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This article presents a review and perspectives on the models for space-time energy
spectra in turbulent shear flows. The Taylor, Kraichnan-Tennekes, and elliptic approxi-
mation (EA) models are re-examined in terms of the picture of turbulent passage, which
is proposed by Taylor’s frozen-flow hypothesis and the Kraichnan-Tennekes random
sweeping hypothesis; the stochastic dynamic models for reproduction of space-time energy
spectra, such as dynamic autoregression model, are discussed; and the statistical models
for reconstruction of space-time energy spectra from incomplete data sets in experimental
measurements are revisited. We present three distinct approaches of successive approxi-
mation for developing the models of space-time energy spectra and use the conditional
moments of energy distribution to characterize space-time energy spectra, such as propa-
gation velocities and spectral bandwidths.
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I. INTRODUCTION

In this article, we present a review and perspectives on space-time energy spectra in turbulent
flows. A space-time energy spectrum or frequency wave-number energy spectrum describes the
energy distribution of velocity fluctuations over a broad range of spatial and temporal length scales
[1]. It not only characterizes dynamic coupling between spatial and temporal scales [2,3] and
coherent structures in turbulent flows [4] but also plays a key role in flow-generated noise and
flow-structure interaction [5–8], especially at large Reynolds numbers. Recently, physics-based
and data-driven models have been developed for reproducing and predicting space-time energy
spectra. This article is not meant to be an exhaustive review but rather is focused on the physical
understanding and stochastic models of space-time energy spectra from the authors’ view.

In his seminal paper on the spectrum of turbulence, Taylor [9] proposed that small-scale eddies
in turbulent flows move downstream at a constant speed with little distortion. This is the famous
Taylor’s frozen-flow hypothesis or simply Taylor’s model. It is not only used to convert the temporal
spectra to spatial spectra in experimental measurements but also serves as a basic picture of turbulent
passages to understand the convection effect in turbulent flows. However, Taylor’s model with a
constant moving speed has many limitations, such as weak shear rates and low turbulence intensity
[10,11]. In particular, due to ignorance of turbulent distortion, it incorrectly predicts the bandwidths
of space-time energy spectra to be vanishing, that is to say, Taylor’s frozen-flow hypothesis implies
that the space-time energy spectrum is a one-dimensional curve, not a two-dimensional surface [see
Fig. 1(a)]. This is in contradiction to the spreading ranges of energy spectra in frequency and wave
number. Kraichnan [12] and Tennekes [13] proposed the random sweeping hypothesis to account
for the distortion effect in homogeneous isotropic turbulence (HIT). The convection and distortion
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FIG. 1. Space-time energy spectrum �(kx, ω) of the streamwise velocity at y+ = 92 obtained from DNS of
turbulent channel flows at Reτ = 550. (a) The colored surface shows the energy density in the frequency wave-
number domain. The green lines denote the cuts of the surface with a fixed energy density. The red solid lines
denote the isospectral contours that are approximately ellipses. The blue dashed line indicates the preferential
direction of the contours, and its slope is related to the convection velocity. The blue solid line shows the spatial
energy spectrum at a fixed frequency. For comparison, the space-time energy spectrum predicted by Taylor’s
model is represented by the gray curve, which exhibits vanishing spectral bandwidths. (b) The spatial energy
spectrum at a fixed frequency (blue solid line) shown in panel (a) is plotted against wave numbers. The red
dashed line denotes its mean wave number. The black solid line with arrows denotes its spectral bandwidth.

effects are also considered by treating the convection velocity as scale-dependent velocity [14] or
superposition of mean velocity and random sweeping velocity [15–17]. We developed an elliptic
approximation (EA) model [18,19] by using successive approximation to the contours of space-time
correlation, which accounts for the coupling effect of convection and distortion.

We hope to develop simple stochastic models from the Navier-Stokes (NS) equations to re-
produce space-time energy spectra. This can be achieved by decomposing the NS equations into
a linear part and nonlinear terms: The linear part represents the dominating properties, and the
nonlinear terms are modeled by random forcing. The random forcing is treated as an input in
resolvent analysis [20–22] and input-output analysis [23,24] to reproduce the desired properties.
White-in-time random forcing is conventionally used to predict the convection velocities [25]
and geometric characteristics of energetic structures [26] in wall-bounded turbulence. However,
white-in-time random forcing leads to divergent bandwidths of space-time energy spectra [27].
Colored-in-time random forcing is introduced to the resolvent analysis and input-output analysis,
which improves the prediction of spectral bandwidths. Recently, we utilized dynamic autoregression
(DAR) to determine random forcing [27]. The resultant DAR model can reproduce the space-time
energy spectra with exact spectral bandwidths.

