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a b s t r a c t

The optimal design of a molten salt solar power tower (SPT) plant is sensitive to the variations of un-
certainties, such as solar radiation, which result in dispersion of the model output. To mitigate the im-
pacts of uncertainties on the thermo-economic performance of SPT plant, this study develops an
uncertainty-based multi-objective robust optimization design method for the case of a SPT plant in
Sevilla with the expected value (i.e. the average energy cost) and the standard deviation (i.e. the
dispersion of the model output) of the levelized cost of energy (LCOE) as the objectives. The Monte Carlo
(MC) simulation and simulated annealing (SA) algorithm are combined to solve the robust optimization
problem. The results of Pareto frontier indicate that a trade-off is needed through decision-making. The
final optimal solution is determined with expectation of LCOE of 23.09 c/kWhe and standard deviation of
LCOE of 1.25 c/kWhe. Compared with the deterministic optimal design, the standard deviation of LCOE of
the multi-objective robust optimum is reduced by 17.22 %, which turns out to be less sensitive to the
uncertainties. Moreover, the Sobol’ global sensitivity analysis results show that the direct solar radiation,
heliostat field cost and receiver cost are the most sensitive to LCOE.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Concentrating solar power (CSP) with thermal storage is
increasingly being considered an effective method for the future
development of the electricity market [1]. The International Energy
Agency estimates that CSPwith storagewill have a global electricity
market share of up to 11 % by 2050 [2]. Among different CSP ap-
plications, solar power tower (SPT) technology is growing faster
than any other technology because of its higher overall efficiency
and higher operating temperature [3]. The SPT plant system applies
heliostats to concentrate solar energy onto a receiver in the tower,
where a liquid is heated. Then the heat transfer liquid is used to
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generate steam, which drives turbines to generate electricity.
In recent years, many efforts have been made on the optimiza-

tion of the SPT plant system [4e9]. Spelling et al. [4] described a
multi-objective thermo-economic optimization scheme to deter-
mine the Pareto-optimal solution of a combined-cycle SPT plant
design by employing a global evolutionary algorithm. Ramos and
Ramos [5] applied local and global optimization algorithms to
minimize the levelized cost of electricity (LCOE) of an entire SPT
plant. Luo et al. [6] proposed a combined global sensitivity analysis
and optimization strategy to gain the minimum LCOE of a SPT
system. Considering exergy efficiency of the whole SPT system as
objective function, Wang and He [7] conducted the optimization
process of an integrated SPT system by genetic algorithm. Carrizosa
et al. [8] alternatively optimized the receivers and the heliostat field
by a greedy-based heuristic method with the LCOE as objective
parameter. Through a combination of genetic and teaching-
learning-based optimization algorithms, Khosravi et al. [9] gained
the optimum design parameters of a SPT plant to reach the mini-
mum LCOE.
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Nomenclature

Abbreviations
CSP Concentrating solar power
LCOE Levelized cost of energy
MC Monte Carlo
OLH Optimal Latin hypercube
SA Simulated annealing
SPT Solar power tower

Symbols
A area, m2

D standard deviation of energy cost, c/kWhe

DNI direct normal irradiance, W/m2

E expected value of energy cost, c/kWhe

H equivalent hours of thermal energy storage, h
h mixed convection heat transfer coefficient, W/m2 K
l heliostat diagonal, m
M number of basis functions
N maximum number of runs of a Monte Carlo

simulation
nhel total number of heliostats
p deterministic system parameter
~p system parameter that incorporates uncertainty
Q solar energy on the receiver surface, W
R radius of the receiver, m
r radius of the heliostat row, m
S first-order sensitivity index
ST total sensitivity index

SM solar multiples
T temperature, K
THT tower optical height, m
x design parameter
Y deterministic model output
~Y model output that incorporates uncertainty

Greek letters
a receiver coating absorptance
b regression coefficient
Dr radial spacing between consecutive rows, m
Dg transition spacing between consecutive zones, m
Dq azimuth spacing between adjacent heliostats of the

same row, rad
d statistical error between the actual and approximate

values, c/kWhe

ε receiver coating emittance
h efficiency
s Boltzmann constant, W/m2 K4

f basis function

Subscripts
amb ambient air
field heliostat field
hel heliostat
in incident
rec receiver
w outer tube wall
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Generally, in the deterministic optimization of the SPT plant
system, the input system parameters are treated as constants.
However, due to variation of natural conditions and development of
technique economics, input parameters in real SPT plant system
design are inevitably affected by uncertainties and should be
assigned with probability distributions. For instance, the solar ra-
diation obtained by ground measurements and satellite data in
solar thermal design is a typical uncertain parameter with a relative
root mean squared error of 5.4 % [10,11]. Another important un-
certain variable is the cost of the SPT plant subsystem, such as
heliostat field cost, which is generally endowed uniform probability
distributions [12,13]. Besides, other input factors, such as heliostat
cleanliness, receiver coating absorptance and the performance of
the solar receiver, all usually deviate from their nominal values
[12e15].

