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Abstract

As train running speeds increase, the wheel–rail interactions of high‐speed trains are

becoming more complicated, and predicting and monitoring wheel wear are becoming

increasingly important for the safe operation of high‐speed trains. Therefore, identi-

fying the critical factors that affect the wear of wheel–rail interactions and develop-

ing novel methods to predict wheel wear are of great importance. In this work,

SIMPACK is used to establish a dynamic model of a high‐speed train and to investi-

gate the normal and lateral contact forces of the wheel–rail interfaces and the wear

of the wheels for a train passing through a specially designed route that consists of

straight‐line, smooth‐curved, and circular tracks. The wheel wear is predicted by

means of the Archard wear model based on the SIMPACK analysis, and the wear is

validated by a backpropagation neural network (BPNN) classification based on daily

measured data provided by the Beijing Railway Administration. The results from the

SIMPACK dynamic simulation and the BPNN classification show that the position

of a wheel in a bogie has a significant effect on the wheel wear, but the position of

a carriage in a train does not have a significant effect on the wheel wear. The findings

from this study are very useful for the maintenance and safe operation of high‐speed

trains.

KEYWORDS

BP neural networks, high‐speed train, SIMPACK, wheel wear
1 | INTRODUCTION

Many factors affect wheel–rail interactions and wear, such as the wheel and rail profiles, running speed, normal load, wheel material, suspension

system, and operation environment. The effect of the rail roll angle on the contact condition was investigated in Bezin, Iwnicki, and Cavalletti

(2008) and Zhai et al. (2014), and rail profile grinding may be an effective way to reduce rail wear and prolong rail service life (Alarcón, Burgelman,

Meza, Toro, & Li, 2016). Because wheel–rail contact dynamics are too complicated to be simulated by laboratory test facilities, it is necessary and

very important to develop theoretical models to study the factors affecting wheel–rail interactions and wear (Jin, Xiao, Wen, Guo, & Zhu, 2008). In

recent decades, various finite element models have been developed and applied to wheel–rail steady‐state rolling contact analyses (Chang, Wang,

Chen, & Li, 2010) to predict the amount of material that is removed due to wheel–rail interactions (Ignesti, Malvezzi, Marini, Melia, & Rindia, 2012)

and to analyse the effects of the normal load, punch angle, lateral displacement, and friction coefficient on the wheel–rail contact characteristics

(Santamaría, Vadillo, & Oyarzabal, 2009; Xiao, 2012). SIMPACK, which was developed by INTEC Gmbh, is a well‐known multibody simulation soft-

ware that has been used by a number of researchers to study wheel–rail interactions (Ignesti, Malvezzi, Marini, Melia, & Rindia, 2012; Kurzeck,

2011; Molatefi, Hecht, & Bokaeian, 2017).
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The simulation results in Tao, Wen, Zhao, and Jin (2016) show that, when considering a compromise between the calculation efficiency and

accuracy of a wheel wear simulation, it may be a good choice to use the Hertz theory and FASTSIM (fast simulation) technique to solve the normal

and tangential contact problems, respectively. However, analytical calculations of stresses based on the Hertz theory can only be applied to the

elastic deformation of materials (Kuminek & Aniolek, 2014; Rovira, Roda, Marshall, Brunskill, & Lewis, 2011). A three‐dimensional non‐linear finite

element dynamic analysis model was developed for the simulation of the wheel/rail rolling contact process, and the Archard wear model was

applied with a cubic spline interpolation algorithm to obtain the wear distribution and the updated wheel/rail profiles (Chang, Wang, & Jin,

2010). Aceituno, Wang, Wang, and Shabana (2017) developed a wheel/rail wear prediction model integrated with a computational manual block

system algorithm to study the effect of rail flexibility on wear prediction.

