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A B S T R A C T

This paper proposes a new isotropic bidirectional model for weakly nonlinear gravity–capillary waves
propagating between two incompressible, inviscid, and immiscible fluids of different densities. The newly
developed equation is a generalization of the celebrated two-dimensional Benjamin equation. It is derived based
on the nonlocal formulation of water wave (i.e., the Ablowitz–Fokas–Musslimani formulation) and computed
with the modified exponential time-differencing method. It is found that horizontally two-dimensional, fully
localized traveling waves (known as lumps) exist in the model equation, and plane solitary waves are unstable
subject to long transverse perturbations, which evolve into groups of lumps in the long-term dynamics.
When considering topographical disturbances on the rigid upper boundary, the nonlinear effect becomes
important when a uniform flow passes beneath a locally confined topography with a near-critical speed, and
the phenomenon of time-periodic shedding of lumps occurs. Unlike the near-critical situation, the subcritical
flows usually generate steady elevation waves, while the supercritical ones produce a V-shaped pattern of wake
lines. Furthermore, it is shown that a uniformly accelerated motion can also generate lumps provided that the
flow stays in the transcritical regime for a considerably long time.
1. Introduction

Interfacial waves propagating along the interface between two ho-
mogeneous fluids of different densities have a wide range of appli-
cations in nature and industry. In the present work, we focus on
nonlinear interfacial gravity–capillary waves in a three-dimensional
two-layer fluid system. The upper layer is bounded above by a non-flat
rigid wall, and the lower layer is of infinite depth. Gravity–capillary
(GC) waves arise when the effects of gravity and surface tension are
approximate, of equal importance. A new type of solitary wave was
found in free-surface GC waves in deep water about three decades ago.
These solutions feature oscillatory decaying tails and monotonically
decaying envelopes, and hence termed wavepacket solitary waves.
Theoretically, the existence of wavepacket solitary waves requires a
global phase speed minimum at a finite wavenumber in the linear
dispersion relation.

Studies on surface GC solitary waves date back to Longuet-Higgins
[1] and Vanden-Broeck & Dias [2], who numerically found two fun-
damental branches (depression waves and elevation waves) on a two-
dimensional fluid (corresponding to a one-dimensional free surface)
of infinite depth. In three dimensions (with a two-dimensional free
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surface), fully localized traveling-wave solutions, commonly referred
to as ‘lumps’, have received considerable attention in the past two
decades. Of note is the work of Berger & Milewski [3] who studied
the generation of lumps by a pressure forcing in a modified Benney–
Luke equation, Părău et al. [4] who first computed GC lumps in the
full Euler equations using a boundary integral equation method, Kim &
Akylas [5] who provided sufficient conditions for the existence of lumps
from an asymptotic point of view, Akers & Milewski [6] who proposed
a weakly nonlinear unidirectional model and investigated the stability
and dynamics of GC lumps, and Wang & Milewski [7,8] who proposed
a quantitative model based on the series truncation of the Dirichlet–
Neumann operator in the Hamiltonian framework and revisited the
transverse instability of plane GC solitary waves which led to a new
type of traveling waves (i.e., transversally periodic solitary waves). On
the experimental side, depression GC lumps were first generated under
controlled conditions by Diorio et al. [9], achieved by blowing air
towards the surface of the fluid and moving the air source with speed
close to the phase speed minimum. Similar experimental techniques
were further used to investigate oblique collisions between lumps by
vailable online 27 September 2021
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Masnadi & Duncan [10] and the transverse instability of plane solitary
waves by Park & Cho [11].

The systematic study on interfacial GC waves was pioneered by
Benjamin [12], who proposed a weakly nonlinear long-wave model
for the scenario when a thin layer lies on top of an infinitely deep
fluid of slightly higher density. In addition, Benjamin assumed a strong
interfacial tension, which could suppress the Kelvin–Helmholtz insta-
bility [13]. The Benjamin equation was generalized to two spatial
dimensions by Kim & Akylas [14] in the spirit of the Kadomtsev–
Petviashvili (KP) equation, namely, a unidirectional model with slight
inhomogeneity in the transverse direction. Both numerical and asymp-
totic features of the two-dimensional (2D) Benjamin equation were
thoroughly investigated in [14]. These authors showed the existence of
wavepacket lumps via a pseudo-spectral method and their algebraically
decaying tails due to the wave-induced mean flow. Under the same
scenario, linear stability analyses for plane solitary waves in the full
Euler equations subject to longitudinal and transverse perturbations
were carried out by Calvo & Akylas [15] and Kim [16], respectively.
When both layers are of infinite depth, wavepacket solitary waves
were also reported numerically in the full Euler equations for the
horizontally one-dimensional problem by Laget & Dias [17] and in the
reduced model equations for the horizontally two-dimensional problem
by Wang et al. [18].

While anisotropic unidirectional models have been successful in
many aspects of surface/interfacial wave problems, there are still some
limitations. Firstly, they cannot correctly describe the two-way prop-
agation of water waves, such as wave reflection/transmission across
the media interface and head on collisions of solitary waves. Sec-
ondly, it is not suitable to use an anisotropic model to study wave
phenomena whose transverse variations are similar to those in the
primary direction of propagation, such as the Kelvin wake and oblique
interactions between solitary waves. In the spirit of the Benney–Luke
equation (see [19]), we derived an isotropic bidirectional model equa-
tion for interfacial GC waves under Benjamin’s scenario. The newly
developed model modifies the classic Benney–Luke equation by adding
a linear pseudo-differential operator resulting from the existence of
the lower layer. On the other hand, it is a generalization of the 2D
Benjamin equation via loosing the scale constraints. Furthermore, we
assume a time-dependent topography disturbance on the rigid upper
boundary to study lump generation by a moving flow with a uniform
speed/acceleration.

The rest of the paper is organized as follows. In Section 2, we
present the derivation of the Benney–Luke-type model for interfacial
waves between shallow and deep fluids based on the Ablowitz–Fokas–
Musslimani formulation for water waves. A numerical algorithm based
on a symmetric factorization of the linear part of the isotropic model,
followed by the fourth-order Runge–Kutta exponential time differ-
encing scheme, is proposed in Section 3. We apply this numerical
procedure in Section 4 to study properties of interfacial GC waves,
including the existence of wavepacket solitary waves, transverse insta-
bility of plane solitary waves, various types of collisions between lumps,
and resonant responses caused by the localized topography disturbance
on the rigid upper wall. Finally, a conclusion is given in Section 5.

