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Laminar-turbulent transition in Rayleigh-Taylor (RT) flows usually starts with infinitesimal perturbations,
which evolve into the spike-bubble structures in the nonlinear saturation phase. It is well accepted that the
emergence and rapid amplification of the small-scale perturbations are attributed to the Kelvin-Helmholtz-type
secondary instability due to the high velocity shears induced by the stretch of the spike-bubble structures,
however, there has been no quantitative description on such a secondary instability in literature. Moreover, the
instability mechanism may not be that simple, because the acceleration or the “rising bubble” effect could also
play a role. Therefore, based on the two-dimensional diffuse-interface RT nonlinear flows, the present paper
employs the Arnoldi iteration and generalized Rayleigh quotient iteration methods to provide a quantitative study
on the secondary instability. Both sinuous and varicose instability modes with high growth rates are observed,
all of which are confirmed to be attributed to both the Rayleigh-Taylor and Kelvin-Helmholtz regimes. The
former regime dominates the early-time instability due to the “rising bubble” effect, whereas the latter regime
becomes more significant as time advances. Being similar to the primary RT instability [Yu et al., Phys. Rev. E
97, 013102 (2018), Dong et al., Phys. Rev. E 99, 013109 (2019), Fan and Dong, Phys. Rev. E 101, 063103
(2020)], the diffuse interface also leads to a multiplicity of the secondary instability modes and higher-order
modes are found to exhibit more local extremes than the lower-order ones. Direct numerical simulations are
carried out, which confirm the linear growth of the secondary instability modes with infinitesimal amplitudes
and show their evolution to the turbulent-mixing state.
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I. INTRODUCTION

Rayleigh-Taylor (RT) instability appears at the interface
of two fluids with density disparity when the acceleration
is toward the heavier fluid, which is of practical relevance
to a variety of engineering applications [1–3]. Usually, the
RT turbulent mixing is a consequence of the accumulation
of the RT instability modes from small initial amplitudes.
At the beginning they grow exponentially, until reaching the
nonlinear saturation phase, in which the spike-bubble struc-
tures appear. The structures stretch longitudinally, leading to
large-scale shears of the velocity field. As the subsequent
small-scale perturbations appear and grow drastically, the
large structures oscillate laterally, and the turbulent phase
is reached eventually. Although the RT instability has been
studied extensively by theoretical, numerical and experimen-
tal approaches for decades [3–11], it is still an challenging
issue to construct an effective model for the prediction of
the RT transition subject to given initial perturbations, such
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that the time to switch on turbulence models in engineering
simulations is well prescribed. This requires a comprehensive
understanding of the intrinsic mechanism of the transition
process.

The classical RT instability theory [12,13] was based on
two fluids with a sharp interface, however, as revealed by
Yu et al. [14], the RT flow with a diffuse interface would
support a multiplicity of eigenmodes, and the most unstable
one is intrinsically an extension of the single eigenmode of the
sharp-interface configuration. A physical interpretation of the
occurrence of the multiple-mode phenomenon was provided
by Dong et al. [15] using the Wentzel-Kramers-Brillouin
(WKB) approximation. Fan and Dong [16] further developed
a theoretical model to describe the excitation of each eigen-
mode subject to an artificially introduced initial perturbation,
and their nonlinear interaction in later phases was also charac-
terized. The late-phase spike-bubble structures may be quite
different for different initial perturbations, and the transition
to turbulence could be delayed if the initial perturbations are
carefully designed.

In the early nonlinear phase, the lengths of the spikes
and bubbles grow linearly with time (quasiconstant spike
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and bubble speeds), which was recognized as an asymp-
totic growth in the nonlinear saturation phase [1,6,17,18],
while in the later nonlinear phase, the growth of the
spike and bubble lengths with time becomes quadratic;
see Refs. [16,19–24]. Recent direct numerical simulations
[25,26] on two- and three-dimensional single-mode (single
wavelength in the tangential-to-interface direction) RT insta-
bility confirm the above phenomena, although in late times
the spike and bubble growths are oscillatory around the mean
quadratic-growing curve. The latter was referred to as the
chaotic development. However, the spike-bubble structures
do not lead to transition to turbulence themselves, because
their length scales are large, and there may be two regimes
relating to the excitation of small-scale perturbations. The
first one is the nonlinear interaction, namely the interaction
of perturbations with wave numbers k1 and k2 would gen-
erate perturbations with wave numbers k1 ± k2 directly, and
the newly generated perturbations can also act as one of the
interaction seeds, leading to a broadband response. This is
essentially a cascade regime and the generated perturbations
are always weaker than their seeds. Another possibility is
the so-called secondary instability, in which the exponential
growth of the small-scale perturbations is supported. Appar-
ently, the latter regime is more efficient.

The Kelvin-Helmholtz (KH) instability is one of the clas-
sical problems in fluid dynamics, which is caused by the
unstable interface between the fluids under the action of par-
allel shear flow. The KH instability is believed to be the
reason for the evolution of mushroom-type structure in the
nonlinear process of RT and Richtmyer-Meshkov instability,
which plays a key role in the transition process [3]. Because
the stretch of the spikes and bubbles leads to high shears of the
moving fluids, the secondary instability is affirmed to be at-
tributed to KH mechanism. However, the KH instability is not
the only possible regime to support the secondary instability,
and the acceleration may also induce small-scale instabilities
since the wavy interface could generate small-scale baroclinic
torque. Such a mechanism is also the case for the rising-
bubble instability as studied by many previous papers [27–29].
The main task of the present paper is to present a quantitative
means to confirm which regime is dominant for a certain
period of time. Also, we are going to reveal the effect of
the diffuse interface on the secondary instability. Finally, we
will carry out direct numerical simulations (DNSs) to confirm
the linear growth of the secondary instability and show their
evolution to turbulent mixing.