Simulating the form change of wheel–rail contacts helps to identify the risk of severe or catastrophic wear resulting from increased train

speeds and axle loads and can help make more efficient maintenance plans for track and rolling stock (Telliskivi & Olofsson, 2004). Therefore,

it is important to use a damage index model in multibody simulation software to predict the probability of rolling contact fatigue while suppressing

the effects of wear for different friction control values (Khan, Persson, Lundberg, & Stenström, 2017). To study corrugation growth, a combination

of models for short‐term dynamic vehicle‐track interactions and long‐term damage is required (Torstensson, Pieringer, & Nielsen, 2014). Jin, Ishida,

and Namura (2011) established a wear prediction model of the rail profile considering the contact stress, contact patch slip ratio, and material

hardness based on the experimental results. However, the results of these contact models are usually postprocessed to estimate the wear on

the profiles, and some of the hypotheses assumed in these contact models may be inadequate for wheel–rail wear analyses (Zhang, Li, Chu,

Zu, & Wang, 2013).

Since 2002, the U.S. Federal Railway Administration has paid great attention to the application of large railway data and has carried out a num-

ber of projects involving large databases, image processing, and machine learning (Baillargeon, 2017). In China, Wang, Chen, and Liu (2007) used

rail wear data measured by a large wheel–rail test dynamometer as the target samples of a backpropagation neural network (BPNN) for the pre-

diction of rail wear losses.

A literature review shows that a constant train running speed was considered (Gordana, Franklin, & Fletcher, 2011; Wang, 2008; Xie, 2005) in

some studies on wheel and rail wear for trains in China and other countries. The present work aims to investigate the effects of the train running

speed, running route, and wheel position on the normal and lateral contact forces of the wheel–rail interface and the wear of the wheels for a

high‐speed train based on SIMPACK modelling and simulation analysis. The wheel wear prediction using this methodology is then validated

through the application of a machine learning technique, BPNN, based on a large volume of daily measured wheel wear data that were collected

by railway operators; such predictions have significant importance for the safe operation and maintenance of high‐speed trains.
2 | SIMPACK DYNAMIC MODEL OF A HIGH‐SPEED TRAIN

To investigate the effects of train running speed, running route, and wheel position on the normal and lateral contact forces of the wheel–rail

interface and the wear of the wheels for a CRH380BL type electric multiple unit (EMU) high‐speed train, a simplified dynamic model was devel-

oped by means of SIMPACK, as shown in Figure 1. The simplified train model consists of the basic elements in SIMPACK, such as body, joint,

constraint, and force elements. The CRH380BL EMU high‐speed train has a total of 16 carriages, each carriage has two bogies (front and rear),

and each bogie has two wheelsets. The developed SIMPACK model in this study consists of only one carriage from the CRH380BL EMU train,

which includes one carriage, two bogie frames, four wheelsets, and the primary and secondary suspension systems in each bogie frame. In this

SIMPACK model, it is assumed that the normal and lateral forces and the operational conditions of all carriages are the same, and the effects

of a carriage on the wheel–rail dynamics of other carriages are negligible. These assumptions may cause some errors during the analysis of the

wheel–rail interactions and wheel wear of a high‐speed train using the developed one‐carriage SIMPACK model, but the BPNN classifications

of the wheel wear based on the wheel diameter data measured by railway operators have justified the above assumptions; therefore, the devel-

oped one‐carriage SIMPACK model is reasonably good for this study.
FIGURE 1 SIMPACK model of a CRH380BL electric multiple unit train carriage
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The dynamic SIMPACK model parameters of the CRH380BL EMU train are shown inTable 1. The wheel tread of the CRH380BL EMU is LMA

(a standard wheel tread for high‐speed trains in China), its matching track is CHN60, and the Hertz and FASTSIM methods (Tao, Wen, Zhao, & Jin,

2016) are used to calculate the normal and lateral forces in the wheel–rail interfaces, respectively.

As shown in Figure 2, when the lateral displacements are zero, the contact points between the wheels and rails are mainly on the top of the

rails and the centres of the wheel treads. In this case, the contact stresses between the wheels and rails are the smallest, and the lateral creep

rates/forces between the wheels and rails are very small. Figure 3 illustrates the forces applied on the outer and inner wheels when the train is

running on a curved track.