These uncertainties can cause dispersion of the solar thermal
plant system model output, which is different from the determin-
istic result. The impacts of uncertainties on the model output have
been investigated by some researchers [12,16e19]. Ho and Kolb [12]
obtained that the actual LCOE of a 100MWe SPT plant ranged from
0.11 $/kWhe to 0.15 $/kWhe under uncertain environment of annual
energy and cost, while the deterministic result of LCOE was 0.12
$/kWhe. Meybodi and Beath [16] evaluated the influences of cost
uncertainties and solar data variations on the economics of a 30
MWe SPT plant in Alice Springs. They found that the maximum
deviation of the actual LCOE could be up to 22.75 % by incorporating
uncertainties when compared with the deterministic LCOE. Zaver-
sky et al. [17] selected five uncertain solar field performance pa-
rameters (e.g. mirror cleanliness) as probabilistic model input
parameters for a parabolic trough collector power plant. They
gained that the actual annual net electric energy output under
2

uncertainty was in between the range from 149,540 MWh to
161,028 MWh, while the deterministic design result was
155,712 MWh. Silva et al. [18] and Nojavan et al. [19] also discov-
ered that uncertain variables could induce the large dispersion of
the CSP plant model output, which was different from that of
deterministic result. As a result, it leads to the necessity of coupling
uncertainties in the solar thermal power plant system optimization
model to better reflect actual conditions.

To handle this issue, the robust optimization design based on
uncertainty should be developed to decrease the dispersion of
model output [20,21]. Currently, the robust optimization method
has been widely applied in various energy systems [22e28]. Wang
et al. [22] proposed a combined multi-objective optimization and
robustness analysis method with uncertainties of meteorological
data and energy demands for a building integrated energy system.
They obtained that the ranges of the objective annual carbon
emissions were 1674e2575 tons/year for the deterministic opti-
mum, while that for the robust optimum were narrowed and
1740e2419 tons/year. Akbari et al. [23] took demand side, costs and
tariffs structure uncertainties into consideration in the robust
optimization of a building energy system and presented that the
standard deviation of objective function in robust solution and
deterministic solution were 190,458 $ and 197658.5 $, respectively.
Reich et al. [24] conducted robust optimization of the district
heating networks under uncertainty and found that the robust
optimum reduced the standard deviation of the heat price by about
53 % when compared with the deterministic optimum. Sy et al. [25]
employed uncertainties to develop a target-oriented robust opti-
mization model for synthesis of polygeneration plants and
concluded that the standard deviation of profit for the robust so-
lution was 14.91 % less than that for the deterministic solution.
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Serafino et al. [26] pointed out that the optimal geothermal organic
rankine cycle design delivered by the robust optimization strategy
outperformed the one derived from the deterministic optimization
approach and reduced the standard deviation of the power pro-
duction by 8.5 %. Therefore, the robust optimum is less sensitive to
the uncertainties when compared with the deterministic optimal
design. However, no studies are found to address the uncertainties
at the optimization design stage of the SPT plant system. Thus the
robust optimization design based on uncertainty should be used to
improve the SPT plant design.

Another issue is that the vast majority of solar thermal plant
analysis quantify and rank the uncertainty contributions to the
system model output dispersion by stepwise linear regression
sensitivity method, which is generally suitable for linear models
and may result in inaccurate sensitivity results for the complex
nonlinear solar thermal power plant system [29]. Ho et al. [12e14]
and Wagner et al. [30] performed sensitivity studies of uncertain
parameters for a SPT plant using stepwise linear regression anal-
ysis. Zaversky et al. [17] and Eck et al. [31] also applied the stepwise
linear regression to conduct sensitivity analysis of uncertainties for
the parabolic trough collector power plant. Therefore, to accurately
assess and evaluate the relative importance of uncertainties for the
SPT plant system, a new advanced global sensitivity analysis
method that is fit for nonlinear model should be developed.

The main goal of the present work is to conduct multi-objective
robust optimization of the SPT plant system under uncertainty,
which simultaneously minimizing the expectation and standard
deviation of LCOE, thus reducing the sensitivity of the optimal
design to uncertain parameters. For that purpose, the uncertainties
are assigned probability distributions, and an uncertainty propa-
gation analysis method is used to obtain the expected value and
standard deviation of LCOE by combining the response surface
approximation model and Monte Carlo (MC) simulation. The un-
certainty propagation analysis is then coupled with the multi-
objective algorithm of simulated annealing (SA), allowing to
determine the optimal design. Moreover, the importance ranking of
the SPT plant uncertain parameters are obtained by Sobol’ global
sensitivity method, through which the nonlinearity of the SPT
system model and the interaction effects among uncertainties are
carefully considered. The reminder of the paper is structured as
follows. In section 2, a deterministic model of the SPT plant system
is first demonstrated and expressed as a function of 12 design pa-
rameters. Section 3 presents different sources of uncertainty in the
SPT plant system and describes the uncertainty propagation
method. The multi-objective robust optimization strategy under
uncertainty is described in Section 4. Finally, Section 5 gives the
main results of the uncertain and deterministic optimal design, as
well as the global sensitivity analysis of uncertain parameters. As
shown in this paper, a lower economic risk exists in the multi-
objective robust optimal design under uncertainty.
2. Deterministic model of the SPT plant system

