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A B S T R A C T

In this paper, we propose a hybrid kinetic weighted group velocity control–weighted essentially non-oscillatory
(WGVC–WENO) scheme which combines the WGVC–WENO reconstruction technique He et al. (2014) with the
hybrid kinetic method proposed in Liu et al. (2015). The new scheme is based on the idea of hybridization.
The hybrid kinetic method is adopted for flux calculations, and the WGVC–WENO technique is adopted for
physical reconstructions. In smooth flow regions, the collision-related flux method and WGVC reconstruction
technique play a leading role. The kinetic flux vector splitting (KFVS) method and WENO reconstruction
technique are dominant in discontinuous regions. The third-order TVD Runge–Kutta method is used for
temporal discretization. Many one-dimensional and two-dimensional numerical examples show that the new
scheme has the properties of high accuracy, low dissipation, and good shock-capturing ability.
1. Introduction

Numerical simulations of turbulence and aeroacoustics require high-
order methods for capturing more details such as turbulence structures
and acoustic waves. In past decades, many high-order methods have
been proposed, e.g., essentially non-oscillatory (ENO) schemes [1],
weighted-ENO (WENO) schemes [2–8], monotonicity-preserving (MP)
schemes [9,10], compact schemes [11,12], discontinuous Galerkin
(DG) methods [13,14], and many others. Basically, high-order nu-
merical methods consist of two main steps: physical reconstructions
and flux calculations. For physical reconstructions, WENO schemes are
widely used for solving hyperbolic conservation laws due to the strong
robustness property and good shock-capturing ability. Liu et al. [2]
originally proposed the WENO method based on the ENO [1] idea,
then Jiang and Shu [3] improved it and constructed the WENO-JS
scheme, which established the general framework of subsequent WENO
schemes. Later, Henrick et al. [4] pointed out that the WENO-JS scheme
cannot satisfy the fifth-order convergence conditions and proposed the
WENO-M scheme, which improved the accuracy near the critical points.
Borges et al. [5] also covered the convergence problem of the WENO-JS
scheme by changing the smoothness indicator. Martin et al. [6] pre-
sented two symmetric WENO schemes with the bandwidth optimization
for simulations of compressible turbulence. Shen and Zha [7] developed
the multi-step WENO scheme to improve the accuracy in transitional
points. Hong et al. [8] proposed the pre-discrete mapping method
based on the WENO-M scheme to improve the computational efficiency.
For flux calculations, there are mainly two kinds of approaches: flux

∗ Corresponding author.
E-mail addresses: hekang@imech.ac.cn (K. He), hliu@imech.ac.cn (H. Liu), lixl@imech.ac.cn (X. Li).

difference splitting (FDS) methods [15–17], flux vector splitting (FVS)
methods [3,18,19], to name just a few. Usually, FDS methods have
low dissipations, but sometimes they are less robust. FVS methods are
highly robust and easy to construct, but their numerical dissipations
are usually large, like the kinetic flux vector splitting approach [20].

Compared with traditional high-order methods based on Navier–
Stokes equations, gas-kinetic schemes (GKS) [21–23] based on the
Boltzmann equation have attracted much attention due to the con-
sideration of the physical procedure of gas molecule movement and
interaction. Some upwind methods based on the Boltzmann equation
were developed in the early stage, such as the kinetic numerical method
(KNM) [24] and kinetic flux vector splitting (KFVS) method [20,25–
27]. Similar to FVS schemes, KFVS methods are highly robust. How-
ever, these methods ignore the collisional effects of gas molecules.
Hence the numerical dissipation is large. After taking the collisional
effects between gas molecules as well as coupling the inviscid and vis-
cous fluxes, GKS methods can effectively calculate more complex flows,
especially for hypersonic viscous flows [21–23]. The high-order GKS
methods which improve the numerical accuracy while retaining the ad-
vantages of GKS framework have also been developed, for example, the
high-order gas-kinetic scheme proposed by Li et al. [28], the high-order
multidimensional gas-kinetic scheme proposed by Luo et al. [29], the
two-stage fourth-order gas-kinetic scheme proposed by Pan et al. [30–
32], the compact fourth-order gas-kinetic scheme on structured mesh,
and unstructured mesh proposed by Ji et al. [33,34], the acoustic and
shock wave capturing compact high-order gas-kinetic scheme proposed
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by Zhao et al. [35], the arbitrary-Lagrangian–Eulerian high-order gas-
kinetic scheme and fourth-order gas-kinetic scheme proposed by Pan
et al. [36,37]. After years of development, GKS schemes have been
gradually matured and extended to many application fields [38–40].

One of the research hotspots of high-order methods is hybrid
schemes [41–46], such as the minimized dispersion and controllable
dissipation (MDCD)-WENO scheme [44] and weighted group velocity
control (WGVC)-WENO scheme [45], and many others. Hybrid schemes
have the characteristics of using reconstruction methods with different
dissipation in different regions. Before using reconstruction methods,
it is necessary to adopt the shock detection methods [47–49] to deter-
mine whether the computational domain is smooth or not. Then, low
dissipation schemes such as compact schemes can be used in smooth
regions, and high dissipation schemes for example WENO methods can
be adopted in discontinuous regions. In [50], Liu proposed a hybrid
kinetic method that uses different kinetic flux methods in different
regions. The less dissipative collision-related flux is used in smooth
regions, and the more dissipative KFVS flux is adopted in discontinuous
regions. Many numerical examples have validated the effectiveness of
this method. Based on the essential idea of the hybrid kinetic flux, in
this paper, a hybrid kinetic WGVC–WENO scheme is proposed, which
combines the WGVC–WENO reconstruction method proposed by [45]
with the hybrid kinetic method of [50]. Compared with [50], the new
scheme has less dissipation while maintaining strong robustness and
shock-capturing ability.

The structure of this paper is as follows: In Section 2, we first
introduce the gas kinetic theory and WGVC–WENO reconstruction
technique, then we describe how to combine the WGVC–WENO re-
construction technique with the hybrid kinetic method. In Section 3,
several numerical examples are presented to validate the performance
of our method. Finally, the conclusion is given in Section 4.