Here, G is the total weight of a half axle and a wheel, α1,2 are the sharp angles between the normal contact forces and the gravitational forces

(they are also called gravity angular stiffness), F a1,2 are the centrifugal forces, F n1,2 are the normal forces applied on the wheels, F c1,2 are the

lateral forces applied on the wheels, and F f 1,2 are the rolling frictional force generated by the wheels rolling on the rails. Subscripts 1 and 2 rep-

resent the outer and inner wheels, respectively. The driving torques applied on the wheels are not shown in Figure 3.
TABLE 1 SIMPACK model parameters of the CRH380BL EMU train

Parameter Value Unit

Train carriage mass 34,300 kg

Wheelset mass 1,713 kg

Wheel radius 0.46 m

Frame mass 2,439 kg

Rotational stiffness of primary series 54 MN/m

Lateral stiffness of primary series 5 MN/m

Vertical stiffness of primary series 0.95 MN/m

Rotational damping of primary series 52 MNs/m

Rotational stiffness of secondary series 0.131 MN/m

Lateral stiffness of secondary series 0.131 MN/m

Vertical stiffness of secondary series 0.261 MN/m

Rotational damping of secondary series 8.4 kNs/m

Abbreviation: EMU, electric multiple unit.

FIGURE 2 Contact interface between a
wheel and rail: (a) outer wheel–rail contact
and (b) inner wheel–rail contact

FIGURE 3 Illustration of the forces applied
on the outer and inner wheels running on
curved rails: (a) outer wheel–rail contact and
(b) inner wheel–rail contact
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3 | ANALYSIS OF THE FACTORS AFFECTING WHEEL WEAR BASED ON SIMPACK

In this study, the normal and lateral contact forces of the wheel–rail interface and the wear depths of the wheels will be analysed at different train

running speeds based on the developed one‐carriage SIMPACK model of the CRH380BL EMU train. The SIMPACK model is shown in Figure 1.
3.1 | Normal contact force of the wheel–rail interface

It is well known that the wear of a wheel and rail is proportional to the normal contact force (Gordana, Franklin, & Fletcher, 2011). The normal

contact force of a wheel–rail interface is one of the most critical factors affecting the wear of a wheel and rail. In this study, the normal contact

forces of the wheel–rail interface are calculated by means of the developed one‐carriage SIMPACK model. Figures 4, 5, and 6 demonstrate the

normal contact forces of the wheel–rail interface when the train is running on a specially designed operation route at speeds of 100, 200, and

300 km/hr, respectively. The specially designed train operation route is presented in Table 2.

Figures 4, 5, and 6 show that the normal contact forces of all wheels are the same, 57,500 N, when the train is running on the straight‐line

tracks at different operation speeds. However, the train operation speed and wheel position have significant effects on the normal contact forces

of the wheel–rail interface when the train is running on circular and smooth‐curved tracks due to the generated centrifugal forces. The centrifugal

forces of the train increase as the operation speed increases when the train is running on curved and circular tracks.

Figure 4 shows that when the train is running on the designed tracks at a speed of 100 km/hr, the normal contact forces of the four left wheels

(I, III, V, and VII) vary in the same way: (a) the normal contact forces remain constant on the first straight‐line track, (b) decrease on the first
FIGURE 4 Normal contact forces of the
wheel–rail interface at 100 km/hr: (a)
Wheelsets 1 and 2 and (b) Wheelsets 3 and 4.
I, left wheel of Wheelset 1; II, right wheel of
Wheelset 1; III, left wheel of Wheelset 2; IV,
right wheel of Wheelset 2. V, left wheel of
Wheelset 3; VI, right wheel of Wheelset 3; VII,
left wheel of Wheelset 4; VIII, right wheel of
Wheelset 4

FIGURE 5 Normal contact forces of the
wheel–rail interface at 200 km/hr: (a)
Wheelsets 1 and 2 and (b) Wheelsets 3 and 4.
I, left wheel of Wheelset 1; II, right wheel of
Wheelset 1; III, left wheel of Wheelset 2; IV,
right wheel of Wheelset 2; V, left wheel of
Wheelset 3;VI, right wheel of Wheelset 3; VII,
left wheel of Wheelset 4; VIII, right wheel of
Wheelset 4

