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A B S T R A C T   

Propagating cracks may deflect due to dynamic instability, running into pre-existing weak regions 
of heterogeneous media, or encountering variation in driving forces. The mechanical analysis of a 
kinked crack is of engineering significance for safety control and crack-network formation. 
Existing theories for kinked cracks relied on the perturbation method, as befit small kinks. The 
stress intensity factors (SIFs) are valid in the close proximity of the primary crack tip. As to the 
stress field of a kinked crack, it remains unsolved so far. In this work we develop an analytical 
solution to the stress fields of kinked cracks. By employing the conformal mapping and the 
Muskhelishvili approach, the close-form solution works for arbitrarily sized kinked cracks. The 
analytical theory is then validated using finite-element simulations. With this prior knowledge, 
we analyze the dependence of crack deflection on loading conditions, critical energy release rate, 
and the geometry of a kinked crack. We further demonstrate that such an analytical approach 
paves the way to obtain the solution of multiple-kinked cracks.   

1. Introduction 

When cracks propagate in non-uniform stress fields or in heterogeneous media with internal discontinuities, they may deflect and 
kink (Cotterell and Rice, 1980). This phenomenon has gained a lot of attention for their significance in engineering practices, from 
crack path control in safety design to crack-network formation in nonconventional energy harvesting. The latter is evidently seen in the 
course of rapid progress in hydraulic fracking to exploit natural gas encapsulated in shales full of pre-existing cracks, pores and weak 
zones. A well-developed crack network for high permeability of fluids is important for high yield. More broadly scenarios for crack 
propagation and deflection can be found in advanced materials with abundant interfaces. Fracture in anisotropic materials is another 
domain rich of kinked cracks (Azhdari and Nemat-Nasser, 1992; Zhu and Yang, 1999). Therefore, understanding their crack path in the 
presence of a variety of serving conditions becomes essential. 

A successful theoretical analysis on crack path is contingent on faithful fracture criteria (Griffith, 1921; Irwin, 1957; Rice, 1968) 
and a well understanding about the interaction of a primary or kinked crack with pre-existing microcracks or weak region. Those 
disruptions may be ubiquitously seen in shale (Lee et al., 2015) and composite materials. The most broadly accepted criterion for crack 
path selection is based on the maximum energy release rate in the propagating direction (Hussain et al., 1973), which may be 
conveniently formulated once the SIFs are known. Therefore, finding a way to accurately evaluate SIFs has been a core subject in 
fracture mechanics, and has received enduring interest from researchers of solid mechanics (Williams, 1957; Cotterell and Rice, 1980; 
Hayashi and Nemat-Nasser, 1981; Gao and Rice, 1986; Hutchinson, 1990; Fett et al., 2004; Zhao and Guo, 2012; Zhang et al., 2014; 
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Salvadori and Fantoni, 2016; Yu et al., 2018; Leblond et al., 2019; Quaranta et al., 2019). 
Based on the maximum strain energy release rate criteria, He and Hutchinson (1989) solved the fracture problem of crack 

deflection in two dissimilar isotropic materials. Hutchinson and Suo (1992) developed a comprehensive theory about crack propa-
gation in layered materials. Very recently, Zeng and Wei (2017) gave the analytical formulae of crack deflection encountering het-
erogeneous interfaces in brittle media. It is fair to say that the field has gained quite profound knowledge, from both theories and 
experimental investigations, to understand the first deflection for an initially straight crack. 

The extension of a kinked crack, a crack composed of two segments with the second part being misaligned with the first one, renders 
more challenges. In what follows we may refer to as a double-kinked crack. The crack tip SIFs may be inexorably modified by the 
presence of the second segment and consequentially the strain energy release rate along an arbitrary direction may subject to change. 
Earlier work dates back to Nuismer (1975), who gave the SIFs at the tip of an infinitesimal kinked crack. Lo (1978) gave an integral 
equation by regarding a crack as continuous distribution of dislocations to solve the SIFs at crack tips. Cotterell and Rice (1980) gave 
the SIFs of a slightly curved or kinked crack by using perturbation method based on Muskhelishvili approach (Muskhelishvili, 1953). 
He et al. (1991) gave an expression of SIFs at the tip of a finite kinked crack by considering the influence of T-stress. It is noted that 
these researches on the finite kinked cracks are aimed at short kinks (Li et al., 2018). People have to resort to numerical method to 
investigate more general case of finite kinks by utilizing the rapid development of computational power and numerical techniques. For 
instance, Rybicki and Kanninen (1977) developed a numerical way to calculate SIFs and energy release rate called virtual crack closure 
technique (VCCT) to understand the deflection of finite kinked cracks. Moes et al. (1999) developed extended finite element method 
(XFEM) to deal with the deflection of a kinked crack in materials with interior interfaces. Wei et al. (2009) used a dynamic FEM to 
simulate the three-dimensional crack propagation across a twist-misoriented grain boundary and investigated how crack-deflection 
may enhance fracture toughness of literally brittle materials. Numerical methods are also adopted to examine the hydraulic frac-
ture (Zhang et al., 2007; Weng et al., 2011; Lecampion and Desroches, 2015; Zou et al., 2016) where kinked cracks may deflect in the 
influence of pre-existing cracks, bedding plane, geo-stresses, frictional effect and liquid-solid interaction (Zhang and Jeffrey, 2006; 
Bunger and Detournay, 2008; Chuprakov et al., 2014; Detournay, 2016; Zeng and Wei, 2016) and so on. Regardless the progress of 
mechancial analysis on kinked cracks, stress fields of a kinked crack remain unsolved so far. 

In this paper, we seek to establish a theoretical framework to calculate the stress fields and SIFs of a kinked crack with arbitrary size. 
The work is organized as follows. We state the boundary-value problem (BVP) in Section 2, and adopt conformal mapping in order to 
obtain the corresponding complex analytical functions for the given BVP. In Section 3, the stress fields and SIFs are deduced from the 
complex analytical functions. Our method is verified with FE simulations and is compared with the existing theory by He et al. (1991). 
In Section 4, we apply the theory to analyze crack deflection of a double-kinked crack in brittle isotropic media. The mathematical 
approach is generalized to cracks of multiple kinks, as discussed in Section 5. 

2. Complex analytical functions of a kinked crack 

In contrast to the analysis by Zeng and Wei (2017) where a straight crack running into a weak region in brittle media was 
considered, here we focus on the stress fields and crack-tip SIFs of an arbitrarily sized kinked crack, and examine its deflection. As seen 
in Fig. 1a, the kinked crack has two arbitrary segments and the SIFs of the second segment is of our interest. In case of need, one may 
certainly be able to solve the SIFs of the free end of the other segment after proper coordinate transformation. The shape of a kinked 
crack is characterized by the length of the original crack a, the kinked part l and kink angle θ. Fig. 1b shows the crack after rotating 
clockwise the coordinate in Fig. 1a by an angle α. 

