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A B S T R A C T   

Being the key process of a promising scalable production method, mechanical peeling is often used to construct 
high-quality van der Waals (vdW) heterostructures. By combining molecular dynamics (MD) studies and theo-
retical analysis, the investigation of the process of peeling heterostructures at different angles is reported. Taking 
vdW interaction into account, we present a theory that considers the effects of peeling angles on peeling forces. 
The theory is verified with results of MD simulations and found to describe the stable peeling stage well. 
Furthermore, there is a characteristic length at the initial stage of peeling, which reflects the bending and 
interfacial properties of the layered materials during peeling and indicates the influence of peeling angles on 
transition from unstable peeling to stable peeling. Our findings could help to understand the peeling mechanisms 
of 2D material interfaces and may give a guidance for the construction of better-quality and more complex vdW 
heterostructures.   

1. Introduction 

The monolayer graphene was successfully peeled from highly ori-
ented pyrolytic graphite [1] in 2004, and peeled-off two-dimensional 
(2D) materials was shown to exist stably at room temperature and in air 
[2,3]. Since then, the family of 2D materials has attracted significant 
interest due to their outstanding structural, mechanical [4], electrical 
[5,6], and optical [7] properties, which are dramatically different from 
those of their three-dimensional counterparts [8]. As the derivatives of 
2D materials, van der Waals (vdW) heterostructures have emerged. The 
in-plane atoms in each 2D monolayer are chemically bonded, and 
adjacent layers are weakly bonded by the vdW interaction. There is no 
chemical bonding between different layers, making it possible to create 
various heterostructures by separating, mixing, and matching atomic 
layers with different properties. The unique structure equips the vdW 
heterostructures with novel electronic and optoelectronic properties [9], 
which renders a variety of applications, such as vertical transistors, 
plasmonic devices [8], light-harvesting devices [9], etc. 

Various applications require the mass productions of hetero-
structures. To this end, a scalable approach to assemble the vdW het-
erostructures is desired. To build heterostructures, the basic principle is 

to stack different layers of the 2D materials on top of each other [10] 
(Fig. 1a, b), which is called direct mechanical assembly [8] or exfolia-
tion and restacking approach [9]. This method is able to create more 
complex heterostructures with atomically clean interfaces. The process 
can be divided into three steps: Preparing the 2D materials, transferring 
the 2D materials to the substrates, using micromanipulators until the 
two materials contact to form the heterostructures. During the assembly 
process, sacrificial polymer membranes are used to transfer 2D mate-
rials. In the end of the transfer process, they are directly dissolved to 
obtain heterostructures [11]. Unfortunately, the residue from the pro-
cess would be left on the heterostructures and hinder further operations 
[8,9]. The residues not only increase the surface roughness and cause 
bubbles or blisters but also give rise to chemical doping [12]. Moreover, 
experimental operations require much time and lack reproducibility 
[13], thus making the scalable production arduous. Furthermore, sig-
nificant efforts of the bottom-up methods, such as the direct growth 
[14,15] and chemical vapor deposition [16,17], have been utilized to 
grow vertical heterostructures. The bottom-up strategy is likely to be the 
technique for scalable production of the vdW heterostructures [8]. 
However, for growing 2D materials on top of substrates, the weak vdW 
interaction will not form the continuous monolayers growth but results 
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in island growth [10]. In addition, the growing process is affected by the 
highly sensitive growing conditions of 2D materials [9]. 

For the transfer process of the mechanical assembly method, it is 
possible to achieve cleaner multilayer stacking if the polymer mem-
branes are peeled off instead, making this approach a better way to 
construct better-quality vdW heterostructures. Therefore, mechanical 
peeling is critical for the assembly process, and peeling force plays an 
important role during the peeling process. Earlier studies on mechanical 
peeling behavior at nanoscale focus on carbon nanotubes [18,19] and 
nanoribbon [20]. For mechanical peeling of 2D materials, most studies 
focused on peeling from rigid substrate at certain angles [20–23]. Zhang 
et al. [22] compared the peeling of graphene and hexagonal boron- 
nitride from copper or silicon substrate at 45◦ in both dry and water 
environments. Tang et al. [23] experimentally peeled monolayer to 
multilayer MoS2 from MoS2 crystal at an inclined angle and found 
abrupt force drops which correspond to the formation of kinks during 
the peeling process. Chen et al. [21] simulated the peeling process of 
graphene sheet from copper substrate with a corrugated surface at 45◦, 
90◦ and found the peeling force is sensitive to the peeling angle. The 
work by Lin and Zhao [24] focused on the situation of peeling at 90◦ and 
how to explain the peak peeling force in the initial stage of peeling. 
However, the detailed effects of peeling angles on peeling behavior of 
2D materials are unclear. Moreover, the mechanics analysis of peeling 
one 2D material can be applied to another one as long as the relevant 
parameters (i.e., interfacial energy, elastic modulus and so on) are used, 
which is flexible and convenient to analyze the peeling process of 
different 2D materials. Thus, a deeper understanding of peeling angle 
and force is critical for the mechanical peeling process, which provides a 
guidance in the assembly of the vdW heterostructures. 

In this work, the mechanical peeling process of the graphene/mo-
lybdenum disulfide (MoS2) heterostructure is investigated to understand 
the peeling behavior. Firstly, the peeling processes at different angles 
ranging from 0◦ to 90◦ are simulated by using molecular dynamics (MD) 
method. The peeling force is obtained by calculating the gradient of 
graphene potential energy along the peeling direction. Then, a peeling 
theory accounting for the vdW interaction and peeling angle is pre-
sented. The validity of our theory is verified with the results of simu-
lations. Finally, we find a characteristic length that is a crucial 
parameter revealing the transitions from unstable peeling to stable 

peeling. Our study aims to clarify the peeling mechanisms of the vdW 
heterostructures at different angles and provide an insight into the better 
construction of scalable heterostructures. 