Fig. 1 depicts a typical molten salt SPT plant system, which is
composed of a heliostat field with a surrounding radial staggered
layout, an external receiver, a two-tank thermal storage system and
a power block with a steam extraction regenerative cycle. The plant
is located in Sevilla (37.4�N, 5.9�W), a city in the south of Spainwith
a yearly solar irradiation value of over 1700 kWh/m2.

The heliostat field has a fixed number of 2650 heliostats and is
composed of three zones with identical radial and azimuth spacing.
Based on a given azimuth spacing, radial spacing and transition
spacing, the heliostat field layout is obtained, and its efficiency hfield
is calculated by the convolution method [32]. Then the incident
3

energy onto the receiver Qin can be given as follows,

Qin ¼NhelAhelDNIhfield (1)

where Nhel is the total number of heliostats, Ahel is the area of a
heliostat (12.84 � 9.45 m2) and DNI is the direct normal irradiance.

Once the receiver radius R and outer tubewall temperature Tw is
given, the thermal efficiency of the receiver hrec is evaluated by
Ref. [33],

hrec ¼a�
εsArec

�
T4w � T4amb

�
þ hArecðTw � TambÞ

Qin
(2)

where a is the receiver coating absorptance, ε is the receiver coating
emittance, s is the Boltzmann constant, Arec is the area of the
receiver, h is a mixed convection coefficient that combines natural
convection and forced convection heat transfer [34], and Tamb is the
ambient air temperature.

For the two-tank thermal storage system, the design tempera-
tures of the hot molten salt tank and the cold molten salt tank are
565 �C and 290 �C, respectively. The thermal storage capacity is
characterized by the supply hours of thermal storage energy (H).
The two-tank thermal storage system is well-insulated and its ef-
ficiency is assumed to be 100 % [7]. For the power block, the turbine
inlet parameters are set to 12.5 MPa and 538 �C at the design point,
resulting in a gross first-law cycle efficiency of 0.4018 [35]. The
rated electricity output of the power block is the ratio of the elec-
tricity produced by the heliostat field at the design condition to the
solar multiples (SM).

Based on the above subsystem models, the annual electricity
output is computed as an energy-oriented performance indicator of
the SPT plant. Then, an economic analysis is conducted to assess the
main model output parameter LCOE. The expected lifetime of the
SPT system is considered to be 30 years. The total investment of the
plant involves indirect and direct costs, and specific cost models
were reported by Ref. [36]. The costs for plant operation and
maintenance are estimated to be 1 % of the total plant capital cost
[37]. The model output parameter LCOE is calculated as follows,

LCOE¼ annual capital costsþ annual O&M costs
annual electricity output

(3)

In the deterministic model, the mathematical expression of the
SPT plant system is formulated as,

Y ¼ f ðx;pÞ (4)

where Y is the deterministic model output LCOE. x is a vector of
design parameters, x ¼ ðx1; x2; /; x12Þ. The value ranges of the
design parameters are shown in Table 1 p is a vector of system
parameters, p ¼ ðp1; p2;/; p14Þ, such as receiver coating absorp-
tance, tower cost and heliostat cleanliness. The system parameters
are given specific values in the deterministic model.
3. Uncertainty quantification of the SPT plant system

3.1. Characteristics of the uncertainties

Due to the uncertainty of the system parameters, there is a large
dispersion of the model output. To conduct an uncertainty quan-
tification of the SPT plant system, the first step is to characterize the
uncertainties. For the SPT plant system, 14 uncertain system pa-
rameters are chosen and characterized with probability distribu-
tions. The central values and probability distributions of
uncertainties are illustrated in Table 2.



Fig. 1. Molten salt SPT plant system with thermal storage.

Table 1
Value ranges of design parameters for the SPT plant.

Design parameter Value range

x1-x3 Dqk: Azimuth spacing of the k-th zone (rad) (k ¼ 1, 2, 3) [l/rk, 2l/rk]a

x4-x6 Drk: Radial spacing of the k-th zone (m) (k ¼ 1, 2, 3) [0.866l, 2.4l]
x7-x8 Dgk: Transition spacing between the k-th zone and the (kþ1)th zone (m) (k ¼ 1, 2) [0.866l, 2.4l]
x9 R: Receiver radius(m) [3,5]
x10 THT: Tower height (m) [125, 165]
x11 H: Supply hours of thermal storage energy (h) [3,12]
x12 SM: Solar multiples (�) [1.3, 2.7]

a l represents the heliostat diagonal, and r1 is the horizontal distance from the tower to the first row of the heliostat field.