2. Derivation

2.1. Mathematical formulation

Consider a three-dimensional incompressible and inviscid fluid sys-
tem, composed by two immiscible layers with the lighter one being on
top of the heavier one. Two fluids are separated by a sharp interface 𝑧 =
𝜂(𝑥, 𝑦, 𝑡), where 𝑥 and 𝑦 are horizontal coordinates and the 𝑧-axis points
pwards with 𝑧 = 0 the undisturbed interface. The lower layer (denoted
y 𝐷−) is assumed to be semi-infinite, and the upper layer (denoted
y 𝐷+) is bounded on the top by impermeable wall 𝑧 = ℎ + 𝑏(𝑥, 𝑦, 𝑡)
arying in space and time where 𝑏(𝑥, 𝑦, 𝑡) is a prescribed function (see
2

he schematic description of the physical problem in Fig. 1). The density
f the fluid in each layer is supposed to be constant denoted by 𝜌+ and
− with 𝜌+ < 𝜌−, where superscripts ‘+ ’ and ‘−’ refer to fluid properties
ssociated with the upper and lower layers, respectively. The flow in
ach layer is supposed to be irrotational, and velocity potentials 𝜙± can
e introduced which satisfy the Laplace equation in respective domains,
amely

𝛥𝜙+ + 𝜙+
𝑧𝑧 = 0, for 𝜂(𝑥, 𝑦, 𝑡) < 𝑧 < ℎ + 𝑏(𝑥, 𝑦, 𝑡) ,

𝛥𝜙− + 𝜙−
𝑧𝑧 = 0, for 𝑧 < 𝜂(𝑥, 𝑦, 𝑡) ,

(2.1)

here 𝛥 = 𝜕𝑥𝑥+𝜕𝑦𝑦 is the two-dimensional horizontal Laplace operator.
n the interface 𝑧 = 𝜂(𝑥, 𝑦, 𝑡), the nonlinear kinematic and dynamic
oundary conditions read:

𝑡 = 𝜙−
𝑧 − ∇𝜙− ⋅ ∇𝜂 = 𝜙+

𝑧 − ∇𝜙+ ⋅ ∇𝜂 , (2.2)

0 = 𝜌−𝜙−
𝑡 − 𝜌+𝜙+

𝑡 +
𝜌+

2

[

|∇𝜙+
|

2 + (𝜙+
𝑧 )

2
]

−
𝜌−

2
[

|∇𝜙−
|

2 + (𝜙−
𝑧 )

2]

+ 𝜎∇ ⋅

⎡

⎢

⎢

⎢

⎣

∇𝜂
√

1 + |∇𝜂|2

⎤

⎥

⎥

⎥

⎦

, (2.3)

here ∇ and ∇⋅ are the horizontal gradient and horizontal divergent
perators, respectively, 𝑔 is the acceleration due to gravity, and 𝜎 is
he surface tension coefficient. Finally, the boundary conditions

+
𝑧 − ∇𝑏 ⋅ ∇𝜙+ = 𝑏𝑡 , at 𝑧 = ℎ + 𝑏(𝑥, 𝑦, 𝑡) , (2.4)

𝜙−
𝑧 → 0 , as 𝑧→ −∞ , (2.5)

omplete the whole system.

.2. Ablowitz–Fokas–Musslimani formulation

Recently, Ablowitz et al. [20] introduced an explicit non-local for-
ulation for the classical water-wave problem in two and three dimen-

ions. It was later generalized to include the time-dependent bottom
opography by Curtis & Shen [21] and to study interfacial waves in
wo-fluid systems by Haut & Ablowitz [22] and Yuan et al. [23].
n the subsequent analyzes, we briefly describe the Ablowitz–Fokas–
usslimani method and its generalization to the present problem. First

f all, it is straightforward to verify that the following identity

0 =
(

𝜙±
𝑧 𝜓𝑥 + 𝜙

±
𝑥𝜓𝑧

)

𝑥 +
(

𝜙±
𝑧 𝜓𝑦 + 𝜙

±
𝑦 𝜓𝑧

)

𝑦
+
(

𝜙±
𝑧 𝜓𝑧 − 𝜙

±
𝑥𝜓𝑥 − 𝜙

±
𝑦 𝜓𝑦

)

𝑧

(2.6)

olds for arbitrary harmonic function 𝜓 . Applying the divergence the-
rem to Eq. (2.6) in the upper layer, one obtains

0 =∫

[

−𝑏𝑥
(

𝜙+
𝑧 𝜓𝑥 + 𝜙

+
𝑥𝜓𝑧

)

− 𝑏𝑦
(

𝜙+
𝑧 𝜓𝑦 + 𝜙

+
𝑦 𝜓𝑧

)

+
(

𝜙+
𝑧 𝜓𝑧 − ∇𝜙+ ⋅ ∇𝜓

)

]

𝑧=ℎ+𝑏
d𝐫

+ ∫

[

𝜂𝑥
(

𝜙+
𝑧 𝜓𝑥 + 𝜙

+
𝑥𝜓𝑧

)

+ 𝜂𝑦
(

𝜙+
𝑧 𝜓𝑦 + 𝜙

+
𝑦 𝜓𝑧

)

−
(

𝜙+
𝑧 𝜓𝑧 − ∇𝜙+ ⋅ ∇𝜓

)

]

𝑧=𝜂
d𝐫 ,

(2.7)

here 𝐫 = (𝑥, 𝑦)⊤ is the vector of horizontal coordinates. Substituting
= 𝑒i𝐤⋅𝐫+𝑘𝑧 into Eq. (2.7) yields

0 = ∫ 𝑒i𝐤⋅𝐫+𝑘(𝜂−ℎ)
(

−𝑘𝜂𝑡 + i𝐤 ⋅ ∇𝛷+) d𝐫 + ∫ 𝑒i𝐤⋅𝐫+𝑘𝑏
(

𝑘𝑏𝑡 − i𝐤 ⋅ ∇𝛷𝑏) d𝐫 ,

(2.8)

here 𝐤 = (𝑘𝑥, 𝑘𝑦)⊤ is the wavenumber vector, 𝑘 =
√

𝑘2𝑥 + 𝑘2𝑦 is its
modulus, and the velocity potentials on two boundaries are denoted by
𝛷+ = 𝜙+(𝑥, 𝑦, 𝜂, 𝑡) and 𝛷𝑏 = 𝜙+(𝑥, 𝑦, 𝑏, 𝑡), respectively. Upon noting that
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Fig. 1. Schematic description of the physical problem.
𝑒i𝐤⋅𝐫−𝑘𝑧 is also a solution to the Laplace equation, it is easy to verify
that

0 = ∫ 𝑒i𝐤⋅𝐫−𝑘(𝜂−ℎ)
(

𝑘𝜂𝑡 + i𝐤 ⋅ ∇𝛷+) d𝐫 − ∫ 𝑒i𝐤⋅𝐫−𝑘𝑏
(

𝑘𝑏𝑡 + i𝐤 ⋅ ∇𝛷𝑏) d𝐫 .