2. Model and methodology of MD simulations 

To understand the detailed behavior of peeling process, a set of 
atomic simulations of peeling graphene/MoS2 heterostructure are car-
ried out by the MD method. For graphene/MoS2 heterostructure, due to 
the “self-cleansing” mechanism [8], the MoS2 substrate can be atomi-
cally flat, thus making the analysis for the peeling process relatively easy 
without considering the substrate surface roughness. The atomic 
computational model is with a suspended graphene sheet adhered to a 
MoS2 substrate (Fig. 1c). The upper rectangular-shaped graphene sheet 
consists of 6400 carbon atoms with the dimensions of 192 Å × 82 Å for 
the length and width. It is peeled from the same size lower MoS2 layer 
(Fig. 1d), which is comprised of 1800 Mo atoms and 3600 S atoms. The 
initial distance between C atoms and top layer S atoms is 3.5 Å. 

The adaptive intermolecular reactive empirical bond order (AIREBO) 
potential [25] derived from the second-generation Brenner potential 
[26] is adopted to model the interactions of C-C atoms in graphene, 
which has widely been adopted to study the thermal and mechanical 
properties of graphene [27,28]. The Stillinger-Weber potential with a 
developed parameterization set for the MoS2 monolayer is used to 
describe the atomic interactions within the MoS2 [29] layer, which has 
been proved to be able to well reproduce the thermal and mechanical 
properties of MoS2. The 6–12 Lennard-Jones (LJ) potential is adopted to 
describe the vdW interaction between graphene and MoS2, which is 
given by [30–32]: 

V(r) = 4ε
[(σ

r

)12
−
(σ

r

)6
]

(1) 

where r is the distance of the interacting atoms, ε is the depth of the 
potential (i.e., the bond energy at the equilibrium), σ is a parameter 
determined by the equilibrium distance when interacting potential 
equals to zero. The energy and distance parameters in the LJ potential 
are ε = 3.95 meV and σ = 3.625 Å [33], which are the equivalent po-
tential parameters for the interaction between single-layer of MoS2 and 
single-layer of graphene. These potential parameters were determined 
by fitting to the interlayer spacing and the binding energy from density- 
functional theory results [24,34]. The cutoff distance of LJ potential is 
12 Å. 

Periodic boundary conditions are applied along the in-plane x-di-
rection to remove the edge effect, with the free boundary condition 
along the y- and z-directions to allow the graphene to move freely. The 
MoS2 substrate layer is fixed along y- and z-directions. Prior to peeling, 
the heterostructure system is relaxed 5000 time steps. The canonical 
ensemble NVT (constant number of atoms, volume and temperature 
[35]) is employed in the MD simulations while the temperature is 
regulated at a constant 0.1 K by Nosé [36]-Hoover [37] heat bath 
method. The lower temperature of 0.1 K compared to regular 300 K is 
meant to prevent large thermal vibrations. The time step is 1 fs. The 
conjugate-gradient algorithm is employed to minimize the energy, with 
the tolerance of 10− 7 for energy and force. The energy minimization 
during the peeling is to make the configuration of the system in an 
equilibrium state. To simulate the peeling processes at different angles, 
the first column of atoms at one end of graphene sheet is set to move 
along the zigzag direction, with different displacements along y- and z- 
directions at each time step while keeping the velocity the same value. 
Then, 5 ps simulations are performed for the relaxation of the structure. 

All MD simulations in this work are performed using the publicly 
available simulation code package large-scale atomic/molecular 
massively parallel simulator (LAMMPS) [38], with the OVITO (Open 
Visualization Tool) package used for visualization [39]. 

Fig. 1. The vdW heterostructures. (a) Mechanical assembly stacking. (b) 
Multilayer vdW heterostructure. (c) Atomic model of graphene/MoS2 hetero-
structure (upper: graphene, lower: MoS2). (d) Atomic illustration of 
peeling process. 
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3. Results and discussion 

3.1. Simulation results 

As shown in Fig. 2, a set of simulations are conducted at different 
peeling angles, ranging from 0◦ to 90◦. During the peeling process, the 
peeled-off graphene part displays oscillation which looks like a wave 
(Fig. 3) and the oscillation is more obvious for peeling angles less than 
45◦. This is because once detached from the substrate, the peeled-off 
part is free from the vdW interaction and will go through a relaxation 
process resulting in the wave-like oscillation. The non-flat relaxation 
configurations have resemblance with the structures of graphene 
observed by transmission electron microscopy [40,41]. 

The potential energy of graphene can be easily acquired from MD 
simulations. Since we neglect the thermal fluctuations, the static peeling 
force is what we consider. By calculating the gradient of graphene’s 
potential energy along the peeling direction, the peeling forces at 
different peeling angles are obtained. The directional gradient of po-
tential energy is acquired through the calculation of the first derivative 
of outputted potential energy from simulation result with respect to the 
displacement at each different angle. As shown in Fig. 4, there is a 
sudden increase of the force in the initial peeling process. This is due to 
the significant fluctuation of the kinetic energy of the heterostructure 
system when the atoms of the peeling front go through the transition 
from static status to dynamic status. Then, the peeling forces decrease, 
and the degree of decline becomes more drastic with increasing peeling 
angles. Besides, with the increase of peeling angles, initial maximum 
peeling forces decrease. In addition, after the initial peeling stage, the 
peeling forces fluctuate. The fluctuation is relatively sharp for the 
peeling length less than 75 Å and is more obvious at small peeling an-
gles. It is in consistent with the oscillatory behaviors of the peeling part 
as discussed above (Fig. 3). 

