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Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades
of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the
subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we
propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for
LES of compressible wall-bounded turbulence. The new methodology has the advantages
of both accurate prediction of the KEF and strong numerical stability in LES. We can
obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation
with the real value. Then, using the artificial neural network method, the local ratios
between the real KEF and the approximate KEF are accurately modelled. Consequently,
the SGS model can be improved by the product of that ratio and the approximate KEF. In
LES of compressible turbulent channel flow, the new model can accurately predict mean
velocity profile, turbulence intensities, Reynolds stress, temperature–velocity correlation,
etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model
can accurately predict some key quantities, including the onset of transitions and transition
peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it
can also predict the energy backscatters in turbulence. Furthermore, the proposed model
also shows more advantages for coarser grids.
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1. Introduction

Large-eddy simulation (LES) has achieved great success in the numerical investigation
of turbulent flows, and it has already been widely used in studying the mechanism of
turbulence and in simulating practical engineering flows (Larchevêque et al. 2004; Fureby
2008). The most widely used subgrid-scale (SGS) model is the eddy-viscosity model
(Lesieur & Métais 1996), and the first SGS eddy-viscosity model was the Smagorinsky
model (Smagorinsky 1963; Deardorff 1970). Using the eddy-damped quasi-normal
Markovian theory, Chollet & Lesieur (1981) suggested the spectral eddy-viscosity model,
which is suitable for homogeneous and isotropic turbulence. Based on the square of
the velocity gradient tensor, Nicoud & Ducros (1999) proposed a wall-adapting local
eddy-viscosity model (WALE), which can well simulate wall-bounded flows without a
dynamic procedure. The Vreman (2004) model is another SGS eddy-viscosity model
suitable for the LES of turbulent shear flows. Yu et al. (2013) presented a new form
of SGS viscosity according to SGS helicity dissipation balance and a spectral relative
helicity relation in the inertial subrange of helical turbulence, and this model can simulate
shear and separated turbulent flows with satisfactory results. Recently, Pickering et al.
(2021) proposed a data-informed method to test which eddy-viscosity model could
improve the alignment between observed large-scale structures and those computed from
resolvent analysis. Leoni et al. (2021) developed a new eddy-viscosity model based on
fractional gradients, and it could accurately predict the non-local behaviour of subfilter
stress–strain-rate correlation functions. In addition to the eddy-viscosity model, the
structural model is an important type of SGS model, which provides a high correlation
with the real SGS stress (Meneveau & Katz 2000). One of the structural models is the
gradient model, which was originally proposed by Clark, Ferziger & Reynolds (1979)
and then was developed by Vreman, Geurts & Kuerten (1996). The gradient model
can be derived from the Taylor expansion of the filtered velocity for the SGS stress.
The scale-similarity model (SSM) is another structural model, which is based on the
scale-similarity hypothesis (Bardina, Ferziger & Reynolds 1980; Liu, Meneveau & Katz
1994). According to the assumption of scale invariance, the SSM is developed in a similar
form as an SGS stress tensor of a larger-scale flow field using the resolved velocity, and
the SSM also has a high correlation with the real SGS stress.

The famous dynamic procedure was proposed by Germano et al. (1991), using the
Germano identity to dynamically determine the coefficient of the SGS model in the LES
of turbulent flows. Subsequently, Lilly (1992), Piomelli (1993), Ghosal et al. (1995) and
Meneveau, Lund & Cabot (1996) improved and generalized the dynamic procedure. With
the Germano identity, Yu, Xiao & Li (2016) derived an expression for the energy flux
at the test-filter scale, which can be adopted to optimize the coefficients of SGS models.
Incorporating physical constraints into the SGS model can also improve the reliability and
accuracy of the model. Chen et al. (2012) introduced Reynolds stress to constrain the SGS
model in the inner layer of wall-bounded turbulent flows to make the prediction of mean
velocity, turbulent stress and skin-friction coefficient more accurate, which is called the
Reynolds-stress-constrained LES.

Nevertheless, the traditional LES requires further improvements in transitional flows
(Sayadi & Moin 2012), compressible flows (Piomelli 1999) and low-Reynolds-number
regions (Voke 1996; Meneveau & Katz 2000). Horiuti (1986) employed the standard
Smagorinsky model (SM) to simulate the transitional channel flow and found that
this model cannot properly predict the transition process due to excessive dissipation.
Huai, Joslin & Piomelli (1997) applied the dynamic Smagorinsky model (DSM) to the
simulation of a transitional flat-plate boundary layer for the first time and obtained
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acceptable results. Sayadi & Moin (2012) evaluated several commonly used SGS models
in LES of transitional flows. They found that the dynamic procedure could accurately
predict the transition. Recently, Bodart & Larsson (2012) proposed a laminar/turbulent
sensor to the traditional wall model and successfully predicted the transition. Moin et al.
(1991) suggested a compressible DSM model for the first time and applied the model to
the simulation of compressible isotropic turbulence. Chai & Mahesh (2012) proposed a
dynamic one-equation eddy-viscosity model for the LES of compressible flow and applied
it to decaying isotropic turbulence and normal shock–isotropic turbulence interactions.

For the traditional LES, most SGS models are developed based on the scale-invariance
hypothesis. Voke (1996) provided a fitted relation between the SGS viscosity of the SM
and the mesh Reynolds number based on some theoretical models of the energy spectrum.
This scale-dependent SM was an attempt to overcome the limitation of the scale-invariance
hypothesis, and the simulation results were improved slightly when the cutoff was in the
dissipation range. Meneveau & Lund (1997) proposed a fitting ratio of the test-scale to
the grid-scale coefficient of the SM and applied the scale-dependent DSM to simulate
forced isotropic turbulence. Porté-Agel, Meneveau & Parlange (2000) generalized the
scale-dependent DSM to simulate a neutral atmospheric boundary layer.

More recently, artificial neural networks (ANNs) have become an increasingly popular
method for developing turbulence models (Duraisamy, Iaccarino & Xiao 2019). Ling,
Kurzawski & Templeton (2016) adopted a new multiplicative-layer neural network with
an invariant tensor to predict the Reynolds stress anisotropic tensor for the first time.
Taking advantage of machine learning and optimal evaluation theory, Vollant, Balarac &
Corre (2017) developed a new SGS scalar flux model. The deconvolution of turbulence
variables can also be obtained through an ANN (Maulik & San 2017), and it showed
excellent behaviour in an a priori test. Zhou et al. (2019b) developed a new SGS model
through the ANN method for isotropic turbulence, and it considered the dependence of
the SGS model on the filter width. Xie et al. (2019) proposed an ANN-based mixed model
combining the SM and the gradient model, and the new model showed better behaviour
in a priori and a posteriori tests than traditional LES models. Using neural networks
trained by full turbulent channel flow data, Yang et al. (2019) discussed several problems
encountered in wall modelling of LES. Using the direct numerical simulation (DNS)
data of incompressible isotropic turbulence, ANN-based nonlinear algebraic models and
deconvolutional models have been developed (Xie, Wang & Weinan 2020a; Xie, Yuan
& Wang 2020b; Yuan, Xie & Wang 2020), which could clearly improve the accuracy of
the model compared with the traditional SGS models and implicit large-eddy simulation
(ILES).

In addition, machine learning methods have been employed for super-resolution
reconstruction of turbulent flows (Maulik & San 2017; Fukami, Fukagata & Taira
2019; Kim & Lee 2020; Liu et al. 2020; Yuan et al. 2020; Kim et al. 2021). Such
reconstruction can be used to improve predictions based on coarse wall measurements in
wall-bounded turbulence (Güemes et al. 2021; Vinuesa & Brunton 2021). In past studies,
some completely black-box models based on ANN methods have been developed in LES
modelling of wall-bounded turbulence. Through a priori test and a posteriori test, Park
& Choi (2021) found that the SGS model is unstable with the input variables at multiple
points, but stable with the input variables at a single point, and the single-point input
variables will also be adopted in this study.