2. Hybrid kinetic WGVC–WENO scheme

In this section, we will present the hybrid kinetic WGVC–WENO
scheme for solving the Euler equations. As a matter of convenience,
only the one-dimensional form is presented, and it can be easily ex-
tended to multidimensional forms in a dimension by dimension man-
ner [3].

The 1D Euler equations can be written as:
𝜕𝐔
𝜕𝑡

+
𝜕𝐅(𝐔)
𝜕𝑥

= 0. (1)

where 𝐔 = (𝜌, 𝜌𝑢, 𝐸)𝑇 ,𝐅(𝐔) =
(

𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝑢(𝐸 + 𝑝)
)𝑇 , 𝜌 is the fluid

ensity, 𝑢 is the velocity, 𝑝 is the pressure, 𝐸 = 𝜌(𝑒 + 𝑢2∕2) is the total
nergy. For an ideal gas, the thermal energy 𝑒 is related to the pressure
through the relation 𝑝 = (𝛾−1)𝜌𝑒, and here 𝛾 is the ratio of the specific
eats.

For a uniform grid with the grid size 𝛥𝑥, the conservative finite
ifference method can be written as:
𝑑𝐔𝑖
𝑑𝑡

= − 1
𝛥𝑥

(

�̂�𝑖+1∕2 − �̂�𝑖−1∕2
)

. (2)

where 𝐔𝑖 is the point value, and �̂�𝑖+1∕2 is the numerical flux which has
an approximation of the flux 𝐅(𝐔) at the boundary 𝑥𝑖+1∕2. The third-
order TVD Runge–Kutta method [51] will be used to integrate in time.
Therefore we only need to specify the construction of the numerical
flux �̂�𝑖+1∕2 for a conservative finite difference method.

2.1. Hybrid kinetic method

In this subsection, we will briefly review the hybrid kinetic method
[50] which is based on the gas kinetic theory.

The well-known Boltzmann equation can be written as:

𝜕𝑓
+

𝑑
∑

𝑣𝑚
𝜕𝑓

= 𝐽 (𝑓, 𝑓 ). (3)
2

𝜕𝑡 𝑚=1 𝜕𝑥𝑚
here 𝑑 is the space dimension, 𝐯 =
(

𝑣1,… , 𝑣𝑑
)𝑇 denotes the gas

molecules velocity, 𝐽 is related to the collision term. Eq. (3) has a solu-
tion in the equilibrium state, that is, Maxwell equilibrium distribution
function, which can be written as:

𝑔(𝐱, 𝑡, 𝐯, 𝜉) = 𝜌
( 𝜆
𝜋

)

𝐾+𝑑
2 𝑒−𝜆

(

(𝐯−𝐮)𝟐+𝜉𝟐
)

. (4)

where 𝐾 is the total number of degrees of freedom for the internal
egree of freedom variable 𝜉, 𝜉2 =

∑𝐾
𝑛=1 𝜉

2
𝑛 , 𝜆 = 𝑀∕2𝑘𝐵𝑇 , here 𝑀

denotes the molecule mass, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the
temperature.

For KFVS methods, the collisional effects between gas molecules are
ignored. Hence, we can modify Eq. (3) by replacing the distribution
function 𝑓 with the Maxwellian distribution function :

𝜕𝑔
𝜕𝑡

+
𝑑
∑

𝑚=1
𝑣𝑚

𝜕𝑔
𝜕𝑥𝑚

= 0. (5)

Macroscopic variables can be obtained by the following equation:

𝐔 = ∫𝐾+𝑑
𝜓𝑓 (𝐱, 𝑡, 𝐯, 𝜉)𝑑𝐯𝑑𝜉 = ∫𝐾+𝑑

𝜓𝑔(𝐱, 𝑡, 𝐯, 𝜉)𝑑𝐯𝑑𝜉. (6)

here 𝜓 is the vector of moments defined as:

=
(

1, 𝑣1,… , 𝑣𝑑 ,
1
2
(

𝐯2 + 𝜉2
)

)𝑇
. (7)

Besides, the Euler equations can be gained by taking 𝜓 to Eq. (5) :

𝜕
𝜕𝑡 ∫𝐾+𝑑

𝜓𝑔(𝐱, 𝑡, 𝐯, 𝜉)𝑑𝐯𝑑𝜉 +
𝑑
∑

𝑚=1

𝜕
𝜕𝑥𝑚 ∫𝐾+𝑑

𝑣𝑚𝜓𝑔(𝐱, 𝑡, 𝐯, 𝜉)𝑑𝐯𝑑𝜉 = 0. (8)

As shown in [50], the numerical flux �̂�𝑖+1∕2 in Eq. (2) can be divided
nto two parts:

̂
𝑖+1∕2 = �̂�+

𝑖+1∕2 + �̂�−
𝑖+1∕2. (9)

where �̂�+
𝑖+1∕2 denotes the flux along increasing 𝑥 direction and �̂�−

𝑖+1∕2
denotes the flux along decreasing 𝑥 direction. Let 𝐅𝐢(𝐔𝐢) be the numer-
ical flux based on the point value 𝐔𝐢, and we can split the numerical
flux 𝐅𝐢 into two parts:

𝑖 = 𝐅+
𝑖 + 𝐅−

𝑖 . (10)

There are many flux splitting approaches for achieving Eq. (10),
uch as the Steger–Warming [18] or Lax–Friedrichs [3] flux splitting
ethod. For a kinetic scheme, 𝐅±

𝑖 in Eq. (10) can be obtained from the
FVS method:

+
𝐢 = ∫𝐊 ∫𝐯>𝟎

𝐯𝜓𝐠(𝐔𝐢, 𝐯, 𝜉)𝐝𝐯𝐝𝜉, 𝐅−
𝐢 = ∫𝐊 ∫𝐯<𝟎

𝐯𝜓𝐠(𝐔𝐢, 𝐯, 𝜉)𝐝𝐯𝐝𝜉.