(2.9)

Adding and subtracting Eqs. (2.8) and (2.9), one then obtains

0 = ∫ 𝑒i𝐤⋅𝐫
[

−𝑘 sinh(𝑘(𝜂 − ℎ))𝜂𝑡 + i𝐤 ⋅ ∇𝛷+ cosh(𝑘(𝜂 − ℎ))

+ 𝑘 sinh(𝑘𝑏)𝑏𝑡 − i𝐤 ⋅ ∇𝛷𝑏 cosh(𝑘𝑏)
]

d𝐫
(2.10)

and

0 =∫ 𝑒i𝐤⋅𝐫
[

−cosh(𝑘(𝜂 − ℎ))𝜂𝑡 + i𝐤 ⋅ ∇𝛷+ sinh(𝑘(𝜂 − ℎ))
𝑘

+ cosh(𝑘𝑏)𝑏𝑡 − i𝐤 ⋅ ∇𝛷𝑏 sinh(𝑘𝑏)
𝑘

]

d𝐫 .
(2.11)

In the same vein, one can obtain the global relation for the lower layer
as

0 = ∫ 𝑒i𝐤⋅𝐫
(

𝑘𝜂𝑡 − i𝐤 ⋅ ∇𝛷−) 𝑒𝑘𝜂 d𝐫 , (2.12)

where 𝛷− = 𝜙−(𝑥, 𝑦, 𝜂, 𝑡). If we denote by 𝑅 = 𝜌−∕𝜌+ > 1 the density
ratio, then the dynamic boundary condition on the interface can be
rewritten as

0 =(𝛷+ − 𝑅𝛷−)𝑡 − (𝑅 − 1)𝑔𝜂 + 1
2
|∇𝛷+

|

2 − 𝑅
2
|∇𝛷−

|

2 −
(𝜂𝑡 + ∇𝜂 ⋅ ∇𝛷+)2

2(1 + |∇𝜂|2)

+
𝑅(𝜂𝑡 + ∇𝜂 ⋅ ∇𝛷−)2

2(1 + |∇𝜂|2)
+ 𝜎
𝜌+

∇ ⋅

⎡

⎢

⎢

⎢

⎣

∇𝜂
√

1 + |∇𝜂|2

⎤

⎥

⎥

⎥

⎦

.

(2.13)

To continue the derivation, we introduce the Boussinesq scaling

𝑥, 𝑦 ∼ 𝐿 , 𝑏, 𝜂 ∼ 𝑎 , 𝑡 ∼ 𝐿
√

𝑔ℎ(𝑅 − 1)
, 𝛷±,𝑏 ∼

𝑎𝑔𝐿
√

𝑅 − 1
√

𝑔ℎ
,

where 𝐿 is typical length scale in horizontal directions and 𝑎 stands
for the characteristic wave amplitude. Small parameters 𝜖 = 𝑎∕ℎ and
𝜇 = ℎ∕𝐿 are introduced to measure the nonlinearity and dispersion,
respectively, and in addition, we assume these two parameters are of
the same order, namely 𝜖 = 𝑂(𝜇). After nondimensionalization, the
3

global relations (2.10)–(2.12) read

0 =∫ 𝑒i𝐤⋅𝐫
[

−𝜇𝑘 sinh(𝜇𝑘(𝜖𝜂 − 1))𝜂𝑡 + i𝐤 ⋅ ∇𝛷+ cosh(𝜇𝑘(𝜖𝜂 − 1))
]

d𝐫

+ ∫ 𝑒i𝐤⋅𝐫
[

𝜇𝑘 sinh(𝜖𝜇𝑘𝑏)𝑏𝑡 − i𝐤 ⋅ ∇𝛷𝑏 cosh(𝜖𝜇𝑘𝑏)
]

d𝐫 ,

(2.14)

0 =∫ 𝑒i𝐤⋅𝐫
[

−cosh(𝜇𝑘(𝜖𝜂 − 1))𝜂𝑡 + i𝐤 ⋅ ∇𝛷+ sinh(𝜇𝑘(𝜖𝜂 − 1))
𝜇𝑘

]

d𝐫

+ ∫ 𝑒i𝐤⋅𝐫
[

cosh(𝜖𝜇𝑘𝑏)𝑏𝑡 − i𝐤 ⋅ ∇𝛷𝑏 sinh(𝜖𝜇𝑘𝑏)
𝜇𝑘

]

d𝐫 ,
(2.15)

and

0 = ∫ 𝑒i𝐤⋅𝐫
(

𝜇𝑘𝜂𝑡 − i𝐤 ⋅ ∇𝛷−) 𝑒𝜖𝜇𝑘𝜂 d𝐫 . (2.16)

While the dynamic boundary condition becomes

0 = (𝛷+ − 𝑅𝛷−)𝑡 − 𝜂 +
𝜖
2
|∇𝛷+

|

2 − 𝜖𝑅
2

|∇𝛷−
|

2 −
𝜖𝜇2

2
(𝜂𝑡 + 𝜖∇𝜂 ⋅ ∇𝛷+)2

1 + 𝜖2𝜇2|∇𝜂|2

+
𝜖𝜇2𝑅
2

(𝜂𝑡 + 𝜖∇𝜂 ⋅ ∇𝛷−)2

1 + 𝜖2𝜇2|∇|2
+ 𝐵𝜇2∇ ⋅

⎡

⎢

⎢

⎢

⎣

∇𝜂
√

1 + 𝜖2𝜇2|∇𝜂|2

⎤

⎥

⎥

⎥

⎦

,

(2.17)

where 𝐵 = 𝜎∕(𝜌− − 𝜌+)𝑔ℎ2 is called the Bond number for interfacial
waves. In the present context, we assume 𝐵 ≫ 1 (∼ 1∕𝜇), an assumption
first used by Benjamin [12] and later on generalized by Kim & Aky-
las [14] and Haut & Ablowitz [22] among others. Taking the Maclaurin
series expansions for the global relations and retaining terms valid up
to 𝑂(𝜖, 𝜇), we have

0 = ∫ 𝑒i𝐤⋅𝐫
(

i𝐤 ⋅ ∇𝛷+ − i𝐤 ⋅ ∇𝛷𝑏) d𝐫 , (2.18)