II. MATHEMATICAL DESCRIPTIONS

A. Description of the physical problem

The physical model to be studied follows those in
Refs. [14–16], a two-dimensional (2D) compressible
Rayleigh-Taylor flow with a smeared interface. The densities
of the heavy and light fluids are denoted as ρh and ρl ,
respectively, and the Atwood number A = (ρh − ρl )/
(ρh + ρl ) is introduced to measure the density disparity.
The 2D Cartesian coordinate system (x, y) is employed, with
its origin o locating at the interface and x and y perpendicular
and parallel to the interface, respectively. We choose

the scale connected with the maximum of the density gradient
as the characteristic length scale, Lm = min[ρ∗

0/(dρ∗
0/dx∗)],

where ρ∗
0 and x∗ are the dimensional density and vertical

coordinate of the base flow, respectively. The velocity field
V = (u, v), density ρ, pressure p, and time t are normalized
by

√
gLm, ρh, ρhgLm and

√
Lm/g, respectively.

B. Base flow and the primary instability

The dimensionless Euler equations are shown in
Appendix A. As a complete description of the perturbation
evolution in a RT flow, we assume the initial perturbation
to be infinitesimal, and so up to a finite time instant, the
perturbation grows exponentially, satisfying the linear
stability theory. For a linear primary instability mode with a
tangential wave number k, we express the flow field as

φ̄(x, y, t ) = φ0(x) + ε̄aφ̂(x) ei ky+γ̄ t +c.c., (1)

where φ̄ = (ρ̄, ū, v̄, p̄), φ0 = (ρ0, 0, 0, p0) with ρ0 and p0

denoting the density and pressure of the steady base flow,
φ̂ are the eigenfunctions of the primary mode, ε̄a � 1 the
amplitude, γ̄ the growth rate, and c.c. the complex conju-
gate. The mean density and pressure are selected according
to Refs. [14–16]

ρ0(x) = [1 − A tanh(δx)]/(1 + A), (2)

p0(x) = pc +
∫ x

xc

ρ0(x)dx, (3)

where δ = A/[2(1 − √
1 − A2)] is a dimensionless coefficient

such that min[|ρ0/(dρ0/dx)|] = 1 and pc is a reference pres-
sure at a reference position xc. δ−1 characterizes the thickness
of the diffusive density layer. We choose (pc, xc) = (50,−10)
to be coincide with the previous works [14–16].

Substituting (1) into the governing equations (A1) and
retaining the O(ε̄a) terms, we arrive at a homogenous linear
system,

Eφ̂x − (A + γ̄ B)φ̂ = 0, (4)

where the expressions of the coefficient matrices, E, A, and B,
can be found in Ref. [16]. The linear system (4) with attenua-
tion boundary conditions, φ̂(±∞) → 0, forms an eigenvalue
problem, which can be solved by the numerical approach as
in Ref. [16]. The analysis in Refs. [14–16] reveals that, an
infinite number of primary instability modes are observed
when the interface is smeared, and depending on the descend
order of their growth rates, they are referred to as modes
1, 2, 3, etc.

C. Secondary instability

As the RT primary instability modes evolve to the non-
linear phase, their amplitudes are likely to saturate, and
simultaneously the spike-bubble structure would appear. The
latter redistributes the density profile and induces remarkable
shears around the spike and bubble boundaries. The nonlinear
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structure evolves much gentler, and thus its time scale is
lengthened in comparison with its linear counterpart. On the
other hand, the simulation of the RT instability in Ref. [16]
reveals that small-scale structures emerge in local regions,
which grows drastically and eventually leads to turbulent
spots. In order to explain and predict the amplification of the
small-scale structures, we perform a biglobal instability anal-
ysis based on the two-dimensional instantaneous base flow.

As the small-scale structures have much smaller time
scales than the nonlinear spike-bubble structure, we freeze
the latter at a certain time instant t0 and study its biglobal
instability. The flow field now is decomposed as

φ(x, y, t ) = φ̄(x, y; t0) + εaφ̃(x, y) eγ (t−t0 ) +c.c., (5)

where φ̄ denote the instantaneous flow field including both
the steady base flow φ0 and the nonlinear primary mode,
εa the amplitude of the secondary instability mode, γ = γr +
i γi the complex growth rate with the imaginary part repre-
senting its frequency, and φ̃ its eigenfunction. Note that this
mode is the fundamental Floquet mode of a 2D base flow
with periodicity in y direction. Substitute of (5) into the Euler
equations (A1) with only the O(εa) terms being retained, we
obtain

(γ I + Ā)φ̃ + B̄
∂φ̃

∂x
+ C̄

∂φ̃

∂y
= 0, (6)

where I is the unit matrix,

Ā =

⎡
⎢⎢⎣

ūx + v̄y ρ̄x ρ̄y 0
ρ̄−1(ūūx + v̄ūy − 1) ūx ūy 0

ρ̄−1(ūv̄x + v̄v̄y) v̄x v̄y 0
0 p̄x p̄y �(ūx + v̄y)

⎤
⎥⎥⎦,

B̄ =

⎛
⎜⎜⎝

ū ρ̄ 0 0
0 ū 0 ρ̄−1

0 0 ū 0
0 � p̄ 0 ū

⎞
⎟⎟⎠, C̄ =

⎛
⎜⎜⎝

v̄ 0 ρ̄ 0
0 v̄ 0 0
0 0 v̄ ρ̄−1

0 0 � p̄ v̄

⎞
⎟⎟⎠.

(6) is subject to the periodic boundary condition at y bound-
aries and the attenuation boundary condition at x boundaries.