Reconstruction of space-time energy spectra requires a complete data set of turbulent fluctua-
tions over spatial and temporal length scales. However, the data sets obtained from experimental
measurements are often incomplete in the space and/or time domain. Taylor’s model has been a
staple tool to convert temporal spectra to spatial spectra in convection-dominating flows but fails in
the reconstruction of space-time energy spectra [7]. Beall et al. [28] developed a local wave number
(LW) model to improve the prediction. However, it still underpredicts the spectral bandwidths.
de Kat and Ganapathisubramani [29] developed the frequency wave-number mapping approach
to reconstruct space-time energy spectra. The local modulated wave (LMW) model [30] uses the
local modulated wave to represent the wavelike structures in space and time and exactly predicts the
spectral bandwidths.
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The remainder of this article is organized as follows. In Sec. II, we review the phenomenological
models for space-time energy spectra in turbulent shear flows. In Sec. III, we describe the random
forcing approach for Taylor’s model. The resultant DAR model can reproduce space-time energy
spectra of exact mean frequencies and spectral bandwidths. In Sec. IV, we discuss how to use the
incomplete data set from experimental measurements to reconstruct the space-time energy spectra.
Finally, in Sec. V, we summarize the present understanding and physics-based models of space-time
energy spectra and discuss future work.

II. PHENOMENOLOGICAL MODELS IN TERMS OF TURBULENT PASSAGE

A. Characterization of space-time energy spectra

In homogeneous turbulence, the space-time energy spectra �(k, ω) and the space-time correla-
tions R(r, τ ) of velocity fluctuation are defined as

�(k, ω) = 1

(2π )4

∫
R(r, τ )e−i(k·r−ωτ )drdτ , (1)

R(r, τ ) = 〈u(x, t )u(x + r, t + τ )〉. (2)

Here, �(k, ω) denotes the space-time energy spectra, R(r, τ ) denotes the space-time correlations,
u is one component of the velocity field, x = (x, y, z) is the spatial coordinate, t is the temporal
coordinate, r = (rx, ry, rz ) represents the spatial separation, τ represents the temporal separation,
k = (kx, ky, kz ) is a three-dimensional wave-number vector, and ω is the frequency. The angular
bracket 〈〉 denotes the ensemble averaging.

In turbulent channel flows, the velocity field is homogeneous in the streamwise (x) and spanwise
(z) directions and inhomogeneous in the wall-normal direction (y). Accordingly, the space-time
energy spectrum of the streamwise component u is defined on the x-z plane at location y, given by

�(κ, ω; y) = 1

(2π )3

∫∫∫
R(rx, rz, τ ; y)e−i(kxrx+kzrz−ωτ )drxdrzdτ , (3)

R(rx, rz, τ ; y) = 〈u(x, y, z, t )u(x + rx, y, z + rz, t + τ )〉, (4)

where κ = (kx, kz ) is a two-dimensional wave-number vector. kx is the streamwise wave number,
and kz is the spanwise wave number. For convenience, the wall-normal location y in the independent
variables is omitted, such that �(κ, ω; y) is simply written as �(κ, ω). Throughout this paper, the
energy spectra are dependent on explicitly independent variables only. For example, �(kx ) refers to
the spatial energy spectra with respect to the streamwise wave number, and �(kx, ω) refers to the
space-time energy spectra with respect to the streamwise wave number and frequency.