In this paper, we propose a kinetic-energy-, ux-constrained model (KCM) using the
ANN method for the LES of compressible wall-bounded turbulence. The structure of
the paper is as follows. The LES governing equations and modelling background are
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introduced in § 2. The theoretical deduction of the new constrained model is given in
§ 3, followed by the DNS of the compressible channel flow and the ANN method in § 4. In
§ 5, the LES results of compressible turbulent channel flow and the compressible flat-plate
boundary layer are presented and analysed. Finally, the discussion and conclusions are
given in § 6.

2. Theoretical background

2.1. LES governing equations
For the general applicability of the research, we derive the LES governing equations of
compressible flows as follows:

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj
= 0, (2.1)

∂ρ̄ũi

∂t
+ ∂ρ̄ũiũj

∂xj
+ ∂ p̄

∂xi
= ∂σ̃ij

∂xj
− ∂τij

∂xj
, (2.2)

∂ρ̄Ẽ
∂t

+ ∂(ρ̄Ẽ + p̄)ũj

∂xj
= −∂ q̃j

∂xj
+ ∂σ̃ijũi

∂xj
− ∂CpQj

∂xj
− ∂Jj

∂xj
, (2.3)

p̄ = ρ̄RT̃, (2.4)

where an overbar (·̄) denotes spatial filtering at scale Δ using a smooth low-pass filter
function G(r) (e.g. ρ̄(x) = ∫

G(r)ρ(x + r) dr represents the resolved density field) and a
tilde (·̃) denotes spatial Favre filtering as φ̃ = ρφ/ρ̄.

In (2.1)–(2.4), ρ, ui, T, E and R denote the density, velocity, temperature, total energy
and specific gas constant, respectively. The resolved viscous stress tensor σ̃ij and the heat
flux vector q̃j are given by

σ̃ij = 2μ(T̃)(S̃ij − 1
3δijS̃kk), (2.5)

q̃j = Cpμ(T̃)

Pr
∂T̃
∂xj

, (2.6)

where Cp and Pr are the specific heat at constant pressure and the molecular
Prandtl number, μ = (1/Re)(T̃/T̃∞)3/2[(T̃∞ + Ts)/(T̃ + Ts)] is the molecular viscosity
calculated using Sutherland’s law for a given Ts = 110.3 K, Re = ρ∞U∞L/μ∞ is the
Reynolds number and S̃ij = 1

2 (∂ ũi/∂xj + ∂ ũj/∂xi) is the resolved strain-rate tensor.
In (2.1)–(2.3), there are some unclosed terms, including the SGS stress tensor

τij = ρ̄(ũiuj − ũiũj), (2.7)

the SGS heat flux
Qj = ρ̄(ũjT − ũjT̃) (2.8)

and the SGS turbulent diffusion

Jj = 1
2 (ρ̄ũjuiui − ρ̄ũjũiui). (2.9)

It is suggested that SGS turbulent diffusion can be approximated as Jj = τijũi (Martin,
Piomelli & Candler 2000). The SGS stress tensor τij and the SGS heat flux Qj need to
be modelled based on the resolved quantities. The models for these terms are discussed
below.

932 A23-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1012


Kinetic-energy-flux-constrained model

2.2. Subgrid-scale model
In LES, the eddy-viscosity model is the most commonly used SGS stress model for τij,
and it is a phenomenological model. The SGS stress tensor is modelled by a term with
a structure similar to that of viscous stress. Using a subgrid viscosity μsgs to mimic the
molecular viscosity, the formulation of the SGS stress τij is written as

τmod
ij − 1

3δijτ
mod
kk = −2μsgs(S̃ij − 1

3δijS̃kk). (2.10)

The typical expression of μsgs in (2.10) is the SM (Smagorinsky 1963), which is obtained
from the resolved strain-rate tensor. Then,

μsgs = ρ̄CsmΔ2|S̃|, (2.11)

with

|S̃| =
√

2S̃ijS̃ij, (2.12)

and Csm is the coefficient of the anisotropic part of the SM. The isotropic part of the SGS
tensor is

τmod
kk = 2CI ρ̄Δ2|S̃|2, (2.13)

and CI is the coefficient of the isotropic part of the SM (Yoshizawa 1986). The SGS heat
flux can be modelled as

Qmod
j = −μsgs

Prt

∂T̃
∂xj

, (2.14)

where Prt is the SGS Prandtl number.

3. Kinetic-energy-flux-constrained model (KCM)

Since the proposal of the first concept of the energy cascade by Richardson, research on
the energy cascade has always been the core content of turbulence studies (Pope 2000),
and it is also the most well-known statistical characteristic in LES (Moser, Haering & Yalla
2021). Kolmogorov (1941) quantitatively formulated the energy cascade for the first time

and suggested that the kinetic energy flux (KEF) is constant in the inertial subrange of
locally isotropic turbulence, where the energy flux refers to the energy transfer rate from
the large scale to the small scale. Subsequently, a variety of studies have focused on the
KEF of incompressible and compressible turbulent flows (Meneveau & Sreenivasan 1987;
Borue & Orszag 1998; Eyink 2006; Wang et al. 2013). The KEF between different-scale
eddies is the essence of the energy cascade and reflects the dynamic process of the
generation and evolution of turbulence. The accurate prediction of KEF at different scales
guarantees accurate simulation of turbulent flows. At the given scale Δ, the filtered kinetic
energy equation can be written as

∂(1
2 ρ̄ũ2

i )

∂t
+ ∂

∂xj
JΔ = ΠΔ + DΔ + p̄

∂ ũi

∂xi
, (3.1)

JΔ = 1
2 ρ̄ũ2

i ũj − ũiσ̃ij + ũiτij + p̄ũj, (3.2)

DΔ = σ̃ij
∂ ũi

∂xj
, (3.3)

ΠΔ = τij
∂ ũi

∂xj
, (3.4)
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where JΔ is the spatial transport of large-scale kinetic energy, p̄(∂ ũi/∂xi) is large-scale
pressure dilatation and DΔ is the viscous dissipation acting on the large scale. Here, ΠΔ

is the KEF term from scale Δ to the smaller scale.
In transitional and turbulent flows, on the given mesh scale Δ, the total dissipation εΔ

should be expressed as
εΔ = DΔ + ΠΔ. (3.5)

For transitional flow, laminar and turbulent flow regions coexist with irregular spatial
and temporal distributions, which is also known as the phenomenon of spatiotemporal
intermittency (Chaté & Manneville 1987; Tritton 2012). The KEF ΠΔ through the mesh
scale Δ is approximately equal to zero in the laminar region, but it cannot be ignored in
the turbulent region. In full turbulence, we consider the local KEF to exist in the whole
region of the turbulent flow. In the filtered kinetic energy equation (3.1), the KEF ΠΔ is
an unclosed term and needs to be modelled. Based on the tensor eddy viscosity, Borue
& Orszag (1998) suggested a simple parametrization for the local KEF in the inertial
subrange of homogeneous and isotropic turbulence for the first time. Subsequently, Eyink
(2006) developed a multiscale gradient expansion of KEF in incompressible homogeneous
turbulence.

Equation (3.4) shows that the KEF is proportional to the product of the SGS stress tensor
and the resolved velocity gradient tensor. To obtain a proper KEF similar to the real KEF
in complex turbulent flows, a suitable SGS stress model τij should be selected. For the SM,
the KEF of scale Δ can be expressed as

ΠSM
Δ = −2Csmρ̄Δ2|S̃|

(
S̃ij − 1

3δijS̃kk

) ∂ ũi

∂xj
+ 2

3 CI ρ̄Δ2|S̃|2δij
∂ ũi

∂xj
, (3.6)

and the KEF obtained from the anisotropic part ΠSMA
Δ and the isotropic part ΠSMI

Δ can be
denoted, respectively, as

ΠSMA
Δ = −2Csmρ̄Δ2|S̃|(S̃ij − 1

3δijS̃kk)S̃ij (3.7)

and
ΠSMI

Δ = 2
3 CI ρ̄Δ2|S̃|2δijS̃ij. (3.8)

The KEF from the SM has a low correlation with the real KEF, which will cause the
turbulence structure calculated from the SM to be very different from the real turbulence.