Table 2
Probability distributions of uncertainties for the SPT plant system.

Uncertain parameter Central value Distribution

~p1 Direct radiation (kWh/m2) Weather database [38] Normal ±5.4 % [11]
~p2 Land cost ($/m2) 1.25 [36] Uniform ±15 % [12]
~p3 Heliostat improvement cost ($/m2) 20 [36] Uniform ±15 % [12]
~p4 Heliostat field cost ($/m2) 200 [36] Uniform ±18 % [12]
~p5 Receiver cost ($)

83:34�
�

Arec

1133

�0:7
[36]

Uniform ±20 % [12]

~p6 Tower cost ($) 0:0018357,THT2 � 0:285868,THT þ 30 [36] Uniform ±15 % [12]
~p7 Thermal storage cost ($/kWhth) 30 [36] Uniform ±14 % [12]
~p8 Power generation unit cost ($/kWe) 1000 [36] Uniform ±14 % [12]
~p9 Steam generation cost ($/kWe) 350 [36] Uniform ±23 % [12]
~p10 Receiver coating absorptance (�) 0.95 [36] Uniform 0.93e0.97 [12]
~p11 Receiver coating emittance (�) 0.95 [33] Uniform 0.93e0.97 [12]
~p12 Receiver thermal loss (MW) Calculated by receiver performance model [33] Uniform ±24 % [12]
~p13 Heliostat cleanliness (�) 0.95 [36] Uniform 0.93e0.97 [12]
~p14 Heliostat optical error (mrad) 2.9 [39] Uniform ±50 % [14]

Y. Luo, Z. Wang, J. Zhu et al. Energy 238 (2022) 121716
3.2. Uncertainty propagation

Fig. 2 shows the uncertainty propagation process for the SPT
plant system. The design parameters are characterized by specific
values, while uncertain system parameters are defined as normal or
uniform distributions. These input uncertainties induce dispersion
of the model output through the SPT plant model and the proba-
bility distribution of the model output is estimated by a statistical
simulation method. Among the different statistical simulation
methods, the MC simulation [40] is considered the most accurate
approach and selected to conduct uncertainty propagation process.

The calculation procedure of the MC simulation is shown in
4

Fig. 3 and can be explained as follows.

1) The characteristics of the input parameters are assigned.
2) The maximum number of runs of a MC simulation N is defined

and set tom ¼ 1 (the value of N is generally equal to 1000 when
both the accuracy and computational time are considered).

3) By applying a type of sampling technique, a random sequence is
generated between 0 and 1. Sampling techniques usually
include simple random sampling, descriptive sampling and
Sobol sampling [41]. Sobol sampling is adopted in this paper
because samples obtained using Sobol sequences are more



Fig. 2. Uncertainty propagation for the SPT plant system.

Fig. 3. Flowchart of the MC simulation.

Fig. 4. Approximate and actual values of the model output LCOE.
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uniformly distributed than those obtained from the other two
sampling techniques.

4) The Sobol sequence is converted to the corresponding uncertain
parameter values.

5) The model output LCOE is obtained based on a simulation of the
SPT plant system model under uncertainty.

6) Letm¼mþ1 and repeat steps 3 to 5 until themaximumnumber
of runs of a MC simulation N is reached or the solution is
converged.

7) The expected value and standard deviation of the model output
LCOE are analysed.

Once the uncertainty propagation process is conducted, the
mathematical formulation of the SPT plant system under uncer-
tainty is given by,

~Y ¼ f
�
x; ~p

�
(5)
5

where ~Y is a function that quantifies the impact of system un-
certainties on the model output LCOE and ~p is a vector of system
parameters that incorporates uncertainty.

3.3. Approximation model

To carry out the uncertainty propagation of the SPT plant system
in a computationally inexpensive manner, an approximation
function is used to create the surrogate model of the SPT plant
system under uncertainty. Among various approximation func-
tions, the response surface methodology [42] is applied because of
its high efficiency and good robustness. The response surface
methodology develops a relationship between input factors (x~p)
and the model output (~Y) with a high-order polynomial function,
which can be given by,

~Y ¼
XM
J¼1

bJfJ
�
x; ~p

�þ d (6)

where bJ is the regression coefficient to be determined by the least
squares method, fJðx; ~pÞ is the basis function of x and ~p, d is the
statistical error between the actual and approximate values of the
model output LCOE, and M is the number of terms of fJðx; ~pÞ.