The space-time energy spectra �(κ, ω) can be alternatively expressed through space-time Fourier
modes ũ(κ, ω) in terms of the Wiener-Khinchin theorem,

�(κ, ω)δ(κ − κ′)δ(ω − ω′) = 〈ũ∗(κ, ω)ũ(κ′, ω′)〉, (5)

where δ is the Dirac delta function. To study the decorrelation process, we introduce the time
correlation �(κ, τ ) of spatial Fourier mode û(κ, t )

�(κ, τ )

�(κ)
= 〈û∗(κ, t )û(κ, t + τ )〉

〈û∗(κ, t )û(κ, t )〉 , (6)

which is related to space-time energy spectra through

�(κ, ω) = 1

2π

∫
�(κ, τ )eiωτ dτ . (7)

Figure 1 shows the space-time energy spectrum of the streamwise velocity at y+ = 92 obtained
from the direct numerical simulation (DNS) of turbulent channel flows. The two-dimensional
surface of the space-time energy spectrum is narrow and looks like a mountain. For comparison, the
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space-time energy spectrum predicted by Taylor’s model is represented by the gray curve, which
exhibits vanishing spectral bandwidths. The isospectral contours (red solid lines) are approximately
elliptic, which are similar to the isocorrelation contours. The two-dimensional surface decays most
slowly along the ridge line and has a bell-shaped slice (blue solid line). The projection of the ridge
line onto the frequency wave-number plane is the preference direction (blue dashed line) of the
isospectral contours. Its slope is related to convection velocity. The width of the slice (black solid
line with arrows) indicates the bandwidth of the space-time energy spectrum at a fixed frequency.

Spatial energy spectra and temporal energy spectra are the two marginal distributions of space-
time energy spectra. In HIT, spatial energy spectra follow the −5/3 scaling with respect to wave
numbers, and temporal energy spectra satisfy the same scaling, −5/3, with respect to frequencies
[13]. In the log region of wall-bounded turbulence, in addition to the −5/3 scaling range, there
may exist the range of scaling −1 [31–33] for the spatial and temporal marginal spectra. However,
this scaling remains controversial in terms of the recent theoretical arguments and experimental
measurements [14,29,34,35].

B. Conditional moments: mean and bandwidth

Space-time energy spectra describe the joint distribution of energy density over a broad range
of frequencies and wave numbers. Analogous to probability distribution functions, they can be
characterized by conditional moments at fixed frequencies or wave numbers.

(1) The first-order conditional moments at a fixed frequency give the mean wave number

kxc(ω) =
∫

kx�(kx, ω)dkx

�(ω)
. (8)

The mean wave number kxc(ω) can be used to calculate the frequency-dependent convection
velocity, such as cu(ω) = ω/kxc(ω). It provides a statistical dispersion relation in turbulent flows
[28].

(2) The second-order conditional moments at a fixed frequency give the spectral bandwidths

B(ω) =
∫

(kx − kxc)2�(kx, ω)dkx

�(ω)
. (9)

The nonzero spectral bandwidths describe spectral broadening in turbulent flows [11,36]: the energy
density of small-scale eddies scatters around the statistical dispersion relation. In fact, small-scale
eddies are distorted by large-scale shearing and small-scale interacting, rather than frozen without
change.

The first- and second-order conditional moments can be used to investigate turbulent passage: the
mean wave numbers are employed to calculate the propagation velocities of small-scale eddies, and
the spectral bandwidths specify the extent of their distortion. The propagation velocities are used to
describe the Doppler shift, and the spectral bandwidths are used to describe the Doppler broadening
[11].

The temporal Fourier mode û(x, ω) can be written in terms of its amplitude a(x, ω) and phase
θ (x, ω), such as

û(x, ω) = a(x, ω)eiθ (x,ω). (10)

We have the exact expressions for the mean wave numbers and the spectral bandwidth [37]:

kxc(ω) = 〈a2∂xθ〉
〈a2〉 , (11)

B(ω) =
〈
a2(∂xθ − kxc)2

〉
〈a2〉 +

〈
(∂xa)2

〉
〈a2〉 . (12)
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FIG. 2. Schematic representation of turbulent passage and the space-time correlation models. Turbulent
passage is pictured as the downstream movement of flow patterns at a propagation speed with a certain
distortion. In the EA model, space-time correlations are determined by the propagation and distortion of flow
patterns. The former is represented by the propagation velocity U and the latter is represented by the sweeping
velocity V . The EA model becomes Taylor’s model if V is zero and becomes the Kraichnan-Tennekes random
sweeping model if U is zero.

