Fig. 17,
herein the results by CP model agrees exactly with the analytical

olution (Yamamoto et al., 1978). This again validates the numerical
ode.

As shown in Figs. 16 and 17, the tensile behavior by CP model is
onsiderable. It is eased by DP model but still non-negligible. Larger
alues of 𝑐1 are expected theoretically to further reduce the tensile
ehavior. Unfortunately, the numerical algorithm may diverge when
sing large 𝑐1 (Zhou et al., 2020b). In contrast, both NCP and ND mod-
ls are free of nonphysical tensile phenomenon as well as numerical
nstability. Noting that large penalty parameter 𝜅∞ in ND model is the
ey to remove the tensile behavior, the nonlinear performance becomes
nother important concern, as addressed in the next subsection.

By finding the isoline of 𝛾 ′𝑧 −
(

𝑝 − 𝑃𝑏
)

= 0 (i.e. the black lines
n Fig. 16), the liquefied zones can be determined by Eq. (4) and are
urther compared in Fig. 18. NCP and ND models are found to obtain
early the same results and can be referred to the accurate estimation.
ence, the comparison indicates that CP model overestimates the liq-
efaction potential. The liquefaction estimation by DP can be regarded
s an intermediate result from CP towards the accurate one, due to that
he parameter 𝑐1 is not large enough. A close view of the liquefied zone
hows that non-smoothness occurs in both NCP and ND models. This
ssue was discussed in Zhou et al. (2021) and can be addressed to some
xtent by using finer computational meshes.

.3. Effects of the penalty parameter on the results and non-linear conver-
ences

Although the DP and ND models both introduce additional pa-
ameters, the difference is that the penalty parameter 𝜅∞ used in ND
odel can be taken as large enough and meanwhile do not destroy the
13
Fig. 18. The liquefied zones determined by Eq. (4) in the 2-D simulation.

numerical algorithm. To validate this performance, four values of 𝜅∞
re tested, i.e. 10, 102, 104 and 106 times of 𝑘𝑠∕𝛾𝑤. The results by using

𝜅∞ = 106 𝑘𝑠∕𝛾𝑤 have been discussed in the above subsection and are
compared here with the other three cases by Fig. 19(a) in the vertical
effective stress 𝛾 ′𝑧 −

(

𝑝 − 𝑃𝑏
)

and by Fig. 19(b) in the liquefied zone.
In these two comparisons, the results by CP model are provided as a
reference.

As shown in Fig. 19(a), if the penalty parameter 𝜅∞ is not large
enough (e.g. 𝜅∞ = 10 𝑘𝑠∕𝛾𝑤 or 102 𝑘𝑠∕𝛾𝑤), the tensile stresses cannot
be removed. For the case of 𝜅∞ = 10 𝑘𝑠∕𝛾𝑤, the tensile stresses are
still apparent despite the apparent improvement over CP model. The
value of 𝜅∞ = 102 𝑘𝑠∕𝛾𝑤 can make the tensile stresses at a much lower
value but still not close to zero. The residuals of tensile stresses have a
significant influence on the liquefaction zones shown in Fig. 19(b). In
contrast, large penalty parameters (e.g., 𝜅∞ = 104 𝑘𝑠∕𝛾𝑤 and 106 𝑘𝑠∕𝛾𝑤)
provide a satisfactory accuracy in removing the tensile stresses. The
results by these two values are almost the same. This implies that
the increase of 𝜅∞ will achieve a converged result, making ND model
somehow a parameter-free treatment. More precisely, once 𝜅∞ is large
enough (e.g., 104 𝑘𝑠∕𝛾𝑤), the further variation of 𝜅∞ will have a neg-
ligible influence on the numerical results. The above performance is
a common consequence of the penalty method within the constrained
variational principle. In this study, the value of 𝜅∞ = 106 𝑘𝑠∕𝛾𝑤 is used
as a conservative choice.

Then, the effects of the penalty parameter on the nonlinear conver-
gence performance are studied by examining the iteration number cost
by each time step, as shown in Fig. 20(a). It is found that ND model
requires not more than 12 iterations to deal with the non-linearity.
The value of 𝜅∞ = 10 𝑘𝑠∕𝛾𝑤 costs fewer iterations than the other
three penalty parameters, but the difference is not significant. For the
value of 𝜅∞ = 106 𝑘𝑠∕𝛾𝑤, the convergence is further compared with
DP and NCP models in Fig. 20(b). DP model requires apparently more
iterations than NCP and ND models even a relatively small value of
𝑐1 (i.e., 10) is used in DP, noting that large values of 𝑐1 in DP lead
to algorithm divergence (Zhou et al., 2020b). ND obtains faster non-
linear convergence than NCP (handled by PDASS), due to the use of
Newton–Raphson method.

The above comparisons indicate that the penalty parameter can
be chosen large enough to guarantee the numerical accuracy, and
generally there is no need to worry about the nonlinear convergence
as well as the computational efficiency.

6. Conclusions

In this study, a non-Darcy flow model is proposed to deal with
the instantaneous liquefaction in a non-cohesive seabed. Based on
numerical examples presented, the following conclusions can be drawn.

(1) Compared with the Darcy model with constant permeability,

the present model reproduces the pore-fluid velocity increase during
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Fig. 19. Parametric study of the penalty parameter 𝜅∞: (a) vertical distribution of the vertical effective stress 𝛾 ′𝑧−
(

𝑝 − 𝑃𝑏
)

along the line of 𝑥 = 1.5𝐿; (b) liquefied zones determined
y Eq. (4).
Fig. 20. Iteration number versus time step by: (a) different penalty parameters in ND model; and (b) different models.
iquefaction as well as eliminates the fallacious tensile behavior in a
on-cohesive seabed. Moreover, two instantaneous liquefaction crite-
ia widely applied in ocean engineering are unified by the present
odel. According to the parametric study, the liquefaction depth by the
resent model is found to be roughly 0.73 times of the value predicted
y constant permeability.

(2) Compared with the dynamic permeability model (Zhou et al.,
020b), the present model overcomes the difficulties in the nonlinearity
reatment and achieves superior convergences. The penalty parameter
ntroduced by the present model is found to have slight influence on
he nonlinear convergence, indicating that the additional computa-
ional efforts of using larger penalty values are negligible in spite of
heir stronger non-linearities. Therefore, the penalty parameter can be
hosen large enough so that the tensile behavior can be sufficiently
liminated.

(3) Compared with the non-linear complementarity problem using
agrange multiplier method (Zhou et al., 2021), the present model
btained nearly identical numerical results but can be easily imple-
ented within the standard finite element framework. It is therefore

onvenient for future works to incorporate the new model into exist-
ng codes (e.g. PORO-FSSI-FOAM, Liang et al. (2020) and Liang and
eng (2021)) for wave–structure–seabed interactions to simulate more
omplex scenarios with offshore structures.
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