The fluctuation can be explained by the “accumulation-peeling 
mechanism” [42]. The peeling force is applied on the graphene sheet. 
Before the peeling process actually begins, the force will propagate 
along the graphene sheet. Then, the stress resulting from the peeling 
force gradually increases until the perpendicular component reaches the 
maximum value of the vdW force between the heterostructure. Finally, 
the peeling process continues until the sheet is completely peeled off 
from the substrate. As soon as the force is strong enough to peel the 
graphene, the contact part of graphene is peeled causing the fluctuation 
of the curve. The sudden change in force is because after the peeling 
process is finished and peeling stops, the stress begins to decrease 
immediately making itself less than the adhesion force. In addition, the 

adhesion energy between the heterostructure is reduced suddenly 
because the adhered part is peeled. 

After the sharp fluctuations, as can be seen in Fig. 4, the peeling force 
is a relatively constant value in steady stage. This character is in 
consistent with the observations of Refs [24,43]. For further analysis, 
special attention should be emphasized on the constant peeling forces at 
different angles, which are obtained by calculating the average values of 
forces in steady peeling stage. 

3.2. Theoretical analysis of peeling process accounting for the vdW 
interaction 

For the two-layer graphene/MoS2 heterostructure, to peel the gra-
phene sheet off from the MoS2 substrate, the work done by the peeling 
force should exceed the adhesion energy between the layers. The 
expression of adhesion energy needs a further analysis. 

As shown in Fig. 5, the following coordinate system is established 
based on the atomic structure of heterostructure. The graphene layer is 
parallel to the MoS2 layer, and h denotes the distance between two 
layers. The thicknesses of graphene and MoS2 are t and T, respectively. 
To establish a generalized expression, carbon atoms on the graphene is 
homogenized and represented by volume density ρ1 (i.e., the number of 
atoms per unit volume). Therefore, the number of atoms in an infini-
tesimal volume dV is ρ1dV. Similarly, Mo and S atoms on the MoS2 layer 
were represented by volume density ρ2. The number of atoms over an 
infinitesimal volume dV is ρ2dV. 

Based on Eq. (A.3), the adhesion energy per unit area (the detailed 
expression can be seen in the Appendix A) is: 

Φ = 4πρ1ρ2tTεσ6
(

σ6

5h10 −
1

2h4

)

=
HtT

π

(
σ6

5h10 −
1

2h4

)

(2) 

where H = 4π2ερ1ρ2σ6, which is the Hamaker constant. At the 
mesoscopic scale, the Hamaker constant accounts for the strength of the 
interaction and the density of the surfaces [44] on the order [35] of 
10− 19 J. 

From Eq. (A.2), if the thicknesses of upper and lower layer are 
infinite, the adhesion energy per unit area can be written as: 

Φ =
π
3
ρ1ρ2εσ6

(
σ6

30h8 −
1
h2

)

=
H

12π

(
σ6

30h8 −
1
h2

)

(3) 

which is the same result as those of previous work of Jiang et al. [45] 
and Zhao et al. [46]. 

The atom number density of graphene [46] is 0.3818 Å− 2. Then, 
using the thickness of graphene t = 3.35Å, the volume density is 
calculated as 0.1138 Å− 3. In addition, the atom number density of MoS2 
was calculated to be ρ2 = 0.2269 Å− 3. The adhesion energy as the 
function of the distance magnitude between two layers of graphene/ 
MoS2 heterostructure is shown in Fig. 6. The thickness of MoS2 layer is 
negligible compared with those of the length and width, thus, Eq. (2) is 

Fig. 2. MD simulations of peeling at different angles. (a) 0◦, 5◦, 10◦, 15◦, 20◦, 
27◦. (b) 45◦, 56◦, 63◦, 68◦, 72◦, 90◦. 

Fig. 3. The relaxation configuration of peeled-off part of the graphene sheet 
during the peeling process. 
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taken for further analysis. 
Considering the mechanical peeling process of graphene sheet from 

flat and adhesive MoS2 substrate as shown in Fig. 7, where a peeling 
force F is applied on the right end of the graphene sheet with a peeling 
angle θ, we focus on establishing an analytical expression for the relation 
between the peeling angle θ and the peeling force F. In the peeling 
process, the quasi-static and plane strain conditions are assumed. The 
thermal effect is neglected in order to prevent the kinetic peeling force 
from the thermal fluctuations. The upper graphene sheet is taken as the 
1D Euler-Bernoulli beam [47,48]. The Euler-Bernoulli beam theory as-
sumes the linear elastic material behavior and neglects the shear forces. 
Moreover, graphene is taken as elastic material for the analysis [49–51]. 

The mechanical behavior of 2D materials can be described by the con-
tinuum elasticity theory. The mechanical parameters of graphene used 
in this study are summarized in Table 1. 

In order to peel adhering graphene sheet from adhesive MoS2 sub-
strate, the sufficient peeling force must be provided. During the peeling 
process, the external work done by the applied peeling force can be 
converted into the internal elastic energy, the adhesion energy required 
to separate the heterostructure and the friction energy due to the sliding 
of graphene sheet. These three kinds of energy can be included as the 
internal energy. 

Fig. 4. Comparison of peeling forces for the graphene sheet at different angles. The red points are the reference points indicating the transition from initial peeling to 
stable peeling. 

Fig. 5. The coordinate system and an atomic schematic diagram of graphene/ 
MoS2 heterostructure. 