0 = ∫ 𝑒i𝐤⋅𝐫
[

−𝜂𝑡 + i𝐤 ⋅ ∇𝛷+(𝜖𝜂 − 1) + 𝑏𝑡 − i𝐤 ⋅ ∇𝛷𝑏(𝜖𝑏)
]

d𝐫 , (2.19)

0 = ∫ 𝑒i𝐤⋅𝐫
(

𝜇𝑘𝜂𝑡 − i𝐤 ⋅ ∇𝛷−) d𝐫 . (2.20)

Similarly, one can obtain the approximation of the dynamic boundary
condition

(𝛷+ − 𝑅𝛷−)𝑡 − 𝜂 +
𝜖
2
|∇𝛷+

|

2 − 𝜖𝑅
2

|∇𝛷−
|

2 + 𝐵𝜇2𝛥𝜂 = 0 . (2.21)

Upon noting i𝐤 ∼ −∇ and 𝑘2 ∼ −𝛥, we can translate the global relations
(2.18)–(2.20) to pseudo-differential equations based on the inverse
Fourier transform. The integral (2.18) implies 𝛷𝑏 = 𝛷+ therefore we
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can decouple 𝛷𝑏 from the system. While the integrals (2.19) and (2.20)
can be recast to

𝜂𝑡 = 𝛥𝛷+ + 𝑏𝑡 − 𝜖∇ ⋅ 𝜂∇𝛷+ + 𝜖∇ ⋅ 𝑏∇𝛷𝑏 , (2.22)

𝜂𝑡 = (−𝛥)1∕2𝛷−∕𝜇 . (2.23)

If we denote by 𝜉 = 𝛷+ −𝑅𝛷− the potential jump across the interface,
then combining Eqs. (2.22) and (2.23) yields

𝛷+ = 𝜉 + 𝜇𝑅(−𝛥)−1∕2(𝛥𝜉 + 𝑏𝑡) + 𝑂(𝜖𝜇, 𝜇2) . (2.24)

Taking the time derivative of Eq. (2.21) and replacing 𝜂𝑡 with Eq. (2.22),
one arrives at
𝜉𝑡𝑡 − 𝛥𝛷+ − 𝑏𝑡 + 𝜖∇ ⋅ 𝜂∇𝛷+ − 𝜖∇ ⋅ 𝑏∇𝛷+

+ 𝜖
2
|∇𝛷+

|

2
𝑡 + 𝐵𝜇

2𝛥(𝛥𝛷+ + 𝑏𝑡) = 0 .
(2.25)

To eliminate 𝛷+ and 𝜂, we substitute Eq. (2.24) into Eq. (2.25) and
replace 𝜂 with 𝜉𝑡. It then follows that

0 = 𝜉𝑡𝑡 − 𝛥𝜉 − 𝜇𝑅(−𝛥)3∕2𝜉 + 𝐵𝜇2𝛥2𝜉 + 𝜖
(

|∇𝜉|2𝑡 + 𝜉𝑡𝛥𝜉
)

− 𝑏𝑡 + 𝜇𝑅(−𝛥)1∕2𝑏𝑡 + 𝐵𝜇2𝛥𝑏𝑡 − 𝜖∇ ⋅ 𝑏∇𝜉 .
(2.26)

Eq. (2.26) is an isotropic model describing bidirectional propagation
of interfacial GC waves. It modifies the classic Benney–Luke equation
by adding a linear non-local term when the topographic effect is
neglected (i.e. 𝑏 = 0). It is also noted that Eq. (2.26) reduces to the 2D
Benjamin equation in the unidirectional and quasi-three-dimensional
approximation, but we omit the detailed derivation here.

A modification of Eq. (2.26) is usually required to regularize the
linear dispersion relation. Upon noting that 𝛥𝜉 = 𝜉𝑡𝑡 − 𝑏𝑡 + 𝑂(𝜖, 𝜇),
Eq. (2.26) can be rewritten as

0 =
[

1 + 𝜇𝑅(−𝛥)1∕2
]

𝜉𝑡𝑡 − 𝛥𝜉 + 𝐵𝜇2𝛥2𝜉 + 𝜖
(

|∇𝜉|2𝑡 + 𝜉𝑡𝛥𝜉
)

− 𝑏𝑡 + 𝐵𝜇2𝛥𝑏𝑡 − 𝜖∇ ⋅ 𝑏∇𝜉 .
(2.27)

Eq. (2.27) is the primary model used in the subsequent computa-
tions. We shall henceforth call this the Benjamin–Benney–Luke (BBL)
equation.

3. Numerical method

The exponential time differencing method (ETD) is a class of time-
discretization schemes for solving nonlinear evolution equations. The
fundamental idea is to perform exact integration of the governing equa-
tions followed by an approximation of the integral involving the non-
linear terms [24]. It was originally used in the field of computational
electrodynamics and the interested readers are referred to [25] for a
comprehensive review. Cox and Matthews [25] first derived explicit
ETD schemes of arbitrary order and combined them with the Runge–
Kutta method, which was then termed the ‘ETDRK’ method. Kassam
& Trefethen [26] systematically compared numerical solutions of the
ETDRK scheme with the competing methods of implicit–explicit differ-
encing, integrating factors, time-splitting, and Fornberg and Driscoll’s
‘slider’ for four PDEs in a one-dimensional domain: the Korteweg–
de Vries, Kuramoto–Sivashinsky, Burgers’, and Allen–Cahn equations.
Their numerical results suggested that the ETD scheme generally out-
performed the others in solving stiff PDEs. There are relatively fewer
studies on applications of the ETD scheme to spatially two-dimensional
problems. Of note is the work of Hoz & Vadillo [27] who applied the
ETD scheme to the ‘2+1’ nonlinear Schrödinger equation and Asgari
& Hosseini [28] who focused on the ‘2+1’ nonlinear sine–Gordon
equation. However, the ETD method has barely been combined with
free-surface or interfacial wave problems.