The base flow φ̄ is obtained from DNS of the evolution of
the primary mode, which will be introduced in the next sub-
section. For a uniform coordinate system, the grid spacings are
denoted as 	x and 	y in the x and y directions, respectively,
and the quantities at each grid point (xi, y j ) are denoted as φ̃i, j .
The linear system (6) is descritized by the fourth-order central
difference scheme, which is expressed as

∂φ̃

∂x
|i, j = −φ̃i+2, j + 8φ̃i+1, j − 8φ̃i−1, j + φ̃i−2, j

12	x
(7)

for the x direction and

∂φ̃

∂y
|i, j = −φ̃i, j+2 + 8φ̃i, j+1 − 8φ̃i, j−1 + φ̃i, j−2

12	y
(8)

for the y direction. At the x boundaries, i = 0, 1, I − 1, and
I , we set φ̃ = 0, while at the y boundaries, the subscripts
−2, −1, J + 1, and J + 2 are replaced by J − 1, J , 0, and
1, respectively.

Using the schemes (7) and (8), the linear system (6) is
discretized as

(γ I + Ā)φ̃i, j − B̄
12	x

(φ̃i+2, j − φ̃i−2, j )

+ 2B̄
3	x

(φ̃i+1, j − φ̃i−1, j ) − C̄
12	y

(φ̃i, j+2 − φ̃i, j−2)

+ 2C̄
3	y

(φ̃i, j+1 − φ̃i, j−1) = 0. (9)

The discretized system constructs a high-dimensional eigen-
value problem,

Fϕ̃ = γ ϕ̃, (10)

where

ϕ̃ = (φ̃0,0, φ̃0,1, . . . , φ̃0,J , φ̃1,0, . . . , φ̃I,J )T ,

and the coefficient matrix F is easy to be derived from (9).
Usually, an eigenvalue system can be solved numerically

by the QZ method. However, in the present eigenvalue system
(10), the dimension of F is 4(I + 1)(J + 1) × 4(I + 1)(J + 1)
[both I and J are of O(100) for the resolution requirement],
for which the QZ method is not applicable due to its huge
computational cost. Therefore, we employ two alternative
methods since F is sparse: (i) the Arnoldi iterative method
in the Lapack toolbox in Matlab, which provides a group of
eigensolutions, and (ii) the generalized Rayleigh quotient it-
erative method [30], which only focuses on one eigensolution
around the initial value. A brief introduction of method (ii) is
shown in Appendix B. Only when the two calculations agree
with each other can we confirm our numerical results to be
accurate.

D. Direct numerical simulation

In this paper, the DNS approach is employed for two prob-
lems: (a) the nonlinear evolution of the primary instability
modes and (b) the linear and nonlinear evolution of the sec-
ondary instability modes. The DNS code is the same as that
used in Ref. [16]. The simulation is performed in a rectan-
gular domain [x̄0, x̄I ] × [ȳ0, ȳJ ], and the uniform grid points
are employed in both the x and y directions. The fifth-order
compact upwind finite-difference scheme is employed for the
convective terms while the second-order Runge-Kutta scheme
for time advancing. The periodic boundary conditions are
employed in the y direction, while the attenuation conditions
in the x direction.

For problem (a), we first consider a single-mode configu-
ration by introducing a small density perturbation with only
one wave number in the direction tangential to the interface
(following Ref. [16]),

(ρ̄, ū, v̄, p̄)(x, y, 0) = (ρ0 + ε̄a f (x) cos(ky), 0, 0, p0), (11)

where ε̄a is the initial amplitude and f (x) is the initial
distribution of the density perturbation. Note that the re-
sults for a multimode configuration will be demonstrated in
Sec. IV. Here we choose the parameters from case 3 of
Ref. [16], i.e., A = 0.4, k = 4.672, ε̄a = 0.005, and f (x) =
e−x2

. The computational domain for DNS is selected as
x̄0 = −10, x̄I = 10, ȳ0 = 0 and ȳJ = 2π/k, and 2001 × 121
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grid points are used. It is seen from Fig. 9 of Ref. [16] that the
spike-bubble structure has already been formed at t = 7, and
the secondary instability modes analysis will be performed
from this time instant.

For problem (b), we start the simulation from a chosen
time instant t = t0, and the initial flow φ(x, y, t0) is a super-
position of a base flow φ̄(x, y, t0) calculated from step (a) and
an infinitesimal secondary mode from the biglobal analysis.
For the secondary mode, we choose εa = 10−6 and t0 = 7 for
representative demonstration. The computational domain in x
direction is shortened to x̄0 = −5 and x̄I = 5, but that in y
direction remains the same as in problem (a). In order to cap-
ture the evolution of the small-scale structures, we increase the
number of grid points in y direction to 481. Good resolution
has been confirmed as shown in Appendix C.