Fig. 6. Adhesion energy between graphene/MoS2 heterostructure.  
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The principle of the virtual work is used in this study to derivate the 
expression of the peeling force. In variational form we have: 

δEexternal = δEinternal = δEelastic + δEadhesion + δEfriction (4) 

Firstly, by giving an infinitesimal virtual displacement δu of the 
peeling force along the peeling direction, the virtual external work 
changes by: 

δEexternal = F⋅δu (5) 

By denoting an infinitesimal virtual length δc as peeled-off length of 
graphene caused by the δu (Fig. 7a), the virtual displacement can be 
expressed by δc as: 

|δu| = δc(1 − cosθ) + δc
F

btE
(6) 

where E is the Young’s modulus of the graphene sheet, b and t are the 
width and thickness of the graphene sheet, respectively. The first term 
δc(1 − cosθ) of the right side of Eq. (6) is the displacement caused by the 
detachment of the length δc. The second term δcF/btE is the additional 
elastic deformation resulting from the length δc being stressed [52]. The 
virtual external work done by the applied peeling force can then be 
calculated by: 

δEexternal = F⋅δu = Fδc(1 − cosθ) + δc
F2

btE
(7) 

Secondly, for elastic graphene sheet, the internal elastic energy (i.e., 
strain energy) corresponds to the work done by the internal forces and 
elastic deformations [47]. The virtual internal force can be character-
ized by stress tensor σ0 and elastic deformation can be denoted by the 
virtual Cauchy strain tensor δε0 = 1

2

(
∇δu + (∇δu)T ). Thus, the virtual 

strain energy is: 

δEelastic =

∫∫∫

Vgraphene

σ0 : δε0dV (8) 

where σ0 and δε0 are the stress and strain tensor of graphene sheet, 

respectively. During the peeling process, the internal elastic energy 
Eelastic is composed of the stretching energy Estretch and bending energy 
Ebend that arise from the stretching deformation and bending deforma-
tion of the graphene (i.e., Eelastic = Estretch + Ebend), respectively. Ac-
cording to the Euler-Bernoulli beam theory, the shear-lag model is not 
taken into account and the stretching energy density of the peeling 
graphene sheet is uniformly distributed, the virtual stretching energy 
can be expressed as: 

δEstretch =
1
2
σ0δε0btδc =

δc
2btE

F2 (9) 

The virtual bending energy can be written as: 

δEbend =
1
2

Dκ2δc (10) 

where D is the bending modulus and κ is the bending curvature. The 
detailed derivation of bending curvature has been well formulated by 
Gao et al. [43]. Combining the expression of bending curvature, from 
Eq. (10), the bending energy can be obtained as [43]: 

Ebend =
1
2

∫s

0

Dbκ2(s)ds =
̅̅̅̅̅̅̅̅̅̅̅̅
2FDb

√
(
̅̅̅
2

√
−

sinθ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − cosθ

√

)

(11) 

From Eq. (11), it is known for the graphene sheet with given bending 
modulus and width, the bending energy is dependent on the peeling 
force and peeling angle. Besides, as indicated by the simulation results, 
the peeling force at steady peeling stage can be seen as a constant value. 
As a result, during the steady stage for a fixed peeling angle the bending 
energy can be regarded as a constant, which means the variation of the 
bending energy δEbend is equal to zero and can be neglected for our 
further analysis. The Eq. (8) becomes: 

δEelastic = δEstretch + δEbend =
δc

2btE
F2 (12) 

To obtain the change of the adhesion energy, by using γ = |Φ| to be 
the absolute value of the adhesion energy per unit area, the expression of 
the adhesion energy for peeling the length δc is then: 

δEadhesion = γbδc (13) 

At last, the friction energy δEfriction is caused by the sliding of gra-
phene sheet and the intrinsic lattice mismatch of two layered materials 
[53]. The deformation caused by lattice mismatch can be obtained by 
using the Cauchy-Born rule as shown in the Appendix C. The friction 
energy has no effect on the adhesive motion for heterostructures and is 

Fig. 7. Schematic of atomic peeling model. (a) Schematic illustration of the mechanical peeling process. (b) 2D sheet peeled off from the substrate.  

Table 1 
Mechanical parameters used in this work.  

Young’s modulus [60] E (TPa) 1.23 

Bending modulus [48] D (eV)  2.1 
Thickness of graphene [61] t (Å)  3.35  
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magnitude of at least one order smaller than adhesion energy [54]. 
Besides, one experimental work by Annett and Cross [55] showed that 
for sliding of graphene friction is of negligible magnitude compared to 
interfacial force. Therefore, δEfriction is neglected for the analysis. If the 
corrugation and adhesion energy need to be considered simultaneously, 
the registry-dependent Kolmogorov and Crespi interlayer potential can 
be utilized [56]. 

Therefore, the total variation of the internal energy of the system 
subjected to the peeling force F is given by: 

δEinternal = γbδc +
δc

2btE
F2 (14) 

Considering the energy is balanced at the peel-off state, we have 
δEexternal = δEinternal. By using the Hamaker constant H = 4π2ερ1ρ2σ6, the 
adhesion energy per unit area is expressed as: 

γ =
HtT

π

(
σ6

5h10 −
1

2h4

)

(15) 

By combining Eqs. (7), (14) and (15), the peeling equation is ob-
tained as: 

F2 + 2F(1 − cosθ)btE =
2Eb2t2TH

π

(
σ6

5h10 −
1

2h4

)

(16) 

It should be noted that the Eq. (16) can be reduced to the following 
form: 
(

F
b

)2 1
2tE

+
F
b
(1 − cosθ) = γ (17) 

if we substitute the right side of Eq. (16) with γ. Eq. (17) was given by 
Kendall [52,57]. Eq. (16) can also be reduced to Fb (1 − cosθ) = γ, if the 
nonlinear term is neglected [58], which was given by Rivlin [59]. 