In the present work, we extend the ETDRK method to the interfacial
wave problem, i.e., the bidirectional model (2.27). In the following
we briefly sketch the numerical scheme for solving a second-order
nonlinear dispersive wave equation. We first write the PDE in an
abstract form

2 (3.1)
4

𝜉𝑡𝑡 +  𝜉 =  (𝜉, 𝜉𝑡, 𝑡) ,
where 𝜉(𝑥, 𝑦, 𝑡) is a real function, 2 is a non-negative linear operator
normally involving spatial derivatives, and  includes nonlinear and
forcing terms. Following Milewski & Tabak [29], we factor the linear
part of Eq. (3.1) which yields
( 𝜕
𝜕𝑡

− i
)( 𝜕

𝜕𝑡
+ i

)

𝜉 =  (𝜉, 𝜉𝑡, 𝑡) . (3.2)

ntroducing 𝑢 = 𝜉𝑡 + i𝜉 gives 𝜉𝑡 = Re(𝑢) and 𝜉 = Im(𝑢), and Eq. (3.2)
an be rewritten as

𝑡 − i𝑢 =  (𝑢, 𝑡) . (3.3)

ssuming that Eq. (3.1) is subject to spatially periodic boundary con-
itions, it is natural to numerically solve the equation via the standard
seudo-spectral method. Taking the Fourier transform of Eq. (3.3) in
patial variables yields

̂𝑡 − î�̂� = ̂ (�̂�, 𝑡) , (3.4)

here the dependence of Fourier coefficients on the wavenumber
𝑘𝑥, 𝑘𝑦) has been suppressed for ease of notations. We integrate Eq. (3.4)
rom 𝑡𝑛 to 𝑡𝑛+1 by using the method of integrating factors, which yields

̂(𝑡𝑛+1) = 𝑒îℎ�̂�(𝑡𝑛) + 𝑒îℎ
∫

ℎ

0
𝑒−î𝜏̂

(

�̂�(𝑡𝑛 + 𝜏), 𝑡𝑛 + 𝜏
)

d𝜏 , (3.5)

here ℎ = 𝑡𝑛+1 − 𝑡𝑛 is the time step. The formula (3.5) is exact and
he key is to find a good numerical approximation for the integrand.
n this respect, a pioneering work was due to Cox & Matthews [25]
ho used a generating function to obtain a sequence of recurrence

ormulae that could provide arbitrary order polynomial approximations
f the integrand. Furthermore, they combined the ETD method with
he Runge–Kutta scheme and generalized it to non-diagonal operators.
ased on their results, in the current paper we use the ETD method
oupled with the fourth-order Runge–Kutta scheme for time-stepping,
hich is termed the ETDRK4 hereafter. The numerical scheme can be
xpressed as follows:

𝑎𝑛 = 𝑒îℎ∕2�̂�𝑛 +
(

î
)−1 (𝑒îℎ∕2 − 1

)

̂ (�̂�𝑛, 𝑡𝑛) ,

𝑏𝑛 = 𝑒îℎ∕2�̂�𝑛 +
(

î
)−1 (𝑒îℎ∕2 − 1

)

̂ (𝑎𝑛, 𝑡𝑛 + ℎ∕2) ,

𝑐𝑛 = 𝑒îℎ∕2𝑎𝑛 +
(

î
)−1 (𝑒îℎ∕2 − 1

) [

2̂ (𝑏𝑛, 𝑡𝑛 + ℎ∕2) − ̂ (�̂�𝑛, 𝑡𝑛)
]

,

�̂�𝑛+1 = 𝑒îℎ�̂�𝑛 + 𝛼̂ (�̂�𝑛, 𝑡𝑛) + 2𝛽
[

̂ (𝑎𝑛, 𝑡𝑛 + ℎ∕2) + ̂ (𝑏𝑛, 𝑡𝑛 + ℎ∕2)
]

+ 𝛾̂ (𝑐𝑛, 𝑡𝑛 + ℎ∕2) ,

(3.6)

here �̂�𝑛 is short for �̂�(𝑡𝑛), and 𝛼, 𝛽, 𝛾 are coefficients given by

𝛼 = ℎ−2
(

î
)−3 [−4 − îℎ + 𝑒îℎ

(

4 − 3îℎ +
(

îℎ
)2)] , (3.7)

𝛽 = ℎ−2
(

î
)−3 [2 + îℎ + 𝑒îℎ (−2 + îℎ

)

]

, (3.8)

𝛾 = ℎ−2
(

î
)−3 [−4 − 3îℎ −

(

îℎ
)2 + 𝑒îℎ (4 − îℎ

)

]

. (3.9)

It should be pointed out that the coefficients given by (3.7)–(3.9) are
not singular when ̂ = 0 considering cancellations in their Taylor
expansions. Finally, it is worth mentioning that the expressions of 𝜉
and 𝜉𝑡 can be recovered as

𝜉(𝑘𝑥, 𝑘𝑦, 𝑡) =
�̂�(𝑘𝑥, 𝑘𝑦, 𝑡) − �̂�∗(−𝑘𝑥,−𝑘𝑦, 𝑡)

i
[

̂(𝑘𝑥, 𝑘𝑦) + ̂∗(−𝑘𝑥,−𝑘𝑦)
]
, (3.10)

𝜉𝑡(𝑘𝑥, 𝑘𝑦, 𝑡) =
̂∗(−𝑘𝑥,−𝑘𝑦)�̂�(𝑘𝑥, 𝑘𝑦, 𝑡) + ̂(𝑘𝑥, 𝑘𝑦)�̂�∗(−𝑘𝑥,−𝑘𝑦, 𝑡)

̂(𝑘𝑥, 𝑘𝑦) + ̂∗(−𝑘𝑥,−𝑘𝑦)
, (3.11)

where the asterisk denotes complex conjugation. For the BBL equation,
̂(0, 0)=0 and hence 𝜉(0, 0, 𝑡) cannot be recovered from Eq. (3.10). In-

̂
stead, 𝜉(0, 0, 𝑡) should be updated numerically by integrating Eq. (3.11).
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Fig. 2. (a) Bifurcation diagrams of plane solitary waves (dashed curve) and lumps (solid curve) in Eq. (4.1), both of which bifurcate from infinitesimal periodic waves at 𝑐 ≈ 0.987.
Here 𝜖 = 0.1, 𝜇 = 0.1, 𝐵 = 10, and 𝑅 = 1.05 are used. (b) The top one is the 𝑥-cross-section of the plane solitary wave corresponding to ‘𝑏’ on the bifurcation curve (𝑐 = 0.8,
𝜂(0, 0) = 5.156), and the bottom one is the 𝑥-cross-section (dashed curve) and 𝑦-cross-section (solid curve) of the lump corresponding to ‘𝑎’ on the bifurcation curve (𝑐 = 0.8,
𝜂(0, 0) = 7.4124). (c) Wave profile of the lump. (d) Contour plot of the lump.
4. Results