Fig. 1. A kinked crack and its transformation. (a) The crack with original part a forming an angle α with respect to x-axis, and the kinked part l 
characterized by angle θ. (b) We consider a configuration (after rotating clockwise the coordinate in (a) by angle α) so that the original part of the 
crack is horizontal. σ1 and σ2 are the principal stresses and β is the angle between σ1 and the kinked part. 
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2.1. Conformal mapping 

For the fracture problem shown in Fig. 1b, we assume the validity of linear elastic analysis. Following Muskhelishvili (1953), the 
stress fields for linear elastic plane problem can be described by two complex analytical functions φ(z) and ψ(z), which are connected 

Fig. 2. A conformal mapping in the complex plane. The open region of the original boundary L in z-plane is mapping into the open region of the unit 
circle C in ζ-plane. 

Fig. 3. Schwartz-Christoffel Integral conformal mapping between z-plane and ζ-plane. (a) A polygonal to unit circle mapping: The periphery of the 
polygon is projected to that of a circle, and points ζk on the unit circle correspond to vertices zk of the polygon. The bounded and open regions of the 
circle correspond to those of the polygon, respectively. (b) Mapping a star-shaped region into a unit circle. The points ζk correspond to the free ends 
zk. (c) Mapping a kinked crack into a unit circle. The two ends z1 and z2 of the crack and two joining points h1 and h2 are mapped to points ζ1, ζ2, η1 
and η2, in turn, on the unit circle. 
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with planar stresses σx, σy and τxy as 

σx + σy = 4Re[φ′

(z)] = 2[φ′

(z)+φ′
(z)], (1a)  

σy − σx + 2iτxy = 2[zφ′′(z)+ψ ′

(z)], (1b)  

where (⋅) is the conjugate of (⋅), and (⋅)
′

and (⋅)′′ represent the first and the second derivative of (⋅)with respect to z, respectively and z =
x+ iy. For a general boundary L shown in Fig. 2, the boundary condition is given as 

φ(z) + zφprime(z) + ψ(z) = i
(
Fx + iFy

)
= f (s), (2)  

where f(s) characterizes the stress on the boundary surface. However, due to the complexity of possible boundary conditions, 
conformal mapping is usually employed to elegantly simplify such problems. As shown in Fig. 2, we seek a transformation in the 
manner of z = ω(ζ), where z is a point in z-plane and ζ is its counterpart in ζ-plane. To fully utilize the characteristics of complex 
functions, the boundary L in z-plane is usually mapped into a unit circle C in ζ-plane. After employing the conformal mapping z = ω(ζ), 
the stress fields of a plane problem can now be written as 

σρ + σθ = 2
[

φ′

(ζ)
ω′
(ζ)

+
φ′
(ζ)

ω′
(ζ)

]

, (3a)  

σθ − σρ + 2iτρθ =
2ζ2

ρ2ω′
(ζ)

[
ω(ζ)

(φ′

(ζ)
ω′
(ζ)

)′

+ω′

(ζ)
ψ ′

(ζ)
ω′
(ζ)

]
, (3b)  

where ζ = ρeiθ is the variable in ζ-plane and φ(ζ) and ψ(ζ) are the corresponding complex analytical functions, and σρ, σθ, and τρθ are 
the radial stress, hoop stress and shear stress in the polar coordinate in ζ-plane. The BVP in ζ-plane is in the form of 

φ(ξ) +
ω(ξ)
ω′
(ξ)

φ′
(ξ) + ψ(ξ) = f (ξ). (4a) 

Its integral form is given as 
∫

C

φ(ξ)
ξ − ζ

dξ +
∫

C

ω(ξ)
ω′
(ξ)

φ′
(ξ)

ξ − ζ
dξ +

∫

C

ψ(ξ)
ξ − ζ

dξ =

∫

C

f (ξ)
ξ − ζ

dξ, (4b)  

where ξ is any point on the unit circle C. Therefore, finding an appropriate conformal mapping is of great significance in solving the 
BVP. 

Here we adopt the Schwartz-Christoffel Integral to map the open region of a polygon into that of a unit circle (as shown in Fig. 3a) 
(Driscoll and Trefethen, 2002). The mapping is written in the form of 

ω(ζ) = K1

∫

⎡

⎢
⎢
⎣

∏n

k=1

(ζ − ζk)
αk
π − 1

ζ2

⎤

⎥
⎥
⎦dζ + K2, (5a)  

where ζk are associated with the connecting points (zk in z-plane) and K1, K2 are two complex constants. There is a special case for 
Schwartz-Christoffel Integral, which maps a star-shaped domain to the open part of a unit circle (as shown in Fig. 3b) (Driscoll and 
Trefethen, 2002). 

ω(ζ) = R
ζ

∏n

k=1
(ζ − ηk)

αk
π , (5b)  

where ηk in ζ-plane is the mapping of the centered point hk of the k-th line, whose other end zk is mapped to ζk in ζ-plane, and R is a 
complex parameter depending on ηk and ζk. For the kinked crack problem shown in Fig. 3c, there are four key points defining the two 
segments of the kinked crack in z-plane: the two free ends of the segments at z1 = l and z2 = aei(π− θ) and the rest two joining ends at h1 

= h2 = 0. The corresponding counterparts of these four points in ζ-plane are ζ1 = eiψ1 and ζ2 = eiψ2 for z1 and z2, respectively; and η1 
= eiφ1 and η2 = eiφ2 for h1 and h2, in turn. 