Before constructing the response surface approximation func-
tion, the sampling points of the design parameters and uncertain
parameters are generated through an experimental design. Due to
the advantages of uniformity of samples and low computational
cost, the optimal Latin hypercube (OLH) method is chosen for
experimental design [43]. A sampling input data set of 4000 points
is generated to establish a quadratic polynomial response surface of
the SPT plant system model under uncertainty. To validate the
approximation model, 430 sampling points are generated to
conduct error analysis. Fig. 4 illustrates comparison results of the
approximate LCOE obtained by the response surface methodology
and the actual LCOE obtained by model simulation. It can be seen
that there is good agreement between the approximation and
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simulation models, with a R-squared value of 0.9742.
4. Multi-objective robust optimization model of the SPT plant
system under uncertainty

In order to design a SPT plant system with a low economic risk
under uncertainty, a robust optimization design [20,21] strategy is
considered. As illustrate in Fig. 5, the concept of the robust opti-
mization design is to reduce the sensitivity of model output to
uncertainties (i.e. standard deviation of model output) and opti-
mize the performance of model output (i.e. expected value of
model output), which result in a multi-objective optimization
problem.

Based on the robust optimal design, the SPT plant system opti-
mization under uncertainty is conducted by considering both the
expected value and the standard deviation of LCOE as objective
parameters, and described by,

Minimize :

(
E
�
~Y ¼ E

�
f
�
x; ~p

��
D
�
~Y
�
¼ D

�
f
�
x; ~p

��
Subject to: xLi � xi � xUi ; i ¼ 1;2;…;12

(7)

where E and D represent the expected value and standard deviation
of LCOE, respectively. xLi and xUi are lower and upper bound of
design parameter, respectively.

To solve the multi-objective robust optimization problem of the
SPT plant system under uncertainty, an algorithm is required to
obtain the Pareto optimal points, which are the non-inferior solu-
tions that are searched in the whole design space. Because of high
efficiency and good applicability, a SA optimization strategy is
employed and the calculation procedure can be summarized as
follows [44,45],

1) Select a starting point x0 and an initial temperature t0. Initialize
the optimal value xopt ¼ x0, and evaluate the corresponding
objective values. Let j¼ 0, and set the maximum iterative step to
be L.

2) A random point x* is generated around xj, and the corre-
sponding objective values are obtained.

3) The random point x* is compared with the Pareto optimal set. If
x* is a non-inferior solution, update the Pareto optimal set, and
let xjþ1 ¼ x*. If not, x* is set to the new solution based on the
Metropolis criterion [46].

4) If j � L, a new initial point x0 is randomly chosen from the Pareto
optimal set. Then, let j¼ 0, and go to step 2). Otherwise, go to the
next step.
Fig. 5. Concept of the robust optimization design.
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5) Decrease the temperature, and let j¼ jþ1. If the iterative process
is converged, the Pareto optimal set is output. Otherwise, go to
step 2).

Fig. 6 illustrates a flowchart of the entire multi-objective robust
optimization procedure under uncertainty for the SPT plant, and
the detailed strategy procedure is given as follows.

1) Establish the approximation model. To improve computa-
tional efficiency, the response surface methodology is employed
to construct the approximation function, which develops a
relationship among the design parameters, uncertain parame-
ters and SPT plant model output LCOE.

2) Initialize the design parameters. 12 design variables are
selected for the SPT plant optimization, and their initial values
are assigned randomly.

3) Conduct theMC simulation. To obtain the effect of 14 uncertain
parameters on the SPT plant model output LCOE, the MC simu-
lation is used to obtain the probability distribution of the LCOE.
Then, the expected value and the standard deviation of the
model output LCOE are obtained.

4) Construct and solve the multi-objective robust optimization
problem. Considering the expected value and the standard
deviation of LCOE as objective functions, the multi-objective
robust optimization problem is formulated as described in Eq.
(7). The SA algorithm is used to update the Pareto optimal set
and the design parameters.

5) Obtain the Pareto optimal set. Repeat steps 3 to 4 until the
convergence criterion is satisfied and the Pareto optimal set can
be obtained.
5. Results and discussion

5.1. Model validation

The results of Collado and Guallar [36] are used here to validate
the reliability of the deterministic model of the SPT plant system.
The parameters of a 19.9 MWe molten salt SPT plant with 2650
heliostats in Almeria are as follows: Dq1 ¼ 0.136 rad,
Dq2 ¼ 0.068 rad, Dq3 ¼ 0.034 rad, Dr1 ¼ 13.6 m, Dr2 ¼ 15.7 m,
Dr3 ¼ 34.54 m, Dg1 ¼15.7 m, Dg2 ¼ 37.09 m, R ¼ 4 m, THT ¼ 140 m,
H ¼ 15 h, SM ¼ 2.5, a ¼ 0.95, ε ¼ 0.9, Tamb ¼ 20 �C, Ahel ¼ 115.5 m2.
The two-tank thermal storage system is able to reach temperature
up to 565 �C. The annual power block net efficiency is 0.3032 and
related subsystem cost models are also given.

