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Linear stability of electrocapillary convection in an infinite liquid layer 
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A B S T R A C T   

Electrocapillary convection is the flow driven by the interfacial shear stress induced by a surface-charge density 
and electric fields. It has become an important topic in electrohydrodynamics recently. The present work 
examine the convective instability for electrocapillary liquid layers by the modal and non-modal approaches. The 
modal analysis finds two kinds of modes, namely purely hydrodynamic and electrohydrodynamic modes, while 
both of them are stable. In the non-modal analysis, the amplifications of initial and external disturbances are 
measured by the transient growth and the response function, respectively. Both the perturbation velocity and 
surface-charge density can be amplified significantly.   

1. Introduction 

Electrohydrodynamics deals with the fluid motion induced by elec-
tric fields [1,2]. It has excited a wide range of interest for its importance 
in many practical applications, such as atomization of liquids [3], 
microfluidics [4] and increasing heat transfer in fluids [5,6]. There have 
been plenty of theoretical and experimental studies devoted to electro-
hydrodynamics, which have been reviewed by Melcher & Taylor [7], 
Saville [1] and Papageorgiou [8]. 

Electrocapillary flow is one of the most important fluid motions 
considered in electrohydrodynamics. It is driven by the interfacial shear 
stress induced by a surface-charge density and electric fields. The in-
stabilities in electrocapillary flows have been studied by some authors. 
González et al. [9] have studied the influence of bounded geometry on 
electrocapillary instability both theoretically and experimentally. Petrin 
[10] has studied the electrocapillary instability of a conducting liquid 
cylinder by linear stability analysis. Mkrtchyan et al. [11] have pre-
sented an experimental study of the electrocapillary instability of mag-
netic fluid peak. The above works mainly restrict their attention to the 
interfacial instability, whose physical mechanism is well known: the 
surface deformation take places when the electrostatic force on the 
surface dominates the gravity and capillary force [12]. 

In many ways, the electrocapillary flow is similar to the thermoca-
pillary flow, which is a kind of Marangoni convection caused by a 
temperature-induced surface tension gradient. Carrión, Herrada & 

Montanero [13] have studied numerically the influence of the dynam-
ical free surface deformation on the stability of thermal convection in 
high-Prandtl-number liquid bridges. The free surface deformations 
caused by both the base flow and the perturbations are taking into ac-
count. Besides interfacial instabilities, there is another kind of instability 
in thermocapillary flows—convective instabilities, which are driven by 
mechanisms within the bulk of the layer and do not depend on the 
surface deformation [14]. The oblique hydrothermal wave is one of 
convective instabilities predicted by the modal stability theory. It has 
been observed in both experiments [15] and numerical simulations 
[16]. Energy analysis suggests that there are two kinds of mechanisms 
for convective instability, which are hydrodynamic and hydrothermal at 
small and large Prandtl numbers, respectively [17,18]. 

Recently, the investigation of convective instability has been 
extended from modal analysis to non-modal approach [19]. The former 
assumes a small perturbation varying exponentially with time and pre-
dicts the long-term behavior of disturbances. On the contrary, the latter 
focuses on the short-term characteristics of flow instabilities, including 
the transient energy growth and the behavior of response to external 
excitations [20]. The streamwise streaks (narrow regions where the 
streamwise velocity is larger or smaller than the average) predicted by 
the non-modal theory have been observed in many experiments of shear 
flows [21,22]. The investigations of non-modal stability have been 
generalized to non-Newtonian fluids [23–25] and electrohydrodynamic 
flows [26]. The works on thermocapillary convections [27] demonstrate 
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that rather large transient growths and responses can occur in subcritical 
flows. 

When the gravity or capillary force is large enough, the interfacial 
instability is suppressed in the electrocapillary convection, while the 
convective instability may be preferred. However, to the best of our 
knowledge, the convective instability of electrocapillary convection has 
not been discussed in previous works. As the thermocapillary convection 
exhibits rich dynamic behaviors in its transition, one would expect that 
there may also be interesting phenomena and new mechanisms in 
electrocapillary convections. The purpose of this paper is examining the 
linear stability of electrocapillary liquid layers by modal and non-modal 
approaches, in order to understand their instabilities and transitions 
mechanism. The presence of gravity or capillary force makes the surface 
non-deformable, so only the convective instability is considered in the 
following. 

The paper is organized as follows. In Section 2, we present the model 
of electrocapillary liquid layers, and derive the dimensionless governing 
equations. Theories of modal and non-modal analyses are introduced. 
Section 3 is dedicated to numerical results, including critical parame-
ters, transient growths, response functions and pseudospectra. Section 4 
is devoted to the discussion and comparisons with other flows. Finally, 
the conclusions are drawn in Section 5. 

2. Mathematical formulation 

2.1. Physical model 

We consider two kinds of electrocapillary liquid layers, which are the 
linear flow and the return flow. The former has a linear velocity distri-
bution, which can be realized on the layer placed on a horizontal plane. 
The latter with zero mass flux in the vertical section corresponds to the 
convection in a container. These two flows are convenient in the theo-
retical study. 

The physical model of these two flows are presented in Fig. 1, where 
a film on a rigid plane is subjected to the Maxwell stress generated by the 
electric field on the interface. Here, x, y, z are the streamwise, spanwise 

and wall-normal direction, respectively. d is the depth, andẼ
b
x, Ẽ

a
zare the 

tangential and vertical components of the electric field, respectively. 