Back to Eq. (5a), we have n = 4. The corresponding angles of the points z1, z2, h1 and h2 in z-plane are α1 = α2 = 2π, α3 = π − θ, 
and α4 = π + θ, and their ζ-plane counterpoints are ζ1, ζ2, ζ3 = η1, ζ4 = η2, respectively. Eq. (5a) is therefore written as 

ω(ζ) = K1

∫
⎡

⎣

(
ζ − η1

ζ − η2

)− θ
π(ζ − ζ1)(ζ − ζ2)

ζ2

⎤

⎦dζ + K2. (6a) 

For the same token, we have n = 2 in Eq. (5b), α1 = π − θ and α2 = π + θ. It can be reformulated as 
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ω(ζ) = R
ζ
(ζ − η1)

π− θ
π (ζ − η2)

π+θ
π . (6b)  

When mapping to the same circle in ζ-plane, the uniqueness of the mapping requires Eq. (6a) and (b) identical. Comparing the de-
rivatives of Eq. (6a) and (b) with respect to ζ, we obtain 

K1

R
(ζ − ζ1)(ζ − ζ2) = ζ2 +

θ
π (η2 − η1)ζ − η1η2. (7) 

Given the above equation holds for any ζ, we have K1 = R, 

ζ1 + ζ2 =
θ
π (η1 − η2), (8a)  

and 

ζ1ζ2 = − η1η2. (8b) 

Let R = |R|eiϕ, ζj − ηk = rjkeiϕjk . Substituting points ζ1 and ζ2 into Eq. (6b), we have 

ω(ζ1) =
|R|eiϕ

eiψ1

(
r11eiϕ11

)π− θ
π
(
r12eiϕ12

)π+θ
π = l, (9a)  

and 

ω(ζ2) =
|R|eiϕ

eiψ2

(
r21eiϕ21

)π− θ
π
(
r22eiϕ22

)π+θ
π = aei(π− θ), (9b)  

respectively. By comparing the modules of these two equations, we yield 
(

r11

r21

)π− θ
π
(

r12

r22

)π+θ
π

=
l
a
. (10) 

Now we have four parameters and three independent equations. We can fix one parameter, then the other three can be fully 
determined. It is convenient to set ζ1 = 1 (ψ1 = 0 as the starting point in ζ-plane). Physically, we only need to discuss φ1 and φ2 in the 
range of φ1 ∈ [0, π] and φ2 ∈ [π,2π]. With Eq. (8a) and (b), we obtain the following two equations 

θ
π (sinφ2 − sinφ1) = sin(φ1 +φ2), (11a)  

and 

θ
π (cosφ1 − cosφ2) = 1 − cos(φ1 +φ2). (11b) 

Eq. (10) can be rewritten as 
(

1 − cosφ1

1 − cos(ψ2 − φ1)

)π− θ
2π
(

1 − cosφ2

1 − cos(ψ2 − φ2)

)π+θ
2π

=
l
a
. (11c) 

The four parameters ψ1, ψ2, φ1 and φ2 are then fully determined by solving Eq. (11). By substituting these parameters into Eq. (9), 
we have 

|R| =
l

2(1 − cosφ1)
π− θ
2π (1 − cosφ2)

π+θ
2π

=
a

2[1 − cos(ψ2 − φ1)]
π− θ
2π [1 − cos(ψ2 − φ2)]

π+θ
2π
, (12a)  

and 

ϕ =
π − θ

π arctan
sinφ1

1 − cosφ1
+

π + θ
π arctan

sinφ2

1 − cosφ2
. (12b) 

Here we consider three special cases of a kinked crack.  

(1) When l/a = 0, Eq. (11) can be readily solved, from which we have η1 = η2 = 1 and ζ2 = − 1. Hence φ1 = 0, φ2 = 2π and ψ2 =

π. Substituting the second term of the right-hand side of Eq. (12) into (6b), we obtain the mapping function as 

ω(ζ) = ae− iθ

4

(

ζ+
1
ζ
− 2
)

. (13a)   
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(2) For l/a = 1, we solve Eq. (11) and obtain η1 = eiarccosθ
π, η2 = e

i

(

arccos θ
π+π

)

and ζ2 = e2iarccosθ
π, from which we have φ1 = arccos θ

π, φ2 

= arccos θ
π + π and ψ2 = 2arccos θ

π. Again, with known R, substituting Eq. (12) into (6b), we obtain the mapping function as 

ω(ζ) = πae
i

(

π− θ
π arctan

̅̅̅̅̅
π+θ
π− θ

√
− π+θ

π arctan
̅̅̅̅̅
π− θ
π+θ

√
)

2(π − θ)
π− θ
2π (π + θ)

π+θ
2π ζ

⎛

⎝ζ − eiarccosθ
π

⎞

⎠

π− θ
π ⎛

⎝ζ − e
i

(

arccos θ
π+π

)
⎞

⎠

π+θ
π

. (13b)    

(3) If l/a → ∞, it is straightforward to find η1 = η2 = ζ2 = − 1 by solving Eq. (11), and we have φ1 = φ2 = ψ2 = π. Therefore, 

ω(ζ) = l
4

(

ζ+
1
ζ
+ 2
)

. (13c)   

The conformal mapping enables us to seek the solution of the BVP beyond a unit circle other than in the region outside of a kinked 
crack. 

2.2. Solutions for complex analytical functions 

For a linear elastic plane problem, because of the single value of displacement, the complex analytical functions are given as 
(Muskhelishvili, 1953) 

φ(ζ) = −
Fx + iFy

2π(1 + κ)
lnω(ζ) + Γ1ω(ζ) + φ0(ζ), (14a)  

ψ(ζ) =
κ
(
Fx − iFy

)

2π(1 + κ)
lnω(ζ) + Γ2ω(ζ) + ψ0(ζ), (14b)  

where Fx and Fy are the forces acting on the crack surfaces, Γ1 = 1
4 (σ1 +σ2) and Γ2 = − 1

2 (σ1 − σ2)e− 2iβ are the stresses at infinity. σ1 and 
σ2 are the principal stresses and β is the angle between σ1 and the real axis. κ is a material constant related to the Poisson’s ratio ν, κ = 3 
− 4ν for plane strain deformation and κ = 3− ν

1+ν for plane stress. φ0(ζ) and ψ0(ζ) are the holomorphic functions outside of the unit circle. If 
the crack surfaces are free, Fx = Fy = 0. Substituting Eq. (14) into (4a) and note that φ0(ζ), ψ0(ζ) and f0(ζ) also satisfy the boundary 
condition given in Eq. (4a), we have 

f0(ξ) = − Γ1ω(ξ) − Γ1ω(ξ) − Γ2ω(ξ). (15) 

From the boundary condition given in Eq. (4b) we have 

φ0(ζ) −
1

2πi

∫

C

ω(ξ)
ω′
(ξ)

φ′

0(ξ)
ξ − ζ

dξ = −
1

2πi

∫

C

f0(ξ)
ξ − ζ

dξ. (16) 

By substituting Eqs. (6b) and (15) into (16) and employing the Cauchy Integral Formula, we get the solution of φ0(ζ) as 

φ0(ζ) = −
1
ζ

(
RΓ1 +RΓ1 +RΓ2

)
. (17) 

And by substituting Eqs. (17) into (14a), we obtain one of the two complex analytical functions, φ(ζ), which is in the form of 

φ(ζ) =
Γ1R

ζ
(ζ − η1)

π− θ
π (ζ − η2)

π+θ
π + φ0(ζ). (18) 