FIGURE 6 Normal contact forces of the
wheel–rail interface at 300 km/hr: (a)
Wheelsets 1 and 2 and (b) Wheelsets 3 and 4.
I, left wheel of Wheelset 1; II, right wheel of
Wheelset 1; III, left wheel of Wheelset 2; IV,
right wheel of Wheelset 2. V, left wheel of
Wheelset 3; VI, right wheel of Wheelset 3; VII,
left wheel of Wheelset 4; VIII, right wheel of
Wheelset 4



TABLE 2 Specially designed train operation route in the simulation

Operation track Length (m) Track radius (m) Height (mm)

First straight‐line track 1,000 0 0

First smooth‐curved track 1,000 0–5,000 0–10

Circular track 1,000 5,000 10

Second smooth‐curved track 1,000 5,000–0 10–0

Second straight‐line track 1,000 0 0
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smooth‐curved track, (c) remain constant on the circular track, (d) increase on the second smooth‐curved track, and (e) remain constant on the

second straight‐line track. The variations in the normal contact forces of the four right wheels (II, IV, VI, and VIII) are opposite to that of the four

left wheels (I, III, V, and VII).

Figure 6 demonstrates that when the train is running on the smooth‐curved and circular tracks at a speed of 300 km/hr, the gravity angular

stiffness α1 is decreased, and the gravity angular stiffness α2 is increased. As a result, the normal contact forces of the four left wheels (I, III, V,

and VII) exhibit the following trend as the train passes through the designed operation route: (a) the normal contact forces remain constant on

the first straight‐line track, (b) increase on the first smooth‐curved track, (c) remain constant on the circular track, (d) decrease on the second

smooth‐curved track, and (e) remain constant on the second straight‐line track. The variations in the normal contact forces of the four right wheels

(II, IV, VI, and VIII) are opposite to that of the four left wheels (I, III, V, and VII).

However, when the train is running on the same designed operation route at a speed of 200 km/hr, the variations in the normal contact forces

of the eight wheels are significantly different from those at speeds of 100 and 300 km/hr, as shown in Figure 5. In this case, the normal contact

forces of Wheels I, IV, V, and VIII exhibit the following trend: (a) the normal contact forces remain constant on the first straight‐line track, (b)

decrease on the first smooth‐curved track, (c) remain constant on the circular track, (d) increase on the second smooth‐curved track, and (e) remain

constant on the second straight‐line track. The variations in the normal contact forces of Wheels II, III, VI, and VII are opposite to those of Wheels

I, IV, V, and VIII.
3.2 | Lateral force

The lateral force has a significant effect on the normal contact stress between the wheel and rail, and an extremely large lateral force is responsible

for train derailments. Figures 7, 8, and 9 show that when the train is running on the straight‐line tracks, the lateral forces are zero. Figure 7 shows

that when the train is travelling at a speed of 100 km/hr on the curved tracks, all wheelsets are subjected to positive lateral forces pointing to the

outside of the curves. The lateral forces on Wheelsets 1 and 3 are approximately equal, and the maximum lateral force is 10,250 N on the circular

track. Similarly, the lateral forces of Wheelsets 2 and 4 are equal, and the maximum lateral force is 1,744 N on the circular track.

Figure 8 shows that when the train is running at a speed of 200 km/hr, Wheelsets 1 and 3 are subjected to lateral forces pointing to the out-

side of the curves, whereas Wheelsets 2 and 4 are subjected to lateral forces pointing to the inside of the curves. The lateral forces of both

Wheelsets 1 and 3 are 5,096 N on the circular track, and the lateral forces of both Wheelsets 2 and 4 are 4,236 N on the same circular track.