To obtain a more accurate resolved KEF, Eyink (2006) proposed the multiscale gradient
expansion method for KEF, and the SGS stress can also be expressed as an expanded form
totally. Through simplification, we have the approximation of the SGS stress as

τij ≈ C2

3
ρ̄Δ2 ∂ ũi

∂xk

∂ ũj

∂xk
. (3.9)

For the isotropic filter, C2 = 1/4, and (3.9) can be expressed as

τij ≈ 1
12

ρ̄Δ2 ∂ ũi

∂xk

∂ ũj

∂xk
, (3.10)

which is the same form as the tensor-diffusivity (TD) model (Vreman, Geurts & Kuerten
1995). Then, the approximation of the KEF can be obtained as

ΠΔ ≈ ΠTD
Δ = τTD

ij
∂ ũi

∂xj
, (3.11)
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which has already been investigated in previous literature (Verstappen 2004; Vreman,
Geurts & Deen 2004; Vreman et al. 2009). From (3.9)–(3.11), we know that ΠTD

Δ has
a high correlation with the real KEF.

To obtain a more accurate KEF model, we assume that there exists a ratio ηΔ between
the real KEF and the model KEF, and ηΔ is a dimensionless variable. Then, we can obtain
the more precise KEF as

ΠΔ = ΠM
Δ = ηΔτTD

ij
∂ ũi

∂xj
. (3.12)

Based on the linear stability analysis of the one-dimensional Burgers equation with the
TD model, Vreman et al. (1996) have shown that the TD model is unstable. Thus, we take
the modified KEF (3.12) to constrain the SM in the LES of compressible wall-bounded
turbulence, which can ensure that the LES results are highly similar to the real flow field
and maintain the robustness of the computation. Hence, on the basis of the KEF constraint
criterion, the following is required:

ΠM
Δ = ΠSM

Δ . (3.13)

From (3.6)–(3.8), we know that

ΠSM
Δ = ΠSMA

Δ + ΠSMI
Δ . (3.14)

Additionally, the model KEF ΠM
Δ can be divided into two parts, one from the anisotropic

part ΠMA
Δ and the other from the isotropic part ΠMI

Δ :

ΠM
Δ = ΠMA

Δ + ΠMI
Δ , (3.15)

ΠMA
Δ = ηΔ(τTD

ij − 1
3τTD

kk δij)S̃ij, (3.16)

and
ΠMI

Δ = 1
3ηΔτ td

kkδijS̃ij. (3.17)

Then, according to the constraint, we let ΠMA
Δ = ΠSMA

Δ and ΠMI
Δ = ΠSMI

Δ , and the
coefficients of the SM can be presented as

Csm = −ηΔ

(τTD
ij − 1

3τTD
kk δij)S̃ij

2ρ̄Δ2|S̃|(S̃ij − 1
3δijS̃kk)S̃ij

, (3.18)

CI = ηΔ

τTD
kk δijS̃ij

2ρ̄Δ2|S̃|2δijS̃ij
. (3.19)

Thus, the new KCM has been proposed in this way, and the ratio ηΔ between the real KEF
and the KEF from the TD model is the key variable in the KCM, which can be obtained
by the ANN method.

4. Artificial neural network

In this work, we use an ANN to construct the relation between the input features
and the ratio ηΔ in compressible wall turbulence. For compressible wall turbulence,
compressible turbulent channel flow is the simplest case; it reflects the main characteristics
of compressible wall-bounded turbulence and has also been deeply studied theoretically
(Coleman, Kim & Moser 1995; Foysi, Sarkar & Friedrich 2004; Morinishi, Tamano &
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Figure 1. Schematic diagram of the ANN for predicting the KEF ratio ηΔ.

Nakabayashi 2004; Ghosh, Foysi & Friedrich 2010; Li et al. 2019). The data selected
for training and testing in this study are obtained from the DNS data of a temporally
compressible isothermal-wall turbulent channel flow (Coleman et al. 1995). For this
flow, the Mach number Ma = 1.5, the Reynolds number Re = 3000 and the friction
Reynolds number Reτ = uτ δ/ν = 220 (where uτ and δ are the friction velocity and the
half-width of the channel). The computational domain for the DNS of channel flow is
a box with a size of 4π × 2 × 4

3π, and the grids for DNS are 900 × 201 × 300 and
Δx+ × Δy+

wall × Δz+ = 3 × 0.32 × 3, where Δx+, Δy+
wall and Δz+ (Δx+

i = Δxiuτ /ν)
are the mesh spacings (wall units) in the streamwise, wall-normal and spanwise directions.
During the course of training and testing, the DNS data are filtered in the streamwise and
spanwise directions with a top-hat filter.

The schematic diagram of the ANN is shown in figure 1. The ANN is composed of
multiple layers with many neurons. The neurons receive the input signals from the previous
layer and send them to the next layer by the successive mathematical operation of the
linear weighted sum and nonlinear activation. Each neuron in the lth layer receives the
inputs X(l−1)

j from the (l − 1)th layer and then transmits them to the outputs X(l)
i activated

by the nonlinear function. The transfer function from the (l − 1)th layer to the lth layer is
calculated as

X(l)
i = σ

⎡
⎣b(l)

i +
∑

j

W(l)
ij X(l−1)

j

⎤
⎦ , (4.1)

where σ [·] is the nonlinear activation function and W(l)
ij and b(l)

i are the weights and biases
in the lth layer, respectively.

The input features of the ANN are critical to the performance of predicting the KEF
ratio ηΔ. A set of input variables is listed in table 1 for different ANN models. The
input variables for ANN models are dimensionless quantities, where several variables
may be selected in compressible wall-bounded turbulence, such as Δ+, y+, ReΔ and Δ+

 .
In this paper, Δ+ = ρ̄wũτΔ/μw is the normalized filter width, y+ = ρ̄wũτ y/μw is the
dimensionless normal distance, ReΔ = ρ̄w|S̃|Δ2/μw is the mesh Reynolds number and
Δ+

 = Δ/, with  = [μ3
w/(ρ̄3

wε)]1/4 = [μ2
w/(2ρ̄2

w〈S̃ijS̃ij〉)]1/4. Here, ũτ = √
τw/ρ̃w is the

filtered wall friction velocity, where τw = μw(∂ ũ/∂y) is the wall shear stress, and 〈·〉
932 A23-8
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Kinetic-energy-flux-constrained model

Model ANN1 ANN2 ANN3 ANN1-SL ANN2-SL ANN3-SL

Inputs {Δ+, y+} {Δ+
 , y+} {ReΔ, y+} {Δ+

SL, y+
SL} {Δ+

,SL, y+
SL} {ReΔ,SL, y+

SL}
Outputs {ηΔ} {ηΔ} {ηΔ} {ηΔ} {ηΔ} {ηΔ}
M (no. inputs) 2 2 2 2 2 2

Table 1. A set of inputs and outputs for different ANN models.

denotes the spatial average along the homogeneous directions. In table 1, ANN1, ANN2
and ANN3 are the ANN models with input parameters normalized by the wall quantities
(i.e. ρw and μw).

Apart from the dimensionless physical variables normalized by the wall quantities, we
also select the dimensionless quantities using the semi-local normalization (Pecnik & Patel
2017; Yang & Lv 2018) as the input features of the ANN. The corresponding semi-local
(SL) scaled variables include Δ+

SL, y+
SL, ReΔ,SL and Δ+

,SL. Here, the semi-local scaled
filter width is defined by Δ+

SL = ρ̄ũτΔ/μ, y+
SL = ρ̄ũτ y/μ is the semi-local scaled normal

distance, ReΔ,SL = ρ̄|S̃|Δ2/μ is the local mesh Reynolds number and Δ+
,SL = Δ/SL,

where SL = [μ3/(ρ̄3ε)]1/4 = [μ2/(2ρ̄2〈S̃ijS̃ij〉)]1/4. Then, ANN1-SL, ANN2-SL and
ANN3-SL represent the ANN models with input variables normalized by the semi-local
physical quantities in table 1.