Then we consider the other complex potential function ψ(ζ) using the same method. By using the conjugate of the boundary 
condition Eq. (4a) we can obtain 

φ(ξ) +
ω(ξ)
ω′
(ξ)

φ′(ξ) + ψ(ξ) = f (ξ). (19a) 

Its integral form is given as 
∫

C

φ(ξ)
ξ − ζ

dξ +
∫

C

ω(ξ)
ω′
(ξ)

φ′

(ξ)
ξ − ζ

dξ +
∫

C

ψ(ξ)
ξ − ζ

dξ =

∫

C

f (ξ)
ξ − ζ

dξ, (19b) 
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The holomorphic term ψ0(ζ) is determined by 

ψ0(ζ) = −
1

2πi

∫

C

f0(ξ)
ξ − ζ

dξ +
1

2πi

∫

C

ω(ξ)
ω′
(ξ)

φ′

0(ξ)
ξ − ζ

dξ. (20) 

By substituting Eqs. (6b) and (15) into (20) and employing the Cauchy Integral Formula, we get the solution of ψ0(ζ) as 

ψ0(ζ) = −
1
ζ

(
RΓ1 +RΓ1 +RΓ2

)
+

RΓ1 + RΓ1 + RΓ2

− ζ +
ζ2(π− θ)
π(ζ− η1)

+
ζ2(π+θ)
π(ζ− η2)

. (21) 

And by substituting Eq. (21) into (14b), we obtain the other complex analytical function ψ(ζ), which is in the form of 

ψ(ζ) = Γ2R
ζ

(ζ − η1)
π− θ

π (ζ − η2)
π+θ

π + ψ0(ζ). (22) 

We will show next that the stress fields and SIFs can be readily obtained with known φ(ζ) and ψ(ζ). 

3. Stress fields at the tip of kinked cracks 

With the two complex analytical functions φ(ζ) and ψ(ζ) given in Eqs. (18) and (22), respectively, we now proceed to derive the 
stress fields and SIFs of the kink tip in this section. The theoretical results will be validated using finite-element simulations. 

3.1. Stress fields from complex analytical functions 

Following Eq. (1), it is convenient to calculate the stress field around the tip of a kinked crack. For each point z in the z-plane, we 
can obtain the corresponding point ζ in ζ-plane from z = ω(ζ). Let φ̃(z) and ψ̃(z) denote the complex analytical functions in z-plane, 

φ̃(z) = φ̃[ω(ζ)] = φ(ζ) and ψ̃(z) = ψ̃ [ω(ζ)] = ψ(ζ). By using the rule of compound functions, we have ̃φ
′

(z) =
φ′
(ζ)

ω′
(ζ), ψ̃

′

(z) = ψ ′
(ζ)

ω′
(ζ) and ̃φ′′

(z)

=
φ′′ (ζ)ω′

(ζ)− ω′′ (ζ)φ′
(ζ)

[ω′
(ζ)]3

. Eq. (1) may be rewritten as 

σx + σy = 4Re
[φ′

(ζ)
ω′
(ζ)

]
= 2
[

φ′

(ζ)
ω′
(ζ)

+
φ′
(ζ)

ω′
(ζ)

]

, (23a)  

σy − σx + 2iτxy = 2
[
ω(ζ)φ′′(ζ)ω

′(ζ) − ω′′(ζ)φ′(ζ)
[ω′(ζ)]3

+
ψ ′(ζ)
ω′(ζ)

]
. (23b) 

The stress components at point z = ω(ζ) are then given as 

σx = Re
[φ′(ζ)
ω′(ζ)

+
φ′(ζ)
ω′(ζ)

− ω(ζ)φ′′(ζ)ω
′(ζ) − ω′′(ζ)φ′(ζ)
[ω′(ζ)]3

−
ψ ′(ζ)
ω′(ζ)

]
, (24a)  

σy = Re
[φ′(ζ)
ω′(ζ)

+
φ′(ζ)
ω′(ζ)

+ω(ζ)φ′′(ζ)ω
′(ζ) − ω′′(ζ)φ′(ζ)
[ω′(ζ)]3

+
ψ ′(ζ)
ω′(ζ)

]
, (24b)  

Fig. 4. The finite-element model for validation. (a) Boundary condition of a kinked crack. (b) Close-up view to show mesh near the crack tip (the red 
line is the crack surface). 
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τxy = Im
[
ω(ζ)

φ′′(ζ)ω′(ζ) − ω′′(ζ)φ′(ζ)
[ω′(ζ)]3

+
ψ ′(ζ)
ω′(ζ)

]
, (24c)  

where ω(ζ), φ(ζ) and ψ(ζ) are known from Eqs. (6b), (18) and (22), in turn. 
By using Eq. (24) we can obtain the stress components of each point on z-plane. Here we take a special case for instance where a 

kinked crack is subject to uniaxial stress and its kinked part is of the same length to the original crack. The corresponding ω(ζ) is given 
in Eq. (13b). The theoretical results are validated by using finite-element calculations. The applied boundary conditions (either 
uniaxial or biaxial) of the model are shown in Fig. 4a. We focus on the stress fields and the SIFs of the double-kinked crack tip, with 
close-up view to show the mech in Fig. 4b. We first consider the sample in Fig. 4a is subject to uniaxial stress, with σ1 = σ∞ and σ2 = 0. 
The normalized stress fields of different θ near the crack tip are shown in Fig. 5. For better view, we rotate the image counter-clock- 
wisely by θ. Fig. 5a to e show σx/σ∞ for θ = 0, π/6, π/4, π/3 and π/2 in turn. The corresponding stress components of σy /σ∞ and τxy 

/σ∞, are shown in the second and the third row, respectively. When θ = 0, the stress fields near the crack tip are the same as those of a 
straight crack. 