III. NUMERICAL RESULTS FOR A SINGLE-MODE
CONFIGURATION

A. Nonlinear evolution of the primary instability

For the parameters shown in problem (a) of Sec. II D,
the detailed DNS results of the formation and evolution of
the most unstable primary mode (mode 1) can be seen in
Ref. [16]. For demonstration purpose, the computational do-
main of the simulation includes only one wavelength in the
direction tangential to the interface, which is also referred
to as the single-mode simulation. The secondary instability
analysis (SIA) in this paper is based on this flow field. It
has to be stressed that our analysis is also applicable to
the flow field of multimode simulations, and can be extend
to the three-dimensional configurations by taking into account
the derivative with respect to the transverse direction. It was
found from Fig. 11 of that paper that the primary mode be-
comes nonlinear at around t = 4, after which the spike and
bubble lengths grow linearly with t until t ≈ 10. This was
recognized as an asymptotic growth in the nonlinear state
[1,6,18]. Note that during this time interval, 4 < t < 10, the
amplitude of the nonlinear primary mode, shown in Fig. 4(c)
of Ref. [16], deviates from the exponential growth remarkably
and tends to saturate, and its amplitude is amplified from
O(0.1) to O(1). On the other hand, for t < 4, the linear pri-
mary mode is amplified from O(10−6) to O(0.1), implying
a much smaller timescale. The timescale of the secondary
mode, as will be shown numerically in the next subsection,
is comparably smaller than that of the linear primary mode
due to its higher growth rate and oscillatory manner. The
implication is that in the nonlinear saturation phase, the sec-
ondary mode has a much smaller timescale than the nonlinear
primary mode, confirming the treatment that freezes the non-
linear bubble-spike structure to be reasonable. In later phases,
t > 10, the spikes and bubbles grow quadratically with t .
Figure 1(a) displays the contours of the density ρ̄ at three
representative time instants in the nonlinear saturation phase,
t = 7, 8, and 9. The development of the spike-bubble structure
around the interface can be seen clearly, and the small-scale
perturbations have not appeared yet. The velocity vector fields
at the three ts are shown in Fig. 1(b). As the heavy fluids
in the spike head penetrate into the light fluids, the ambient
light fluids move laterally and toward the opposite direction,

FIG. 1. Contours of the density ρ̄ (a) and velocity vector (b) for
t = 7, 8, and 9.

which induces a remarkable shear at the interface. Figure 2(a)
plots the contours of the vorticity �̄ ≡ v̄x − ūy at these time
instants. The vorticity field at each t exhibits a strip of peak
or valley on the each side of the spike head, which becomes
elongated with a curved tail as the spike grows. This indicates
a large gradient of velocity in y direction. Around the peaking
strips of the vorticity field, the fluids move tangentially to
the strips, implying a strong-shear manner. As illustrated in
Refs. [3,31], the production of the vorticity is linked to the
misalignment of the pressure gradient with the density inter-
face via

D�̄

Dt
= ρ̄−2∇ρ̄ × ∇ p̄. (12)

The term on the right-hand side is referred to as the baroclinic
torque, whose contours for the three ts are shown in Fig. 2(b).
It needs to be stressed that ρ̄ and p̄ are the instantaneous flow
including both the steady base flow, (ρ0, p0), and the primary
mode. The former does not have baroclinic torque because
ρ0 and p0 are not misaligned, whereas the latter induces a
nonzero baroclinic borque, which increases with time due to
the linear instability regime. The peak and valley appear at
each side of the spike head, indicating a progressively increas-
ing vorticity appearing at the right side of the spike-bubble
structure. Such a stretching leads to the growth of the spike
length with time.
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FIG. 2. Contours of the vorticity �̄ (a) and baroclinic torque
(b) for t = 7, 8, and 9.

B. Secondary instability analysis

Based on the flow field φ̄ at t0 = 7, 8, and 9, we perform
the biglobal instability analysis using both the Arnoldi and
Rayleigh quotient iterative methods. The most unstable eight
eigenvalues γ = γr + i γi of the secondary instability modes
for each t0 are shown in Fig. 3. The eigenvalues appear in
pairs, with the same growth rate γr but opposite frequencies γi.
For γi � 0, the secondary modes are referred to as modes S1,
S2, S3, and S4 according to the descend order of their growth

γi

γ r

-15 -10 -5 0 5 10 15
0.8

1

1.2

1.4

1.6

1.8

2

2.2

t0=7
t0=8
t0=9

mode S1
mode S2

mode S3

mode S1

mode S2

mode S3

mode S1
mode S2

mode S3

mode S4

mode S4

mode S4

FIG. 3. Complex growth rate γ of the secondary instability modes.

TABLE I. Parameters of multiple secondary instability modes at
different time instants.

Time Mode γ Type

t0 = 7 S1 1.0361 + 1.0648 i Sinuous
t0 = 7 S2 0.9599 + 1.2171 i Varicose
t0 = 7 S3 0.8987 + 2.4359 i Sinuous
t0 = 7 S4 0.8477 + 1.0754 i Sinuous
t0 = 8 S1 1.6607 + 2.6088 i Sinuous
t0 = 8 S2 1.4380 + 4.3644 i Sinuous
t0 = 8 S3 1.4330 + 0.8540 i Sinuous
t0 = 8 S4 1.1554 + 1.1853 i Varicose
t0 = 9 S1 2.0172 + 8.9581 i Sinuous
t0 = 9 S2 1.9410 + 12.821 i Sinuous
t0 = 9 S3 1.8158 + 5.7284 i Sinuous
t0 = 9 S4 1.8145 + 4.4612 i Sinuous

rates. Note that there also exist eigenvalues with γi = 0, but
they are of less interest because their growth rates are smaller.
The eigenvalues and the symmetric types of the first four
modes for the selected t0s are listed in Table I. For a sinuous
mode, ũ, ρ̃, and p̃ are antisymmetric along the centerline, y =
yl/2, but ṽ is symmetric. The opposite is true for a varicose
mode. As the primary perturbation develops (t0 increases),
the secondary instability modes become more unstable
and the frequency of the most unstable mode becomes higher.
Note that the linear growth rate of the primary instability must
be less than unity, as Ref. [15] indicates, but the secondary
instability does not have this limitation. At the selected time
instants, the primary instability mode almost saturates, and
such high growth rates ensure that the small-scale perturba-
tions emerge and grow rapidly, which would eventually lead
to turbulent mixing. For t0 = 7, the eigenfunctions ρ̃, ũ, and
ṽ of the most unstable mode, mode S1, are shown in Fig. 4,
for which the complex growth rate γ is 1.0361 + 1.0648i.
All the eigenfuntions are normalized such that maxx,y |ũ| = 1.
ρ̃ and ũ are antisymmetric along the centerline y = yl/2,
while ṽ is symmetric, indicating a sinuous nature. The norm
of the perturbation velocity |ũ| peaks in a pair of narrow-
strip ranges, −0.2 < x < 0.6 and y/yl ≈ 0.5 ± 0.15, which
are at the boundary of the bubble penetrating into the heavy