A total of four layers (an input layer, two hidden layers and an output layer) with neurons
in the ratio M : 100 : 100 : 1 are chosen in this paper, where M is the number of input
variables listed in table 1. The activation functions of the hidden layers and output layer are
the hyperbolic tangent function (tanh) and linear function, respectively, which are defined
by

σh(x) = ex − e−x

ex + e−x , σo(x) = x. (4.2)

The mean-squared error (MSE) function is selected as the loss function of the ANN, which
is defined as L = 〈(ηtrue

Δ − η
pred
Δ )2〉, where ηtrue

Δ and η
pred
Δ denote the true and predicted

values of the ANN, respectively. A total of 2 × 104 samples are selected from 20 snapshots
of the filtered DNS data with a ratio of the filter width Δ/ΔDNS ranging from 2 to 20 (i.e.
Δ/ΔDNS ∈ {2, 4, . . . , 20}). We use the cross-validation strategy and divide the dataset
into a training set and a testing set to suppress parameter overfitting of the ANN; 70 %
of the samples are randomly extracted from the total dataset and are used as the training
set, while the others are used for testing. The weights of the ANN are initialized by the
Glorot-uniform algorithm and optimized by the Adam algorithm (Kingerma & Ba 2019)
for 1 × 104 iterations, with a batch size and learning rate of 1000 and 0.01, respectively.
The grid search method is chosen as the hyperparameter pruning method of the ANN to
determine the optimal hyperparameters, such as the numbers of layers and neurons and
the types of activation functions. The learning curves of the ANN models for different
input variables using different normalization methods are shown in figure 2. After a long
training with 1 × 104 epochs, the MSE losses in both the training sets and testing sets
converge quickly and gradually reach stationarity. The training loss and testing loss for
both wall quantity normalization and semi-local scaling methods are very close, which
means that the selected hyperparameters are reasonable and all the ANN models are well
trained.
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Figure 2. Learning curves of the proposed ANN models for predicting the KEF ratio ηΔ: (a) training loss for
ANN models, (b) testing loss for ANN models, (c) training loss for ANN-SL models and (d) testing loss for
ANN-SL models.

We evaluate the performance of different ANN models by calculating three metrics to
measure the difference between the true value (ηreal

Δ ) obtained from the filtered DNS data
and the predicted value (ηmodel

Δ ) calculated by the ANN models. They are the correlation
coefficient C(ηΔ), the relative error Er(ηΔ) and the ratio of the root-mean-square value
R(ηΔ), which are expressed, respectively, as

C(ηΔ) = 〈(ηreal
Δ − 〈ηreal

Δ 〉)(ηmodel
Δ − 〈ηmodel

Δ 〉)〉
〈(ηreal

Δ − 〈ηreal
Δ 〉)2〉1/2〈(ηmodel

Δ − 〈ηmodel
Δ 〉)2〉1/2 , (4.3)

Er(ηΔ) = 〈(ηreal
Δ − ηmodel

Δ )
2〉1/2

〈(ηreal
Δ )

2〉1/2 , (4.4)

R(ηΔ) = 〈(ηmodel
Δ − 〈ηmodel

Δ 〉)2〉1/2

〈(ηreal
Δ − 〈ηreal

Δ 〉)2〉1/2 . (4.5)

The results with high correlation coefficients, low relative errors and high ratios of
root-mean-square values indicate successful modelling.

Table 2 shows comparisons of the correlation coefficients, relative errors and ratios
of root-mean-square values for the KEF ratio ηΔ in both training and testing sets after
the 10 000-iteration training process. The results of the training and testing sets show
slight differences, which indicates that none of the trained ANN models with different
inputs are overfitted. Furthermore, the metrics predicted by the semi-local normalization
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Dataset\ ANN1 ANN2 ANN3 ANN1-SL ANN2-SL ANN3-SL
C(ηΔ)

Training set 0.9160 0.9207 0.9287 0.9647 0.9216 0.9306
Testing set 0.9061 0.9087 0.9215 0.9568 0.9130 0.9226

Er(ηΔ)

Training set 0.1261 0.1227 0.1166 0.0828 0.1220 0.1150
Testing set 0.1367 0.1349 0.1255 0.0941 0.1318 0.1246

R(ηΔ)

Training set 0.9115 0.9201 0.9229 0.9526 0.9188 0.9280
Testing set 0.8931 0.9044 0.9109 0.9375 0.9045 0.9153

Table 2. Correlation coefficient (C), relative error (Er) and ratio of root-mean-square value (R) of the KEF
ratio ηΔ in different datasets for different ANN models.
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Figure 3. Comparisons of the KEF reconstructed by different ANN models using wall-quantity normalization
along the normal direction with different filter widths: (a) Δ/ΔDNS = 4; (b) Δ/ΔDNS = 8; (c) Δ/ΔDNS = 12;
and (d) Δ/ΔDNS = 16.

obviously outperform those normalized by the wall quantities, especially for the case of
ANN1-SL. The ANN1-SL model performs better than the other five ANN models. The
correlation coefficient and relative error of the ANN1-SL model in the testing dataset are
96 % and 9.4 %, respectively. The ratio of the root-mean-square value of the ANN1-SL
model is equal to 0.94 and very close to 1, which indicates that the ANN1-SL model
can accurately reconstruct the KEF ratio. In contrast to other ANN models, we take
the local mesh Reynolds number instead of the normalized filter width in the input
of the ANN1-SL model. The prediction performance improves to some degree. More
importantly, ANN1-SL can be more easily generalized to other types of compressible
wall-bounded turbulence.
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Figure 4. Comparisons of the KEF reconstructed by different ANN models using semi-local normalization
with different filter widths: (a) Δ/ΔDNS = 4; (b) Δ/ΔDNS = 8; (c) Δ/ΔDNS = 12; and (d) Δ/ΔDNS = 16.

Comparisons of the KEF reconstructed by different ANN models and that from the TD
model along the normal direction with different filter widths (Δ/ΔDNS = 4, 8, 12, 16) are
shown in figures 3 and 4. The magnitudes of the KEF obtained from the TD model with
these filter widths are obviously different from the real value, even though their shapes
are very similar due to the high correlation coefficients. The KEF modelled by the ANN
models is very close to the DNS data, and the six ANN models show similar results.
Since the ANN1-SL model demonstrates the better a priori accuracy among these ANN
models, we can also use the ANN1-SL model to reconstruct the KEF ratio ηΔ in the KCM
as the representation of these ANN models. The newly constructed KEF model here is a
semi-explicit model.

5. Results of applications

5.1. Application in compressible turbulent channel flows
In this section, the KCM will be verified in compressible turbulent channel flows,
and the case setting of the LES is the same as that of the DNS in § 4. The filtered
Navier–Stokes equations (2.1)–(2.3) are solved using a high-precision non-dimensional
finite-difference solver in Cartesian coordinates: the equations are temporally integrated
using the third-order Runge–Kutta scheme, and a sixth-order central-difference scheme is
used for the discretization of both the convective and viscous terms.

In this study, we will select three commonly used SGS models for comparison, namely
the Vreman model, WALE model and DSM. In the DSM, Csm, CI and PrT are solved
dynamically based on the Germano identity. Following the form of the Vreman model
in compressible turbulence (Sayadi & Moin 2012; Zhang, Wan & Sun 2019), the model
coefficient Cv = 2.5C2

sm, where Csm = 0.1. The WALE model here is taken in the same
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Kinetic-energy-flux-constrained model

Grids Δx+ Δy+
w Δz+

DNS 900 × 201 × 300 2.99 0.32 2.99
Smagorinsky 48 × 65 × 48 54.32 1.01 18.11
Vreman 48 × 65 × 48 56.48 1.05 18.83
WALE 48 × 65 × 48 54.86 1.02 18.28
DSM 48 × 65 × 48 57.55 1.07 19.18
KCM 48 × 65 × 48 57.55 1.07 19.18

Table 3. Parameters of the simulations in compressible channel flow (Ma = 1.5, Re = 3000, Reτ = 220).
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Figure 5. Two-point correlation coefficients of KEF at various locations of y+ = 50: (a) streamwise
correlation; and (b) spanwise correlation. DNS (black solid line), Vreman (blue circles), WALE (pink
dash-double dotted line), DSM (green dashed line) and KCM (red triangles).

form as in Garnier, Adams & Sagaut (2000). The model coefficient of WALE is Cw =
10.6C2

sm, and Csm is also taken as 0.1. In Garnier et al. (2000), Sayadi & Moin (2012) and
Zhang et al. (2019), the isotropic parts of the Vreman and WALE models are ignored, and
we also adopt CI = 0 for the Vreman and WALE models here. The SGS Prandtl number
PrT of the Vreman model, WALE model and KCM can be evaluated as 0.9 empirically
(Georgiadis, Alexander & Reshotko 2001; Sayadi & Moin 2012; Zhang et al. 2019). The
filtering procedure is also performed using a top-hat filter. The grid filter width is Δ =
(ΔxΔyΔz)

1/3, with Δx, Δy and Δz representing the local grid width along the three axes,
and the test-filter width is set as 2Δ. But the Vreman model is implemented using the filter
width in each direction according to its model form. The details of the grid settings are
listed in table 3.