3.2. SIFs of a kinked crack 

The SIFs of a kinked crack can be readily determined from its stress fields. By substituting Eq. (14) into (3), we have 

σθ + iτρθ =

[
Γ1ω′(ζ) + φ′

0(ζ)
ω′(ζ)

+
Γ1ω′(ζ) + φ′

0(ζ)
ω′(ζ)

]

+
ζ2

ρ2ω′(ζ)

[
ω(ζ)

(
Γ1 +

φ′

0(ζ)
ω′(ζ)

)′

+Γ2ω′(ζ)+ψ ′

0

]
(25) 

Employing the definition of SIFs, and substituting Eq. (20) into (25), we obtain the following expression for KI and KII in terms of ζ 

KI + iKII = lim
ζ→ζ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π[ω(ζ) − ω(ζ1)]

√
(σθ + iτρθ) = lim

ζ→ζ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π[ω(ζ) − ω(ζ1)]

√

{[
Γ1ω′(ζ) + φ′(ζ)

ω′(ζ)
+

Γ1ω′(ζ) + φ′(ζ)
ω′(ζ)

]}

+ lim
ζ→ζ1

ζ2

ρ2ω′(ζ)

⎡

⎣ω(ζ)
(φ′(ζ)

ω′(ζ)

)′
+Γ2ω′(ζ) −

1
2πi

⎛

⎝
∫

C

f0(ξ)
ξ − ζ

dξ

⎞

⎠

′

−
1

2πi

⎛

⎝
∫

C

ω(ξ)
ω′(ξ)

φ′
0(ξ)

ξ − ζ
dξ

⎞

⎠

′⎤

⎦ . (26) 

Fig. 5. Normalized stress components to show stress concentration around the tip of a kinked crack (l = a). The sample is subject to uniaxial stress 
(see Fig. 4a, here the white line is the crack surface). For each row, we show one stress component of samples with different kink angle θ = 0, π /6, π 
/4, π/3 and π/2, in turn. (a)-(e) σx/σ∞, (f)-(j) σy/σ∞, and (k)-(o) τxy/σ∞. 
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Here we follow the tradition way to define KI and KII in terms of crack-tip stress fields and assume the validity of 1 /
̅̅
r

√
singularity. 

Bear in mind we have 

lim
ζ→ζ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ω(ζ) − ω(ζ1)

√

ω′(ζ)
= lim

ζ→ζ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2 ω′′(ζ1)(ζ − ζ1)

2
√

ω′′(ζ1)(ζ − ζ1)
=

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ω′′(ζ1)

√ (27a)  

and 

lim
ζ→ζ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ω(ζ) − ω(ζ1)

√

ω′(ζ)
= lim

ζ→ζ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2 ω′′(ζ1)(ζ − ζ1)

2
√

ω′′(ζ1)(ζ − ζ1)
=

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ω′′(ζ1)

√ . (27b) 

Substituting Eqs. (6b), (15), (17) and (27) into (26) and denoting K = KI − iKII yields 

K = KI + iKII = 2
̅̅̅
π

√ φ′
0(1)̅̅̅̅̅̅̅̅̅̅̅̅̅
ω′′(1)

√ =
2
̅̅̅
π

√ (
RΓ1 + RΓ1 + RΓ2

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R(1 − η1)
π− θ

π (1 − η2)
π+θ

π

[

2 −
2(π− θ)
π(1− η1)

−
2(π+θ)
π(1− η2)

−
θ(π− θ)

π2(1− η1)
2 +

2(π− θ)(π+θ)
π2(1− η1)(1− η2)

+
θ(π+θ)

π2(1− η2)
2

]√ . (28) 

In particular, its explicit expression can be given for three special cases.  

(1) When l/a = 0, we have 

K =

̅̅̅̅̅
πa
2

√
⎛

⎝Γ1e− iθ2 +Γ1e− iθ2 +Γ2eiθ2

⎞

⎠

=
1
2

̅̅̅̅̅
πa
2

√ [

(σ1 + σ2)cos
θ
2
− (σ1 − σ2)cos

(
θ
2
+ 2β

)]

− i
1
2

̅̅̅̅̅
πa
2

√ [

(σ1 + σ2)sin
θ
2
+(σ1 − σ2)sin

(
θ
2
+ 2β

)]

. (29a)    

(2) When l/a = 1, we have 

K =
̅̅̅̅̅
πa

√

⎡

⎢
⎢
⎢
⎢
⎣
(Γ1 +Γ1)

πe
i

(

π− θ
π arctan

̅̅̅̅̅
π+θ
π− θ

√
− π+θ

π arctan
̅̅̅̅̅
π− θ
π+θ

√
)

(π − θ)
π− θ
2π (π + θ)

π+θ
2π

+Γ2
πe

i

(

π+θ
π arctan

̅̅̅̅̅
π− θ
π+θ

√
− π− θ

π arctan
̅̅̅̅̅
π+θ
π− θ

√
)

(π − θ)
π− θ
2π (π + θ)

π+θ
2π

⎤

⎥
⎥
⎥
⎥
⎦
. (29b)    

(3) When l/a → ∞, we have 

K =

̅̅̅̅
πl
2

√

(Γ1 +Γ1 +Γ2) =
1
2

̅̅̅̅
πl
2

√

[(σ1 + σ2) − (σ1 − σ2)cos2β − i(σ1 − σ2)sin2β]. (29c)   

If one is only concerned with the SIFs of a kinked crack, we may obtain it without the necessity of deriving ψ(ζ). We illustrate in 
Appendix a convenient way on how to obtain the same expression for SIFs without knowing ψ(ζ). 

3.3. Finite-element verification 

As we briefly mentioned in the introduction, Nuismer (1975) gave the SIFs at the tip of an infinitesimal kinked crack. The work by 
Cotterell and Rice (1980) extended the analysis of SIFs for slightly curved or kinked crack, which was perturbation method based. 
Their formulae may only work for a small kinked part. By combining the T stress in the Williams (1957) with the results from Cotterell 
and Rice (1980), He et al. (1991) obtained the SIFs in the form of 

KI =

∫l

0

σθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

π(l − r)

√

dr =
1
2

cos
θ
2
(1+ cosθ)kI −

3
2

cos
θ
2

sinθkII + T
̅̅̅̅
8l
π

√

sin2θ, (30a)  

KII =

∫l

0

τρθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

π(l − r)

√

dr =
1
2

cos
θ
2

sinθkI +
1
2

cos
θ
2
(3cosθ − 1)kII − T

̅̅̅̅
8l
π

√

sinθcosθ. (30b) 
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Given the perturbation method may incur limitations of KI and KII for l, we examine the applicability of the theories by Cotterell and 
Rice (1980) and He et al. (1991) to double-kinked cracks of arbitrary size. Again, we adopt the FE model shown in Fig. 4, with σ1 = σ∞ 

and σ2 = 0 for uniaxial loading. We consider a sufficiently large sample by setting both sides of the sample to be 20a. Two parts of the 
kinked crack is of the same length, i.e., l/a = 1. Stress singularity at the crack tip is captured by using collapsed elements with duplicate 
nodes in the shape of sweeping quadrilateral, as demonstrated in Fig. 4b. The crack-tip von Mises stress from our analytical solution for 
samples with θ = 0, π/6, π/4, π/3 and π/2 are shown, in turn, from Fig. 6a to e. Those counterparts from FE simulations are shown in 
Fig. 6f to j. The solution given by Eq. (24) agrees well with the results from FE simulations. 