Equations (11) and (12) indicate that the mean wave number is determined by the phase derivative
only, while the spectral bandwidth is determined by both the phase and amplitude derivatives. The
DNS results [37] show that the contribution of the amplitude derivative to the spectral bandwidth
is as important as that of the phase derivative and cannot be ignored in turbulent flows. Therefore,
phase variation is not sufficient to describe spectral bandwidths. Taylor’s model approximately re-
produces the mean wave number. However, it incorrectly predicts the vanishing spectral bandwidths,
since Taylor’s model implies that the phase and amplitude are frozen and thus that both terms in the
right-hand side of Eq. (12) are zero.

C. A picture of turbulent passage

Turbulent passage is pictured as the convection of small-scale eddies by large-scale eddies with
distortion. In other words, small-scale eddies move downstream at a propagation speed with a certain
distortion (see Fig. 2). Turbulent passage is dominated by the following three dynamic processes:
the convection of small-scale eddies by large-scale eddies, the shearing of small-scale eddies by
large-scale eddies, and the interaction of small-scale eddies. Both the interaction and the shearing
distort small-scale eddies. The dynamic processes can be described by using phenomenological
models: large-scale convection is represented by Taylor’s model [9]; the contribution of the small-
scale interaction to the time correlation is modeled by the Kraichnan-Tennekes random sweeping
model [12,13]; and the contribution of the coupling effect of small-scale interaction and large-scale
shearing to the time correlation is represented by the EA model [18,19].

Turbulent passage can be characterized by propagation velocity and sweeping velocity. The
propagation velocity U of a generic variable q is defined as the value of convection velocity c which
minimizes the square of the total derivative ∂t q + c∂xq [14]. Therefore, it gives the characteristic
speed at which the small-scale eddies move downstream without distortion. This is the well-known
Taylor’s frozen-flow hypothesis. The sweeping velocity V is defined as the ensemble average of the
square of the total derivative σ ≡ ∂t q + U∂xq normalized by the ensemble average of the square of
the local derivative ∂xq, where the convection velocity is taken as the propagation velocity U . As
a result, it measures the deviation of Taylor’s frozen flow q(x − Ut ) from the time-evolution flow
q(x, t ), mainly due to the distortion of small-scale eddies.
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The propagation velocity U and sweeping velocity V can be mathematically expressed as
follows, respectively:

U = arg min
c

〈
(∂t q + c∂xq)2

〉 = −〈∂t q∂xq〉〈
(∂xq)2

〉 , (13)

V 2 = 〈σ 2〉〈
(∂xq)2

〉 =
〈
(∂t q + U∂xq)2

〉〈
(∂xq)2

〉 , (14)

where arg min denotes the argument of the minimum. Physically, the propagation velocity is referred
to as the speed of downstream movement of small-scale eddies. The sweeping velocity is referred to
as the variation velocity of small-scale eddies of the characteristic length scale

√
〈q2〉/〈(∂xq)2〉 at the

Taylor time microscale
√

〈q2〉/〈σ 2〉 in the moving frame at the propagation speed U . Therefore, the
sweeping velocity characterizes the distortion of small-scale eddies caused by large-scale shearing
and small-scale interaction. The sweeping velocity used in the present study is completely different
from the similar term “sweep” in wall-bounded turbulent flows: The former is referred to as the
characteristic velocity which specifies the decorrelation rapidity of small scale eddies; the latter is
referred to as the flow event toward the wall which leads to local acceleration of the streamwise
component in turbulent boundary layers [38].

According to the mean frequency and spectral bandwidth, the propagation and sweeping veloci-
ties can be rewritten as [27]

U =
∫

cu(kx )k2
x �(kx )dkx∫

k2
x �(kx )dkx

, (15)

V 2 =
∫

B(kx )�(kx )dkx∫
k2

x �(kx )dkx
+

{∫
c2

u(kx )k2
x �(kx )dkx∫

k2
x �(kx )dkx

−
[∫

cu(kx )k2
x �(kx )dkx∫

k2
x �(kx )dkx

]2
}

, (16)

where cu(kx ) = ωc(kx )/kx is a wave-number-dependent convection velocity. Equation (15) implies
that the propagation velocity is the weighted average of wave-number-dependent convection veloc-
ities [14]. In Eq. (16), the sweeping velocity is the sum of two terms: The first term represents
the contribution of the spectral bandwidths, and the second term represents the contribution of
the wave-number-dependent convection velocities. This implies that the wave-number-dependent
convection velocities alone cannot produce the correct sweeping velocity.