Spatial correlation coefficients of KEF can reveal the prediction ability of SGS models
on the spatial structures of KEF. Figure 5(a,b) shows the streamwise and spanwise
two-point correlation coefficients of KEF at various locations of y+ = 50, respectively.
The two-point correlation coefficient of KEF can be defined as

RΠΠ(r) = Π(x)Π(x + r)
Π(x)Π(x)

. (5.1)

From figure 5, we can see that both the streamwise and spanwise two-point correlation
coefficients of KEF from KCM are much closer to the real values than other models,
indicating that KCM gives a good modelling of the main spatial distribution characteristics
of KEF.
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Figure 6. Van Driest transformed mean velocity files from different SGS and result from DNS for
comparison.

The distribution of the van Driest transformed mean streamwise velocity
(Uvd = ∫ U

0
√〈ρ〉/ρw d〈U〉) as a function of y+ is displayed in figure 6, and the results

obtained from DNS, KCM and some representative eddy-viscosity models, including
DSM, Vreman and WALE (Germano et al. 1991; Nicoud & Ducros 1999; Vreman
2004) are compared together. As expected for y+ < 5, the mean streamwise velocity
generally increases linearly with y+. Additionally, almost all the results from the SGS
models collapse to the DNS result in the viscous sublayer and up to part of the buffer
region (y+ < 20). In the log-law region, the KCM still provides a perfect estimation
of Uvd, but the results of other SGS models show an obvious deviation from the
DNS result. Furthermore, from figure 6, we know that the KCM provides proper SGS
dissipation, but the other typical eddy-viscosity SGS models exhibit excessive SGS
dissipation.

Figure 7(a)–(c) shows the profiles of the normalized resolved turbulence intensities
ũrms

i /uτ = 〈(ũi − 〈ũi〉)2〉1/2/uτ calculated from the LES data of several SGS models,
including Vreman, WALE, DSM and KCM, and the result from DNS is also provided
for comparison. Figure 7(a) shows the streamwise turbulence intensity Urms, and we can
see that the result of the KCM is obviously in better agreement with the DNS result
than the results of the other models, especially in the buffer region. Additionally, the
wall-normal turbulence intensity Vrms and spanwise turbulence intensity Wrms are shown
in figure 7(b,c), respectively. As seen from the two panels, all the SGS models have low
performance, but the results of KCM have a slight advantage over those of the other SGS
models. Figure 7(d) shows the distribution of the normalized Reynolds stress Ruv along the
normal height y+, and the results of DNS, Vreman, WALE, DSM and KCM are compared
together. The Reynolds stress can be expressed as

Rij = 〈ρ〉({uiuj} − {ui}{uj}), (5.2)

where {·} denotes the Favre averaging and {φ} = 〈ρφ〉/〈ρ〉.
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Figure 7. Turbulence intensities and the Reynolds stress normalized by the friction velocity uτ from DNS
and different models: (a) streamwise turbulence intensity; (b) wall-normal turbulence intensity; (c) spanwise
turbulence intensity; and (d) Reynolds stress.

For turbulent flows, the property of ergodicity is assumed, and thus 〈φ〉 = 〈φ̄〉. Then,
the Reynolds stress can also be expressed as

Rij = 〈ρ̄〉({ũiuj} − {ũi}{ũj}) = RLES
ij + 〈τij〉, (5.3)

where
RLES

ij = 〈ρ̄〉({ũiũj} − {ũi}{ũj}) (5.4)

is the resolved Reynolds stress and τij is the SGS stress.
In contrast to the results of other SGS models, the KCM gives a perfect total Reynolds

stress Ruv in almost all of the regions. The results in figure 7 demonstrate that the KCM
can also better predict the high-order statistics of turbulence.

The mean temperature obtained from DNS and the four SGS models are also compared
together in figure 8. KCM shows the best behaviour, and the result from Vreman
is better than those of the other two models. Figure 9 displays the profiles of the
normalized resolved temperature fluctuation T̃rms/Tτ = 〈(T̃ − 〈T̃i〉)2〉1/2/Tτ along the
wall-normal direction from DNS and these SGS models, where Tτ = qw/ρwcpuτ , with
qw = −k(∂T̃/∂y) the friction temperature. The result of KCM is very close to the real
value, and is better than those of other models. The temperature–velocity correlation can
be written as

RuiT = 〈ρ̄〉({ũiT} − {ũi}{T̃}) = RLES
uiT + 〈Qi〉, (5.5)

where
RLES

uiT = 〈ρ̄〉({ũiT̃} − {ũi}{T̃}) (5.6)
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Figure 8. Mean temperature profiles obtained from DNS and different SGS models.
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Figure 9. Temperature fluctuation normalized by friction temperature Tτ from DNS and different SGS
models.

is the resolved temperature–velocity correlation and Qi is the SGS heat flux. We show the
normalized temperature–velocity correlation in figure 10, and we find that the result from
KCM is much closer to the real value compared with other traditional eddy-viscosity SGS
models. Thus, the reasonable eddy viscosity of KCM will improve the prediction of the
SGS heat-flux model.

Accurate prediction of turbulent structure is also an important ability for the new SGS
model. We show in figure 11(a–d) the instantaneous isosurface of Q (second invariant
of the strain-rate tensor, Q = 0.2) obtained from Vreman, WALE, DSM and KCM,
respectively. Comparing the four pictures, we find that the result of the KCM shows more
small-scale and abundant structures, especially in the near-wall region. Nevertheless, the
results of the other models show larger tube-like structures and lack small-scale structures.
These observations also indicate that the KCM has the advantage of accurately predicting
the turbulent structure.
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Figure 10. Normalized temperature velocity correlation from DNS and different SGS models.
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Figure 11. Instantaneous isosurface of Q (second invariant of the strain-rate tensor, Q = 0.2) obtained from
(a) Vreman, (b) WALE, (c) DSM and (d) KCM in compressible turbulent channel flow.

Then, we need to check the performance of the KEF ratio and the model coefficients in
an a posteriori test of compressible turbulent channel flow. Figure 12 shows the KEF ratio
ηΔ of KCM in the compressible turbulent channel flow; ηΔ is almost constant for y+ <

120, and the value is approximately 1.16. For y+ > 120, it will grow slowly. Figure 13(a,b)
displays the model coefficients Csm and CI , respectively. It is shown that the curves of Csm
and CI are similar to each other. They grow rapidly from zero near the wall, and remain
nearly constant in the centre region of the channel.
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Figure 12. An a posteriori test of KEF ratio ηΔ of KCM in compressible channel flow.
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Figure 13. An a posteriori test of the model coefficients of KCM in compressible turbulent channel flow:
(a) Csm and (b) CI .

5.2. Application in compressible flat-plate boundary layer
To verify the KCM in simulating more complex compressible wall flow, we select the
compressible flat-plate boundary layer as a typical example. Compared with the channel
flow, the flat-plate boundary layer is a more complicated type of wall-bounded flow.
Flat-plate boundary layer flow is a typical flow consisting of laminar, transitional and fully
turbulent regions, which is a common phenomenon in wall flow. Thus, it can be regarded
as a classical case for evaluating the performance of the new SGS model in transitional
and turbulent flows. The LES of the transition to turbulence of the flat-plate boundary
layer has been frequently investigated over an extended period (Ducros, Comte & Lesieur
1996; Huai et al. 1997; Sayadi & Moin 2012).