For cracks subject to stresses shown in Fig. 4a, we have β = π/2 − θ. Using Eq. (28) we can get the SIFs of a kinked crack of an 
arbitrary size. We show in Fig. 7 the SIFs as a function of l/a when the kinked crack is subject to uniaxial stress (σ2 = 0). Here KI and KII 
as a function of l/a are shown in Fig. 7a and b, respectively. For biaxial stress status, (σ2 = 0.5σ1), we have KI and KII shown in Fig. 7c 
and d, respectively. It is seen that for different θ, our theoretical predictions are in line with FE results. 

For particular geometries, we may obtain the explicit expression of both φ(ζ) and ψ(ζ). Subsequently, the SIFs may be in explicit 
form of θ, l and a. We demonstrate in this part by considering several l/a when the double-kinked crack in Fig. 4a is subject to uniaxial 
loading σ1 = σ and σ2 = 0.  

(1) When l/a = 0, we have 

KI − iKII =
1
2

σ
̅̅̅̅̅
πa
2

√
⎛

⎝e− iθ2 + e− i3θ
2

⎞

⎠ = σ
̅̅̅̅̅
πa
2

√ [
1
2

(

cos
θ
2
+ cos

3θ
2

)

− i
1
2

(

sin
θ
2
+ sin

3θ
2

)]

. (31a)   

The variations of both KI and KII as a function of θ are shown Fig. 8a. While Eqn. (28) capture the trends of KI and KII as θ varies, the 
formula given by He et al. (1991) capture the FE results better. If we consider a case l/a = 0.2, both Eqn. (28) in this study and Eqn. 
(30) by He et al. (1991) capture the FE results well, as demonstrated in Fig. 8b.  

(1) When l/a = 1, we have 

KI − iKII = σ
̅̅̅̅̅
πa

√

⎡

⎢
⎢
⎢
⎢
⎣

πe
i

(

π− θ
π arctan

̅̅̅̅̅
π+θ
π− θ

√
− π+θ

π arctan
̅̅̅̅̅
π− θ
π+θ

√
)

2(π − θ)
π− θ
2π (π + θ)

π+θ
2π

+
πe

i

(

π+θ
π arctan

̅̅̅̅̅
π− θ
π+θ

√
− π− θ

π arctan
̅̅̅̅̅
π+θ
π− θ

√
− 2θ

)

2(π − θ)
π− θ
2π (π + θ)

π+θ
2π

⎤

⎥
⎥
⎥
⎥
⎦
. (31b)   

Fig. 6. A comparison of crack-tip stresses between theoretical solutions and FE simulations. Here we show the normalized Mises stress contours at 
the tip of a kinked crack. The geometries and boundary conditions are the same as those used in Fig. 5 (the white line represents the crack). In each 
row, we show σMises/σ∞ of samples with different kink angle θ = 0, π/6, π/4, π/3 and π/2, in turn. (a)-(e) Analytical solution given by Eq. (24); (f)-(j) 
the FE results. 
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When θ = 0, we can get KI = σ
̅̅̅̅̅̅
πa

√
and KII = 0, which are exact the same as the SIFs of a straight crack with length 2a. Fig. 8c shows 

again KI and KII as a function of θ. Now both Eq. (28) in this study performs better in contrast with predictions from Eq. (30) by He 
et al. (1991). In particular for KI, our theoretical predictions match well with FE simulation results.  

(1) When l/a → ∞, we have 

KI − iKII =
1
2

σ
̅̅̅̅
πl
2

√
(
1+ e− 2iθ) = σ

̅̅̅̅
πl
2

√ (
1 + cos2θ

2
− i

sin2θ
2

)

. (31c)   

The formulae for KI and KII are in exact form of an inclined straight crack with length l and inclined angle θ with respect to the 
x-axis. The SIFs given by Eq. (28) capture what we obtain from FE results by setting l/a = 10 to approximate the theoretical formula 
when l/a → ∞, as clearly demonstrated in Fig. 8d. 

From Fig. 8, we see that Eq. (28) captures our FE results well when l/a > 0.2. When l/a is rather small, the crack-tip stresses of the 
kink may be overwhelmingly influenced by the K-dominance of the first crack. That may justify the effectiveness of the perturbation 
method in this region. Furthermore, we take for granted in Eq. (26) that both KI and KII follow a 1/

̅̅
r

√
singularity for kinked cracks, 

which may merit further exploration. Our theoretical solution, without knowing the stress fields from the first part of the double- 
kinked crack but taking both parts of the crack as a whole, may reflect the mathematical truth of the physically kinked crack. That 
is, our solution is for ‘a single crack’ with an abrupt kink. 

Fig. 7. A comparison of the stress intensity factors of kinked cracks among different methods: This work (solid lines), Cotterell and Rice (1980) 
(stars), He et al. (1991) (filled triangles) and the FE results (open cycles). (a) and (b), KI and KII as a function of l/a, respectively, uniaxial loading. (c) 
and (d), KI and KII vs. l/a, respectively, biaxial loading. 
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4. The second crack deflection in brittle media 

With the available SIFs given in Eq. (28) in the previous section, we now proceed to discuss more complicated case when a kinked 
crack running into a weak plane. 

Fig. 8. A comparison of stress intensity factors vs. kink angle θ with a variety of l/a among different methods: This work (solid lines), He et al. 
(1991) (dotted lines) and the FE results (open cycles). (a) l/a = 0, (b) l/a = 0.2, (c) l/a = 1, and (d) l/a → ∞. 

Fig. 9. Geometric information of a kinked crack. (a) The length of the original part a, the kink part l, the kink angle θ, and the potential deflecting 
angle γ. (b) The kinked crack running into an interface characterized by ω with repect to the kinked part. 
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4.1. The second deflection in isotropic brittle materials 

As demonstrated in the well-known work of Griffith (1921) on rupture, potential energy will release when a crack propagates, and 
it will go along the direction where the energy release the most (Cotterell, 1965). Based on these researches, maximum energy release 
rate criterion was developed to predict the crack propagation path in isotropic brittle materials (Hussain et al., 1973; Nuismer, 1975). 