4.1. Existence of solitary waves

There exist both plane solitary waves (1D solitary waves trivially
extended in the transverse direction) and lumps (traveling waves that
are localized in all horizontal directions) when gravity and surface
tension are equally important. The existence of lumps in nonlinear
dispersive equations has been confirmed by exact solutions of the KP-I
equation, and numerical results of the Benney–Luke equation [3], the
2D Benjamin equation [14], and the full Euler equations [4], among
others. Since Eq. (2.27) is a generalization of the 2D Benjamin equation,
it is natural to search for free lumps in the BBL equation. For this
purpose, the Petviashvili method is applied for computations. The basic
principle behind the method is to convert the governing equation into
Fourier space supplemented by a normalization factor upon the degree
of nonlinearity, which can effectively prevent the numerical scheme
from diverging (see also [20]). Assuming a lump propagates with speed
𝑐 in the 𝑥-direction, that is to say, 𝜉(𝑥, 𝑦, 𝑡) = 𝜉(𝑥 − 𝑐𝑡, 𝑦), and applying
5

the Fourier transform to Eq. (2.27) with 𝑏 = 0, one obtains

𝜉 =
𝜖𝑐

(

i𝑘𝑥 |̂∇𝜉|
2 + 𝜉𝑥𝛥𝜉

)

−𝑐2𝑘2(1 + 𝜇𝑅𝑘) + 𝑘2 + 𝐵𝜇2𝑘4
≜ 

[

𝜉
]

, (4.1)

where ‘hat’ denotes the Fourier transform and 𝑘 is the modulus of the
wavenumber vector. To prevent unlimited increase or decrease of the
modulus of 𝜉, a multiplier needs to be introduced in every iteration step
(see [20] for example). Finally, the iteration scheme reads

𝜉𝑛+1 = 𝛼𝑛[𝜉𝑛] with 𝛼𝑛 =
∬ |𝜉𝑛|

2d𝑘𝑥d𝑘𝑦

∬ 𝜉∗𝑛[𝜉𝑛]d𝑘𝑥d𝑘𝑦
. (4.2)

Considering the insensitivity of the numerical scheme to initial data, a
Gaussian type function is selected as the initial guess of wave profile in
the numerical procedure.

Fig. 2 shows the bifurcation diagrams for both plane solitary waves
and lumps as well as typical wave profiles. The ‘speed–amplitude’
bifurcation curves in Fig. 2(a) indicate that both plane solitary waves
(dashed curve) and lumps (solid curve) bifurcate at 𝑐 ≈ 0.987 and
feature a monotonic decreasing behavior. In contrast to the Benjamin
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Fig. 3. (a–c) Time evolution of a plane solitary wave (shown in Fig. 2(b)) subject to a long transverse perturbation shows the emergence of a stable lump with speed 𝑐 ≈ 0.47.
he disturbance is shown in a frame moving to the right with the speed of the undisturbed plane solitary wave. (d) The formation of a group of lumps. (e, f) Comparison of the

ump emerged from the transverse instability (dash curve) with the exact traveling-wave solution (solid curve) for: (e) 𝑥-cross-section and (f) 𝑦-cross-section.
a

quation which admits both elevation and depression types of solitary
aves (see [14,15] for details), only elevation waves which feature
positive displacement at their center are found in Eq. (4.1) for

ositive 𝑐. The 𝑥-cross-section of a plane solitary wave (corresponding
o the point ‘𝑏’ in 2(a)) and the 𝑥- and 𝑦-cross-sections of a lump
corresponding to the point ‘𝑎’ in 2(a)) are plotted in 2(b). Finally,
he lump’s profile and contour plot are displayed in 2(c) and 2(d),
espectively.

.2. Transverse instability

The transverse instability of plane solitary waves is a classic prob-
em. Kadomtsev & Petviashvili [30] first demonstrated that when sur-
ace tension is strong, the KdV solitons are unstable subject to trans-
erse perturbations and evolve into lumps. A general criterion for the
ong-wave transverse instability of plane solitary waves was established
6

by Bridges [31]. Kim & Akylas [14] studied the transverse instability
of interfacial GC plane solitary waves via asymptotic analysis and
numerical simulation in the framework of the 2D Benjamin equation.
Kim [16] further generalized the result to the full Euler equations based
on a linear analysis.

Motivated by the results in the 2D Benjamin equation, we check
the transverse instability of plane elevation solitary waves for the
model (2.27) in the absence of topography (i.e. 𝑏 = 0). By virtue of
the EDTRK4 method proposed in Section 3, we numerically integrate
Eq. (2.27) in a periodic box of 30𝜋×15𝜋 with 512 × 256 Fourier modes
along the propagating and transverse directions, respectively, and apply
the de-aliased technique with a doubling of Fourier modes to eliminate
aliasing errors. The parameters are chosen as 𝜖 = 0.1, 𝜇 = 0.1, 𝐵 = 10,
nd 𝑅 = 1.05, with the time step of 𝛥𝑡 = 0.01. A typical example is

shown in Fig. 3. The initial condition in the experiment is taken as the
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Fig. 4. Snapshots of a head-on collision of lumps. The initial data are prepared by superposing two different lumps traveling in opposite directions with the left one characterized
by 𝑐 = 0.59, ‖𝜂‖∞ = 13.99 and the right one by 𝑐 = 0.665, ‖𝜂‖∞ = 11.89. After the collision, the amplitudes of lumps are 11.41 (left) and 13.66 (right) at 𝑡 = 64.
form

𝜉(𝑥, 𝑦, 𝑡 = 0) = 𝜁 (𝑥)
[

1 + 0.01 cos
(

2𝑦
15

)]

, (4.3)

where 𝜁 (𝑥) is the plane solitary-wave solution presented in Fig. 2(b)
(the top figure). The initial data is perturbed by a long cosine function
in the transverse direction and the subsequent evolution shows a focus-
ing behavior which is arrested by the appearance of an elevation lump
propagating with speed 𝑐 ≈ 0.47 behind the rest of the disturbance (see
Fig. 3(c)), and the long-term evolution of the system is the formation of
a group of lumps with small dispersions. This fact indicates that lumps
are a global attractor of the BBL equation for a large class of initial
conditions.

To validate our numerical algorithm, we compare the results of
the ETDRK4 computations with those obtained from the method of
integrating factors detailedly described in [29]. The averaged error at
𝑡 = 160 between the two methods is of order 10−7, providing a good
verification for our codes. Figs. 3(e)–3(f) demonstrate the comparisons
of 𝑥- and 𝑦-cross-sections between the resultant lump from the ETDRK4
method (dashed lines) and the exact traveling-wave solution obtained
based on the Petviashvili scheme (solid line), which show remarkable
7

agreement.
4.3. Collisions

As illustrated in the last section, plane solitary waves subject to
long disturbances transverse to the direction of propagation eventually
evolve into lumps. This fact indicates that elevation lumps are stable
in the BBL equation and ulteriorly stimulates us to investigate lump
interactions for understanding the ‘soliton’ properties of these solutions.
For this purpose, the ETDRK4 algorithm proposed in Section 3 is
applied with initial data being the superposition of two lumps of the
BBL equation propagating with different velocities. We choose the com-
putational domain, assumed periodic, and the initial location of lumps
such that they have effectively decayed to zero within a reasonable
distance of each other and the boundaries.