(11)

It is noteworthy that we still need reconstruction techniques such
as WENO schemes to reconstruct 𝐅±

𝐢 to obtain �̂�±
𝑖+1∕2 in Eq. (9).

Since it is well known that the numerical dissipations of the colli-
sionless FVS/KFVS methods are intrinsically very large, in Ref [50], a
hybrid kinetic WENO method was proposed to reduce the numerical
dissipation in the flux evaluation procedure, which includes effects of
both the free transfer and the collision of gas molecules.

The hybrid kinetic flux can be written as:

�̂�𝑖+1∕2 = 𝛼�̂�KFVS
𝑖+1∕2 + (1 − 𝛼)�̂�C

𝑖+1∕2. (12)

where �̂�KFVS
𝑖+1∕2 is the collisionless KFVS-type numerical flux, �̂�C

𝑖+1∕2 is
the numerical flux which considers collisional effects between gas
molecules, and 𝛼 is a weight parameter which should approach one
around strong shock waves and zero in smooth regions to get a
dissipation-adaptive numerical flux. More details about 𝛼 will be given
in Section 2.3.

In Eq. (12), the collisionless flux �̂�KFVS
𝑖+1∕2 can be obtained by the

approach described in the preceding part, i.e., Eqs. (9)–(11). Next, we
present constructions of the collision-related kinetic flux �̂�C .
𝑖+1∕2
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Table 1
The values of 𝑏𝑙 .
𝑏−3(𝜎𝑡) 𝑏−2(𝜎𝑡) 𝑏−1(𝜎𝑡) 𝑏0(𝜎𝑡) 𝑏1(𝜎𝑡) 𝑏2(𝜎𝑡) 𝑏3(𝜎𝑡)

−𝜎𝑡 1∕60 + 6𝜎𝑡 37∕60 + 20𝜎𝑡 −2∕15 − 15𝜎𝑡 37∕60 − 15𝜎𝑡 −2∕15 + 6𝜎𝑡 1∕60 − 𝜎𝑡

The basic idea of evaluating �̂�C
𝑖+1∕2 is to calculate the flux from

𝐅(𝐔) =
(

𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝑢(𝐸 + 𝑝)
)𝑇 based on the collision-related state �̂�C

𝑖+1∕2
constructed at the boundary 𝑥𝑖+1∕2. To get �̂�C

𝑖+1∕2, we first split the
conservative variable 𝐔𝐢 into two parts:

𝐔𝑖 = 𝐔+
𝑖 + 𝐔−

𝑖 . (13)

With

𝐔+
𝐢 = ∫𝐊 ∫𝐯>𝟎

𝜓𝐠(𝐔𝐢, 𝐯, 𝜉)𝐝𝐯𝐝𝜉, 𝐔−
𝐢 = ∫𝐊 ∫𝐯<𝟎

𝜓𝐠(𝐔𝐢, 𝐯, 𝜉)𝐝𝐯𝐝𝜉. (14)

Then the collision-related state �̂�C
𝑖+1∕2 can be obtained by:

�̂�C
𝑖+1∕2 = �̂�+

𝑖+1∕2 + �̂�−
𝑖+1∕2. (15)

where �̂�+
𝑖+1∕2 is calculated from 𝐔+

𝐢 by the reconstruction techniques
such as WENO schemes, and �̂�−

𝑖+1∕2 is determined from 𝐔−
𝐢 by a sym-

metric procedure with respect to 𝑥𝑖+1∕2. After �̂�C
𝑖+1∕2 is determined, from

which the collision-related numerical flux �̂�C
𝑖+1∕2 can be evaluated.

2.2. WGVC–WENO reconstruction technique

In [45], He et al. first proposed the WGVC scheme and then com-
bined it with the WENO scheme to get the WGVC–WENO method.
Different from the classical Dispersion-Relation-Preserving(DRP) tech-
nique, the WGVC–WENO method is a nonlinear optimization technique,
which has very good dispersion as well as attractive dissipation. In
addition to the good spectral properties, the implementation of this
method is also very simple. More details about the WGVC–WENO
method are as follows:

To begin with,we assume 𝑓𝑖+1∕2 is the flux reconstructed from 𝑓𝑖
that ranges over mesh point indices 𝑖−(𝑟−1) to 𝑖+(𝑟−1), here 𝑟 = 4 for
the seventh-order WGVC scheme. 𝑓𝑖+1∕2 is weighted by a mixed type
flux [52] 𝑓𝑖+1∕2

(

𝜎𝑚
)

and a slow type flux [52] 𝑓𝑖+1∕2
(

𝜎𝑠
)

:

𝑓𝑖+1∕2 = 𝜛𝑚𝑓𝑖+1∕2
(

𝜎𝑚
)

+𝜛𝑠𝑓𝑖+1∕2
(

𝜎𝑠
)

, (16)

�̂�+1∕2(𝜎𝑡) =
𝑟−1
∑

𝑙=−(𝑟−1)
𝑏𝑙(𝜎𝑡) ⋅ 𝑓𝑖+𝑙 , 𝑡 = 𝑚, 𝑠. (17)

where 𝑡 = 𝑚 denotes the mixed type and 𝑡 = 𝑠 denotes the slow type.
𝜎𝑡 is a free parameter for adjusting the dispersion characteristics of
the fluxes. More details about 𝜎𝑡 can be found in [45]. In this paper,
𝑚 = 0.02205 and 𝜎𝑠 = 0. The values of 𝑏𝑙 are listed in Table 1.