As we discussed in Section 3.2, the local stress fields at the tip of a kinked crack can use the expression of a straight crack given by 
Williams (1957). Therefore, the SIFs of a double-kinked crack shown in Fig. 9a with an infinitesimal second kink length at an angle γ 
are 

KIγ =
1
2

cos
γ
2
[KI(1+ cosγ) − 3KIIsinγ], (32a)  

KIIγ =
1
2

cos
γ
2
[KIsinγ +KII(3cosγ − 1)]. (32b) 

The strain energy release rate of this double-kinked crack at γ is (Zeng and Wei, 2017) 

Gγ= {

K2
IIγ

E∗ ,KIγ < 0

K2
Iγ + K2

IIγ

E∗ , KIγ ≥ 0

, (33)  

where E∗ is the modified elastic modulus, E∗ = E for the plane stress and E∗ = E
(1− ν2)

for the plane strain. We substitute Eq. (32) into (33) 
and get 

Fig. 10. Deflection of a kinked crack. (a) The geometrical information of a kinked crack in isotropic media under biaxial loading. (b) Comparison of 
the potential deflection angle γ0, theoretical prediction (solid lines) vs. FE simulations (symbols). (c) The maximum strain energy release rate with 
respect to the kink angle θ for several l/a. (d) Potential deflection angle γ0 vs. θ for a variety of l/a. 
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Gγ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cos2
(γ

2

)[
K2

I sin2γ + K2
II(3cosγ − 1)2

+ 2KIKIIsinγ(3cosγ − 1)
]

4E∗ , KIγ < 0

cos2
(γ

2

)[
K2

I (1 + cosγ) + K2
II(5 − 3cosγ) − 4KIKIIsinβ

]

2E∗ , KIγ ≥ 0

. (34) 

The maximum strain energy release rate is determined by solving the equation ∂Gγ
∂γ = 0. From which we have 

Gγmax =
cos2

(
γ0
2

)[
K2

I (1 + cosγ0) + K2
II(5 − 3cosγ0) − 4KIKIIsinγ0

]

2E∗
, (35)  

where γ0 is 

γ0= {

− arccos

⎛

⎝
3K2

II +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K4
I + 8K2

I K2
II

√

K2
I + 9K2

II

⎞

⎠, for KII ≥ 0

arccos

⎛

⎝
3K2

II +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K4
I + 8K2

I K2
II

√

K2
I + 9K2

II

⎞

⎠, for KII < 0

. (36) 

Particularly, when KI = 0, γ0 = − sgn(KII)arccos
(

1
3

)

with sgn(⋅) being the sign function, and γ0 = 0 when KII = 0. By denoting K2
a 

= 3K2
II +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K4
I + 8K2

I K2
II

√

and K2
b = K2

I + 9K2
II, we have cosγ0 =

K2
a

K2
b 

and sinγ0 = − sgn(KII)

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
K4

a
K4

b

√

. By substituting Eq. (36) into (35), we 

have 

Gγmax =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
K2

a + K2
b

)[
K2

I

(
K2

a + K2
b

)
+ K2

II

(
5K2

b − 3K2
a

)
+ 4KIKII

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K4
b − K4

a

√ ]

4K4
b E∗

, for KII ≥ 0

(
K2

a + K2
b

)[
K2

I

(
K2

a + K2
b

)
+ K2

II

(
5K2

b − 3K2
a

)
− 4KIKII

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K4
b − K4

a

√ ]

4K4
b E∗

, for KII < 0

. (37) 

Particularly, when KI = 0, Gγmax =
4K2

II
3E∗ , and for KII = 0, Gγmax =

K2
I

E∗ . 
By substituting Eq. (28) into (37) and (36) we can obtain the maximum strain energy release rate Gγmax and the angle γ0, which is 

the deflection angle based on the criterion of maximum strain energy release rate (Hussain et al., 1973). The verification of this so-
lution in a biaxial stress status (see Fig. 10a) is shown in Fig. 10b. We consider a model case with σ1 = 50 MPa, σ2 = 25 MPa, a = 1 m 
and E∗ = 50 GPa. The prediction given by Eq. (36) fits well with the FE results. As the kink length growing, the second deflection angle 
converges to the solution of an inclined straight crack with the inclined angle θ. In this loading condition, the second deflection angle is 
less than 0. According to the research of Erdogan and Sih (1963), a crack will propagate along the direction where KII = 0 eventually, 
which is parallel to the original crack in the stress status shown in Fig. 10a. The crack will propagate along a zigzag trajectory. The 
changes of maximum strain energy release rate and the second deflection angle with respect to kink angle θ at different l /a are shown 
in Fig. 10c and d. The results shown in Fig. 10d demonstrate that the second deflection angles are of different sign, which means the 
crack may prefer to extend in a zigzag path. 

4.2. The second crack deflection angle when facing heterogeneous interfaces 

As for heterogeneous materials, the problem become more complicated. Zak and Williams (1963) gave the theoretical solutions of a 
crack tip which is perpendicular to the bi-material interface under symmetric stress fields. Dundurs (1969) defined two parameters to 
quantify the elastic mismatch of two isotropic materials. Cook and Erdogan (1972) solved an elastic perpendicular crack-interface 
problem by an integral form using two Dundurs Numbers. They also research on the propagation path problem numerically by 
adopting the maximum stress criterion. 

Based on the maximum strain energy release rate criterion adopted for homogeneous media (Hussain et al., 1973), He and 
Hutchinson (1989) developed a crack deflection criterion, which is particularly useful when crack facing bi-material interface. Ac-
cording to this criterion, a crack will deflect if the following two conditions are met:  

(1) The strain energy release rate of the crack propagating along the interface should meet, 

Gω = Gdc. (38a)   
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(2) The ratio of strain energy release rate should meet, 

Gω

Gγmax
>

Gdc

Gmc
, (38b)   

where Gdc and Gmc are the fracture toughness of the interface and the matrix, respectively. In the problem described in Fig. 9b, the 
strain energy release rate along the interface is 

Gω= {

cos2
(ω

2

)
[KIsinω + KII(3cosω − 1)]2

4E∗ ,KIω < 0

cos2
(ω

2

)[
K2

I (1 + cosω) + K2
II(5 − 3cosω) − 4KIKIIsinω

]

2E∗ ,KIω ≥ 0

. (39)  

With Eq. (38) and (39), we have the normalized strain energy release rate as 

Gω

Gγmax
=

⎧
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. (40) 

Here we give an application of Eq. (40). We consider a kinked crack under biaxial stress status, as shown in Fig. 11a. For 
demonstration, we consider the model case with σ1 = 50 MPa, σ2 = 25 MPa, a = 1 m, and the heterogeneous interface is parallel to 
the original part of the kinked crack. If the crack propagates along the interface, there are two possible choices, ω = − θ and ω = π − θ. 
The normalized strain energy release rate obtained by Eq. (40) is given in Fig. 11b. When θ = π/2, as l/a → ∞, it becomes a sym-
metrically loading problem and the normalized strain energy release rates along both side of the interface given by Eq. (40) become the 

Fig. 11. A demonstration for the deflection of a kinked crack under biaxial loading. (a) The crack running into a heterogeneous interface parallel to 
its primary part, and (b) the normalized strain energy release rate Gω/Gmax for the crack to deflect along both side of the interface. 
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same, which leads to Gω
Gmax

= cos4
(

π
4

)
= 0.25, as being numerically given by He and Hutchinson (1989). Its rigorous proof was supplied 

by Zeng and Wei (2017). As we can conclude from Fig. 11b, a kinked crack in this loading condition has the potential to propagate to 
form a zigzag trajectory. 