FIG. 4. Eigenfunctions ρ̃, ũ, and ṽ of mode S1 for t0 = 7. Left
column: real part; right column: imaginary part.
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γ r
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FIG. 5. Variation of the growth rate (a) and the frequency
(b) with the acceleration ḡ.

fluid, as Fig. 1(a) indicates. Additionally, there exist a pair
of mild peaks in the narrow strips of −0.2 < x < 0.8 and
y/yl ≈ 0.5 ± 0.35, which are at the boundary of the spike
penetrating to the light fluid. The vorticity of the base flow,
shown in Fig. 2(a), also exhibits peaks at these strip regions,
indicating that the velocity gradient plays an important role
in the formation of this eigenprofile. Such a shear-driven in-
stability indicates a KH regime. Additionally, the acceleration
may also act as a factor to drive secondary instability, which is
of the RT regime. In order to show the impact of the accelera-
tion on the secondary instability, we compare the numerical
results obtained by the biglobal analysis with and without
the acceleration term. This is done by reexpress {Ā}21 in (6)
by ρ̄−1(ūūx + v̄ūy − ḡ), where ḡ represents the acceleration.
As ḡ reduces from 1 to 0, the impact of the acceleration on
the secondary instability is removed gradually. The variations
of γr and γi with ḡ for t0 = 7 are shown as the red curves
in Figs. 5(a) and 5(b), respectively. Reducing ḡ leads to a
reduction of the growth rate γr , and the reduction rate, defined
as 1 − γr,ḡ=0/γr,ḡ=1, is around 0.77. The implication is that
the growth rate of the secondary instability mode is affected
by both the KH and RT regimes, and the latter is dominant
at this t0. On the other hand, the frequency γi stays almost
constantly as ḡ varies, implying that the oscillation of the sec-
ondary instability mode is contributed only by the shear (KH)
effect. We have also compared the eigenfunctions obtained by
different ḡ, and only quantitative differences are observed (not
shown).

FIG. 6. Eigenfunctions ρ̃, ũ, and ṽ of mode S2 for t0 = 7. Left
column: real part; right column: imaginary part.

FIG. 7. Eigenfunctions ρ̃ and ũ of mode S3 for t0 = 7. Left
column: real part; right column: imaginary part.

Figure 6 shows the eigenfunctions of mode S2. The peaks
of the eigenfunctions ũ and ρ̃ are locating at almost the
same strip regions as those of mode S1, but the symmetric
feature is on the opposite direction since this is a varicose
mode. Figure 7 shows the eigenfunctions ρ̃ and ũ of the
sinuous mode S3. Being different from mode S1, each peak-
ing strip breaks into two segments of peaks with opposite
phases. This is a reminiscent of the observation of the RT
primary instability with a smeared interface: The higher-order
mode always exhibits more local extremes than the lower one,
which was explained by a WKB solution with two turning
points in Ref. [15]. Therefore, the emergence of mode S3 is
linked to the diffuse interface effect. Figure 8 and Figure 9
plot the eigenfunctions of mode S1 for t0 = 8 and 9, respec-
tively. As the vorticity of the base flow stretches, the peaking
strips of |ũ| are elongated for t0 = 8, but the eigenprofiles
for t0 = 9 exhibit a number of local extremes with small
length scales. Such small-scale perturbations are linked to
the its high-frequency nature as shown in Fig. 3. The green
and blue curves in Fig. 5 show the variations of γ with ḡ
for t0 = 8 and 9, respectively. As the spike-bubble structure
develops, the shear rate of the base flow becomes stronger,
and 1 − γr,ḡ=0/γr,ḡ=1 is reduced to about 0.20 for t0 = 9. The
implication is that as time advances, the KH instability regime
plays an increasingly important role on the formation of the
secondary instability modes.

C. Evolution of the secondary instability modes

In order to confirm the accuracy of the SIA and further
reveal how the secondary instability modes lead to turbulent
mixing, we calculate their evolution by DNS from a selected
time instant t0. The base flow of the initial perturbation (5) is
from the simulation of the primary-mode evolution, while the
perturbation is from the SIA in the previous subsection. Two

FIG. 8. Eigenfunctions ρ̃ and ũ of mode S1 for t0 = 8. Left
column: real part; right column: imaginary part.
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FIG. 9. Eigenfunctions ρ̃ and ũ of mode S1 for t0 = 9. Left
column: real part; right column: imaginary part.

case studies are considered, whose key parameters are listed
in Table II.

The secondary instability mode at each time instant can be
obtained by

ŭ1(x, y, t ) = u(x, y, t ) − ū(x, y, t ), (13)

where u denotes the instantaneous velocity and ū the velocity
for the evolution of the primary perturbation. Its amplitude is
defined as

Au,DNS(t ) = max
x,y

{|ŭ1|}, (14)

and the location corresponding to the peak of |ŭ1| is denoted
as (xm, ym). Due to the symmetric nature of the perturbation
field, there are two peaks in the |ŭ1| profile. Therefore, we
only choose the one for which ym/yl � 0.5.