In this paper, we choose a spatially developing supersonic adiabatic flat-plate boundary
layer flow (Pirozzoli, Grasso & Gatski 2004) (at Ma = 2.25 and Reθ ≈ 4000) to test
the new model; a sketch of the computational domain for the numerical simulation is
shown in figure 14. The computational domain (see figure 14) is bounded by in-flow
and out-flow boundaries, a wall boundary, a far-field boundary and the two boundaries
(periodic) in the spanwise direction; the computational domain has a size of Lx × Ly ×
Lz = 6 × 0.3 × 0.175. Blowing and suction disturbances are imposed at the wall with an
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Figure 14. Sketch of the computational domain of the flat-plate boundary layer for the numerical simulation.

interval of x (4.5 ≤ x ≤ 5.0). The form of blowing and suction is the same as that in
(Pirozzoli et al. 2004) except for the magnitude of the amplitude. To simulate a natural
transition, an amplitude of 0.02 is selected in this case. The grid resolution for the DNS of
this example case is 10 090 × 90 × 320, and Δx+ × Δy+ × Δz+ = 6.02 × 0.58 × 5.47
in the streamwise, wall-normal and spanwise directions.

The newly proposed LES model KCM is tested a priori using the DNS data of the
compressible flat-plate flow first. To directly explain the difference between the KEF
constrained eddy-viscosity model KCM and the traditional eddy-viscosity models (i.e.
the SM, WALE model, etc.) on the prediction of the spatial distribution of KEF, a priori
tests of the energy fluxes obtained from KCM, SM, DSM, Vreman and WALE and the
real value are compared in figure 15. In the a priori tests, the DNS data of the transition
to the turbulence region at y+ = 15, which is in the buffer region, are filtered in the
spanwise direction with a top-hat filter, and the filter width is Δ̄ = 8Δz. From figure 15,
we find that the spatial distribution of KEF obtained from the KCM is very similar
to that of the real value in terms of both phase and amplitude. In contrast, the KEF
distributions obtained from the other three traditional eddy-viscosity models and DSM
have a significant difference from the real KEF distribution. Except for the weak negative
KEF in the result from DSM, there are not any backscatters in the results from other
traditional eddy-viscosity models. This result indicates that the strong ability of the KCM
on the accurate prediction of KEF is valid for the transition and turbulence of the flat-plate
boundary layer.

Then, for the a posteriori test, the numerical scheme is the same as that for the LES of
the turbulent channel flow in § 5.1. In this case, we choose two sets of grids for the LES of
the compressible flat-plate boundary layer; the parameter settings are shown in table 4. In
figure 16, we show the distributions of the skin-friction coefficients obtained from Vreman,
WALE, DSM and KCM compared with the results obtained from DNS on the two sets of
grids. In figure 16, from the curve of the real skin-friction coefficient, we can see that
the occurrence of the transition is at x ≈ 6.3, the transition peak is reached at x ≈ 7.2,
and then the steady turbulence region is gradually approached as the boundary layer flow
develops into fully developed turbulence. It is easy to see that all the models can predict the
point of transition properly in figure 16(a); however, the result of the KCM still has a small
advantage compared with the other results. Under the coarser grid, we find that the KCM
still predicts the transition point and transition peak well, as shown in figure 16(b), and it
has an obvious advantage compared with the other models. The traditional wall-bounded
turbulence model cannot predict the transition (Sayadi & Moin 2012; Zhou et al. 2019a),
but the SM constrained by KEF (KCM) can predict laminar, transitional and turbulent flow
regions accurately and can provide appropriate SGS dissipation in different flow regions.
The primary reason for this observation is that the KCM can supply the proper KEF in
different regions.
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Figure 15. An a priori test of the local KEF of the compressible flat-plate boundary layer at y+ = 15 from
different SGS models, and the real value for comparison: (a) the real value; (b) KCM; (c) SM; (d) DSM; (e)
Vreman; and ( f ) WALE.
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Figure 16. Skin-friction coefficient distribution along the flat plate: (a) grid-1 and (b) grid-2.
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Case Nx Ny Nz Δx+ Δy+
w Δz+

DNS 10 000 90 320 6.0 0.58 5.47
LES-grid1 1500 90 100 40.1 0.58 17.5
LES-grid2 1000 90 80 60.2 0.58 21.9

Table 4. Parameters of the simulations in the supersonic transition and turbulent flat-plate boundary layer
(Ma = 2.25, Re = 635 000).
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Figure 17. Van Driest transformed mean streamwise velocity at x = 8.8: (a) grid-1 and (b) grid-2.
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Figure 18. Temperature–velocity correlation normalized by the product of averaged temperature and velocity
(uavTav) along the wall-normal direction at x = 8.8 of the compressible flat-plate boundary layer: (a) grid-1
and (b) grid-2.

Moreover, the distribution of the van Driest transformed mean streamwise velocity at
x = 8.8 under the different scales of the grids are shown in

figure 17(a,b), where the flow can be regarded as steady turbulence. As seen from the
two panels, both of the profiles predicted by KCM are always very close to the real values
in all the regions. Conversely, the other models clearly overestimate the velocity in the
buffer region, log-law region and defect-law region.

In figure 18(a,b), we display the normalized temperature–velocity correlation along the
wall-normal direction at x = 8.8 for the two grid resolutions. In contrast to other models,
the result from KCM in the case of the fine grid has the obvious advantage, but this is not
so distinct in the coarse-grid case.
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Figure 19. An a posteriori test of the local KEF of the compressible flat-plate boundary layer at y+ = 15
from the LES models in the case of grid-1, and the real value for comparison: (a) the real value; (b) Vreman;
(c) WALE; (d) DSM; and (e) KCM.

Figure 19 shows the a posteriori test of the local KEF obtained from the LES
data of Vreman, WALE, DSM and KCM in the case of grid-1; the real KEF is also
displayed here for comparison. From the figure, we find that the results are similar
to those in the a priori test. The KEF from KCM and the real KEF have similar
spatial distributions, and the backscatters are full of their flow fields. Even if the KEF
obtained from DSM exist some weak local energy backscatters, the distribution of
the local KEF is still greatly different from the real value. On the other hand, the
KEF obtained from the traditional eddy-viscosity models still has no backscatter in the
whole field, and the amplitudes of the forward cascades are higher than the real value,
which indicates that the SGS models are more dissipative. Additionally, we can infer
that KCM can predict KEF, energy backscatters and flow structures more accurately in
this case.

Figure 20(a,b) shows the KEF ratio ηΔ of KCM along the streamwise direction at
y+ = 15 of the compressible flat-plate boundary layer in the two cases of different grid
resolutions. The distribution trend of the KEF ratio is similar to that of the skin-friction
coefficient in figure 16. Moreover, the value of ηΔ in the coarse-grid case is higher that in
the fine-grid case, which also indicates that the proposed model will be much better than
the model with the constraint from the original TD model on the coarse mesh. Figure 21
shows the model coefficients of the two cases with different grid resolutions. In the region
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Figure 20. An a posteriori test of KEF ratio ηΔ of KCM along the streamwise direction at y+ = 15 of the
compressible flat-plate boundary layer at different grid resolutions: (a) grid-1 and (b) grid-2.
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Figure 21. An a posteriori test of the model coefficients of KCM along the streamwise direction at y+ = 15
of the compressible flat-plate boundary layer at different grid resolutions: (a) Csm and (b) CI .

4 < x < 6.5, all the model coefficients of the two cases are zero. It could also indicate
that KCM is off in the laminar flow, and starts to work at the transition point. Also, the
distributions of these model coefficients are similar to the distributions of the skin-friction
coefficient.

6. Conclusions

In this paper, we propose a kinetic-energy-flux-constrained model (KCM) for the
large-eddy simulation (LES) of compressible wall turbulent flows. The new proposed
subgrid-scale (SGS) stress model aims to guarantee the proper prediction of the kinetic
energy flux (KEF) and the robustness of the computation in LES of compressible
wall-bounded turbulence. The KEF obtained from the tensor-diffusivity (TD) model has
a high correlation with the real value, but the TD model has low numerical stability.
In contrast, the KEF from the Smagorinsky model (SM) has a low correlation with the
real value but has a high robustness in computation. At the same time, from theoretical
analyses, we can confirm that the SM still has higher numerical stability than the TD
model, even in the condition with the same SGS dissipation. Using the DNS data of
compressible channel flow, through an artificial neural network (ANN), we obtain the
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KEF ratio between the KEF from the TD model and the real value. Thus, the modelled
KEF is obtained and then applied to constrain the SM. In addition, the ANN method is
only applied to predict a dimensionless coefficient, which might be easy to generalize to
the simulation of other turbulent flows.