Figure 9 demonstrates that when the train is running at a faster speed of 300 km/hr, the centrifugal force is larger than the gravitational com-

ponent of the train in the lateral direction. Then, all wheelsets are subjected to the lateral forces pointing to the inside of the curves. The lateral

forces of Wheelsets 1 and 3 are equal, and their lateral forces are 4,952 N on the circular track. The lateral forces of Wheelsets 2 and 4 are equal,

and their lateral forces are 12,554 N on the same circular track.
FIGURE 7 Lateral forces at 100 km/hr: (a)
front bogie and (b) rear bogie



FIGURE 8 Lateral forces at 200 km/hr: (a)
front bogie and (b) rear bogie

FIGURE 9 Lateral forces at 300 km/hr: (a)
front bogie and (b) rear bogie
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3.3 | Wheel wear prediction based on the Archard wear model

It is well known that the wear of wheels and rails is mainly caused by frictional energy generated on the wheel–rail interfaces in the rolling–sliding

contacts. In this study, the prediction of wheel–rail wear is based on the widely used Archard wear model (Aceituno, Wang, Wang, & Shabana,

2017; Chang, Wang, & Jin, 2010; Jin, Ishida, & Namura, 2011; Gordana, Franklin, & Fletcher, 2011), and the wear volume calculation is based

on the following equation:

Vwear ¼ kw
Nd
H
;

where Vwear is the wear volume of the worn material; kw is the dimensionless wear coefficient; N is the normal wheel–rail contact force; d is the

sliding distance; and H is the hardness of the worn material (the wheel in this case). The value of kw was obtained by extensive experiments

(Chang, Wang, Chen, & Li, 2010). For a slow sliding speed with slight abrasion, kw is in the range of (1–4) × 10−4; for a sliding speed of 0.2–

0.7 m/s with substantial abrasion, kw is in the range of (30–40) × 10−4; and for a high sliding speed and low contact pressure, kw is in the range

of (1–10) × 10−4. In this study, kw and H are set to 1 × 10−4 and 280 HB (950 × 106 N/m2), respectively, in the wheel wear calculation; these values

are appropriate considering that the operation speed of the CRH380BL EMU train is high, but its wheel–rail contact pressure is lower than that of

heavy‐haul trains, and the hardness of the wheels of high‐speed trains in China is in the range of 260–320 HB.

Based on the SIMPACK simulation and the above Archard wear model, the wear depths of the wheels after a certain period of operation can

be predicted. Figure 10a,b presents the wear depths of the wheels in the front and rear bogies of the studied carriage after 5 and 30 days of oper-

ation, respectively. Because the wear depths of Wheels I, II, III, and IV in the front bogie are the same as those of Wheels V, VI, VII, and VIII in the
FIGURE 10 Wheel wear depths at different
speeds: (a) 5 days and (b) 30 days. I, left wheel
of Wheelset 1; II, right wheel of Wheelset 1;
III, left wheel of Wheelset 2; IV, right wheel of
Wheelset 2. V, left wheel of Wheelset 1; VI,
right wheel of Wheelset 1; VII, left wheel of
Wheelset 2; VIII, right wheel of Wheelset 2
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rear bogie, respectively, only the wheel wear of the front bogie in the 5‐day operation and the wheel wear of the rear bogie in the 30‐day oper-

ation are illustrated as examples.

As shown in Figure 10a, when the train is running at speeds of 100 and 300 km/hr, the wear depths of the left wheels (I and III) are significantly

different from those of right wheels (II and IV). The wear depths of Wheels I and III have no significant difference, and the wear depths of Wheels

II and IV are also similar. The wear depths of Wheels I and III are less than those of Wheels II and IV when the train operation speed is 100 km/hr,

but the wear depths of Wheels I and III are larger than those of Wheels II and IV when the train running speed is 300 km/hr. However, when the

train running speed is 200 km/hr, the wear depths of the two diagonal wheels, I–IV and II–III, are similar. The wear depth of each wheel increases

with increasing train operation period, as shown in Figure 10a,b.
4 | WHEEL WEAR PREDICTION BASED ON A BPNN

The wheel wear predicted in Section 3.3 is based on the well‐known Archard wear model and the normal contact force simulated via the

SIMPACK dynamic model. The accuracy of the wheel wear prediction and the effectiveness of the SIMPACK model must be validated before prac-

tical applications, which is the objective of data‐driven model analysis based on BPNN.