When the variations of Ẽ
b
x, Ẽ

a
z in the streamwise direction are not very 

obvious, we simply assume that Ẽ
b
x, Ẽ

a
zare constants. This can be realized 

in the example shown in Fig. 2. Thus the flow is driven by a constant 

shear stress T̃zx = ε0Ẽ
b
xẼ

a
z . 

Melcher & Taylor [7] have reported an experiment of electro-
capillary convection shown in Fig. 2. When the film is shallow, the flow 
in the region far from two ends corresponds to the return flow in Fig. 1, 
which can be seen as follows. 

In Fig. 2, the upper fluid (region (a)) is an insulating gas, and the 
lower one (region (b)) is a slightly conducting liquid filling an insulating 
container A. Electrodes B and C make electrical contact with the liquid 

to complete an electrical circuit with the source of potential V0. F is a 
tilted electrode with one end in contact with electrode B. l is the length 
of the layer, and a is the height of left end of F. The distance between the 

interface and the tilted electrode is h(x) = a
l

(

− x + l
2

)

. 

An electric field and surface charges are induced on the interface D. It 
is assumed that the electric field in this problem is quasi-static, and there 
is no bulk charge density. The tangential component of electric field is 

Ẽ
b
x = V0/l. As the electric field satisfies 

Ẽ= − ∇ψ̃, (2.1) 

the electric potential on the interface is 

ψ̃ =
V0

l

(

− x̃+
l
2

)

. (2.2) 

Thus, the vertical component of electric field satisfies 

Ẽ
a
z =

ψ̃
h
=

V0

a
. (2.3) 

Due to Gauss’ law in electrostatics, there is a relation between the 
vertical component of electric field and the surface-charge density ϑ̃0: 

Ẽ
a
z = ϑ̃0

ε0
(There is also a surface-charge density on electrode F), which 

suggests that ϑ̃0 = ε0
V0
a . 

Then, the Maxwell stress is generated by the electric field. The 
interfacial shear stress is 

Γ̃zx = ϑ̃0Ẽ
b
x = ε0Ẽ

a
z Ẽ

b
x =

ε0V2
0

la
, (2.4) 

which drives a convection in the liquid layer. Here, ε0 = 8.85×

10− 12F/mis the vacuum permittivity. When d << l, the laminar flow in 
the region far from two ends is approximately parallel, so the velocity 
distribution is [7]. 

ũ0(z)=
ε0V2

0 d
μla

(
3
4

(z
d

)2
−

1
2

(z
d

))

, (2.5)  

whereμis the dynamic viscosity of liquid. 
The scales of length, velocity, electric intensity, surface-charge 

density and interfacial shear stress are chosen as d, Ũ =
ε0V2

0 d
μla , Ẽ = V0̅̅̅

la
√ , 

ϑ̃ = ε0
V0
a and Γ̃zx =

ε0V2
0

la , respectively. The Reynolds number can be 
defined as R = ρŨd/μ. For 10 cSt silicone oil [28], the density ρ = 0.93×

103kg/m3, the kinematic viscosity ν = μ/ρ = 1× 10− 5m2/s, the surface 
tension Ξ = 19.9× 10− 3N/m. If we set d ∼ 0.04m, a ∼ 0.04mV0 ∼ 1×

104V, l ∼ 0.8m, then Ũ =
ε0V2

0 d
μla ∼ 0.119m/s, R = ρŨd/μ ∼ 500. So in the 

following, the range of R we considered is 500–1500. The electrical 
conductivity of silicone oil has σ̃10− 8S/m. However, if the function-
alized graphene (FG) nanosheets are dispersed in the silicone oil, the 
electrical conductivity of FG-Silicone oil nanofluid increases to σ = 1.5×

Fig. 1. Schematic of electrocapillary liquid layers: (a) the linear flow; (b) the return flow.  
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10− 7S/mwhen the weight fraction is 0.07% [29]. Then, the slightly 
conducting nanofluid prepared by dispersing nanoparticles into a 
dielectric base fluid can be used in the application of electrocapillary 
convections. The relative permittivity of silicone oil is εr = 2.7[30], so 
the free-charge density in the flow region decays with the bulk relaxa-
tion time τ = ε/σ = εrε0/σ ∼ 1.59× 10− 4s, which is much smaller than 
the time scale of flowts = d/Ũ ∼ 0.336s. Thus, the effect of bulk charge 
density on the fluid motion will decay at once. The assumption of no 
bulk charge density is reasonable [7]. 