The red curve in Fig. 10 shows the evolution of Au,DNS(t )
for case 1, which is piecewisely growing. The curve is com-
pared with the linear prediction based on the growth rate from
the SIA (green curve),

Au,LINEAR = εa eγ (t−t0 ) +c.c., (15)

where γ is the growth rate of the introduced secondary
instability mode. According to the linear prediction, the per-
turbation grows exponentially with a sinusoidal oscillation,
whose period is 2π/|γi|. The two curves agree precisely for
t − t0 < 0.7, and the peaking location of |ŭ1|, as shown in
Fig. 11, varies gently around (xm, ym/yl ) = (−0.05, 0.35),
which agrees with the peaking location of the mode S1
eigenprofile for t0 = 7. These features indicate that mode S1
dominates the perturbation field before t − t0 = 0.7, and the
accuracy of the SIA is confirmed. The gentle change of xm and
ym is due to the relatively slow development of the primary
mode, which leads to a slow variation of the base flow for
the SIA. After t − t0 = 0.7, Au,DNS undergoes a much greater
growth, and the perturbation peak is suddenly jumped to
(xm, ym/yl ) ≈ (0.65, 0.4). This position undergoes only mild
change in the time interval t − t0 ∈ (0.7, 1.6), in which an-
other mode dominates the perturbation field. From t − t0 =
1.6, Au,DNS starts to show a new growth again, and the pertur-

TABLE II. Parameters for DNS case studies.

Case t0 Mode εa γ

1 7 S1 10−6 1.0361 + 1.0648 i
2 7 S2 10−6 0.9599 + 1.2171 i
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FIG. 10. Amplitude evolutions for case 1 and case 2.

bation peak suddenly changes to (xm, ym/yl ) ≈ (−0.05, 0.4).
After that the xm position moves toward the heavier fluid
direction successively, until t − t0 ≈ 2.4.

Figure 12 shows the contours of the eigenfunction nor-
malized by the maximum of its norm, ŭ ≡ ŭ1/maxx,y{|ŭ1|},
at different time for case 1. The perturbation velocity ŭ is
antisymmetric about y = yl/2, and the initial peak is located
in a pair of narrow-strip regions with −0.2 < x < 0.6 and
y/yl ≈ 0.5 ± 0.15. As time advances, the peaking strips be-
come thinner and are stretching around the high-shear region,
which eventually break into small structures after t > 9.5.
Subsequently, the perturbation field is not exactly antisym-
metric any more, which is caused by the accumulation of the
numerical noises. Although they are initially tiny, they can
be amplified substantially due to the unstable nature of the
RT flow. This also explains the abnormal change of the peak
position of the perturbation after t − t0 > 2.4 in Fig. 11.

Figure 13 compares the energy spectra of v around
x = 0 among different time instants. It is seen that as t
advances from 8 to 10, the energy of the small-scale (high-
wave-number) perturbations increases remarkably, due to the
growth of the secondary instability modes. At t = 10, the

t-t0

P
os

iti
on

0 0.5 1 1.5 2 2.5 3-1

-0.5

0

0.5

1

xm--Case 1
xm--Case 2
ym/yl--Case 1
ym/yl--Case 2

FIG. 11. The positions of the perturbation peak for case 1 and
case 2.
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FIG. 12. Contours of the perturbation ŭ at representative time
instants for case 1.

scaling law of the 2D turbulence, E (k) ∼ k−8/3, is reached
in the interval k ∈ (3, 25), and such a scaling law persists
to later time instants, e.g., t = 12. These observations show
a transitional trend from laminar to turbulent mixing, al-
though the fully turbulent state may not be reached because
the single-mode configuration limits the development of the
perturbations with larger length scales than the domain size.

The blue and pink curves in Fig. 10 represent respectively
the perturbation amplitude Au,DNS and Au,LINEAR for case 2,
for which the initially introduced secondary mode is varicose.
The agreement is good for t − t0 < 0.6, which is slightly
shorter than that for case 1. The time interval for the second
segment of growth is until t − t0 ≈ 2.0, and at this time, the
amplitude for case 2 is much smaller than that for case 1.
At latter time instants, the amplitudes of the two cases be-
come comparable. The peaking locations for case 2 follow
the similar trend as those for case 1, as Fig. 11 indicates.
Figure 14 further shows the contours of ŭ at different ts for

k

E
(k

)

100 101 102 10310-5

10-3

10-1

101

103

105

k-8/3

t=8
t=9
t=10
t=12

FIG. 13. Comparison of the energy spectra E (k) among different
time instants for case 1.

FIG. 14. Contours of the perturbation ŭ at representative time
instants for case 2.

case 2. The evolution of the symmetric-type perturbation from
longitudinal strips to short scales is clearly exhibited.

IV. APPLICATION OF THE SIA TO A MULTIMODE
CONFIGURATION

Differing from Sec. III, in this section, we will focus on
a multimode configuration. Now the initial flow field (11) is
changed to(

ρ0 + ε̄a f (x)

[
cos(ky) + cos

(
ky

2

)]
, 0, 0, p0

)
, (16)

where all the parameters stay the same as in Sec. III. The
computational domain in the y direction is doubled, ȳl =
4π/k ≈ 2.69, and the number of grid points are changed to
2001 × 241.

Comparing the initial perturbations (16) and (11), we find
that the effective amplitude of the multimode configuration is
higher, and so the nonlinear saturation phase is arrived a bit
earlier. Figure 15 shows the contours of the density subject
to the initial perturbation (16) at three representative time
instants, which are earlier than those in Fig. 1(a). Because of
the interaction of the two modes with different wave numbers,

FIG. 15. Contours of the density ρ̄ for the multimode
configuration.
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FIG. 16. Complex growth rate γ of the secondary instability
modes for a multimode configuration, where (b) is a zoom-in
plot of (a).

two spikes with different lengths are observed. As the spikes
stretch, the shear rates of the flow are increasing, leading to the
emergence of KH-type secondary instability. Using the same
analysis approach as in Sec. III, we obtain the eigenvalues
of the secondary instability modes in the three time instants,
as shown in Fig. 16. The overall trend is the same as that
in Sec. III. As time advances, both the growth rates and the
oscillation frequencies become higher, and the sinuous modes
are more unstable.