Solving Eq. (16), we have: 

F = − (1 − cosθ)Ebt +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[(1 − cosθ)Ebt]2 +
2Eb2t2TH

π

(
σ6

5h10 −
1

2h4

)√

(18) 

which is the formula of relations of peeling force and peeling angle. 
When the structure is in an equilibrium state, the distance h can be 
expressed as h = 21/6σ, making Eq. (18) become: 

F = − (1 − cosθ)Ebt +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[(1 − cosθ)Ebt]2 +
24/3

5
HEb2t2T

πσ4

√

(19) 

Combining Eqs. (15) and (18), we have: 

F =
2bγ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − cosθ)2
+ 2γ

Et

√

+ (1 − cosθ)
(20) 

If we denote F0 by F0 = bγ, then the dimensionless peeling force can 
be expressed as: 

F
F0

=
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − cosθ)2
+ 2γ

Et

√

+ (1 − cosθ)
(21) 

To verify the validity of the theory developed above, it is compared 
with the results coming from the MD simulations. The peeling forces at 
the stable stage for different angles are averaged, after we obtain the 
peeling force versus peeling length curves. Then, the results are plotted 
with the theory. As seen in Fig. 8, the theory is matched well with the 
simulation results. The values of dimensionless forces from theory are 
larger than the corresponding simulation results. The deviation between 
simulation results and the curve of theoretical analysis stems from the 
choices of related parameters in Eq. (21) (i.e., the adhesion energy, the 
Young’s modulus of graphene and the thickness of graphene). Besides, 
the adhesion energy is also influenced by the thickness of graphene from 
its mathematical expression. However, for peeling angles less than 10◦, 
the values of forces from simulation results are bigger than the predicted 

values obtained by the theory. This is due to the influence of elastic 
modulus on the peeling force (Fig. 9). With the decrease of peeling an-
gles, small changes in the value of the elastic modulus will cause rela-
tively large differences of dimensionless peeling force. This effect is 
obvious for peeling angles less than 30◦. Thus, choosing the accurate 
Young’s modulus is crucial. 

3.3. Characteristic length at the initial stage of peeling 

As can be seen in Fig. 4, after the high peaks of initial peeling force, 
the curves show decreasing trends and enter a flat plateau. Here, a 
characteristic length LM can be identified, which is the length of gra-
phene from initial peeling stage to the steady-state peeling stage. After 
the peeling force versus peeling length curves are obtained (Fig. 4), the 
characteristic lengths for different peeling angles are the lengths the 
reference points (the red points in Fig. 4) refer to. The length varying 
with changes of peeling angles is shown in Fig. 10. For angles smaller 
than 90◦, the length LM increases as the peeling angle increases. 

To get the expression of the length LM, we need to understand the 
unstable peeling stage. Before the peeling direction of graphene sheet is 
at a certain angle, the front region is firstly flat, then it will gradually rise 
up to the certain angle. During the process, the deformation the front 
region goes through can be seen as the bending of a 1D Euler-Bernoulli 
cantilever beam. 

By considering the curvature of the bending region: 

Fig. 8. The evolution of peeling force as the function of varying peeling angles.  

Fig. 9. Dimensionless peel-off force versus elastic modulus E of graphene.  
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κ(s) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2F(1 − cosα)

Db

√

(22) 

the bending moment can be expressed as: 

M(s) = Dbκ(s) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2FDb(1 − cosα)

√
(23) 

For a cantilever beam with length l and bending rigidity EI subjected 
to a moment M on one end, its deflection w can be expressed as: 

w =
Mx2

2EI
(24) 

the angle of the corner of the end β is the first order derivative of the 
deflection, and thus is: 

β =
Ml
EI

(25) 

For the graphene sheet, by analogy with the cantilever beam, the 
characteristic length is LM = l and bending modulus is D = EI/b. Then, 
substituting Eq. (23) into Eq. (25), we have: 

LM =
βD

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2FD(1 − cosα)

√ (26) 

where F is the peeling force, α is the angle between the tangent to the 
graphene sheet and the direction of the peeling force. 

To obtain the characteristic length varying with angle β, we have to 
get the relation between α and β. According to the geometric relation-
ship, it is easy to obtain the relation α = 1

2 β, then we have: 

LM =
βD

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2FD
(

1 − cos β
2

)√ (27) 

However, β is the approximation of tanβ for small bending angles. Eq. 
(27) is only suitable to the situations when bending deformation is small, 
which is not appropriate for our simulations. Using the derivatives of 
deflection to the length, for peeling angle θ, we have: 

tanθ =
dw
dx

(28) 

For pure bending of beam, we have: 

d2w
dx2

[

1 +

(
dw
dx

)2
]3/2 =

M
Db

(29) 

Substituting Eq. (28) into Eq. (29), we have: 

dtanθ
[
1 + (tanθ)2 ]3/2 =

M
Db

dx (30) 

Integrating both sides of Eq. (30), we have: 

tanθ
[
1 + (tanθ)2 ]1/2 =

∫ LM

0

M
Db

dx =
MLM

Db
(31) 

Then, we have: 

LM =
Db
M

tanθ
[
1 + (tanθ)2 ]1/2 (32) 

Combining Eq. (23) and α = 1
2 θ, we can finally get: 

LM =

̅̅̅̅̅̅
Db
2F

√

⋅
tanθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 + tan2θ
)
(

1 − cos
θ
2

)√ =

̅̅̅̅̅̅
Db
2F

√

⋅
sinθ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − cos
θ
2

√

=

̅̅̅̅̅̅
Db
2F

√

⋅
2sin

θ
2

cos
θ
2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − cos
θ
2

√ =

̅̅̅̅̅̅̅̅̅
2Db

F

√

⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − cos2θ
2

√

cos
θ
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − cos
θ
2

√

=

̅̅̅̅̅̅̅̅̅
2Db

F

√

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + cos
θ
2

√

cos
θ
2

(33) 

where D = 2.1 eV is taken [48]. For the value of peeling force F, the 
characteristic length is defined as the length of graphene from initial 
peeling stage to the steady-state peeling stage, thus the peeling force at 
the stable stage is important. During the bending process, the peeling 
force is to work against the adhesion between the heterostructure. Thus, 
we take F = 0.54eV/Å, which is the stable peeling force against adhe-
sion from our simulation results. At the stable peeling stage, we have γ =
F
b, Eq. (33) then becomes: 