Table 3 shows comparison results of thermo-economic perfor-
mance of a 19.9MWe SPT plant. It exhibits that the simulation re-
sults of this paper agree well with the data in Ref. [36], and the
relative error of LCOE is only 1.26 %.

5.2. Multi-objective robust optimization results under uncertainty

Fig. 7 depicts the Pareto frontier solutions for the multi-
objective robust optimization of the SPT plant system under un-
certainty. The expected value of LCOE represents an average energy
cost, while the standard deviation of LCOE means the dispersion of
energy cost and the sensitivity of energy cost to uncertainties. As
shown in the figure, the improving one objective function degrades
the other. Consequently, the SPT plant system design that is ex-
pected to be the least expensive can turn out to be a higher eco-
nomic risk than others. In addition, the standard deviation of LCOE
increases slightly when the expected value of LCOE decreases from
25.88 c/kWhe to 23.09 c/kWhe. A further decrement in the expected
value of LCOE from 23.09 c/kWhe to 21.92 c/kWhe corresponds to a



Fig. 6. Flowchart of the optimization procedure under uncertainty for the SPT plant.

Table 3
Comparisons of thermo-economic performance of a 19.9 MWe SPT plant between the Ref [36] and this paper.

Ref [36] This paper Relative difference

Annual heliostat field efficiency (%) 58.71 % 57.1 % �2.74 %
Annual receiver efficiency (%) 89.16 % 90.14 % 1.1 %
Net annual electric output (GWhe) 110.38 GWhe 108.5 GWhe �1.7 %
LCOE (c/kWhe) 23.72 c/kWhe 24.02 c/kWhe 1.26 %

Fig. 7. Multi-objective optimization results of the SPT plant system under uncertainty.
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drastic increase in the standard deviation of LCOE. Therefore, with a
decreasing expected value of LCOE, the growth rate of the standard
deviation of LCOE gradually increased.

Each point on the Pareto frontier represents an optimal solution
of the SPT system design, and a decision-maker might select a
different point based on the importance of each objective and en-
gineering experience [47]. As shown in Fig. 7, design point A is the
optimal solutionwhen the decision-maker prefers to the minimum
expected value of LCOE, while design point C represents the pref-
erence of the decision-maker that achieves the minimum standard
deviation of LCOE and the lowest economic risk. The final multi-
objective robust optimum is obtained with the aid of an ideal
point D. The ideal point D meets the conditions of the minimum
expected value of LCOE and the minimum standard deviation of
LCOE simultaneously but is not one of the Pareto frontier solutions.
Then, the design point B of the Pareto frontier is the closest to the
ideal point D and chosen as the final multi-objective robust optimal
point [48]. Consequently, the final optimal point B achieves the best
trade-off between both optimization objectives. It should be noted
that the final multi-objective robust optimum in this paper is
decided by the preferences of the authors, and a different optimal



Fig. 8. Probability distributions of design points A, B and C based on uncertainty
propagation.

Table 5
Related values of the design parameters under the deterministic optimal design.

Dq1 (rad) 1.001l/r1 Dg1 (m) 0.869l
Dq2 (rad) 1.000l/r2 Dg2 (m) 2.398l
Dq3 (rad) 1.419l/r3 R (m) 3.33
Dr1 (m) 0.866l THT (m) 138
Dr2 (m) 0.867l H (h) 11.97
Dr3 (m) 1.746l SM (�) 2.7

Y. Luo, Z. Wang, J. Zhu et al. Energy 238 (2022) 121716
point might be selected in another condition. To further demon-
strate the robustness of the optimization result, probability distri-
butions of design points A, B and C based on uncertainty
propagation are shown in Fig. 8. Moreover, to guide the SPT system
design under uncertainty, Table 4 presents the related design pa-
rameters at design points A, B and C.
Fig. 9. Probability distributions of the deterministic and multi-objective robust opti-
mum based on uncertainty propagation.
5.3. Comparison results of the multi-objective robust and
deterministic optimal design

The SA algorithm is adopted to optimize the deterministic
model of the SPT system. Table 5 presents the related values of the
design parameters under the deterministic optimal design.

Based on the uncertainty propagation of the SPT plant system,
probability distributions of the deterministic and multi-objective
robust optimum are compared in Fig. 9. It can be clearly seen that
although the average model output LCOE of multi-objective robust
solution is expected to be more expensive than that of determin-
istic solution, more stability exists in the multi-objective robust
optimal design when faced with uncertainties, i.e. a lower risk of
overestimating or underestimating LCOE.

To quantify the dispersion of the SPT plant systemmodel output
LCOE under uncertainty, Table 6 gives comparisons of the deter-
ministic and multi-objective robust optimum according to the
expectation and the variance of LCOE. The expected value of LCOE
and the standard deviation of LCOE at deterministic optimal point
are respectively 21.56 c/kWhe and 1.51 c/kWhe, and those at multi-
Table 4
Related values of the design parameters at design points A, B and C.