In Eq. (16), 𝜛𝑚 is the weight for the mixed type flux and 𝜛𝑠 is the
eight for the slow type flux. The computational domain should be
ivided into two sub-stencil: 𝑆𝑚 ranges over mesh point indices 𝑖−(𝑟−1)
o 𝑖 and 𝑆𝑠 ranges over mesh point indices 𝑖 to 𝑖 + (𝑟 − 1). 𝜛𝑚, 𝜛𝑠 are
efined similar to the weights for WENO-Z scheme [5], that is:

𝑡 = 𝐷𝑡

[

1 +
(

𝜏
𝛽𝑡+𝜀

)𝑝]
, 𝑡 = 𝑚, 𝑠, (18)

𝑡 =
𝛾𝑡

𝛾𝑚 + 𝛾𝑠
. (19)

ith:

𝑡 = 𝑓 ′2
𝑡 + 13

12
𝑓 ′′2
𝑡 + 1043

960
𝑓 ′′′2
𝑡 + 1

12
𝑓 ′
𝑡 𝑓

′′′
𝑡 , 𝑡 = 𝑚, 𝑠, (20)

= |𝛽 − 𝛽 | . (21)
3

| 𝑚 𝑠|
able 2
he values of 𝑔𝑙 .
𝑔0 𝑔1 𝑔2 𝑔3
0.0882 1∕5 + 0.441𝜛𝑚 3∕5 − 0.2646𝜛𝑚 1∕5 − 0.2646𝜛𝑚

In Eq. (18), 𝜀 is a small positive number to prevent division by zero,
here 𝜀 = 10−40 and 𝑝 = 2 as [5]. 𝐷𝑚, 𝐷𝑠 are optimal weights that
an combine the mixed type flux 𝑓𝑗+1∕2

(

𝜎𝑚
)

and the slow type flux
𝑓𝑗+1∕2

(

𝜎𝑠
)

into a seventh-order upwind flux in smooth regions, here
𝐷𝑚 = 0.32394 and 𝐷𝑠 = 0.67606.

In order to combine the WGVC scheme with WENO scheme, [45]
rewrote the WGVC scheme based on candidate stencils for the WENO
scheme, as follows:

𝑓𝑖+1∕2 =
𝑟−1
∑

𝑙=0
𝑔𝑙𝑓𝑖+1∕2,𝑙 , (22)

𝑓𝑖+1∕2,0 = − 3
12𝑓𝑖−3 +

13
12𝑓𝑖−2 −

23
12𝑓𝑖−1 +

25
12𝑓𝑖,

𝑓𝑖+1∕2,1 =
1
12𝑓𝑖−2 −

5
12𝑓𝑖−1 +

13
12𝑓𝑖 +

3
12𝑓𝑖+1,

𝑓𝑖+1∕2,2 = − 1
12𝑓𝑖−1 +

7
12𝑓𝑖 +

7
12𝑓𝑖+1 −

1
12𝑓𝑖+2,

𝑓𝑖+1∕2,3 =
3
12𝑓𝑖 +

13
12𝑓𝑖+1 −

5
12𝑓𝑖+2 +

1
12𝑓𝑖+3.

(23)

The values of 𝑔𝑙 are listed in Table 2. Based on Eq. (22), It is
convenient to combine the WGVC scheme with WENO scheme:

𝑓𝑖+1∕2 =
𝑟−1
∑

𝑙=0
𝜔ℎ𝑦𝑏𝑟𝑖𝑑𝑙 𝑓𝑖+1∕2,𝑙 , (24)

𝜔ℎ𝑦𝑏𝑟𝑖𝑑𝑙 = (1 − 𝜃)𝑔𝑙 + 𝜃𝜔𝑙 . (25)

where (1 − 𝜃)𝑔𝑙 is the new weight for the WGVC scheme and 𝜃𝜔𝑙 is
the new weight for the WENO-Z scheme, here 𝜔𝑙 are defined similarly
to Eqs. (18)–(21). 𝜃 is a parameter that meets the condition: 𝜃(0) = 0,
𝜃(1) = 1. Moreover, 𝜃 is defined as Eqs. (26)–(27):

𝜃 = 𝑠𝑞 ⋅ (𝑞 + 1 − 𝑞 ⋅ 𝑠), (26)

𝑠 = 1 −
𝜎𝑚𝜛𝑠
𝐷𝑚𝐷𝑠

. (27)

In Eq. (26), 𝑞 is a positive integer. A large number of numerical
experiments show that the dissipation decreases with the increase of
𝑞. In this paper, 𝑞 = 100. So far, the basic idea of the WGVC–WENO
reconstruction technique has been introduced.

2.3. Hybrid kinetic WGVC–WENO scheme

The strategy of the hybrid kinetic WGVC–WENO scheme is to adopt
different flux methods and reconstruction techniques according to the
different characteristics of the flow fields. Ideally, collision-related
kinetic flux �̂�C

𝑖+1∕2 and the WGVC reconstruction technique should be
used in smooth regions. Collisionless KFVS-type flux with the WENO-Z
reconstruction technique should play a role in discontinuity regions.

Due to the limitation of the current shock detection methods, it is
challenging to adopt a single flux method and reconstruction technique
in compressible flows with strong shock waves. The compromise is to
use weighted methods based on the smoothness evaluation of flows.
In Eq. (12), the weight parameter 𝛼 should be constructed by the
principle that the contribution of the more dissipative flux �̂�KFVS

𝑖+1∕2 should
be dominant around strong shock waves and small in smooth regions
where the less dissipative flux �̂�C

𝑖+1∕2 should dominate. In the present
study, we use the way of local pressure jump as [50]. By this means,
the value of 𝛼 in Eq. (12) can be determined by:

𝛼 = 1 − exp
(

−𝐶
|𝑝𝑖 − 𝑝𝑖+1|

)

. (28)

𝑝𝑖 + 𝑝𝑖+1
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a
I
c

𝐅

where 𝑝𝑖 and 𝑝𝑖+1 are pressures corresponding to values 𝐔𝐢 and 𝐔𝐢+𝟏,
nd 𝐶 is a positive empirical constant that is set to be 10 in this paper.
n order to improve the efficiency of the hybrid scheme, the following
ut-off type of hybrid flux is used:

̂
𝑖+1∕2 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂�C
𝑖+1∕2, 0 ⩽ 𝛼 ⩽ 𝛿,

𝛼�̂�KFVS
𝑖+1∕2 + (1 − 𝛼)�̂�C

𝑖+1∕2, 𝛿 < 𝛼 < 1 − 𝛿,

�̂�KFVS
𝑖+1∕2 , 1 − 𝛿 ⩽ 𝛼 ⩽ 1.