LM =

̅̅̅̅̅̅
2D
γ

√

⋅cos
θ
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + cos
θ
2

√

(34) 

By considering two special conditions θ = 0◦ and θ = 90◦, for θ = 0◦ , 
cos θ

2 = 1, the expression of Eq. (34) becomes: 

LM = 2

̅̅̅̅
D
γ

√

(35) 

the value is 35.78 Å, which is slightly smaller than the simulation 
result. Actually, for θ = 0◦, the peeling process proceeds against friction 
force. 

For θ = 90◦, Eq. (34) becomes: 

LM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D

(
2 −

̅̅̅
2

√ )
γ

√

(36) 

the characteristic length is about 23.4 Å. The length is very close to 
the elasto-peeling length proposed by Lin and Zhao [24]. 

By substituting Eq. (15) into Eq. (34), the characteristic length can 
also be expressed with Hamaker constant as: 

LM = 21/3σ2

̅̅̅̅̅̅̅̅̅
5πD
HtT

√

⋅cos
θ
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + cos
θ
2

√

(37) 

The curve from Eq. (34) with the simulation results is shown in 
Fig. 10. 

For θ⩾90◦, we perform a simulation of 135◦ peeling and obtain the 
peeling force versus peeling length curve. It is found that the dimen-
sionless peeling force is 0.69 from simulation result, which is very close 
to 0.6 from Eq. (21). It means our theory is applicable for the situation 
when θ⩾90◦. However, the characteristic length is about 25 Å, which is 
not well matched with the result 12 Å from Eq. (34). This is due to the 

Fig. 10. The characteristic length versus the peeling angles.  
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effect of bending process. The peeling part of graphene sheet is firstly a 
flat region. Before the peeling was along a certain direction (i.e., at 
certain peeling angle), it took relatively longer time to go through the 
transition stage and thus peel longer length. Thus, the expression for the 
characteristic length is only appliable for peeling angles less than 90◦. 

This characteristic length is physically significant: D is the bending 
rigidity of the peeled graphene, σ denotes the equilibrium distance be-
tween the vdW heterostructure, H is the Hamaker constant, which ac-
counts for the strength of the interaction and is influenced by the 
composition of the surfaces. Hence, it is a crucial parameter that reflects 
the bending and interfacial properties of the layered materials during 
peeling. 

4. Conclusions 

The mechanical processes of graphene peeled from MoS2 substrate at 
different angles are investigated by conducting MD simulations. By 
calculating the gradient of graphene’s potential energy along the peeling 
direction, the peeling forces at different angles are obtained. At the 
initial stage, the peeling forces rapidly increase until the maximum 
values are reached. The peeling forces then begin to decrease and 
eventually become stabilized. In addition, the fluctuations on the 
peeling force curves correspond to the oscillatory behaviors of the 
peeled part of graphene, which can be explained by the “accumulation- 
peeling mechanism”. 

Based on a quasi-continuum method, we present a theoretical anal-
ysis coupling traditional peeling theory with the vdW interaction to 
develop a theory revealing the effects of peeling angles on peeling 
forces. The peeling forces decrease with the increase of peeling angles. 
We compare our theory with the results of simulations and they are 
matched well, which means the theory is capable of describing stable 
peeling at different angles. For peeling angles less than 10◦, the peeling 
force is sensitive to the elastic modulus of the graphene sheet. 

Furthermore, a characteristic length at the initial stage of peeling 

was found and formalized LM =
̅̅̅̅̅̅̅̅̅̅̅
2D/γ

√
⋅cos(θ/2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + cos(θ/2)

√
, which 

is an important parameter that elucidates the transition from unstable 
peeling to stable peeling. This characteristic length is characterized by 
the bending modulus of graphene and adhesion energy between the vdW 
heterostructure, which means the peeling behavior is influenced by the 
type of the 2D materials and adhesion energy of interfaces. It can also be 
written with the Hamaker constant as LM =

21/3σ2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
5πD/HtT

√
⋅cos(θ/2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + cos(θ/2)

√
. Our findings are aimed at 

understanding the mechanism behind the peeling process and helping to 
better construct the vdW heterostructures. 
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Appendix A. . The adhesion energy between graphene/MoS2 heterostructure 

The 6–12 LJ potential V(r) = 4ε
[
(σ/r)12

− (σ/r)6
]

is adopted to model the vdW interaction between graphene sheet and MoS2 substrate. As shown 

in Fig. 5, the distance between the point O (0, 0) on the upper graphene and A (x, z) on the lower MoS2 is r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + z2

√
. The interaction energy E 

between one atom on the graphene and the MoS2 substrate is: 

E =

∫

VMoS2

V(r)ρ2dVMoS2 = 2πρ2

∫ − h

− (h+T)

∫ ∞

0
V(r)zdzdx

= 8πρ2ε
∫ − h

− (h+T)

∫ ∞

0

[(σ
r

)12
−
(σ

r

)6
]

zdzdx

= 4πρ2ε
∫ − h

− (h+T)

∫ ∞

0

[
σ12

(
x2 + z2)6 −

σ6

(
x2 + z2)3

]

dz2dx

=
2π
3

ρ2ε
[

2
15

(
σ12

h9 −
σ12

(h + T)9

)