Point A Point B Point C

Dq1 (rad) 1.002l/r1 1.001l/r1 1.000l/r1
Dq2 (rad) 1.002l/r2 1.000l/r2 1.000l/r2
Dq3 (rad) 1.515l/r3 1.514l/r3 1.828l/r3
Dr1 (m) 0.867l 0.867l 0.868l
Dr2 (m) 0.866l 0.867l 0.867l
Dr3 (m) 2.235l 2.235l 2.203l
Dg1 (m) 0.948l 0.868l 0.963l
Dg2 (m) 2.399l 2.399l 2.400l
R (m) 3.71 4.28 4.51
THT (m) 133 143 143
H (h) 11.88 9.59 7.03
SM (�) 2.69 2.7 2.7
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objective robust optimal point are respectively 23.09 c/kWhe and
1.25 c/kWhe. Consequently, compared with the deterministic op-
timum, the multi-objective robust optimum reduces the standard
deviation of LCOE by 17.22 % while only increasing the expected
value of LCOE by 7.1 %. It further indicates that the multi-objective
robust optimum exhibits less sensitivity to the uncertain system
parameters and offers a better protection against economic risk at
the cost of a slight increase in the expected value of LCOE. As a
result, it is necessary to conduct multi-objective robust optimiza-
tion of the SPT plant system by incorporating uncertainties.

5.4. Sensitivity analysis of uncertainties

Based on the Pareto frontier solutions of the SPT plant system
under uncertainty, the Sobol’ global sensitivity method [49] is
applied to evaluate the importance ranking of uncertainties and the
interaction effects among uncertainties at design points A, B and C.
According to the decomposition of the total variance of the complex
nonlinear system model, the first-order sensitivity index (Si) and
the total sensitivity index (STi) of each uncertain parameter are
obtained. Si represents the effect of individual uncertain parameter
~pi on LCOE, while STi represents the impacts of ~pi and all its in-
teractions. Therefore, (STieSi) denotes the interaction effects of ~pi
Table 6
Comparisons of the deterministic and multi-objective robust optimum based on
uncertainty propagation.

Deterministic
optimum

Multi-objective robust
optimum

Relative
difference

expected value of
LCOE

21.56 c/kWhe 23.09 c/kWhe 7.1 %

standard deviation
of LCOE

1.51 c/kWhe 1.25 c/kWhe �17.22 %



Fig. 10. Total sensitivity indices of uncertainties on LCOE at design points A, B and C.

Table 7
Global sensitivity analysis results at design point A.

Si Rank STi Rank Contribution rate of STi

~p1 0.3606 1 0.3613 1 36.1 %
~p2 0.0008 13 0.0015 14 0.1 %
~p3 0.0018 12 0.0022 12 0.2 %
~p4 0.3533 2 0.352 2 35.1 %
~p5 0.0678 3 0.0649 3 6.5 %
~p6 0.0209 8 0.0204 8 2.0 %
~p7 0.0592 4 0.0596 4 6.0 %
~p8 0.0225 7 0.0236 7 2.4 %
~p9 0.0135 9 0.014 9 1.4 %
~p10 0.0119 10 0.0116 10 1.2 %
~p11 0.0005 14 0.0019 13 0.2 %
~p12 0.0286 6 0.0298 6 3.0 %
~p13 0.0064 11 0.0069 11 0.7 %
~p14 0.0505 5 0.0519 5 5.1 %
Sum 0.9983 1.0016 100 %

Table 8
Global sensitivity analysis results at design point B.

Si Rank STi Rank Contribution rate of STi

~p1 0.2339 2 0.2349 2 23.5 %
~p2 0.0007 13 0.0015 13 0.1 %
~p3 0.0005 14 0.001 14 0.1 %
~p4 0.4391 1 0.4376 1 43.7 %
~p5 0.1284 3 0.1245 3 12.4 %
~p6 0.0327 6 0.0318 6 3.2 %
~p7 0.0406 4 0.041 4 4.1 %
~p8 0.0332 5 0.0347 5 3.5 %
~p9 0.0181 9 0.0188 8 1.9 %
~p10 0.019 8 0.0186 10 1.9 %
~p11 0.0008 12 0.0025 12 0.2 %
~p12 0.0227 7 0.024 7 2.3 %
~p13 0.0115 11 0.012 11 1.2 %
~p14 0.0171 10 0.0188 8 1.9 %
Sum 0.9983 1.0017 100 %

Table 9
Global sensitivity analysis results at design point C.