The eigenfunctions of the most unstable secondary in-
stability mode, mode S1, for the three representative time
instants are plotted in Fig. 17. The peaks of the eigenfunctions
appear at the edge of the spikes overall, in agreement with
the high-shear regions. It is confirmed that the SIA developed
in this paper is easy to be extended to more complicated
configurations.

V. DISCUSSION

Admittedly, the role of the KH instability on the gen-
eration of the small-scale (secondary) perturbations is well
know for decades. However, we argue that the novelty of this
study is the development of a quantitative means to identify
the dominant factor contributing to the secondary instability.
From the analysis in Sec. III B, we have shown a transition of
the dominant factor from acceleration (RT regime) to shear
(KH regime) during the nonlinear saturation phase, and in
this section, using this efficient tool, we will clarify another

FIG. 17. Eigenfunctions of mode S1 for t = 6 [(a) and (b)],
7 [(c) and (d)], and 8 [(e) and (f)], where the left and right columns
are for |ρ̂| and |û|, respectively.

still-obscure issue, i.e., the relation between the secondary
instability of the bubble-spike structure and the instability of
a rising bubble.

An early experimental observation by Davies and Taylor
[27] showed that for a gas bubble rising vertically in extended
liquids or liquid tube, the bubble would approach a constant
curvature and rise in a constant speed in the long-time limit.
Such a setup is equivalent to the growth of bubbles in a RT
flow with the Atwood number A ≈ 1, and the observation time
period is within the nonlinear saturation phase. A subsequent
theoretical study [28] presented a family of steady solutions
for 2D bubbles, and the sliding of the surrounding liquids
are unlikely to induce KH instability. Based on the group
theory approach, Abarzhi [29] confirmed that only a small
portion of the possible solutions are stable, and the predic-
tion of the 2D bubble velocity agrees with that in Ref. [28].
The bubble velocity for an arbitrary density ratio (A ∈ (0, 1]),
a more generic situation, was presented by Goncharov [6],
which agrees with Abarzhi’s result when A = 1. The growth
of spikes in a RT flow was later predicted theoretically by
Duchemin et al. [32]. A recent review of the bubble and spike
dynamics can be found in Ref. [33].

In fact, whether the secondary instability of the RT flow
is purely driven by the rising-bubble effect is still an open
question. On the one hand, no experiment on rising bubbles
has provided sufficient evidence to support the KH instability,
which may be attributed to the limitation of observing time
(restricted by the finite-length nature of the vertical tube).
On the other hand, in RT unstable flows, we do observe the
emergence of small-scale perturbations, although there is a
combined effect with the spikes penetrating into the light fluid.
It is seen from Figs. 6, 7, 8, and 9 that the peaks of the
eigenfunctions of the secondary modes are mainly located at
the side boundaries of the bubbles and spikes. If the spikes
in the RT flow are eliminated by a proper artificial filtering,
then its SIA could reflect the instability of the rising bubble.
Figure 18 shows the temporal evolution of the bubble front
for the single-mode case in Sec. III. The bubble approaches
a constant-speed state from t ≈ 4, and as shown in Fig. 11
of Ref. [16], a quadratic growth is arrived after t ≈ 10. Thus,
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FIG. 18. Temporal evolution of the bubble front position −hb.

three representative time instants, t0 = 6, 7, and 8, are chosen
for the filtered SIA. Because the spikes are developing in the
region of x > 0, the simplest treatment for the filtering is to cut
off the base flow as used in Sec. III from x = 0, and perform
SIA in the domain x ∈ [−2, 0] and y ∈ [0, 2π/k]. Note that
x = −2 is sufficient to include the bubble front in these time
instants.

The eigenvalues of the SIA of the filtered bubbles for
t0 = 6, 7, and 8 are plotted in Fig. 19, where the most un-
stable sinuous and varicose modes are denoted by BS1 and
BV1, respectively. As time advances, mode BS1 becomes less
unstable, whereas the growth rates of mode BV1 stay almost
unchanged. Remarkably, for each time instant, the eigenvalues
γ of both BS1 and BV1 are pure real, in contrast to Fig. 3.
The implication is that the unstable modes are growing ex-
ponentially in time without exhibiting an oscillatory nature,
which, in general, is closer to the RT nature. In order to
confirm this, we show the growth rate γr as the acceleration
decreases gradually from 1 to 0, as shown in Fig. 20. Note
that for t0 = 8, the continuation for BS1 shown in Fig. 20(b)
is stopped at ḡ = 0.4, because the base flow is contaminated
by the small-scale perturbations and the spike to the light-fluid

γi
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FIG. 19. Complex growth rate γ of the secondary instability for
filtered bubbles.
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FIG. 20. Variation of the growth rate with the acceleration ḡ for
modes BV1 (a) and BS1 (b).

side as time advances. However, the overall trend is well
captured. For each case, the growth rate reduces over 70%
as ḡ decreases from 1 to 0, implying the dominant role of the
acceleration. This confirms that the instability of the rising
bubble is driven by the RT regime, instead of the KH regime.