−

(
σ6

h3 −
σ6

(h + T)3

)]

(A.1) 

Then, the adhesion energy Φ per unit area is given as: 
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Φ =

ρ1dA
∫ h+t

h

2π
3

ρ2ε
[

2
15

(
σ12

h9 −
σ12

(h + T)9

)

−

(
σ6

h3 −
σ6

(h + T)3

)]

dh

dA

=
1
3

πρ1ρ2εσ6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ6

30

[(
1
h8 −

1
(h + t)8

)

−

(
1

(h + T)8 −
1

(
t + (h + T)8 )

)]

−

[(
1
h2 −

1
(h + t)2

)

−

(
1

(h + T)2 −
1

[t + (h + T) ]2

)]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
H

12π

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ6

30

[(
1
h8 −

1
(h + t)8

)

−

(
1

(h + T)8 −
1

(
t + (h + T)8 )

)]

−

[(
1
h2 −

1
(h + t)2

)

−

(
1

(h + T)2 −
1

[t + (h + T) ]2

)]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A.2) 

For 2D materials, the size of thickness can be neglected compared to that of length and width, thus, adhesion energy Φ per unit area can also be 
calculated as: 

Φ =

ρ1tdA⋅2πρ2T
∫ ∞

0
V(r)zdz

dA

= 2πρ1ρ2tT
∫ ∞

0

[
σ12

(
x2 + z2)6 −

σ6

(
x2 + z2)3

]

dz2

= 4πρ1ρ2tTεσ6
(

σ6

5x10 −
1

2x4

)

=
HtT

π

(
σ6

5x10 −
1

2x4

)

(A.3) 

where x is the distance between two 2D layers. From the above analysis, the adhesion energy of the vdW heterostructure due to the vdW interaction 
can be decided. 

Appendix B. . The derivation of bending curvature of graphene 

As shown in Fig. 7b, curvilinear coordinate system is established, where s is the curvilinear abscissa and α(s) as the angle between the tangent to the 
graphene sheet and the direction of peeling force. Then, the curvature of graphene has the form: κ(s) = dα/ds and the bending moment can be 
expressed as: M(s) = Dbκ(s). 

Combining the bending moment and the peeling force, we have: 

Dbκ(s) = D
dα
ds

= F
∫ s

0
sinαds (B.1) 

Taking the first order derivation [43] of both sides of Eq. (B.1) and using the expression of curvature, we have: 

κ(s)
dκ(s)

dα =
Fsinα

Db
(B.2) 

Integrating Eq. (B.2) with boundary condition [43], we have: 

κ2(s) =
2F(1 − cosα)

Db
(B.3) 

Thus, the bending curvature is given by: 

κ(s) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2F(1 − cosα)

Db

√

(B.4)  

Appendix C. . Lattice mismatch strain obtained by Cauchy-Born rule 

For homogeneous continuum deformation, the Cauchy-Born rule is very often used to relate changes in lattice vectors to macroscopic deformation 
of crystals. The position of a material point X in the reference configuration (the equilibrium configuration of each undeformed single layer) can be 
mapped to the point x in the current configuration (the equilibrium configuration of each deformed layer in heterostructure) via x = X + u(X), where 
u(X) is the displacement vector. 

The transformation of an infinitesimal line segment from the reference configuration to the current configuration is describe by the deformation 
gradient F, which is defined as F = ∂x/∂X = I + ∂u/∂X, where I is the identity tensor of rank two. If the deformation function be denoted as φ(X, t), the 
deformation gradient F can also be defined as F = ∂φ(X)/∂X = (∂xi/∂XA)ei ⊗ eA , where ei and eA are the bases of the current configuration and 
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reference configuration, respectively. Using deformation gradient F, the Green strain tensor E can be written as E = 1
2
(
FTF − I

)
. 

The Cauchy-Born rule views the lattice vectors as infinitesimal material vectors that transform according to: 

a = FA (C.1) 

where A denotes an undeformed lattice vector and a the same vector in the deformed crystal. Similarly, the related atomic distance rij in the current 
configuration can be obtained from the corresponding relative atomic distance Rij in the reference configuration as: 

rij = FRij = (I + H)Rij (C.2) 

where H is the displacement gradient tensor. 
For lattice mismatch, it will result in a lattice mismatch strain defined as: 

εm =
(
acombine − asingle

)/
asingle (C.3) 

where asingle and acombine are the lattice constants of the single and combined material, respectively. The Cauchy strain tensor of graphene and MoS2 
can be expressed as: 

εC =
1
2
(
H + HT) =

∂φ(X)

∂X
− I (C.4) 

The components of the Cauchy strain tensor are: 

(
εC1
εC2

)

=

⎛

⎜
⎜
⎜
⎝

∂φ(X1)

∂X1
− 1

∂φ(X2)

X2
− 1

⎞

⎟
⎟
⎟
⎠

(C.5)  

References 

[1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric 
field effect in atomically thin carbon films. Science 2004;306(5696):666–9. 

[2] Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, et al. 
Two-dimensional atomic crystals. Proc Natl Acad Sci USA 2005;102(30):10451–3. 

[3] Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, et al. Two- 
dimensional nanosheets produced by liquid exfoliation of layered materials. 
Science 2011;331(6017):568–71. 

[4] Akinwande D, Brennan CJ, Bunch JS, Egberts P, Felts JR, Gao H, et al. A review on 
mechanics and mechanical properties of 2D materials—graphene and beyond. 
Extreme Mech Lett 2017;13:42–77. 

[5] Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin mos2: A new direct-gap 
semiconductor. Phys Rev Lett 2010;105(13):136805. 

[6] Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer mos2 transistors be? 
Nano Lett 2011;11(9):3768–73. 