We do not consider the deformation of interface for three reasons. 
First, the magnitude of deformation on the surface can be measured by 
the capillary number: Ca = μŨ/Θ. For our estimated parameters, Ca ≈

0.05 << 1. Second, the typical deformation wavelength in the electro-
capillary flow is well described in Rayleigh-Taylor instability theory by 
the capillary wavelength λs = 2π

̅̅̅̅̅̅̅̅̅̅̅
Ξ/ρg

√
[9,31]. For the 10 cSt silicone 

oil, the corresponding dimensionless wavenumber is d
̅̅̅̅̅̅̅̅̅̅̅
ρg/Ξ

√
≈ 27, 

which often causes high viscous dissipation and cannot lead to the 
instability. In addition, Melcher & Schwarz [32] suggested that when 
the gravity acts to stabilize the interface, the most critical wavelength of 
surface deformation is the longest one. However, l > > λs ≈ 9.28×

10− 3min our case, which means that the surface instability is not 
preferred. Third, it is well known that the surface deformation only 
occurs when the electrostatic force on the surface dominates the gravity 

[9]. In our case, their ratio is ε0V2
0

a2 /(ρgd) ≈ 1.5× 10− 3. Therefore, the 
assumption of a non-deformable surface can be satisfied. 

In the model proposed by Melcher & Taylor [7] shown in Fig. 2, the 
convection of charge at the interface Ũϑ̃0is negligible compared to the 
conduction current through the bulk Jx⋅d, where Jx = σV0

l . Thus, the 

electric Reynolds number Re = l
ad

ε0Ũ
σ =

ε2
0V2

0
μa2σ << 1and σ > >

ε2
0V2

0
μa2 ∼ 5.

26× 10− 10S/m. This condition can be satisfied for the FG-Silicone oil 
nanofluids. 

2.2. Governing equations 

The dimensionless forms of continuity equation and momentum 
equation can be expressed as follows, 

∇ ⋅ u = 0, (2.6)  

R
(

∂u
∂t

+u ⋅∇u
)

= − ∇p+∇⋅τ. (2.7)  

hereu, p and τ stand for the velocity, pressure and stress tensor respec-
tively. For Newtonian fluid, 

τ=S, (2.8)  

where S = ∇u+ (∇u)Tis the strain-rate tensor. 
For boundary conditions, there is no slip on the rigid plane, 

u= v = w = 0, z = 0, (2.9) 

while on the surface, 

w= 0, z = 1. (2.10) 

For the surface-charge density ϑ, we haveϑ = 0, z ∕= 1. Therefore, 
∂(wϑ)

∂z = 0. The conservation of charge leads to the following expression, 

∂ϑ
∂t

+
∂(uϑ)

∂x
+

∂(vϑ)
∂y

+ Jz = 0. (2.11)  

here, the current density in the vertical direction Jz =

(

− Oh
∂ψ
∂z

)

is 

caused by the Ohmic conduction, where Oh = σẼ/

(

Ũ
dϑ̃

)

=
μaσ

̅̅̅
la

√

ε2
0V2

0
. For 

the FG-Silicone oil nanofluids mentioned above, Oh̃1274.4. 
The relation between the interfacial shear stress and electric field is 

Γzx = ϑEb
x , Γzy = ϑEb

y . (2.12) 

The basic flow is fully-developed, so the velocity field is supposed to 
be parallel, 

u=(U0(z), 0, 0). (2.13) 

Hereafter, the subscript 0 stands for the basic flow. The solutions of 
linear flow and return flow can be derived by substituting (2.13) into 
governing equations as follows, 

Linear ​ flowU0(z)= z, (2.14)  

Return ​ flowU0(z)=
3
4
z2 −

1
2

z. (2.15) 

The velocity distributions above are displayed in Fig. 1. 
When a small perturbation is added to the basic flow, the surface- 

charge density and the electric potential become ϑ = ϑ0 + ϑ
′and ψ =

ψ0 + ψ ′ , respectively. The horizontal electric field Eb = − ∇ψ has two 
components, 

Fig. 2. A simple example of electrocapillary convection in an insulating container.  
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Eb
x =Eb

x0 −
∂ψ ′

∂x
, (2.16)  

Eb
y = −

∂ψ ′

∂y
. (2.17) 

Thus, we can obtain the dimensionless forms of shear stress as 
follows, 

Tzx = ϑEb
x ≈ 1 −

̅̅̅̅
l
a

√
∂ψ ′

∂x
+ ϑ

′

, (2.18)  

Tzy =ϑEb
y ≈ −

̅̅̅̅
l
a

√
∂ψ ′

∂y
. (2.19) 

The linearized perturbation equation of surface-charge density is 

∂ϑ
′

∂t
+

(
∂u′

∂x
+

∂v′

∂y

)

ϑ0 +
∂ϑ

′

∂x
U0 − Oh

∂ψ ′

∂z
= 0. (2.20) 

In the dimensionless form, ϑ0 = 1. 
As the flow region has no bulk charge density, the electric potential 

satisfies the Laplace equation, 

∇2ψ ′

= 0. (2.21)  

2.3. Modal analysis 

Suppose the perturbation has the normal mode form as follows, 

(u, ϑ, p, τ,ψ)= (u0,ϑ0, p0, τ0,ψ0) + δ, (2.22a)  

δ=(u⌢, v⌢,w⌢, ϑ
⌢

, p⌢, τ⌢,ψ⌢)exp[i(− ωt+αx+ βy)]. (2.22b) 

Hereafter, the variables without subscript 0 stand for the perturba-
tion. The mode has a complex frequency ω = ωr + iωi and the wave 
numbers α, β in the x and y directions, respectively. We use the total 
wave number k =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2 + β2

√
and the propagation angle φ = tan− 1(β /α) in 

the following. 
The linearized perturbation equations can be derived, 

iαu⌢+ iβv⌢ + Dw⌢ = 0, (2.23)  