Comparing Figs. 19 and 3, we find that for the same
time instant, the growth rates of the rising bubble (filtered
RT bubble) are always smaller than those of the secondary
instability of the RT spike-bubble structure. At t0 = 7, the
differences of the most unstable sinuous and varicose modes
between the secondary instability of the RT bubble and rising
bubble are only 33% and 24%, respectively, confirming that
the early-time secondary instability of the spike-bubble struc-
ture is driven by the RT regime of the rising-bubble effect. At
a later time instant, t0 = 8, the differences of the sinuous and
varicose modes become 61% and 38%, respectively, which
confirms that the KH regime becomes more important as time
advances, especially for the sinuous modes. It is also seen
that when the RT regime is dominant, the frequency of the
secondary mode, measured by γi, is relatively lower.

Through the analysis in this section, the mechanism of
the secondary instability of the spike-bubble structure of the
nonlinear RT flow is clearer. At early time, the secondary
instability is dominated by the RT regime, which is due to the
rising-bubble effect. As time advances, the spike stretches at
a greater speed than the bubble does, strengthening the shear
rates of the spike edge. Such a behavior indicates that the KH
regime, with higher growth rates and oscillatory frequencies,
becomes dominant in later time, but the rising-bubble effect
on the late-time growth of the secondary instabilities is quite
limited.

VI. CONCLUSION

In order to fully understand the laminar-turbulent transition
mechanism of a RT flow with a diffuse interface, a series
of previous works [14–16] have studied the excitation and
evolution of the multiple RT primary modes. Although it is
well accepted that the excitation and rapid amplification of
the small-scale structures in the nonlinear saturation phase are
driven by the KH secondary-instability regime, one still lacks
a comprehensive understanding of this regime and a quanti-
tative means to describe the instability nature. The present
paper focuses on this issue by performing the biglobal stability
analysis, using Arnoldi and generalized Rayleigh quotient
iteration methods. A number of secondary modes are calcu-
lated, which are of either sinuous or varicose type, and the
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sinuous ones are found to be more unstable overall. The eigen-
functions of the higher-order modes usually have more local
extremes, indicating a diffuse-interface effect. The growth
rates of the secondary modes are generally complex, with
their imaginary parts representing the oscillating frequencies,
which is different from that of the primary modes. As the
spike-bubble structure develops, both the growth rates and
frequencies become higher, implying that more small-scale
perturbations are likely to appear and grow rapidly at later
time instants. The local peaks of the eigenfunctions of the
secondary instability modes are relevant to either the shear
of the base flow or the acceleration, indicating that the in-
stability is driven by both the KH and the RT regimes. This
is in contrast to the traditional viewpoint that the secondary
instability is driven by merely the KH regime [1–3,25,26].
The frequencies of the secondary modes are determined by
the KH regime, while both regimes contribute to their growth
rates. It is proven that the KH regime, associated with the high
shear of the spike edge, plays a dominant role at later time,
whereas the RT regime, induced by the rising-bubble effect,
dominates the early-time secondary instability. Additionally,
we have confirmed the accuracy of the secondary-instability
analysis by performing direct numerical simulations of the
evolution of the secondary modes, and their late-time evolu-
tion to small-scale structures is also exhibited.

The secondary-instability-analysis approach developed in
this paper is applicable for both single-mode and multimode
primary perturbations, as confirmed in Sec. IV, and the overall
trend of the variation of the eigenvalues with time for the
multimode configuration is quite similar to that for the single-
mode configuration. Note that our analysis approach can also
be extended to three-dimensional configurations, but another
coordinate z that is perpendicular to both x and y has to be
added to the system.
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APPENDIX A: EULER EQUATIONS

For a two-dimensional perfect-gas inviscid fluid, the di-
mensionless governing equations are

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρuu)x + (ρuv)y = −px + ρ,

(ρv)t + (ρuv)x + (ρvv)y = −py,

pt + upx + vpy + �p(ux + vy) = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (A1)

where � = 5/3 is the adiabatic exponent.

APPENDIX B: BRIEF INTRODUCTION OF THE
RAYLEIGH QUOTIENT ITERATIVE METHOD

Consider a generalized eigenvalue problem

A0ψ = γ̂ B0ψ, (B1)
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FIG. 21. Amplitude evolution under different mesh systems for
case 1.

where the coefficient matrices A0 and B0 are known, γ̂ is the
eigenvalue and ψ is the eigenvector. We solve the eigenvalue
problem by the following steps.

(i) Given an initial guess for the eigenvalue and eigen-
vector, denoting as γ̂k and ψk , respectively. For the first
step, k = 0.

(ii) Update ψ . Solve ψ̄k+1 from the linear system

(A0 − γ̂kB0)ψ̄k+1 = B0ψ
k, (B2)

and then renormalize ψ̄k+1 as

ψk+1 = ψ̄k+1

max(ψ̄k+1)
. (B3)

(iii) Update γ̂ according to

γ̂k+1 = 〈HB0ψ
k+1, A0ψ

k+1〉
〈HB0ψk+1, B0ψk+1〉 , (B4)

where H is an arbitrary Hermitian positive definite matrix and
here is taken to be the unit matrix, and the angle brackets
denote the inner product.

(iv) Replace k by k + 1 and repeat steps 2 to 3 until
γ̂ converges.

In the calculations, the initial eigenvalue γ̂0 is set from the
solutions obtained by the Arnoldi iterative method, and ψ0 is
given by a random function. If the eigenvalues obtained by the
two methods agree, then we affirm that our numerical results
are reliable.

APPENDIX C: RESOLUTION STUDY FOR THE
SIMULATION OF THE EVOLUTION OF THE SECONDARY

INSTABILITY MODES

Figure 21 compares the amplitude evolution of the sec-
ondary instability mode for case 1 of Table II among different
mesh systems. The results for (I, J ) = (1001, 481) is con-
firmed to be sufficiently accurate by comparing with those
with grid points refined in either x or y direction.
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