In the numerical experiments of head-on and overtaking collisions,
a 30𝜋 ×15𝜋 computational domain discretized with a 512 × 256 grid is
adopted, and the time step 𝛥𝑡 is set to 0.01. An example of the head-on
collision is shown in Fig. 4, where waves move in opposite directions,
towards each other, with their centers aligned. The interacting time
between the two waves is so short that there appears to be no visible
nonlinear effect except for very small oscillations shown in Fig. 4(c)
resulting from small inelasticity of the collision. An example of the
overtaking collision is shown in Fig. 5, where both waves move in
the same direction with their centers aligned and the smaller (faster)
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b

Fig. 5. Snapshots of an overtaking collision of lumps. The initial data are prepared by superposing two different lumps traveling in the same direction with the left one characterized
y 𝑐 = 0.665, ‖𝜂‖∞ = 11.89 and the right one by 𝑐 = 0.59, ‖𝜂‖∞ = 13.99. The images are shown in a frame of reference moving to the right at the speed of the mean of two lumps.

After the collision, there exists only one big lump with the amplitude of 14.70.
wave overtakes the larger (slower) one. The overtaking collision reveals
considerable nonlinear interactions and only one big lump survives the
collision which features a larger amplitude than both initial lumps and
a radiated wave field.

Lumps can travel in any horizontal direction in an isotropic model
equation, therefore it is interesting to collide two lumps obliquely. In
an oblique collision, two lumps are initially placed on two sides of
the 𝑥-axis with mirror symmetry and converge towards the axis at the
incident angle of 𝛼. Fig. 6 shows contour plots of solution at different
moments, where the angle 𝛼 = 10◦ and the computational domain is
75𝜋 × 150𝜋 discretized with a 512 × 1024 grid. Both solitary waves
have the amplitude of 3.053 and the speed of 0.9139 in the direction
of propagation. A smooth nonlinear interaction with lumps emerging
intact after the collision can be observed in Fig. 6 and the phase shift
phenomenon due to the nonlinear process is clearly shown in Fig. 7.
The circles in Fig. 7 indicate the predicated location of the center of
each lump from 𝑡 = 0 to 𝑡 = 1650, while the ×’s mark the actual
computed location and illustrate the phase shift due to the collision,
that is a phase lead of 10.02 in 𝑥 and a phase lag of 33.94 in 𝑦 at
𝑡 = 1650. Given the grid resolution for this numerical experiment,
𝛥𝑥 = 𝛥𝑦 = 0.46, the measured phase shift is significant. If we change
the incident angle 𝛼 and the amplitude of lumps, there is no obvious
8

phase shift in some computations. An example for this type of oblique
collision is shown in Fig. 8, where 𝛼 = 45◦, ‖𝜂‖∞ = 5.667, and
𝑐 = 0.8485. Two lumps of equal amplitude pass quickly through one
another and produce no measurable phase shift, which may result from
an insufficient energy exchange.

4.4. Generation of lumps by resonant flows beneath topography

In past decades, much attention has been paid to the generation
and propagation of nonlinear waves due to external moving pressure.
The conventional wisdom in this research field is to use the forced
KdV and KP equations to study free-surface flows over variable bottom
topography, and the interested readers are referred to [32] for a com-
prehensive review. In 3D pure gravity waves, Milewski & Tabak [29]
numerically computed transient solutions to the generalized Benney–
Luke equation at the critical speed of shallow water. Whereafter, Berger
& Milewski [3] investigated the generation and evolution of lumps in
surface-tension-dominated flows based on the modified Benney–Luke
equation.

Since stable lumps exist in the free BBL equation, the next logical
step is to study whether they can be generated when a uniform/non-
uniform in time flow passes beneath a localized topography. We let
𝑧 = ℎ + 𝑏(𝑥, 𝑦, 𝑡) the top rigid lid, where ℎ is constant and 𝑏 is a func-

tion with compact support (a negative 𝑏 corresponds to a downward
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Fig. 6. An oblique collision between two lumps with equal amplitude traveling at the incident angle of 10◦ to the 𝑥-axis.
Fig. 7. The path of center of lumps of equal amplitude traveling from left to right at the incident angle of 10◦ to the 𝑥-axis. The circles indicate the predicated location of the
center of each lump at 𝑡 = 50 intervals from 𝑡 = 0 to 𝑡 = 1650 based on the solitary wave’s known speed. The ×’s mark the actual computed location and illustrate the phase shift
due to the collision. Tracking the center of each solitary wave is impossible in the interaction region.
bulge). Particularly, we assume that the prescribed function 𝑏 is time
dependent, therefore it can be used to model a uniform/non-uniform in
time background current beneath a topography owing to the relativity
of motion.

We discuss time-dependent solutions to Eq. (2.27) via the ETDRK4
algorithm. The first type of numerical experiments are carried out
for a uniform flow beneath a topography. We assume a left-moving
topography 𝑏(𝑥, 𝑦, 𝑡) = 𝑏(𝑥 + 𝑈𝑡, 𝑦) with constant speed 𝑈 , which is
equivalent to a uniform flow moving to the right and passing beneath
a localized topography. All experiments are conducted in a 150𝜋 × 80𝜋
domain discretize by a 1024 × 512 grid and the time step is set to
0.01. The non-dimensional parameters are chosen as follows: 𝜇 = 0.1,
𝜖 = 0.1, 𝐵 = 10, and 𝑅 = 1.05. The shape of the localized topography is
9

described as a Gaussian function

𝑏 = −𝑏0exp
[

−
(

𝑥2

9
+
𝑦2

16

)]