R[β(w⌢DU0 +U0iαu⌢) − α(U0iαv⌢)]

− β
(

iατ⌢11 + iβτ⌢12 +Dτ⌢13

)

+ α
(

iατ⌢12 + iβτ⌢22 +Dτ⌢23

)

=Riω(βu⌢ − αv⌢),

(2.24)  

Rα
(
Dw⌢ ⋅ DU0 +w⌢D2U0 +DU0 ⋅ iαu⌢+U0iαDu⌢

)
+Rβ(DU0 ⋅ iαv⌢+U0iαDv⌢)

− Rik2(U0iαw⌢) −
(

iα2Dτ⌢11 + 2iαβDτ⌢12 + αD2 τ⌢13 + iβ2Dτ⌢22 + βD2 τ⌢23

)

+ik2
(

iατ⌢13 + iβτ⌢23 +Dτ⌢33

)

=Riω
(
αDu⌢+ βDv⌢ − ik2w⌢

)
,

(2.25)  

τ⌢11 − 2iαu⌢= 0, τ⌢12 − (iαv⌢+ iβu⌢)= 0, τ⌢13 − (Du⌢+ iαw⌢)= 0, (2.26)  

τ⌢22 − (2iβv⌢)= 0, τ⌢23 − (iβw⌢+Dv⌢)= 0, τ⌢33 − (2Dw⌢)= 0. (2.27)  

D2ψ⌢ −
(
α2 + β2)ψ⌢= 0. (2.28)  

here, D = d
dz. The boundary conditions on the plane z = 0 are 

u⌢= v⌢ = w⌢ = 0, (2.29) 

while on the surfacez = 1, there are 

τ⌢13 + iαSaψ⌢ − ϑ
⌢

= 0, τ⌢23 + iβSaψ⌢ = 0,w⌢ = 0, (2.30)  

iαu⌢+ iβv⌢ + iαU0 ϑ
⌢

− OhDψ⌢ = iωϑ
⌢

. (2.31) 

The generalized eigenvalue problem Wg = ωZg can be solved by 
using the Chebyshev collocation method, where W,Z are two matrices, 
andgis the eigenvector [33]. Nc Gauss-Lobatto points are set in the flow 
regionz = (1 − cos ϑj)/2ϑj = jπ/(Nc + 1),j = 1 ∼ Nc, while 2 points are 
set at the boundaries z = 0,1. The perturbation quantities are expanded 
in Chebyshev polynomials as: 

u⌢=
∑Nc+1

k=1
skHk− 1( z⌢). (2.32)  

herez⌢ = 1 − 2z, Hk− 1(z⌢) = cos((k − 1)cos− 1(z⌢))is the(k −

1) − thChebyshev polynomial, and sjis the coefficient. In present work, 
the results are sufficiently accurate when Nc = 80–120. The convergence 
can be seen in Table 1. 

Our computation shows that ψ⌢(z) = 0 for the least stable modes. So 
the variations of Sa and Oh do not change other variables in (2.30)- 
(2.31), and the results of stability analysis are not sensitive to them. 

2.4. Non-modal analysis 

As some experiments reported that transition scenarios often highly 
depend on the level of initial and external disturbances [34], we 
examine the amplifications of initial disturbances and external forcing 
by the non-modal approach. 

Suppose a perturbation with the wave numbers (α, β) can be repre-
sented as a sum of normal modes as follows [35], 

ψ(z, t) =
∑

j
aj exp

(
− iωjt

)
ψj(z). (2.33)  

here, ψ(z, t) = (u, v,w, θ) is a vector containing the perturbation velocity 
and surface-charge density, the subscript j stands for the jth least stable 

mode, aj is the jth expansion coefficient, andψj = (u⌢j, v⌢j,w
⌢

j, ϑ
⌢

j) is the jth 
eigenvector. 

The time evolution of perturbations can be derived as follows, 

∂
∂t

ψ= − iL̂ψ + Θ. (2.34)  

here, L̂ = (Z′

)
− 1W′ is an operator with eigenvalues {ωj}j=1,2… deter-

mined by the modal analysis, and Θ is a input signal with the frequency 
ω in the form 

Θ= exp[i( − ωt+αx+ βy)]Θ
⌢

(z). (2.35) 

When the background noise is negligible (Θ = 0), the amplification 
of initial disturbances can be measured by the transient growth function, 

G(t)= sup
ψ(0)∕=0

‖ψ(t)‖2
/

‖ψ(0)‖2
, (2.36) 

which is the greatest possible growth in energy of an initial pertur-
bation at time t. Here, ‖ψ‖is the norm of vectorψ, which can be defined 
by the “energy” as follows [35], 

Table 1 
The eigenvalues of computed by different numbers of nodes.Case1: the linear 
flow at R = 800, k = 1 and φ = 0∘; Case2: the return flow at R = 800, k = 1 and 
φ = 90∘.  

Nc  Case1 Case2 

ωi( × 10− 2) ωr( × 10− 2) ωi( × 10− 3) ωr  

80 − 2.48537 2.50235 − 4.33425 0 
100 − 2.48537 2.50235 − 4.33425 0 
120 − 2.48539 2.50236 − 4.33426 0  
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E =‖ψ‖
2
=

∫ (
|u|2 + |v|2 + |w|2

)
d3r + ς

∫ (
|ϑ|2
)

d2r. (2.37) 

∫
f ⋅d3rand 

∫
f ⋅d2r stand for the integration of function f on the vol-

ume and surface, respectively. ςis a positive coefficient. As no electric 
potential perturbation is found in the modal analysis, ψ is not included 
in (2.37). 