[7] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, et al. Emerging 
photoluminescence in monolayer mos2. Nano Lett 2010;10(4):1271–5. 

[8] Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van 
der Waals heterostructures. Science 2016;353(6298):aac9439. 

[9] Liu Y, Weiss NO, Duan X, Cheng H-C, Huang Y, Duan X. Van der Waals 
heterostructures and devices. Nat Rev Mater 2016;1(9):1–17. 

[10] Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013;499(7459): 
419–25. 

[11] Zomer PJ, Dash SP, Tombros N, van Wees BJ. A transfer technique for high 
mobility graphene devices on commercially available hexagonal boron nitride. 
Appl Phys Lett 2011;99(23):232104. https://doi.org/10.1063/1.3665405. 

[12] Onodera M, Masubuchi S, Moriya R, Machida T. Assembly of van der Waals 
heterostructures: Exfoliation, searching, and stacking of 2D materials. Jpn J Appl 
Phys 2020;59(1):010101. https://doi.org/10.7567/1347-4065/ab5ee0. 

[13] Fan S, Vu QA, Tran MD, Adhikari S, Lee YH. Transfer assembly for two-dimensional 
van der Waals heterostructures. 2D Mater 2020;7(2):022005. 

[14] Liu Z, Song Li, Zhao S, Huang J, Ma L, Zhang J, et al. Direct growth of graphene/ 
hexagonal boron nitride stacked layers. Nano Lett 2011;11(5):2032–7. 

[15] Zhang C, Zhao S, Jin C, Koh AL, Zhou Yu, Xu W, et al. Direct growth of large-area 
graphene and boron nitride heterostructures by a co-segregation method. Nat 
Commun 2015;6(1). https://doi.org/10.1038/ncomms7519. 

[16] Robinson JA. Growing vertical in the flatland. ACS Nano 2016;10(1):42–5. 
[17] Wang S, Wang X, Warner JH. All chemical vapor deposition growth of mos2:h-BN 

vertical van der Waals heterostructures. ACS Nano 2015;9(5):5246–54. 
[18] Li Y, Xiong Y, Zhou Z, Tang B, Yang Z, Zhao J. The peeling behavior of nanowires 

and carbon nanotubes from a substrate using continuum modeling. J Appl Phys 
2017;121(5):054303. https://doi.org/10.1063/1.4975054. 

[19] Pan J, Ding D, Dong S, Liu Yu, Wei N, Zhao J. A theoretical analysis of peeling 
behavior between nanowires and substrates in the ambient condition with high 
relative humidity. Mech Mater 2017;114:243–53. 

[20] Gigli L, Vanossi A, Tosatti E. Modeling nanoribbon peeling. Nanoscale 2019;11 
(37):17396–400. 

[21] Chen H, Chen S. The peeling behaviour of a graphene sheet on a nano-scale 
corrugated surface. J Phys D-Appl Phys 2013;46(43):435305. https://doi.org/ 
10.1088/0022-3727/46/43/435305. 

[22] Zhang Y, Liu Q, Xu B. Liquid-assisted, etching-free, mechanical peeling of 2D 
materials. Extreme Mech Lett 2017;16:33–40. 

[23] Tang D-M, Kvashnin DG, Najmaei S, Bando Y, Kimoto K, Koskinen P, et al. 
Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat Commun 
2014;5(1). https://doi.org/10.1038/ncomms4631. 

[24] Lin K, Zhao Y-P. Mechanical peeling of van der Waals heterostructures: Theory and 
simulations. Extreme Mech Lett 2019;30:100501. https://doi.org/10.1016/j. 
eml.2019.100501. 

[25] Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with 
intermolecular interactions. J Chem Phys 2000;112(14):6472–86. 

[26] Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second- 
generation reactive empirical bond order (REBO) potential energy expression for 
hydrocarbons. J Phys-Condes Matter 2002;14(4):783–802. 

[27] Chen Y, Zhang Y, Cai K, Jiang J, Zheng J-C, Zhao J, et al. Interfacial thermal 
conductance in graphene/black phosphorus heterogeneous structures. Carbon 
2017;117:399–410. 

[28] Liu Bo, Meng F, Reddy CD, Baimova JA, Srikanth N, Dmitriev SV, et al. Thermal 
transport in a graphene–mos2 bilayer heterostructure: A molecular dynamics study. 
RSC Adv 2015;5(37):29193–200. 

[29] Jiang J-W, Park HS, Rabczuk T. Molecular dynamics simulations of single-layer 
molybdenum disulphide (mos2): Stillinger-Weber parametrization, mechanical 
properties, and thermal conductivity. J Appl Phys 2013;114(6):064307. https:// 
doi.org/10.1063/1.4818414. 

[30] Jones JE. On the determinations of molecular fields - I from the variation of the 
viscosity of a gas with temperature. Proc R soc Lond Ser A-Contain Pap Math Phys 
Character 1924;106(738):441–62. 

[31] Jones JE. On the determination of molecular fields - II from the equation of state of 
a gas. Proc R soc Lond Ser A-Contain Pap Math Phys Character 1924;106(738): 
463–77. 

[32] Jones JE. On the determination of molecular fields III - from crystal measurements 
and kinetic theory data. Proc R soc Lond Ser A-Contain Pap Math Phys Character 
1924;106(740):709–18. 

[33] Jiang J-W, Park HS. Mechanical properties of mos2/graphene heterostructures. 
Appl Phys Lett 2014;105(3):033108. https://doi.org/10.1063/1.4891342. 

[34] Ma Y, Dai Y, Guo M, Niu C, Huang B. Graphene adhesion on mos2 monolayer: An 
ab initio study. Nanoscale 2011;3(9):3883–7. 

[35] Zhao Y-P. Physical mechanics of surfaces and interfaces. Beijing: Science Press; 
2012. 
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