In HIT, the propagation and sweeping velocities for the fluctuating velocity vector u =
(u1, u2, u3) can be respectively expressed as follows:

U = arg min
c

〈
(∂t ui + c∂xui )

2
〉 = −〈∂t ui∂xui〉

〈∂xui∂xui〉 , (17)

V 2 = 〈σiσi〉
〈∂xui∂xui〉 =

〈
(∂t ui + U∂xui )2

〉
〈∂xui∂xui〉 , (18)

where σi ≡ ∂t ui + U∂xui (i = 1, 2, 3). The repeated indices imply the Einstein summation conven-
tion. According to the Kraichnan-Tennekes random sweeping hypothesis [12,13], we have

σi = −v · ∇ui = −(v1∂xui + v2∂yui + v3∂zui ), (19)

where the random velocity v = (v1, v2, v3) satisfies a Gaussian distribution of zero mean and the
correlation 〈viv j〉 = 〈u2〉δi j/3. Moreover, v is independent of u and constant in both space and time.
Hence, the sweeping velocity can be calculated through

V 2 = 〈σiσi〉
〈∂xui∂xui〉 = 〈

v2
1

〉 + 〈
v2

2

〉 + 〈
v2

3

〉 = 〈u2〉. (20)
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Therefore, the value of the sweeping velocity V in HIT is the rms of the fluctuating velocity vector
u. Kraichnan proposed that the sweeping velocity in HIT can be treated as a random convection
velocity, which has been justified theoretically and verified numerically [1].

In homogeneous shear turbulence, the propagation velocity is simply taken as U = U1, where U1

is the mean velocity. If the pressure and viscous terms are ignorable, we have

σi = −v · ∇ui − δi1Su2, (21)

where S is a mean shear rate. Therefore, since the fluctuating velocity u is assumed to be isotropic,
the sweeping velocity is given by

V 2 = 〈
v2

1

〉 + 〈
v2

2

〉 〈∂yui∂yui〉
〈∂xui∂xui〉 + 〈

v2
3

〉 〈∂zui∂zui〉
〈∂xui∂xui〉 + S2

〈
u2

2

〉
〈∂xui∂xui〉 = 〈u2〉 + S2λ2

T , (22)

where λT = √〈uiui〉/〈∂ jui∂ jui〉 is the Taylor length microscale [19].
The turbulent passage has been used to understand space-time energy spectra. For example, large-

scale convection causes a Doppler shift, and small-scale distortion causes Doppler broadening [11].
It has also been used to study the temporal decorrelation in turbulent shear flows: Time correlation is
mainly determined by small-scale interaction and large-scale shearing. Turbulent passage serves as
a supplement to the energy cascade process to investigate the spatiotemporal dynamics of turbulent
flows.

D. Taylor, Kraichnan-Tennekes, and EA models

In this subsection, we briefly review the Taylor [9], Kraichnan-Tennekes [12,13], and EA
[18,19] models of space-time correlations in terms of the successive approximation to isocorrelation
contours. The obtained results are consistent with the turbulent passage picture. Throughout this
subsection, R(r, τ ) refers to the sum of the correlations of all velocity components, and �(kx, ω)
refers to the sum of the energy spectra of all velocity components.

The numerical simulations and experimental measurements show that the isocorrelation contours
are elongated and closed curves with a preferential direction. The second approximation to the
isocorrelation contours leads to an EA model, given by

R(r, τ ) = R
(√

(r − Uτ )2 + V 2τ 2, 0
)
. (23)

Here, the parameters U and V can be determined by using the Taylor expansion of R(r, τ ), which
yields

U = −∂2
rτ R(r, τ )

∂2
rrR(r, τ )

∣∣∣∣
r=0 τ=0

, (24)

V 2 = ∂2
ττ R(r, τ )

∂2
rrR(r, τ )

∣∣∣∣
r=0 τ=0

− U 2. (25)

It is shown that the parameters U and V in Eqs. (24) and (25) are consistent with those in
Eqs. (17) and (18). Therefore, U is the propagation velocity and V is the sweeping velocity. The EA
model implies that the space-time correlation is determined by spatial correlation and the nonlinear
transform of elliptic form. The EA model becomes Taylor’s model R(r, τ ) = R(r − Uτ, 0) if V = 0,
and it becomes the Kraichnan-Tennekes random sweeping model R(r, τ ) = R(