Si Rank STi Rank Contribution rate of STi

~p1 0.0961 3 0.0972 3 9.7 %
~p2 0.0009 13 0.0017 13 0.2 %
~p3 0 14 0.0007 14 0.1 %
~p4 0.5333 1 0.5314 1 53.1 %
~p5 0.1847 2 0.1795 2 17.9 %
~p6 0.0366 4 0.0353 5 3.5 %
~p7 0.0205 8 0.0208 7 2.1 %
~p8 0.0357 5 0.0374 4 3.7 %
~p9 0.022 6 0.0228 6 2.2 %
~p10 0.0213 7 0.0206 8 2.1 %
~p11 0.0018 12 0.0038 12 0.4 %
~p12 0.0111 11 0.0123 11 1.2 %
~p13 0.0202 9 0.0206 8 2.1 %
~p14 0.0151 10 0.0167 10 1.7 %
Sum 0.9993 1.0008 100 %
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with other uncertainties [50].
The total sensitivity indices of uncertainties on LCOE at design

points A, B and C are shown in Fig. 10. Tables 7e9 list the detailed
global sensitivity analysis results at these three design points. At
the three design points, it is possible to observe that the model
output LCOE is most sensitive to the following uncertain parame-
ters: direct radiation (~p1), heliostat field cost (~p4) and receiver cost
(~p5). For instance, the contribution rates of STi of these three un-
certain parameters at design point A are 36.1 %, 35.1 % and 6.5 %,
respectively, which account for 77.7 % of the total contribution. The
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main reason might be that both ~p4 and ~p5 account for a large
proportion of the total plant capital cost and ~p1 has a significant
influence on the annual electricity output of the SPT plant, which
contribute to the LCOE as described in Eq. (3). Moreover, at design
point A, STi for ~p1, ~p4 and ~p5 are 0.3613, 0.352 and 0.0649, respec-
tively. STi for ~p1, ~p4 and ~p5 are 0.2349, 0.4376 and 0.1245, respec-
tively, at design point B. At design point C, STi for ~p1, ~p4 and ~p5 are
0.0972, 0.5314 and 0.1795, respectively. Consequently, with an
increasing expected value of LCOE (from point A to point C), the
effects of ~p4 and ~p5 on LCOE are enhanced while the impacts of ~p1
on LCOE decrease. This might occur because the total plant capital
cost has a greater influence on LCOE than that of the annual elec-
tricity output with an increasing expected value of LCOE.

Additionally, land cost (~p2), heliostat improvement cost (~p3) and
receiver coating emittance (~p11) are the most insensitive un-
certainties at design points A, B and C. For instance, the contribu-
tion rates of STi for ~p2, ~p3 and ~p11 at design point A are 0.1 %, 0.2 %
and 0.2 %, respectively, which are all less than 1 % of the total
contribution. This is mainly because ~p11 has little effect on the
thermal efficiency of the receiver, and the investment for ~p2 and ~p3
accounts for a low proportion of the total plant capital cost. The
importance rankings of other uncertain parameters vary with the
design points. For example, the importance rankings of the helio-
stat optical error (~p14) are 5, 8 and 10 at design points A, B and C,
respectively. The difference could be attributed to the lower impact
of the annual electricity output on LCOE with an increase in the
expected value of LCOE.

The sensitivity analysis results also show that almost no inter-
action effect exists in the uncertainties of the SPT plant system
according to (STieSi) and

P
Si. On the one hand, in terms of design

points A, B and C, the value of Si is very close to the value of STi for
each of these uncertainties. For example, Si and STi for ~p1 at design
point A are 0.3606 and 0.3613, respectively, hence (STieSi) is 0.0007.
This negligible difference supports that there is almost no inter-
action between ~p1 and other uncertainties. On the other hand,

P
Si

at design points A, B and C are 0.9983, 0.9983 and 0.9993, respec-
tively, which are very close to 1 and further suggest that the
interaction effects among uncertainties are negligible.
6. Conclusions

In this paper, based on the MC simulation and SA algorithm, the
multi-objective robust optimization of a molten salt SPT system
under uncertainty is presented, which reveals the trade-off be-
tween the expected value and the standard deviation of LCOE. The
main contributions of this work are summarized as follows.

(1) The Pareto frontier solutions are obtained for the multi-
objective robust optimization of the SPT plant system un-
der uncertainty, which indicate that a unique optimum does
not exist and the final optimal solution is decided by the
preference of the decision-maker. The one achieving the best
trade-off between optimization objectives is selectedwith an
expected value of LCOE of 23.09 c/kWhe and a standard de-
viation of LCOE of 1.25 c/kWhe.

(2) Compared with the deterministic optimal design, the multi-
objective robust optimum reduces the standard deviation of
LCOE by 17.22 % while only increasing the expected value of
LCOE by 7.1 %. It indicates that the multi-objective robust
optimum is less sensitive to the uncertainties and offers a
better protection against economic risk.

(3) The global sensitivity analysis results of uncertainties
demonstrate that direct radiation, heliostat field cost and
receiver cost have the greatest effects on the model output
10
LCOE at different design points, while the impacts of land
cost, heliostat improvement cost and receiver coating emit-
tance are the lowest. The interaction effects of all the un-
certain parameters are almost negligible.
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