It can be derived from (2.34), (2.35) that the response ψ has the 
solution 

ψ= i
(

ωІ − L̂
)− 1

exp[i(− ωt+ αx+ βy)]Θ
⌢

, (2.38)  

whereIis the identity matrix and the solution operator (ωІ − L̂)
− 1is the 

resolvent [33]. Thus, the amplification of external forcing is measured 
by the response function, 

ℜ(ω)=maxΘ∕=0‖ψ‖/‖Θ‖=

⃦
⃦
⃦

(
ωІ − L̂

)− 1⃦⃦
⃦, (2.39) 

which is the maximum value of amplification to external excitations. 
In the computation, the transient growth and response functions can 

be obtained by using the first K modes, 

ψ(z, t) ≈
∑K

j=1
aj exp

(
− iωjt

)
(

u⌢j, v⌢j,w⌢j, ϑ
⌢

j

)

. (2.40) 

The convergent results ofG(t)and ℜ(ω)are obtained when K is large 
enough [33], 

G(t) ≈
⃦
⃦F exp(− iΛKt)F− 1⃦⃦2

2, (2.41)  

ℜ(ω)=

⃦
⃦
⃦

(
ωІ − L̂

)− 1⃦⃦
⃦ ≈

⃦
⃦F(ωІ − ΛK)

− 1F− 1⃦⃦
2. (2.42)  

here, ΛK = diag(ω1, ω2…ωK), F is a decomposition of a Hermitian 
matrixA = F*F, where F* is the Hermitian conjugate of F, andAis the 
matrix defined in terms of a inner product, 

Ajl =
(
ψj,ψl

)
=

∫ (

u⌢*
j u⌢l + v⌢*

j v⌢l + w⌢*
j w⌢l

)

d3r+ ς
∫ (

ϑ̃
*
j ϑ̃l

)

d2r. (2.43) 

The definition of 2-norm in (2.41)and (2.42) is‖H‖2 = sup
κ∕=0

‖Hκ‖2
/

‖κ‖2, where, κis a vector and H is a matrix. 
The choice of ς is arbitrary. However, we expect that both the ve-

locity and surface-charge density have large amplifications. In addition, 
∫
(|u|2 + |v|2 + |w|

2
)d3r >> ς

∫
(|ϑ|2)d2r, which means that the distur-

bance energy in (2.37) is mainly a measure of kinetic energy. So the 
valueς = 10− 3is chosen. It is found that the results will not change 
qualitatively when ς is the order of 10− 3. 

3. Numerical results 

3.1. Modal stability analysis 

In the modal analysis, we compute the growth rate ωi of the least 
stable modes at different Reynolds numbers. However, both the return 
flow and the linear flow are stable at all Reynolds numbers, which seems 
unrealistic. This indicates that the modal analysis is insufficient, and 
there is a need to examine the sensitivity of flow to initial condition and 
background noise by the non-modal approach. 

3.2. Non-modal stability 

In the non-modal analysis, we compute the transient growth function 
G(t) and response function ℜ(ω). The maximum transient growth and 
response are defined as 

Gmax(α, β)= max
t≥0

G(α, β, t), ℜmax(α, β)= max
ω∈R

ℜ(α, β,ω). (3.1) 

tmax is the optimal time corresponding to Gmax. Then, the optimal 
growth and response are defined as 

Gopt= max
α,β

Gmax(α, β), ℜopt= max
α,β

ℜmax(α, β). (3.2) 

Due to symmetry, we shall confine ourselves to the cases:α ≥ 0,
β ≥ 0. 

3.2.1. Maximum growth 
We examine the maximum transient growth Gmaxwith various wave- 

numbers. The level lines of Gmax in the α − β plane are displayed in 
Fig. 3, which shows that the transient growth of the linear flow is more 
obvious than that of the return flow. The optimal growth appears near 
the spanwise direction (φ = 90∘), which is similar to the cases in ther-
mocapillary layers [19] and channel flows [35]. However, the maximum 
growth of linear flow is much smaller than that of plane Couette flow at 
the same R, although their velocity distributions are the same. 

3.2.2. Transient growth function 
The growth functions G(t) and Gmax for streamwise-independent 

disturbances (φ = 90∘) are displayed in Fig. 4. It can be seen that the 
perturbation experiences an obvious transient growth and then decays 
when the time is large enough. Gmax∝R2for two flows. 

3.2.3. Flow field corresponding to the maximum growth 
The flow fields corresponding to the maximum growth for the linear 

flow are displayed in Fig. 5. There are large transient growths for both 
the perturbation velocity and the surface-charge density. The growth is 
mainly caused by the amplification of |u|, whose amplitude appears in 
the middle of the layer. There are counter-rotating vortices and 
streamwise streaks at both t = 0 and t = tmax. There are two rolls in the 
vertical direction at t = 0, while one roll is found at t = tmax. It seems that 
there is no phase difference between the surface-charge densities at 
these two times: |arg[ϑ(t = 0)] − arg[ϑ(t = tmax)]| ≈ 0∘. The flow fields of 
return flow is similar to Fig. 5. 