√
r2 + V 2τ 2, 0) up

to a second-order approximation if U = 0.
The EA model is consistent with the turbulent passage picture. In homogeneous shear flows,

the propagation and sweeping velocities can be expressed as U = U1 and V 2 = 〈u2〉 + S2λ2
T ,

respectively [19]. The propagation velocity represents the large-scale convection effect; the first
term in V 2 represents the small-scale interaction effect and the second term represents the large-scale
shearing effect. Taylor’s model is the first approximation of the iso-correlation contours, since its
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iso-correlation contours are straight lines, r − Uτ = const. In this case, the mean frequencies and
spectral bandwidths are ωc(kx ) = kxU and B(kx ) = 0, respectively. Moreover, in the Kraichnan-
Tennekes random sweeping model, the mean frequencies and spectral bandwidths are ωc(kx ) = 0
and B(kx ) = ∫∫

k2v2�(k)dkydkz/
∫∫

�(k)dkydkz, respectively, where v2 = V 2/3 is the variance of
one velocity component. This model predicts the spectral bandwidths in HIT.

III. STOCHASTIC DYNAMIC MODELS

This section is devoted to reviewing stochastic dynamic models for space-time energy spectra
of velocity fluctuations. The governing equations of velocity fluctuations about laminar or turbulent
base flows can be decomposed into a linear part and a nonlinear term. The linear part without the
nonlinear term simply corresponds to the linearized NS equations (LNSEs). In resolvent analysis
and input-output analysis, the nonlinear term plays a role of nonlinear forcing, which can be treated
as random forcing. The problem is how to model the nonlinear forcing to generate the desired
properties of turbulent fluctuations. We discuss white random forcing in Sec. III A and colored
random forcing in Sec. III B. In the recently developed DAR model, the nonlinear forcing is modeled
by using stochastic dynamic equations, where the LNSEs are simplified as Taylor’s model. The DAR
forcing is discussed in Sec. III C.

In the framework of resolvent analysis and input-output analysis, the space-time energy spectra
are related to nonlinear forcing. LNSEs with a forcing in turbulent channel flows can be conceptually
written as

∂q̂
∂t

= Aq̂ + BF̂. (26)

Here, q̂(κ, t ) is the state vector, such as [û v̂ ŵ p̂]T , [v̂ ω̂y]T or simply one velocity component û.
In addition, û, v̂, and ŵ are the velocity fluctuations in the streamwise, wall-normal, and spanwise
directions, respectively; p̂ is the pressure fluctuation; and ω̂y is the wall-normal vorticity. A(κ) is a
linear operator. F̂(κ, t ) represents nonlinear forcing. B(κ) modifies the nonlinear forcing such that
it maps the nonlinear forcing to the excitations.

Equation (26) can be written in the frequency domain

−iωq̃ = Aq̃ + BF̃, (27)

which gives the solution

q̃ = RBF̃ ≡ (−iωI − A)−1BF̃, (28)

where q̃(κ, ω) and F̃(κ, ω) are the temporal Fourier transformations of q̂ and F̂, respectively, and
R = (−iωI − A)−1 is the resolvent operator [20–22]. Therefore, the space-time spectrum of the
state vector q̃ is given by

�q̃(κ, ω) ≡ 〈q̃q̃∗〉 = RB〈F̃F̃∗〉B∗R∗ ≡ RB�F̃(κ, ω)B∗R∗, (29)

where �q̃ is the space-time cross spectrum of the state vector and �F̃ is the space-time cross
spectrum of the forcing. In input-output analysis [24,39], a linear operator C(κ) can be used to
extract the desired quantities from q̃, which provides a general framework.

A. White random forcing

The application of white random forcing to LNSEs can reproduce certain characteristics of
coherent structures in transition and turbulence (e.g., wall-bounded turbulence and free shear turbu-
lence). However, it will be shown that white-in-time random forcing generates a divergent spectral
bandwidth (see the final part of this subsection), which implies vanishing Taylor microscales in
time.
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Farrell and Ioannou [26] introduced white-in-time random forcing into LNSEs to show transient
amplification in the laminar-turbulent transition. The whiteness in time leads to the dominant forcing
modes being conveniently obtained from the eigenvectors of the solution of a Lyapunov equation.
On the other hand, the resolvent response modes correspond to the spectral POD (SPOD) modes
subject to white-in-space random forcing [40,41]. Schmidt et al. [42] and Lesshafft et al. [43]
numerically showed good agreement between the leading SPOD modes and the optimal resolvent
response modes in turbulent jets.