The KCM is first applied to the simulation of compressible turbulent channel flow.
Compared with other traditional eddy-viscosity SGS models, the KCM could more
accurately predict typical statistical quantities, including the mean streamwise velocity,
Reynolds stress, temperature–velocity correlation, etc. Furthermore, the new model can
predict more abundant coherent turbulent structures in the channel flow. Then, the KCM
is also tested in a supersonic spatially developing flat-plate flow. Through an a priori test,
the feasibility of the KCM for LES of more complex wall-bounded turbulence is displayed.
In an a posteriori test, the KCM could precisely predict the natural transition process,
including the onset of transition and the transition peak. Moreover, the KCM could provide
more accurate profiles of skin friction, the mean velocity profiles and temperature–velocity
correlation in cases with two different grid resolutions. The new model could also predict
the energy backscatters in transition and turbulent flows properly.

In summary, the new LES methodology suggested in this paper has been verified to be
an effective method in LES. It can help to improve the prediction of both kinetic energy
flux and SGS heat flux. Nevertheless, it should be mentioned that the new methodology
still needs to be tested and modified in the wall-bounded turbulence with other types of
complex-geometry boundaries.

Acknowledgements. The authors thank the National Supercomputer Center in Tianjin (NSCC-TJ) and the
National Supercomputer Center in GuangZhou (NSCC-GZ) for providing computer time.

Funding. This work was supported by the National Key Research and Development Program of China
(2020YFA0711800 and 2019YFA0405302) and NSFC Projects (Nos. 12072349, 91852203 and 91952104).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Changping Yu https://orcid.org/0000-0002-2126-1344;
Zelong Yuan https://orcid.org/0000-0003-0279-111X;
Jianchun Wang https://orcid.org/0000-0001-5101-7791.

REFERENCES

BARDINA, J., FERZIGER, J. & REYNOLDS, W. 1980 Improved subgrid-scale models for large-eddy
simulation. AIAA Paper, 80-1357.

BODART, J. & LARSSON, J. 2012 Sensor-based computation of transitional flows using wall-modelled large
eddy simulation. Center for Turbulence Research Annual Briefs 2012, pp. 229–240.

BORUE, V. & ORSZAG, S.A 1998 Local energy flux and subgrid-scale statistics in three-dimensional
turbulence. J. Fluid Mech. 366, 1–31.

CHAI, X. & MAHESH, K. 2012 Dynamic-equation model for large-eddy simulation of compressible flows.
J. Fluid Mech. 699, 385–413.

CHATÉ, H. & MANNEVILLE, P. 1987 Transition to turbulence via spatio-temporal intermittency. Phys. Rev.
Lett. 58 (2), 112.

CHEN, S., XIA, Z., PEI, S., WANG, J., YANG, Y., XIAO, Z. & SHI, Y. 2012 Reynolds-stress-constrained
large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 703, 1–28.

CHOLLET, J.P. & LESIEUR, M. 1981 Parameterization of small scales of three-dimensional isotropic
turbulence utilizing spectral closures. J. Atmos. Sci. 38 (12), 2747–2757.

CLARK, R.A., FERZIGER, J.H. & REYNOLDS, W.C. 1979 Evaluation of subgrid-scale models using an
accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16.

COLEMAN, G.N, KIM, J. & MOSER, R.D. 1995 A numerical study of turbulent supersonic isothermal-wall
channel flow. J. Fluid Mech. 305, 159–183.

932 A23-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-2126-1344
https://orcid.org/0000-0002-2126-1344
https://orcid.org/0000-0003-0279-111X
https://orcid.org/0000-0003-0279-111X
https://orcid.org/0000-0001-5101-7791
https://orcid.org/0000-0001-5101-7791
https://doi.org/10.1017/jfm.2021.1012


Kinetic-energy-flux-constrained model

DEARDORFF, J.W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds
numbers. J. Fluid Mech. 41, 453–480.

DUCROS, F., COMTE, P. & LESIEUR, M. 1996 Large-eddy simulation of transition to turbulence in a boundary
layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36.

DURAISAMY, K., IACCARINO, G. & XIAO, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid
Mech. 51, 357–377.

EYINK, G.L. 2006 Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159–
190.

FOYSI, H., SARKAR, S. & FRIEDRICH, R. 2004 Compressibility effects and turbulence scalings in supersonic
channel flow. J. Fluid Mech. 509, 207–216.

FUKAMI, K., FUKAGATA, K. & TAIRA, K. 2019 Super-resolution reconstruction of turbulent flows with
machine learning. J. Fluid Mech. 870, 106–120.

FUREBY, C. 2008 Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44, 381–396.
GARNIER, E., ADAMS, N. & SAGAUT, P. 2000 Large Eddy Simulation for Compressible Flows. Springer.
GEORGIADIS, N.J., ALEXANDER, J.I. & RESHOTKO, E. 2001 Development of a hybrid rans/les method for

compressible mixing layer. AIAA Paper, 2001-0289.
GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W.H. 1991 A dynamic subgrid-scale eddy viscosity

model. Phys. Fluids A 3 (7), 1760–1765.
GHOSAL, S., LUND, T.S., MOIN, P. & AKSELVOLL, K. 1995 A dynamic localization model for large-eddy

simulation of turbulent flows. J. Fluid Mech. 286, 229–255.
GHOSH, S., FOYSI, H. & FRIEDRICH, R. 2010 Compressible turbulent channel and pipe flow: similarities and

differences. J. Fluid Mech. 648, 155–181.
GÜEMES, A., DISCETTI, S., IANIRO, A., SIRMACEK, B., AZIZPOUR, H. & VINUESA, R. 2021 From coarse

wall measurements to turbulent velocity fields through deep learning. Phys. Fluids 33, 075121.
HORIUTI, K. 1986 On the use of sgs modelling in the simulation of transition in plane channel flow. J. Phys.

Soc. Japan 55 (5), 1528–1541.
HUAI, X., JOSLIN, R.D. & PIOMELLI, U. 1997 Large-eddy simulation of transition to turbulence in boundary

layers. J. Theor. Comput. Fluid Dyn. 9 (2), 149–163.
KIM, H., KIM, J., WON, S. & LEE, C. 2021 Unsupervised deep learning for super-resolution reconstruction

of turbulence. J. Fluid Mech. 910, A29.
KIM, J. & LEE, C. 2020 Prediction of turbulent heat transfer using convolutional neural networks. J. Fluid

Mech. 882, A18.
KINGERMA, D.P. & BA, J. 2019 Adam: a method for stochastic optimization. arXiv:1412.6980.
KOLMOGOROV, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large

Reynolds numbers. C. R. Acad. Sci. URSS 30, 301–305.
LARCHEVÊQUE, L., SAGAUT, P., LÊ, T.H. & COMTE, P. 2004 Large-eddy simulation of a compressible flow

in a three-dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265–301.
LEONI, P.C.D., ZAKI, T.A., KARNIADAKIS, G. & MENEVEAU, C. 2021 Two-point stress-strain-rate

correlation structure and non-local eddy viscosity in turbulent flows. J. Fluid Mech. 914, A6.
LESIEUR, M. & MÉTAIS, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech.

28, 45–82.
LI, W., FAN, Y., MODESTI, D. & CHENG, C. 2019 Decomposition of the mean skin-friction drag in

compressible turbulent channel flows. J. Fluid Mech. 875, 101–123.
LILLY, D.K. 1992 A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A 238,

633–635.
LING, J., KURZAWSKI, A. & TEMPLETON, J.P. 2016 Reynolds averaged turbulence modelling using deep

neural networks with embedded invariance. J. Fluid Mech. 807, 155–166.
LIU, S., MENEVEAU, C. & KATZ, J. 1994 On the properties of similarity subgrid-scale models as deduced

from measurements in a turbulent jet. J. Fluid Mech. 275, 83–119.
LIU, B., TANG, J., HUANG, H. & LU, X. 2020 Deep learning methods for super-resolution reconstruction of

turbulent flows. Phys. Fluids 32, 025105.
MARTIN, M.P.INO, PIOMELLI, U. & CANDLER, G.V 2000 Subgrid-scale models for compressible large-eddy

simulations. J. Theor. Comput. Fluid Dyn. 13 (5), 361–376.
MAULIK, R. & SAN, O. 2017 A neural network approach for the blind deconvolution of turbulent flows.