The data that will be used in the BPNN identification or prediction are daily measured wheel wear depths or diameters of all the wheels of the

16‐carriage CRH380BL EMU high‐speed train over 30 continuous days of Beijing‐Shanghai‐Beijing daily operations. All data were measured by

rail operators from the Beijing Railway Bureau. The train consists of 16 carriages, and each carriage has eight wheels. Therefore, there is a total

of 3,840 (30 × 16 × 8) field‐measured data used in the BPNN identification.
4.1 | Methodology

BPNNs have been developed for more than 30 years (Rumelhart, Hinton, & Williams, 1986), and the advantages of BPNNs compared with other

neural networks (e.g., the radial basis function neural network) may be summarized as follows: (a) non‐linear mapping capability; (b) self‐learning

and adaptive ability; (c) ability to apply learning outcomes to new knowledge; and (d) fault tolerance ability. The main idea of the backpropagation

algorithm is to propagate the error of the output layer backward layer by layer to indirectly calculate the hidden layer error. More details about the

theory and operation of a BPNN can be found in references (MacKay, 1992; Werbos, 1990; Widrow & Lehr, 1990). Because a three‐layer BPNN is

sufficient for most engineering applications, in this study, a three‐layer BPNN is used to process the daily measured data to classify the wear

depths of all wheels of the high‐speed train, and a schematic diagram of the BPNN is shown in Figure 11.
4.2 | Case study

To establish a neural network, the input data must be preprocessed. In this case, the input data are the wheel position (1–8) and carriage number

(1–16). Because the output of the neural network pattern can only be identified as 0 and 1, the values of the measured wheel wear (diameter

reduction) are defined as 0 or 1. The maximum measured wheel diameter reduction is 2.5 mm, the minimum measured wheel diameter reduction

is 1 mm, and most measured wheel diameter reductions are in the range of 1.5 to 2 mm. The measured wheel wear (diameter reductions) is divided

into seven levels, and each level is represented by a binary number as follows: the wear range of [1, 1.5) is represented by 0000001; [1.5, 1.6) is

represented by 0000010; [1.6, 1.7) is represented by 0000100; [1.7, 1.8) is represented by 0001000; [1.8, 1.9) is represented by 0010000; [1.9,

2.3) is represented by 0100000; and [2.3, 2.6) is represented by 1000000.
FIGURE 11 Schematic diagram of the three‐layer backpropagation neural network
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According to the empirical model (Xie, 2005), the following expression can be obtained:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:43mnþ 0:12n2 þ 2:54mþ 0:77nþ 0:35

p
þ 0:51;

where m = 2 is the number of input nodes, n = 7 is the number of output nodes, and S is the number of hidden nodes, which is calculated as 5.

Before the BPNN operation, the well‐known Sigmoid function is chosen as the neural network stimulus function, the initial value of the train-

ing learning rate is set to 0.1, the momentum coefficient is set to 0.95, and the maximum training time is set to 10000. When the system error is

less than 0.01, it will be considered that the network is convergent. The percentage of training samples, validated samples, and test samples are

designed to be 70%, 15%, and 15%, respectively.

After 31 training cycles, the network converged, and the mean square error was less than 0.009. At this time, the training sample, verification

sample, and test sample recognition rate are 96.1%, 94.7%, and 100%, respectively, which satisfies the criteria outlined above. The threshold

values of the input layer to the hidden layer are as follows:

2:1413 0:6719

0:0047 −8:298

0:123 −8:4408

−0:1749 6:994

−0:0066 −6:4992

2
6666664

3
7777775
:

The hidden layer threshold values are as follows:

−3:9207−1:2902 6:5262 6:9563 1:6081½ �T :

The weights of the hidden layer to the output layer are as follows:

2:7309 0:9073 −2:2063 −1:4267 −1:7308

1:2589 1:9912 −1:3258 −1:6424 −2:1964

1:2855 4:7701 2:0616 2:9132 −5:1989

−0:8498 −3:0176 −5:1678 −3:5308 6:5662

0:5206 −4:5689 0:4916 −1:2959 2:1583

2:2635 1:846 −0:843 −1:1886 −1:9047

0:0431 3:4984 −0:2745 6:3082 0:8743

2
666666666664

3
777777777775

:

The output layer threshold values are as follows:

−1:7071−1:5641−1:628 2:5132−2:5381−0:2744 0:0864½ �T :