The random forcing that is white in both time and space has been used for spatiotemporal
properties. Farrell and Ioannou [44] introduced a finite coherence timescale into the solution of
LNSEs subject to spatiotemporally white forcing. This system gives the space-time energy spectra in
premultiplied form whose wave number and frequency at peak are consistent with the experimental
measurements. Spatiotemporally white forcing is also introduced into the LNSEs in the frame of
input-output analysis [45]. The obtained results show that the energy amplification of the streamwise
constant perturbations in channel flows is scaled as O(Re3). In Jovanović and Bamieh’s paper
[39], spatiotemporally white forcing is used as an input to investigate the componentwise energy
amplification, and the optimal outputs are the streamwise vortices and streaks, oblique waves, and
Tollmien-Schlichting waves. Liu and Gayme [25] used spatiotemporally white forcing as inputs
and computed the space-time energy spectra through the input-output operator in turbulent channel
flows. They demonstrated that the convection velocities estimated from the obtained space-time
energy spectra are in good agreement with the DNS results in the literature [46,47].

However, we can show that the white-in-time random forcing in Eq. (26) leads to divergent
spectral bandwidth. For simplicity, B(κ) is taken as an identity operator, and F̂(κ, t ) is taken as
white-in-time random forcing with its intensity �F̂(κ), such that 〈F̂(κ, t )F̂∗(κ, t ′)〉 = �F̂(κ)δ(t −
t ′). The solution of Eq. (26) can be written as

q̂(κ, t ) =
∫ t

−∞
e(t−s)AF̂(κ, s)ds, (30)

which yields

〈q̂(κ, t )F̂∗(κ, t )〉 = 〈F̂(κ, t )q̂∗(κ, t )〉 = �F̂(κ)/2. (31)

Therefore, 〈q̂(κ, t )F̂∗(κ, t )〉 and 〈F̂(κ, t )q̂∗(κ, t )〉 are finite. According to Eq. (26), we obtain

〈q̂∂t q̂∗〉 = 〈q̂(κ, t )q̂∗(κ, t )〉A∗ + 〈q̂(κ, t )F̂∗(κ, t )〉 (32)

and

〈∂t q̂∂t q̂∗〉 = A〈q̂(κ, t )q̂∗(κ, t )〉A∗ + A〈q̂(κ, t )F̂∗(κ, t )〉 + 〈F̂(κ, t )q̂∗(κ, t )〉A∗ + 〈F̂(κ, t )F̂∗(κ, t )〉.
(33)

All of the terms in the right-hand side of Eq. (32) are of finite values. As a result, 〈q̂∂t q̂∗〉 is finite.
However, the term 〈F̂(κ, t )F̂∗(κ, t )〉 in the right-hand side of Eq. (33) is divergent. Hence, 〈∂t q̂∂t q̂∗〉
is divergent. Therefore, there exists at least one component q̂(κ, t ) in q̂(κ, t ) such that 〈∂t q̂∂t q̂∗〉 is
divergent.

In terms of their definitions, we can calculate the mean frequency and spectral bandwidth

〈q̂∂t q̂∗〉
〈q̂q̂∗〉 = iωc(κ), (34)

〈∂t q̂∂t q̂∗〉
〈q̂q̂∗〉 = B(κ) + ω2

c (κ). (35)

Equation (34) implies that ωc(κ) is finite. However, the divergent 〈∂t q̂∂t q̂∗〉/〈q̂q̂∗〉 in Eq. (35) implies
that B(κ) is divergent, resulting in vanishing Taylor microscales [27].
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B. Colored random forcing