J. Fluid Mech. 831, 151–181.
MENEVEAU, C. & KATZ, J. 2000 Scale-invariance and turbulence models for lage-eddy simulation. Annu.

Rev. Fluid Mech. 32, 1–32.
MENEVEAU, C. & LUND, T.S. 1997 The dynamic smagorinsky model and scale-dependent coefficients in the

viscous range of turbulence. Phys. Fluids 9 (12), 3932–3934.

932 A23-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/1412.6980
https://doi.org/10.1017/jfm.2021.1012


C. Yu, Z. Yuan, H. Qi, J. Wang, X. Li and S. Chen

MENEVEAU, C., LUND, T.S. & CABOT, W.H. 1996 A lagrangian dynamic subgrid-scale model of turbulence.
J. Fluid Mech. 319, 353–385.

MENEVEAU, C & SREENIVASAN, K.R. 1987 Simple multifractal cascade model for fully developed
turbulence. Phys. Rev. Lett. 59 (13), 1424.

MOIN, P., SQUIRES, K., CABOT, W. & LEE, S. 1991 A dynamic subgrid-scale model for compressible
turbulence and scalar transport. Phys. Fluids A 3 (11), 2746–2757.

MORINISHI, Y., TAMANO, S. & NAKABAYASHI, K. 2004 Direct numerical simulation of compressible
turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 512, 273–308.

MOSER, R.D., HAERING, S.W. & YALLA, G.R. 2021 Statistical properties of subgrid-scale turbulence
models. Annu. Rev. Fluid Mech. 53, 255–286.

NICOUD, F. & DUCROS, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient
tensor. Flow Turbul. Combust. 63, 183–200.

PARK, J. & CHOI, H. 2021 Toward neural-network-based large eddy simulation: application to turbulent
channel flow. J. Fluid Mech. 914, A16.

PECNIK, R. & PATEL, A. 2017 Scaling and modelling of turbulence in variable property channel flows.
J. Fluid Mech. 823, R1.

PICKERING, E., RIGAS, G., SCHMIDT, O.T., SIPP, D. & COLONIUS, T. 2021 Optimal eddy viscosity for
resolvent-based models of coherent structures in turbulent jets. J. Fluid Mech. 917, A29.

PIOMELLI, U. 1993 High reynolds number calculations using the dynamic subgrid-scale stress model. Phys.
Fluids A 5 (6), 1484–1490.

PIOMELLI, U. 1999 Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35 (4), 335–362.
PIROZZOLI, S., GRASSO, F. & GATSKI, T.B. 2004 Direct numerical simulation and analysis of a spatially

evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16, 530–545.
POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.
PORTÉ-AGEL, F., MENEVEAU, C. & PARLANGE, M. 2000 A scale-dependent dynamic model for large-eddy

simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415, 261–284.
SAYADI, T. & MOIN, P. 2012 large eddy simulation of controlled transition to turbulence. Phys. Fluids 24,

114103.
SMAGORINSKY, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment.

Mon. Weath. Rev. 91, 99–164.
TRITTON, D.J 2012 Physical Fluid Dynamics. Springer Science & Business Media.
VERSTAPPEN, R. 2004 A synthesis of similarity and eddy-viscosity models. In Direct and Large-Eddy

Simulation V, pp. 271–278.
VINUESA, R. & BRUNTON, S.L. 2021 The potential of machine learning to enhance computational fluid

dynamics. arXiv:2110.02085.
VOKE, P. 1996 Subgrid-scale modelling at low mesh Reynolds number. Theor. Comput. Fluid Dyn. 8, 131–143.
VOLLANT, V., BALARAC, G. & CORRE, C. 2017 Subgrid-scale scalar flux modelling based on optimal

estimation theory and machine-learning procedures. J. Turbul. 18 (9), 854–878.
VREMAN, A.W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and

applications. Phys. Fluids 16, 3670–3681.
VREMAN, A.W., GEURTS, B.J. & DEEN, N.G. 2004 Large-eddy simulation of particle-laden turbulent

channel flow. In Direct and Large-Eddy Simulation V, pp. 271–278.
VREMAN, B., GEURTS, B.J., DEEN, N.G., KUIPERS, J.A.M. & KUERTEN, J.G.M. 2009 Two- and four-way

coupled euler-lagrangian large-eddy simulation of particle-laden turbulent channel flow. Flow Turbul.
Combust. 82, 47–71.

VREMAN, A.W., GEURTS, B. & KUERTEN, H. 1995 Subgrid-modelling in les of compressible flow. Appl.
Sci. Res. 54, 181–203.

VREMAN, B., GEURTS, B. & KUERTEN, H. 1996 Large-eddy simulation of the temporal mixing layer using
the clark model. J. Theor. Comput. Fluid Dyn. 8 (4), 309–324.

WANG, J., YANG, Y., SHI, Y., XIAO, Z., HE, X.T. & CHEN, S. 2013 Cascade of kinetic energy in
three-dimensional compressible turbulence. Phys. Rev. Lett. 110 (21), 214505.

XIE, C., WANG, J., LI, H., WAN, M. & CHEN, S. 2019 Artificial neural network mixed model for large eddy
simulation of compressible isotropic turbulence. Phys. Fluids 31, 085112.

XIE, C., WANG, J. & WEINAN, E. 2020a Modeling subgrid-scale forces by spatial artificial neural networks
in large eddy simulation of turbulence. Phys. Rev. Fluids 5, 054606.

XIE, C., YUAN, Z. & WANG, J. 2020b Artificial neural network-based nonlinear algebraic models for large
eddy simulation of turbulence. Phys. Fluids 32, 115101.

YANG, X.I.A. & LV, Y. 2018 A semi-locally scaled eddy viscosity formulation for LES wall models and flows
at high speeds. J. Theor. Comput. Fluid Dyn. 32 (5), 617–627.

932 A23-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2110.02085
https://doi.org/10.1017/jfm.2021.1012


Kinetic-energy-flux-constrained model

YANG, X.I.A., ZAFAR, S., WANG, J.X. & XIAO, H. 2019 Predictive large-eddy-simulation wall modeling
via physics-informed neural networks. Phys. Rev. Fluids 4, 034602.

YOSHIZAWA, A. 1986 Statistical theory for compressible turbulent shear flows, with the application to subgrid
modeling. Phys. Fluids 29, 2255–2271.

YU, C., HONG, R., XIAO, Z. & CHEN, S. 2013 Subgrid-scale eddy viscosity model for helical turbulence.
Phys. Fluids 25, 095101.

YU, C., XIAO, Z. & LI, X. 2016 Dynamic optimization methodology based on subgrid-scale dissipation for
large eddy simulation. Phys. Fluids 28 (1), 015113.

YUAN, Z., XIE, C. & WANG, J. 2020 Deconvolutional artificial neural network models for large eddy
simulation of turbulence. Phys. Fluids 32, 115106.

ZHANG, P., WAN, Z. & SUN, D. 2019 Space-time correlations of velocity in a mach 0.9 turbulent round jet.
Phys. Fluids 31, 115108.

ZHOU, Z., HE, G., WANG, S. & JIN, G. 2019b Subgrid-scale model for large-eddy simulation of isotropic
turbulent flows using an artificial neural network. Comput. Fluids 195, 104319.

ZHOU, H., LI, X., QI, H. & YU, C. 2019a Subgrid-scale model for large-eddy simulation of transition and
turbulence in compressible flows. Phys. Fluids 31, 125118.

932 A23-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1012

	1 Introduction
	2 Theoretical background
	2.1 LES governing equations
	2.2 Subgrid-scale model

	3 Kinetic-energy-flux-constrained model (KCM)
	4 Artificial neural network
	5 Results of applications
	5.1 Application in compressible turbulent channel flows
	5.2 Application in compressible flat-plate boundary layer

	6 Conclusions
	References