(29)

where 𝛿 is a parameter to control the cut-off range of 𝛼, which is
set to be 𝛿 = 0.02 in this paper. Using the cut-off type of hybrid
flux, much computational cost can be saved without apparent accuracy
debasement.

The construction procedure of the flux �̂�𝑖+1∕2 when 𝛿 < 𝛼 < 1 − 𝛿 in
Eq. (29) can be summarized as the follows:

1. Calculate the left and right eigenvector matrixes 𝐋𝑖+1∕2 and
𝐑𝑖+1∕2 by Roe average of variables 𝐔𝑖 and 𝐔𝑖+1.

2. Calculate the jump indicator 𝛼 by Eq. (29).
3. Calculate the variables 𝐅±

𝐢+𝐥, 𝐔
±
𝐢+𝐥 (𝑙 = −3,… , 4) defined by Eqs.

(11) and (14), respectively.
4. Transform the variables 𝐅±

𝐢+𝐥, 𝐔±
𝐢+𝐥 into the local characteristic

fields as following:

�̃�±
𝑖 = 𝐋𝑖+1∕2𝐅±

𝐢 , �̃�±
𝐢 = 𝐋𝐢+𝟏∕𝟐𝐔±

𝐢 . (30)

5. Adopt the WGVC–WENO reconstruction technique for character-
istic variables �̃�±

𝑖+𝑙 and �̃�±
𝑖+𝑙 to obtain the corresponding compo-

nent of ̂̃𝐅
±

𝑖+1∕2 and ̂̃𝐔
±

𝑖+1∕2 at the boundary 𝑥𝑖+1∕2.

6. Transform ̂̃𝐅
±

𝑖+1∕2 and ̂̃𝐔
±

𝑖+1∕2 back into the physical space and
calculate the flux �̂�KFVS

𝑖+1∕2 and �̂�𝐶𝑖+1∕2 as follows:

�̂�KFVS
𝑖+1∕2 = 𝐑𝑖+1∕2

(

̂̃𝐅
+

𝑖+1∕2 +
̂̃𝐅
−

𝑖+1∕2

)

,

�̂�C
𝑖+1∕2 = 𝐑𝑖+1∕2

(

̂̃𝐔
+

𝑖+1∕2 +
̂̃𝐔
−

𝑖+1∕2

)

.
(31)

�̂�𝐶𝑖+1∕2 = 𝐅(�̂�C
𝑖+1∕2). (32)

7. Calculate hybrid numerical flux �̂�𝑖+1∕2 by Eq. (32).

Besides, the construction procedures of the flux �̂�𝑖+1∕2 when 0 ⩽ 𝛼 ⩽
𝛿 and 1 − 𝛿 ⩽ 𝛼 ⩽ 1 can be easily obtained, which are omitted here.

2.4. Method for viscous terms

For viscous flows, the conventional sixth-order central difference
scheme is used to discrete the viscous term. Take the two-dimensional
case as an example, we have:
(

𝜕𝑓
𝜕𝑥

)

𝑖,𝑗
=

45
(

𝑓𝑖+1,𝑗 − 𝑓𝑖−1,𝑗
)

− 9
(

𝑓𝑖+2,𝑗 − 𝑓𝑖−2,𝑗
)

+
(

𝑓𝑖+3,𝑗 − 𝑓𝑖−3,𝑗
)

60𝛥𝑥
,

(33)

(

𝜕𝑓
𝜕𝑦

)

𝑖,𝑗
=

45
(

𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗−1
)

− 9
(

𝑓𝑖,𝑗+2 − 𝑓𝑖,𝑗−2
)

+
(

𝑓𝑖,𝑗+3 − 𝑓𝑖,𝑗−3
)

60𝛥𝑦
.

(34)

3. Numerical results and discussion

In this section, we will test the hybrid kinetic WGVC–WENO scheme
4

in both one-dimensional and two-dimensional cases. A dimension by
Table 3
𝐿1 errors and convergence orders of WGVCW–HK, WGVCW–KFVS, WGVCW–SW for the
1D linear advection equation with initial condition (36) at t = 2 s.

N WGVCW–HK WGVCW–KFVS WGVCW–SW

𝐿1 Order 𝐿1 Order 𝐿1 Order

8 8.780E−04 – 1.090E−03 – 2.008E−03 –
16 1.990E−05 5.46 3.120E−05 5.13 4.547E−05 5.46
32 2.060E−07 6.59 4.020E−07 6.28 5.614E−07 6.34
64 1.730E−09 6.90 3.500E−09 6.84 4.904E−09 6.84
128 1.390E−11 6.96 2.840E−11 6.95 3.948E−11 6.96

Table 4
𝐿1 errors and convergence orders of WGVCW–HK, WGVCW–KFVS, WGVCW–SW for the
2D linear advection equation with initial condition (38) at t = 2 s.
𝑁2 WGVCW–HK WGVCW–KFVS WGVCW–SW

𝐿1 Order 𝐿1 Order 𝐿1 Order

82 6.754E−04 – 1.940E−03 – 2.525E−03 –
162 1.466E−05 5.53 7.680E−05 4.66 9.872E−05 4.68
322 1.396E−07 6.71 8.982E−07 6.42 1.137E−06 6.44
642 1.154E−09 6.92 7.701E−09 6.87 9.708E−09 6.87
1282 9.264E−12 6.96 6.147E−11 6.97 7.735E−11 6.97

dimension manner [3] has been used for the present finite differ-
ence method in two-dimensional cases. The uniform mesh is used
for both 1D and 2D cases except for the laminar boundary layer
problem. For the sake of simplicity, the WGVC–WENO reconstruction
technique with the hybrid kinetic method will be called WGVCW–HK,
the WENO reconstruction technique with the hybrid kinetic method
will be called WENO–HK, the WENO reconstruction technique with the
Steger–Warming method will be called WENO–SW, the WGVC–WENO
reconstruction technique with the Steger–Warming method will be
called WGVCW–SW, and the WGVC–WENO reconstruction technique
with the KFVS method will be called WGVCW–KFVS. For all numerical
examples, the computational time step 𝛥𝑡 is:

𝛥𝑡 =
|

|

|

|

𝜂𝛥𝐿
(|𝐮| + 𝑎) (1 + 𝑅𝑒∗)

|

|

|

|min
. (35)

where the CFL number 𝜂 is set to be 0.6. 𝛥𝐿 is the representative length
defined by 𝛥𝐿 = 𝛥𝑥 for 1D cases and 𝛥𝐿 = min {𝛥𝑥, 𝛥𝑦} for 2D cases. 𝑎
is the speed of sound defined by 𝑎 =

√

𝛾𝑝∕𝜌. 𝑅𝑒∗ is the grid Reynolds
number defined by 𝑅𝑒∗ = 0 for inviscid flows and 𝑅𝑒∗ = |𝐮|𝛥𝐿∕𝜐 for
viscid flows, here 𝜐 is the kinematic viscosity coefficient.

3.1. Accuracy test

Both 1D and 2D examples are used to test the accuracy of the
hybrid kinetic WGVCW–WENO scheme in this subsection. The 1D Euler
equations with the following initial data are solved.

𝜌(𝑥, 0) = 1 + 0.2 sin(𝜋𝑥), 𝑢(𝑥, 0) = 1.0, 𝑝(𝑥, 0) = 1. (36)

The computational domain is [0,2], and the periodic boundary
condition is used in this case. The exact solution for Eq. (36) is given
by:

𝜌(𝑥, 𝑡) = 1 + 0.2 sin(𝜋(𝑥 − 𝑢𝑡)), 𝑢(𝑥, 𝑡) = 1.0, 𝑝(𝑥, 𝑡) = 1. (37)

The computational results with a suitably reduced time step when
𝑡 = 2 s are shown in Table 3, where 𝑁 is the grid points. It shows that
three schemes can achieve a seventh-order convergence rate, and the
WGVCW–HK has smaller absolute errors than the WGVCW–KFVS and
WGVCW–SW for the same grid points. This means that WGVCW–HK is
more accurate and less dissipative than other schemes.

Furthermore, the 2D Euler equations with the following initial data
are solved.

𝜌(𝑥, 𝑦, 0) = 1 + 0.2 sin(𝜋(𝑥 + 𝑦)), 𝑢 = 0.7, 𝑢 = 0.3, 𝑝 = 1. (38)
1 2
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Fig. 1. Density profiles of the Sod problem (a) and Lax problem (b) with WGVCW–HK, WENO–HK, WENO–SW with 200 grid points.
Fig. 2. Density profiles of Shu–Osher problem with WGVCW–HK, WENO–HK, WENO–SW at t = 1.8 s with 200 grid points (a) and an enlarged view (b).
Fig. 3. Density profiles of Shu–Osher problem with WGVCW–HK, WENO–HK, WENO–SW at t = 1.8 s with 400 grid points (a) and an enlarged view (b).
The computational domain is taken as [0,2]×[0,2], the computa-
tional time is 2 s, and the periodic boundary condition is used along
with each direction. The exact solution for this test is given by:

𝜌(𝑥, 𝑦, 𝑡) = 1 + 0.2 sin(𝜋(𝑥 + 𝑦 − 𝑡)), 𝑢 = 0.7, 𝑢 = 0.3, 𝑝 = 1. (39)
5

1 2
The errors and convergence orders of density 𝜌 are shown in Table 4.

Like 1D accuracy test results, the WGVCW–HK is more accurate and less

dissipative than other schemes in the 2D test. Besides, the advantage
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Fig. 4. Density profiles of Titarev–Toro problem with WGVCW–HK, WGVCW–KFVS, WGVCW–SW, WENO–SW at t = 5 s with 1000 grid points (a) and an enlarged view (b).
Fig. 5. Density profiles of blast wave problem with WGVCW–HK, WGVCW–SW, WENO–SW at t = 0.38 s with 200 grid points (a) and an enlarged view (b).
3

e
t
f

(

of WGVCW–HK in absolute error is more evident with the increase of
dimension.

3.2. 1D Riemann problems

In this subsection, we consider the classical Riemann initial value
problems, also known as the shock-tube problems: the Sod problem and
Lax problem. These cases are solved by the WGVCW–HK, WENO–SW,
and WENO–HK with 200 grid points.

For the Sod problem, the initial condition in the left and the right
stages of the shock are:

(𝜌, 𝑢, 𝑝) =
{

(1.000, 0, 1.0), 0 ⩽ 𝑥 < 0.5,
(0.125, 0, 0.1), 0.5 ⩽ 𝑥 ⩽ 1.

(40)

For the Lax problem, the initial condition in the left and the right
stages of the shock are:

(𝜌, 𝑢, 𝑝) =
{

(0.445, 0.698, 0.3528), 0 ⩽ 𝑥 < 0.5,
(0.500, 0.000, 0.5710), 0.5 ⩽ 𝑥 ⩽ 1.

(41)

The computational time for the Sod problem is t = 0.2 s and t = 0.14
for the Lax problem, the computational domain is taken as [0,1] in
oth cases. As shown in Fig. 1, the simulated density 𝜌 of the Sod and
ax problems indicate that the WGVCW–HK is slightly more accurate
han the WENO–HK and WENO–SW due to its less dissipativity.
6

.3. Shu-Osher problem

Shu–Osher problem is a one-dimensional case with a Mach 3 shock-
ntropy wave interaction, and it is mainly used to evaluate the resolu-
ion of the strong and the small waves [51]. The initial condition is as
ollow:

𝜌, 𝑢, 𝑝) =
{

(3.857143, 2.629369, 10.333333), 0 ≤ 𝑥 ≤ 1,
(1 + 0.2 sin(5𝑥), 0, 1), 1 < 𝑥 ≤ 10.