, (4.4)

where 𝑏0 is the height of topography and 𝑏0 = 0.2 for Figs. 9 and 10.
Since the velocity has been non-dimensionalized to unity to leading
order, solutions to Eq. (2.27) can be divided into three categories:
subcritical (𝑈 < 1), near-critical (𝑈 ≈ 1), and supercritical (𝑈 > 1).
In the subcritical regime, a steady elevation wave emanates from the
described topography and transient waves moving off to the left as
shown in Fig. 9(a) for 𝑈 = 0.5. The numerical solution to Eq. (2.27)
for a supercritical flow (𝑈 > 1) contains a steady waveform featuring
a V-shaped pattern of wake lines (see Fig. 9(b) for 𝑈 = 1.5). When
the flow speed is close to the critical speed (𝑈 ≈ 1), the phenomenon

of periodic shedding of lumps occurs, and the underlying mechanism
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Fig. 8. The path of center of two lumps of equal amplitude traveling from left to right at the incident angle of 45◦. The circles indicate the predicated location of the center of
each lump at 𝑡 = 20 intervals from 𝑡 = 0 to 𝑡 = 400 based on the solitary wave’s known speed. The ×’s mark the actual computed location. Tracking the center of each soliton is
impossible in the interaction region.
Fig. 9. (a) Uniform flow past a localized topography for 𝑏0 = 0.2 and 𝑈 = 0.5 at 𝑡 = 75. (b) Uniform flow past a localized topography for 𝑏0 = 0.2 and 𝑈 = 1.5 at 𝑡 = 80.
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an be understood as follows. For a flow moving with a near-resonance
peed, the energy accumulates locally near the topography, and as a
onsequence, the amplitude of the local wave grows. When the local
ave reaches a certain threshold of magnitude, the nonlinear effects
ecome sufficient and the subtle balance between weak nonlinearity
nd weak dispersion results in the formation of solitary waves propagat-
ng with velocities appropriate to their own amplitudes. The process is
hen repeated over a new cycle. A typical example for the time-periodic
eneration of lumps by a uniform flow moving at the near-critical speed
𝑈 = 1) beneath a localized topography is shown in Fig. 10.

It is well known that the nonlinearity, viscosity, and acceleration
an suppress the unlimited increase in amplitude of waves at criticality
ased on linear theories. The second type of numerical experiments are
10

i

arried out for a flow moving with constant acceleration. We first ac-
elerate the velocity of the flow to 𝑈 = 1.2 with a constant acceleration
ithin a selected time period (for 𝑡 ∈ [0, 2000] say), and the flow moves

with a constant speed afterwards. The most striking phenomenon is
that though the flow is accelerated, the generation of lumps can also
occur if the system can accumulate sufficient energy near criticality. A
typical example is shown in Figs. 11 and 12 with 𝑏0 = 0.2. The evolution
of the interface displacement right below the center of topography is
shown in Fig. 11 where three stages appear. The first stage is that 𝜂(0, 0)
rows sluggishly with speed in the subcritical regime, which generates
stable forced lump just like Fig. 9(a). However, in the second stage,

he amplitude experiences a considerably sharp transition from rapid
ncrease to quick decrease when the speed is in the transcritical regime,
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Fig. 10. Uniform flow past a localized topography for 𝑏0 = 0.2 and 𝑈 = 1 at 𝑡 = 40, 𝑡 = 80, 𝑡 = 140, and 𝑡 = 200.

Fig. 11. The evolution of 𝜂(0, 0) (solid line) and the change of velocity (dashed line) as time varies. The velocity increases with a uniform acceleration for 𝑡 ∈ [0, 2000] and stays
constant (𝑈 = 1.2) afterwards.
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Fig. 12. Contour plots corresponding to (a)–(d) (marked with upper triangles shown in Fig. 11) for 𝑡 = 1200, 𝑡 = 1500, 𝑡 = 1860, and 𝑡 = 1950.
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here the amplitude decrease is due to the energy release as the form
f lump. The last stage is associated with the supercritical speed and
table state since we stop the acceleration process at 𝑡 = 2000. The
ontour plots corresponding to (a)–(d) (marked with upper triangles
n 11) are shown in Fig. 12. It should be noted that a lump has already
een generated at 𝑡 = 1950 before the acceleration is terminated.
ncreasing 𝑏0 can lead to more complex behaviors and a typical example
or 𝑏0 = 0.4 is presented in Fig. 13. Due to more energy accumulations,
hree lumps generate in a sequence and lump C runs faster than lump B
hich results in an overtaking collision. The collision ultimately breaks
p into two lumps moving along side by side, as shown in Fig. 13(c).

. Conclusion

In the present paper, a weakly nonlinear model for long interfacial
ravity–capillary waves in a two-layer system, which is the isotropic
nd bidirectional counterpart of the 2D Benjamin equation and termed
he Benjamin–Benney–Luke equation, has been derived based on the
blowitz–Fokas–Musslimani formulation. A detailed procedure of the
TDRK4 scheme, a numerical algorithm for solving stiff evolution
DEs, has been generalized and applied to the newly developed model
quation with two spatial variables. Based on this algorithm, the ex-
stence and dynamics of gravity–capillary solitary waves in the BBL
quation, including the transverse instability of plane solitary waves,
ump collisions, and generation of lumps by resonant flow beneath a
ocalized topography, have been thoroughly investigated. Qualitatively,
ome results of the BBL equation closely resemble those of the 2D
enjamin equation studied in [14]. Plane solitary waves are unstable
ubject to transverse disturbances of sufficiently long wavelength and
12

volve into stable elevation lumps. Three types of interactions between
table lumps, including the head-on, overtaking, and oblique collisions,
re shown to be inelastic, indicating the imperfect ‘soliton’ property
f lumps. When a localized topography on the rigid upper boundary
s taken into consideration, we investigate solutions to Eq. (2.27) for
low beneath the topography with a uniform speed/acceleration. For a
low of uniform speed, solutions to the forced equation can be divided
nto three categories: subcritical (𝑈 < 1), near-critical (𝑈 ≈ 1), and
upercritical (𝑈 > 1). The near-critical regime is of great interest where
onlinear effects play an essential role giving rise to the time-periodic
hedding of lumps due to the energy accumulation in a local fluid.
urthermore, it is found that lumps can also be generated when the
low moves with constant acceleration if the system can gain enough
nergy when the speed accelerates through the transcritical region.

Despite being of short wavelength, capillary–gravity lumps can be
enerated under controlled environment conditions in laboratories.
sually they are achieved by blowing air towards the surface of the

luid and moving the air source with speed close to the phase speed
inimum (see [9–11] for more details). The computations in this paper
rovide another way to generate capillary–gravity lumps, that is, to
ove a localized topography on the rigid top lid of a two-layer fluid

ystem with near-critical speed.
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Fig. 13. A uniformly accelerated flow past a localized topography for 𝑏0 = 0.4. Contour
lots are shown for 𝑡 = 1860, 𝑡 = 1950, and 𝑡 = 1980, from top to bottom, respectively.
hree lumps (labeled by A, B, and C) appear in sequence and move along the 𝑥-axis.
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