5. Discussions and conclusions 

5.1. Stress intensity factors for a multiple-kinked crack 

We have discussed in detail the method to obtain the SIFs of a double-kinked crack. Here we will discuss the SIFs of more general 
cases for cracks with multiple kinks, as shown in Fig. 12. We consider a multiple kinked crack with n segments, and each segment has 
two ends. The free ends of the first and the last segments are denoted by z1 and zn+1, respectively; the joining ends between the k-th and 
(k + 1)-th segments are respectively denoted as z+k+1 and z−k+1 on the top and bottom surfaces, and the angles between the k-th and (k +

1)-th segments on the top and bottom sides are α+
k+1 and α−

k+1, respectively. The length of the k-th segment is lk. As shown in the left of 
Fig. 12, by setting z1 = l1 and z+2 = z−2 = 0, we define a coordinate system in z-plane. The region in the outside of the kinked line can be 
regarded as a polygon with one free end at infinity. Therefore, we may employ the Schwartz-Christoffel Integral in Eq. (5a) to describe 
the mapping between the kinked line in z-plane and the unit circle in ζ-plane. 

Similar to the method we introduced for Eq. (6a), we have the mapping points ζ1 and ζn+1 for z1 and zn+1, respectively, ζ+k and ζ−k for 
z+k and z−k , respectively. The corresponding angles for these points are α1 = αn+1 = 2π for ζ1 and ζn+1, respectively. For any given α+

k+1, 
we have α−

k+1 = 2π − α+
k+1. They are the characteristic angles associated with ζ+k and ζ−k , respectively. Therefore, Eq. (5a) can be written 

as 

ω(ζ) = K1

∫ {
(ζ − ζ1)(ζ − ζn+1)

ζ2

∏n

k=2

[(
ζ − ζ+

k

)α+
k
− π

π
(
ζ − ζ−

k

)π− α+
k

π
]
}

dζ + K2. (41) 

According to Driscoll and Trefethen (2002), we have (2n − 3) independent equations for 2n unknowns (ζ1, ζn+1, ζ+
k , ζ−

k for k = 2⋯n). 
We may proceed by fixing three parameters and the rest will be fully determined. It is convenient to set ζ1 = 1, ζ+

2 = i and ζ−
2 = − i as 

shown in the right part of Fig. 12. Once the 2n parameters are determined, the corresponding conformal mapping z = ω(ζ) is available. 
By employing ω(ζ), we can solve the BVP and obtain the two complex analytical functions φ(ζ) and ψ(ζ). The SIFs are determined by 
ω(ζ), φ(ζ) and ψ(ζ). 

5.2. Concluding remarks 

Crack path is of great significance in engineering practice, either for safety control or in crack network formation. One of the core 
problems in widely used energy-based criteria is to find the SIFs of the crack. In this work we established a theoretical framework to 
calculate the stress fields and hence the SIFs of arbitrarily sized kinked cracks. By using Schwartz-Christoffel Integral to mapping the 
crack with multiple kinks in real space to a circle in complex plane, we are able to solve the boundary value problem and obtain the 
complex analytical functions, from which we can further deduce the SIFs of the crack tip. The accuracy of our method is verified by 
comparing its predictability for both stress fields and SIFs against FE results. In contrast to the theory of He et al. (1991), our theory 
exhibits excellent predictability for cracks with l/a ≥ 0.2, and the formulae given by He et al. (1991) excels for kinked cracks with 
rather small l/a. Following the same approach used by Zeng and Wei (2017), we further analyze the deflection of a double-kinked crack 
in brittle isotropic media or media with heterogeneous interfaces. The theoretical analysis is also validated by comparing the theo-
retical predictions with results from FE analysis. In the end, we illustrate that the mathematical approach can be extended to solve the 
SIFs of general cracks of multiple kinks. We hence expect that the method shown here can serve as a convenient tool to analyze the 
propagation path of cracks in complicated shape. Furthermore, while we only solve the elastic problem for isotropic media, the 
framework associated with complex analytical functions φ(ζ) and ψ(ζ) can be extended to anisotropic materials with a rather 

Fig. 12. The geometric information of a general multiple-kinked crack and its corresponding mapping (the unit circle).  
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complicated form (Muskhelishvili, 1953). 
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Appendix. An alternative way to obtain SIFs 

Here we give an alternative method to calculate the SIFs by using one complex analytical function φ(ζ). With the linear fracture 
mechanics assumption and for plane deformation, Williams (1957) gave the stress components at the crack tip as 

σx =
KI
̅̅̅̅̅̅̅
2πr

√ cos
θ
2

(

1 − sin
θ
2

sin
3θ
2

)

−
KII
̅̅̅̅̅̅̅
2πr

√ sin
θ
2

(

2+ cos
θ
2

cos
3θ
2

)

, (A1.a)  

σy =
KI
̅̅̅̅̅̅̅
2πr

√ cos
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2
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1+ sin
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2
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2
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KII
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2

cos
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2

cos
3θ
2
. (A1.b) 

Let K = KI − iKII and z − z1 = reiθ, we have 

σx + σy =
2KI
̅̅̅̅̅̅̅
2πr

√ cos
θ
2
−

2KII
̅̅̅̅̅̅̅
2πr

√ sin
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2
= Re

[

K

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

π(z − z1)

√ ]

= 4Re[φ′(z)]. (A2) 

According to the definition of SIFs, we have 

K = 2
̅̅̅̅̅
2π

√
lim
z→z1

̅̅̅̅̅̅̅̅̅̅̅̅
z − z1

√
φ′(z). (A3)  

With the conformal mapping z = ω(ζ), and note that ω(ζ) − ω(ζ1) ≈
1
2 ω′′(ζ1)(ζ − ζ1)

2, ω′(ζ) ≈ ω′′(ζ)(ζ − ζ1), ω′(1) = 0 and ζ1 = 1, we 
may rewrite Eq. (A3) as 

K = 2
̅̅̅̅̅
2π

√
lim
ζ→ζ1
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√ . (A4) 

By substituting Eqs. (6b) and (18) into (A4), we can calculate the SIFs at the tip of any kinked crack. The solution given by Eq. (A4) 
is the same that given by Eq. (28) 
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