(42)

The WGVCW–HK, WENO–SW, and WENO–HK are used for solving
this problem with 200 and 400 grid points. The computational time is
t = 1.8 s. Moreover, the numerical solution of the WGVCW–HK with
N = 4000 is considered as the reference solution, whereas the analytic
solution is non-existent. Fig. 2 shows that WGVCW–HK gives a much
better result than WENO–HK and WENO–SW with the same grid points.
In Fig. 3, the results of three methods are close, and the WGVCW–HK
is slightly better than other methods.

3.4. Titarev-Toro problem

Titarev–Toro problem is based on the Shu–Osher problem, but it is
more complicated due to the higher frequency entropy waves [53]. The
initial condition is:

(𝜌, 𝑢, 𝑝) =
{

(1.515695, 0.523346, 1.805), −5 ≤ 𝑥 ≤ −4.5, (43)

(1 + 0.1 sin(20𝜋𝑥), 0, 1), −4.5 < 𝑥 ≤ 5.
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Fig. 6. Density profiles of blast wave problem with WGVCW–HK, WGVCW–SW, WENO–SW at t = 0.38 s with 400 grid points (a) and an enlarged view (b).
Fig. 7. Density profiles of double Mach reflection problem with WGVCW–HK (a), WENO–HK (b), WGVCW–KFVS (c), WGVCW–SW (d) at t = 0.38 s with 960 × 240 grid points;
30 equally spaced contour lines from 𝜌 = 1.5 to 𝜌 = 22.9705.
The WGVCW–HK, WGVCW–KFVS, WGVCW–SW, and WENO–SW
are used for solving this problem with 800 grid points. The compu-
tational time is t = 5.0 s. Moreover, the numerical solution of the
WGVCW–HK with N = 8000 is considered as the reference solution.
The density profiles of the Titarev–Toro problem are shown in Fig. 4
7

that indicates the high-frequency waves decay after passing the shock
wave. However, the numerical solution of WGVCW–HK is sharper than
that of WGVCW–KFVS, WGVCW–SW, and WENO–SW at every peak,
especially near the front shock wave. It means that WGVCW–HK is more
sensitive to higher frequency waves, and WGVCW–HK shows better
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Fig. 8. Density profiles of 2D Riemann problem with WGVCW–HK (a), WENO–HK (b), WGVCW–KFVS (c), WGVCW–SW (d) at t = 1.6 s with 400 × 400 grid points; 50 equally
spaced contour lines from 𝜌 = 0.1 to 𝜌 = 3.2.
discontinuity-capturing ability in the region with the rapidly changing
waves. The performance of WGVCW–HK in this case is mainly due to
the good spectral properties of the WGVC–WENO method, which is also
mentioned by Liao et al. in [54].

3.5. Blast wave problem

In this case, the blast wave problem [5] is solved by the WGVCW–
HK, WGVCW–SW, and WENO–SW with the initial flow field:

(𝜌, 𝑢, 𝑝) =

⎧

⎪

⎨

⎪

⎩

(1, 0, 1000),
(1, 0, 0.01),
(1, 0, 100),

−5 ≤ 𝑥 < −4,
−4 ≤ 𝑥 < 4,
4 ≤ 𝑥 ≤ 5.

(44)

The computational domain is taken as [−5,5] with a reflecting
boundary condition on both sides. The numerical results in t = 0.38
s with N = 200 are shown in Fig. 5, and N = 400 are shown in Fig. 6.
Since there is no exact solution for this example, the WGVCW–SW with
N = 4000 is used for comparison. As plotted in Figs. 5–6, WGVCW–HK
obtains a better result than WGVCW–SW and WENO–SW especially in
the turn region.

3.6. Double Mach reflection problem

The double-Mach reflection problem [55] is a two-dimensional case.
There is a right-moving Mach 10 shock wave, positioned at x = 1/6, y =
8

0, and forms a 60 degree angle with increasing direction. The WGVCW–
HK, WGVCW–KFVS, WGVCW–SW, and WENO–HK are applied to solve
it. The parameters before the shock wave are 𝜌 = 1.4, 𝑝 = 1, 𝛾 =
1.4. For the bottom boundary, the exact post-shock solutions are used
when 0 ≤ 𝑥 ≤ 1∕6, and the reflecting boundary condition is used for
other intervals. The upper boundary solutions are imposed to describe
the exact motion of the Mach 10 shock wave. For the left and right
boundary, the inflow and outflow boundary conditions are applied,
respectively. The initial condition is:

(

𝜌, 𝑢1, 𝑢2, 𝑝
)

=

⎧

⎪

⎨

⎪

⎩

(8, 7.145,−4.125, 116.5), 𝑦 >
√

3
(

𝑥 − 1
6

)

,

(1.4, 0, 0, 1), 𝑦 ≤
√

3
(

𝑥 − 1
6

)

.
(45)

The computational domain is [0,4]×[0,1]. The computational time
is t = 0.2 s with 960 × 240 grid points. Since the Mach number
is extremely high, the computation is straightforward to diverge if
the scheme lacks sufficient robustness. It can be found that there are
several flow characteristics around the Mach stems, slip lines, and
incident shock from the density contours in Fig. 7. Compared with
other schemes, WGVCW–HK captures better rolled-up small vortices
and more complex shear surfaces along the incline Mach stems. It
indicates that WGVCW–HK has smaller dissipation than other schemes.
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Fig. 9. Density profiles of Navier–Stokes shock structure problem with WGVCW–HK, WGVCW–SW, WENO–SW with 40 grid points (a), 80 grid points (b), 160 grid points (c), 320
grid points (d).
3.7. 2D Riemann problem

In this subsection, a classical two-dimensional Riemann problem
[56] is resolved by the WGVCW–HK, WGVCW–KFVS, WGVCW–SW, and
WENO–HK. The initial condition is:

(𝜌, 𝑢, 𝑣, 𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1.0, 0.75,−0.5, 1.0), 1.0 ≤ 𝑥 ≤ 2.0, 1.0 ≤ 𝑦 ≤ 2.0,
(2.0, 0.75, 0.5, 1.0), 0.0 ≤ 𝑥 < 1.0, 1.0 ≤ 𝑦 ≤ 2.0,
(1.0,−0.75, 0.5, 1.0), 0.0 ≤ 𝑥 < 1.0, 0.0 ≤ 𝑦 < 1.0,
(3.0,−0.75,−0.5, 1.0), 1.0 ≤ 𝑥 ≤ 2.0, 0.0 ≤ 𝑦 < 1.0.