Using the trained network above, the wheel wear (diameter reduction) of carriage No. 1 is classified as shown in Table 3. The identified diameter

reductions of Wheels I, IV, V, and VIII in carriage No. 1 are [1.7, 1.8), which are smaller than those of the diameter reductions of Wheels II, III, VI,

and VII in the same carriage of [1.8, 1.9). This indicates that the position of the wheel has a significant effect on the wheel wear, which is consis-

tent with the results predicted using the SIMPACK model when the train operation speed is 200 km/hr, as shown in Figure 10. The identified wear

by means of the BPNN are the diameter reductions of Wheels I through VIII, whereas the predicted wear of the wheels shown in Figure 10 are the

wear depths (half of the wheel diameter reductions) of Wheels I to VIII.
TABLE 3 Wheel wear prediction results of carriage No. 1

Wheel position Prediction result code Wear range (wheel diameter reduction)

1 0001000 [1.7, 1.8)

2 0010000 [1.8, 1.9)

3 0010000 [1.8, 1.9)

4 0001000 [1.7, 1.8)

5 0001000 [1.7, 1.8)

6 0010000 [1.8, 1.9)

7 0010000 [1.8, 1.9)

8 0001000 [1.7, 1.8)



FIGURE 12 Wear depths of Wheel I: (a)
NAR and SIMPACK predictions and (b) NAR/
SIMPACK predictions and field‐measured
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The wear (diameter reductions) of Wheel I in all 16 carriages has also been identified in the range of [1.7, 1.8) by means of the BPNN operation,

indicating that the position of a carriage has no significant effect on the wear of wheels. This finding verified that the developed simplified one‐

carriage SIMPACK model can be effectively used to predict the wear of wheels of high‐speed trains.

4.3 | Comparison between the non‐linear autoregressive prediction and SIMPACK simulation

To predict the wheel wear over a longer period of train operation, the non‐linear autoregressive (NAR) model is employed. In comparison, the wear

depths of Wheel I after 90 days of operation are predicted by means of the NAR and SIMPACK models, as shown in Figure 12a. The field‐

measured data are from the CRH380BL EMU high‐speed train between Beijing and Shanghai. The distance between Beijing and Shanghai is

1,250 km, and it takes approximately 6 hr to travel from Beijing to Shanghai via the high‐speed train. The average speed of the high‐speed train

is approximately 208 km/hr. Therefore, a train operation speed of 200 km/hr is used in the SIMPACK wear prediction, and it is compared with the

field measured and the NAR‐predicted wear depths in Figure 12b. It can be seen from Figure 12 that the predicted wear depths of Wheel I from

the NAR and SIMPACK models agree well with the field‐measured data, which validated the NAR and SIMPACK models.

data. NAR, non‐linear autoregressive
5 | CONCLUSIONS

In this study, wheel wear is simulated by a SIMPACK dynamic analysis and classified by BPNNs. In the SIMPACK dynamic analysis, the effects of

the train running speed, operation route, and wheel position on the normal and lateral contact forces of the wheel–rail interface and the wear of

the wheels were investigated. Based on daily measured data, the BPNN was employed to classify the wear of each wheel of the high‐speed train,

which validated the simplified SIMPACK model of the high‐speed train and may provide guidance for the maintenance and safe operation of high‐

speed trains. The following conclusions may be obtained:

• Based on the SIMPACK analysis, the operation speed of a high‐speed train has a significant effect on the normal and lateral contact forces of a

wheel–rail interface when the train is running on curved and circular tracks.

• The position of a bogie in the train does not have a significant effect on the wear of the wheels, but the position of a wheel in a bogie has a

significant effect on the wear of the wheel; this conclusion can be obtained from both the SIMPACK analysis based on the Archard model and

the BPNN classification. The developed one‐carriage SIMPACK model of a high‐speed train can be effectively used to simulate the normal and

lateral contact forces of a wheel–rail interface and the wear of the wheels for a high‐speed train.

• Based on the daily measured data of wheel diameters, a NAR can be effectively used to predict the wear of each wheel of a high‐speed train,

which is very useful for the maintenance of train wheels and the safe operation of high‐speed trains.
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