3.2.4. Response function 
The level lines of the logarithm ofℜmaxin the α − β plane are plotted 

in Fig. 6. It shows that ℜmaxcould reach O (1000) for a wide range of 
wave-numbers. The optimal response appears in the spanwise direction 
(α = 0). 

In order to show the largest amplification of external disturbance at 
different real frequencies, we display the variation of response func-
tionℜwith ω for the return flow in Fig. 7. It can be seen that the case at 
φ = 90∘ is very different from that at φ = 0∘. When φ = 90∘, ℜmaxis 
reached at ω = 0and ℜmax∝R2. However, when φ = 0∘, there are many 
peaks in the curve of ℜ(ω). ℜmaxDecreases with k, and the frequency 
corresponding to ℜmaxchanges with k. The properties of ℜ(ω) for the 
linear flow are similar. 

3.2.5. Input and output fields 
The perturbation fields corresponding to maximum responses are 

displayed in Figs. 8 and 9. It can be found that there are large amplifi-
cations for both the perturbation velocity and the surface-charge den-
sity. For the streamwise-independent disturbance (φ = 90∘) in Fig. 8, the 
flow fields are similar to those of transient growth in Fig. 5. However, 
the phase difference between the input and output is 

⃒
⃒arg(ϑinput) −

arg(ϑoutput)
⃒
⃒ ≈ 90∘. For the spanwise-independent disturbance (φ = 0∘) 

in Fig. 9, the vortices are spanwise. In both cases, the streamwise ve-
locity is amplified significantly. The amplitude of streamwise velocity 
appears in the middle of the layer at φ = 90∘, while it appears on the 
surface at φ = 0∘. 

3.2.6. Pseudospectrum 
The reason why the disturbance could be amplified substantially in 

subcritical flows can be attributed to the non-normality of the operator 
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Fig. 3. Level lines of the maximum growth Gmax in the α − β plane at R = 800 for: (a) the return flow; (b) the linear flow.  

Fig. 4. (a) The variation of G(t) with time for the linear flow with various Reynolds numbers R at k = 4 and φ = 90∘; (b) The variation of Gmax with R2. RF and LF 
stand for the return flow and the linear flow, respectively. 

Fig. 5. The flow fields corresponding to the maximum growth for the linear flow at R = 800, φ = 90∘, k = 3: (a) the flow field at the initial time; (b) the flow field at 
tmax = 29. The maximum growth is Gmax = 24.2. At the initial time, the amplitudes are |u| = 0.0993,|v| = ​ 0.9743, |w| = 0.5859and |ϑ| = 12.0372, while at tmax =

29, |u| = 5.2483,|v| = 0.1616, |w| = 0.1529and |ϑ| = 14.5593. 
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Fig. 6. Level lines of the logarithm of the maximum response ℜmax in the α − β plane at R = 800 for (a) the return flow; (b) the linear flow.  

Fig. 7. The response function ℜ versus the real frequency for the return flow at: (a) k = 3, φ = 90∘; (b) R = 800, φ = 0∘.  

Fig. 8. The perturbation fields corresponding to the maximum response for the return flow at R = 800, k = 3 andφ = 90∘: (a) the input field; (b) the output field. The 
maximum response is ℜmax = 109.3 at ω = 0. The amplitudes of input are |u| = 0.3351,|v| = ​ 1.1146, |w| = 0.4718and |ϑ| = 17.2695, while the amplitudes of 
output are |u| = 147.9951,|v| = 12.1695, |w| = 12.0197and |ϑ| = 1090.7. 
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L̂ = (Z′

)
− 1W′ , whose eigenfunctions are non-orthogonal. The extent of 

non-normality can be seen from its pseudospectrum [20], 

Λε

(
L̂
)
=
{

ω∈C :

⃦
⃦
⃦

(
ωI − L̂

)− 1⃦⃦
⃦≥ ε− 1

}
, ε > 0, (3.3) 

which demonstrates the response to external forcing with complex 

frequencies and also assesses the susceptibility of eigenvalues to dis-
turbances. If the contours for ε << 1 are visible on an O (1) scale, then 
L̂is highly non-normal [36]. 

In Fig. 10, the eigenvalues and isolines of pseudospectra are dis-
played. Whenφ = 90∘, most eigenvalues are located in the imaginary 

Fig. 9. The perturbation fields corresponding to the maximum response for the return flow at R = 800, k = 1 and φ = 0∘: (a) the input field; (b) the output field. The 
maximum response is ℜmax = 41.1 at ω = − 0.065. The amplitudes of input are |u| = 1.5415, |v| = ​ 0, |w| = 0.1481and |ϑ| = 23.1544, while the amplitudes of 
output are |u| = 337.5273, |v| = 0, |w| = 40.6759and |ϑ| = 1885.1. 