(46)

The computational domain is [0,2]×[0,2]. The computational time
is t = 1.6 s with 400 × 400 grid points. There are four slip lines in the
solution of this case. The density contours are shown in Fig. 8. In which,
it can be found that planar contact discontinuity interactions form four
shear layers. In comparison with other schemes, WGVCW–HK presents
more vortexes with the same grid points. It means that WGVCW–HK
can capture the shear instabilities among four contact discontinuities
with high resolution.

3.8. Navier–Stokes shock structure

In this subsection, the Navier–Stokes shock structure test [23],
which is viscous, is considered. The WGVCW–HK, WGVCW–SW, and
WENO–SW are applied to solve it. The initial condition is set as a
9

stationary shock with 𝑀𝑎 = 1.1, 𝜌 = 1, 𝑢 = 1, 𝛾 = 5∕3. The constant
dynamic viscosity 𝜇 is set to be 𝜇 = 2.5 × 10−4, and the Prandtl
number 𝑃𝑟 is 0.72 in this test. The analytic solution can be obtained by
solving the ordinary differential equations [23]. The sixth-order central
difference scheme in Section 2.4 is used to discrete the viscous term.

Fig. 9 are the computed density distributions based on different
mesh sizes. It can be found that good mesh convergence has been
achieved for every scheme. Moreover, WGVCW–HK performs overall
better than other schemes, which indicates that WGVCW–HK is more
accurate and less dissipative than others.

3.9. Laminar boundary layer

Another case of viscous flows is the laminar boundary layer prob-
lem. In this case, the fluid flows through a semi-infinite plate with
a thickness of zero and forms the laminar boundary layer. There is
an exact Blasius solution for the velocity distribution in the boundary
layer. The grid number is 130 × 55, where the 𝑥-direction coordinate 0
is the starting position of the plate, and the uniform free stream along
the 𝑥-direction is in front of the plate. The minimum grid size in 𝑥-
direction is 0.02, and the minimum grid size in 𝑦-direction is 0.02. The
grid distribution is shown in Fig. 10. The Mach number is 0.2 and the
Reynolds number is 1 × 105, which is defined as 𝑅𝑒∞ = 𝑈∞𝐿∕𝜈. The
WGVCW–HK, WGVCW–SW and WENO–SW methods are used to deal
with the convection terms, and the 6th order central difference scheme
in Section 2.4 are used to deal with the viscous terms. Figs. 11–12 show

the velocity distributions in x and y directions at x = 20.44. The 𝜂 in



Computers and Fluids 229 (2021) 105092K. He et al.

F

Fig. 10. Grid distribution of the laminar boundary layer problem.
Fig. 11. U velocity distribution of the laminar boundary layer problem with WGVCW–HK, WGVCW–SW, WENO–SW at x = 20.44.
Fig. 12. V velocity distribution of the laminar boundary layer problem with WGVCW–HK, WGVCW–SW, WENO–SW at x = 20.44.
igs. 11–12 is defined as 𝜂 = 𝑦
√

𝑈∕(𝜈𝑥). The distributions of velocity
U and V calculated by the WGVCW–HK, WGVCW–SW and WENO–SW
are very close, which agree well with the Blasius solution.

3.10. The computational cost

In this subsection, the computational cost of the hybrid kinetic
WGVCW–WENO scheme is numerically investigated. The Shu–Osher
problem in Section 3.3 and the double Mach reflection problem in
Section 3.6 are taken as the test objects. The numerical tests are
10

completed in the Windows system with single-core, and the CPU is Intel
i7-6700. Each test is repeated five times, and the calculation time given
in Table 5 is the average of five tests.

As shown in Table 5, the CPU time for WGVCW–HK is 14% more
than that for WGVCW–SW in Shu–Osher problem. In the double Mach
reflection problem, the CPU time for WGVCW–HK is roughly 7% more
than that for WGVCW–SW.

4. Conclusion

A high-order hybrid kinetic WGVCW–WENO scheme for compress-
ible flow simulations is proposed in this paper. The new scheme inherits
the hybrid kinetic method proposed by [50], which considers the effects
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Table 5
The CPU time(in seconds) for WGVCW–HK, WGVCW–KFVS, WGVCW–SW with
single-core in Shu–Osher problem and double Mach reflection problem.

Test case and efficiency WGVCW–HK WGVCW–KFVS WGVCW–SW

Shu–Osher problem 1.44(1.14) 1.29(1.02) 1.26(1.00)
Double Mach reflection problem 3625.23(1.07) 3444.58(1.01) 3397.36(1.00)

of both the free transfer and the collision of gas molecules and is com-
bined with the WGVC–WENO reconstruction technique in [45]. The
new scheme has the characteristics: In smooth regions, the collision-
related flux with small dissipation plays a leading role with the WGVC
reconstruction technique. In the vicinity of discontinuous regions, the
collisionless KFVS-type flux with large dissipation and WENO recon-
struction technique are dominant.

Numerical experiments show that the new scheme is more accurate,
less dissipative than [50] and other FVS methods, using the KFVS
method and Steger–Warming method as examples. Several complex
one-dimensional and two-dimensional examples show that the new
scheme achieves not only high accuracy and low dissipation but also
strong robustness and shock-capturing ability. Besides, the Titarev–
Toro problem results show that the new scheme has a good capturing
ability for high-frequency waves. In terms of the efficiency, the CPU
time for WGVCW–HK is acceptable as shown in numerical examples.
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