Fig. 10. Pseudospectra at R = 4000, k = 4: (a) the return flow at φ = 90∘; (b) the linear flow at φ = 90∘; (c) the return flow at φ = 0∘; (d) the linear flow at φ = 0∘.: 
eigenvalues; ¡: contours from outermost to innermost representing levels fromε = 10− 1 to 10− 6(the spacing of the exponent is 0.5). 
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axis wr = 0. The contours are visible on an O (1) scale for ε = 10− 1.5, so 
the non-normality of the operator is moderate. Comparing with the ei-
genvalues of thermocapillary layers, we can find that there is a pair of 
eigenvalues with wr ∕= 0 near the real axis in the former [37], which 
cannot be found in Fig. 10. The cases of return flow and linear flow are 
similar, which suggests that the basic flow has little impact on the 
pseudospectra at φ = 90∘. 

Whenφ = 0∘, the spectrum displays a ‘Y’-shaped structure, which is 
similar to the spectrum of OS operator in channel flows [35]. The middle 
part of ‘Y’-shaped spectrum are located near the imaginary axis wr =

0and wr = 1.5 for the return flow and the linear flow, respectively. The 
wave speeds of these modes are c = wr/k = 0and c = 0.5, which are the 
same as the average velocities of their basic flows. The contours are 
visible on an O (1) scale for the return flow and the linear flow at ε =

10− 2and ε = 10− 4, respectively. So the operator of linear flow is highly 
non-normal and the eigenvalues are highly susceptible to the distur-
bances. The pseudospectrum at φ = 0∘ is sensitive to the basic flow. 

4. Discussion 

We will discuss the properties of perturbation and the instability 
mechanism in this section. Comparisons are made with channel flows 
and thermocapillary layers. 

In the modal analysis, our computation suggests that the electric 
potential perturbation is always zero for the least stable modes. The 
reason can be explained as follows. Suppose a perturbation of electric 
potentialψ ′ is added to the basic flow, it can only decay quickly, which 
can be seen from two aspects. First, there is no convection of charge 
density in the region 0 ≤ z < 1, so no mechanism can increase the 
amplitude of ψ ′ . Second, the Ohmic conduction induced by ∇ψ ′always 
makes ψ ′decay. Similar to the relaxation of free-charge density [7], we 
can estimate the variation of ψ ′with time asexp(ωit), where ωi ∼ − ts/ τ, 
ts = d/Ũis the time scale of flow and τ = ε/σ is the relaxation time. Asτ <

< ts, there is a fast decay of ψ ′ . For our estimated parameters, τ̃1.59×

10− 4sts̃0.336s, ωi ∼ − 2113. So this mode is unimportant in the sta-
bility analysis. On the contrary, if the mode does not decay rapidly, it 
must have ψ ′

= 0. 
The time evolution of perturbation kinetic energy is [38], 

∂Ek

∂t
= −

1
2R

∫

(τ : S)d3r+
1
R

∫

u ⋅ τ ⋅ nd2r −
∫

u ⋅ ((u ⋅∇)u0)d3r

+

∫

u ⋅ Find3r

= − N +M + I +Ψ ,

(4.1)  

where Finis the input force, N is the work done by the perturbation stress, 
M is the work done by shear stress on the surface and I is the interaction 
between the perturbation and basic flow. For Newtonian fluid, the stress 
is proportional to the strain rate, so N stands for the viscous dissipation 
(N > 0) . 

Table 2 shows the terms of (4.1) for the disturbance corresponding to 
the maximum growth in Fig. 5, which are normalized by the kinetic 
energy 

2Ekin =

∫

|u|2d3r = 1. (4.2) 

It can be seen that at the initial time, I+ M > N, so a transient growth 
occurs. However, all terms (I, M and N) decrease with time. I and M 
decrease more rapidly than N. When t > tmax = 29, the perturbation 
kinetic energy decays. In the linear flow, I is the main energy source, 
while M is very small. However, we find that both I and M are important 
in the return flow. The terms of (4.1) for the disturbance corresponding 
to the maximum response are displayed in Table 3. Similar results are 
found for the perturbation at φ = 90∘. On the contrary, when φ =

0∘(Fig. 9), the perturbation energy mainly comes from M, while I leads 
to the dissipation. 

In the non-modal approach, the perturbation is expressed as the sum 
of normal modes in (2.33). Table 4 shows the eigenvalues, the surface- 
charge density and the expansion coefficients in (2.33) of the least sta-
ble modes for the perturbation in Fig. 5. It can be seen that there are two 
kinds of modes. The first one is purely hydrodynamic, as its surface- 
charge density is zero. On the contrary, the second one is electro-
hydrodynamic as |ϑ| ∕= 0. Both of them are important in the non-modal 
stability. There are perturbations of surface-charge density in Figs. 5, 
Figs. 8and 9. 

Comparing the thermocapillary liquid layer with the electrocapillary 
one, we can find that their basic flows are exactly the same. However, 
there are three differences between them. First, there are perturbations 
of temperature in the flow region for the former, while for the latter, the 
charge density perturbation only appears on the surface. Second, critical 
Reynolds numbers are found for the former, while the latter is always 
stable. Third, the non-modal stability changes with the Prandtl number 
for the former [38], while the energy mechanism depends on the basic 
flow and propagation angle for the latter. 

The velocity distribution of plane Couette flow is the same as that of 
linear flow. However, when R = 2000, Gopt ≈ 1170for plane Couette 
flow [24], while Gopt ≈ 462 for the electrocapillary linear flow, and 
Gmaxof thermocapillary linear flow depends on Pr and the Biot number 
Bi. These differences are due to their boundary conditions. We restrict 
our attention to the case at φ = 90∘, which corresponds to the optimal 
growth and response functions. For channel flows, the boundary con-
ditions for velocities are non-slip:u = v = 0. For thermocapillary flows, 
the transient growth increases with Bi at small Prandtl numbers [19]. 
When Bi→∞, there is no perturbation of shear stress, so Du = Dv = 0. 
On the contrary, for electrocapillary convections, we have Du = ϑ,Dv =

0. 
The amplification of streamwise-independent disturbance (φ = 90∘) 

is caused by the streamwise vortices (see Figs. 5and 8). They can absorb 
energy from the basic flow by the “lift-up” effect [24,38]: 

∂u
∂t

+w⋅DU0 ≈ 0, (4.3)  

where the streamwise velocity increases with time in the middle of the 
layer. Meanwhile, the surface-charge induced by the convection of 
streamwise vortices leads to the electrocapillary force, which also ex-
cites the streamwise streaks in the return flow. For the spanwise- 

Table 2 
The terms of (4.1) for the disturbance corresponding to the maximum growth in 
Fig. 5.  

t  0 10 20 29 40 

N  0.082199 0.036783 0.032985 0.030307 0.027232 
M  0.011294 0.009891 0.005159 0.002639 0.001227 
I  0.157229 0.083527 0.040898 0.027760 0.019739 
∂Ekin

∂t  
0.086325 0.056636 0.013071 0.000092 − 0.006266  

Table 3 
The terms of (4.1) for the disturbance corresponding to the maximum response. 
Cases 1–2 correspond to the cases in Fig. 8–9, respectively. Case 3 corresponds to 
the case in the linear flow at R = 800, k = 3 and ω = 0.   

Case 1 
(RF, φ = 90∘)  

Case 2 
(RF, φ = 0∘)  

Case 3 
(LF, φ = 90∘)  

N  0.065480 0.057139 0.020931 
M  0.037612 0.065629 − 0.000770 
I  0.024414 − 0.005408 0.021642 
Ψ  0.003454 − 0.003082 0.000059  
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independent disturbances (φ = 0∘), the electrocapillary effect is crucial 
for the amplification. However, the input force is also indispensable, as 
the perturbation cannot be self-sustained. 

The modal analysis suggests that all modes are stable, so the 
perturbation similar to Tollmien-Schlichting (TS) waves may not be 
observed in the transition of electrocapillary layers. Instead, the per-
turbations predicted by the non-modal approach are more likely to be 
found in experiments. As the most amplified disturbance is nearly 
streamwise-independent, we could expect that when a perturbation is 
added in the electrocapillary layer, there will be streamwise elongated 
structures in the flow field with an obvious fluctuation in the surface- 
charge density. However, due to the small bulk relaxation time, the 
perturbation of electric field is negligible. 

The basic flows considered in this work could appear in many shear 
flows driven by electrocapillary force, such as the liquid film in elec-
trokinetic systems [39] and droplet motion [40]. The linear flow is a 
simple model for the liquid layer with no pressure gradient in the 
streamwise direction, while the return flow corresponds to the convec-
tion with two ends. When the electrocapillary flow becomes unstable, its 
controllability will be reduced significantly. The stability analysis of 
these two flows could capture the main physical aspects of convective 
instability in the electrocapillary convection, which not only improves 
our understanding of electrohydrodynamics, but also is useful in the 
applications. 

5. Conclusion 

The linear stability of electrocapillary liquid layers is examined by 
the modal and non-modal approaches. The sensitivities of basic flow to 
initial condition and background noise are examined by the transient 
growth and the response functions, respectively. 

The modal analysis shows that there is no electric potential pertur-
bation. Thus, the current perturbation caused by the Ohmic conduction 
is also zero. Two kinds of modes are found, which are the purely hy-
drodynamic mode and the electrohydrodynamic one. The latter has the 
surface-charge density, which cannot be found in the former. Both the 
return flow and the linear flow are stable at all Reynolds numbers. 

In the non-modal approach, both the perturbation velocity and the 
surface-charge density can be amplified significantly. Both the optimal 
growth and response are proportional toR2 and appear near the span-
wise direction (φ = 90∘). For the transient growth, there is no phase 
difference for the surface-charge densities at the initial and optimal 
times: |arg[ϑ(t = 0)] − arg[ϑ(t = tmax)]| ≈ 0∘. However, for the optimal 
response, the phase difference between the input and output has 
⃒
⃒arg(ϑinput) − arg(ϑoutput)

⃒
⃒ ≈ 90∘. 

For streamwise-independent disturbances (φ = 90∘), the pseudo-
spectra of return flow and linear flow are similar, while the non- 
normality of evolution operator is moderate. Most modes have zero 
frequency. For the linear flow, the main energy source of perturbation is 
the basic flow, while for the return flow, both the basic flow and elec-
trocapillary force are important in the energy mechanism. On the con-
trary, for spanwise-independent disturbances (φ = 0∘), the 
pseudospectra are sensitive to the basic flow while the evolution oper-

ator is highly non-normal. There are many modes whose wave speeds 
are equal to the average velocities of their basic flows. The perturbation 
energy mainly comes from the work done by electrocapillary force. 
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