Numerical simulations of turbulent shear flows show that the nonlinear terms in the NS equations
are not white in either space or time. Towne et al. [48] found that the nonlinear forcing is spatially
coherent in a jet, although its coherence length scales are smaller than the flow pressure. They further
proposed a fit function for the cross spectra of the forcing in the high-Reynolds-number jet. Nogueira
et al. [49] showed that white-in-space random forcing leads to velocity responses inconsistent with
DNS results in turbulent Couette flows. In fact, the nonlinear forcing exhibits coherent structures,
such as a streamwise vortex in the forcing and a destructive interference between the lift-up
mechanism and the streamwise forcing. In turbulent channel flows, Morra et al. [50] demonstrated
that the nonlinear forcing is colored-in-time since there exists a peak in the frequency spectra of
the nonlinear forcing for buffer-layer structures and large-scale motions. They also found that the
spatial coherent structures of the nonlinear forcing are in agreement with the results in Nogueira
et al. [49].

The coherence of nonlinear forcing suggests that colored random forcing is necessarily intro-
duced for reproducing the spatiotemporal properties of turbulent flows. Rosenberg et al. [51] used
the triadic interaction of velocity modes to represent the nonlinear forcing [22,52], where only
dominant energetic modes are taken into account and estimated from the resolvent optimal response
modes. Moarref et al. [53] proposed a resolvent-based low-order decomposition in the determination
of nonlinear forcing. In turbulent channel flows, the velocity is expressed as a weighted sum of
resolvent response modes, where the weights represent the projection of the nonlinear forcing onto
the resolvent forcing modes. The weights are determined by using a convex optimization scheme to
minimize the errors between the spatial spectra from the resolvent-based low-order representation
of velocity fields and the DNS results. Furthermore, McMullen et al. [54] used the Orr-Sommerfeld
and Squire decomposition to replace the resolvent-based decomposition. The interesting result is
that the obtained spectrum can capture most of the energetic content in the frequency wave-number
plane even if only a spatial energy spectrum is used to determine the nonlinear forcing.

Zare et al. [23,55] showed that a white-in-time random forcing cannot reproduce the spatial
cross spectra of velocity fluctuations in turbulent channel flows and thus proposed colored-in-time
random forcing instead. Here, the colored-in-time random forcing is expressed as the sum of a
white-in-time forcing and a dynamical filter of the white-in-time forcing. It is obtained by using an
optimization algorithm for the maximal entropy and the low complexity to match the known spatial
energy spectra at all locations in the wall-normal direction. The colored-in-time forcing is further
shown to be equivalent to the modification of LNSEs with a white-in-time forcing. This method can
predict the spatial cross spectra and convection velocities of velocity fluctuations.

Morra et al. [56] used the eddy-viscosity-enhanced random forcing to estimate the space-time
cross spectra of the buffer-layer structure and large-scale motions in turbulent channel flows. The
eddy-viscosity-enhanced forcing can be the sum of the eddy viscosity and white random forcing.
The eddy viscosity is widely used in LNSEs and the resolvent analysis [57–65] and is represented
by the Cess model [66,67] in turbulent channel flows. The obtained space-time energy spectra and
cross spectra at several fixed wave numbers are in better agreement with the DNS results, since the
projections of the eddy-viscosity-enhanced random forcing onto the resolvent forcing modes are
closer to the DNS results [50].

Towne et al. [68] used the eddy-viscosity-enhanced resolvent operator to estimate the space-time
correlation in the inner layer of turbulent channel flows. The random forcing is determined to
reproduce the known space-time cross spectra at one location in the outer layer with its minimal
norm, where the pseudoinverse of the componentwise resolvent operator is taken. In turbulent
channel flows, the location at y+ = 37 is taken for reconstructing the random forcing. It is used
to predict the spatial spectra, temporal spectra, space-time cross-spectra, and convection velocity.
The convection velocity extracted from the estimated space-time correlation is consistent with the
DNS result. This approach [68] was further extended by introducing sensor noise in the framework
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of a Wiener filter [69]. Yang et al. [70] found that the location of the known input data is critically
important to the results.

C. Dynamic autoregressive (DAR) forcing

In the DAR models, LNSEs are simplified as Taylor’s model. The nonlinear forcing is estimated
by using the dynamic autoregression method, which leads to stochastic dynamic equations. The
DAR model for the streamwise velocity component at a fixed wall-normal location is given by [27]

∂ û(κ, t )

∂t
= −ikxUcû(κ, t )︸ ︷︷ ︸

Taylor′s model

+ σ̂ (κ, t )︸ ︷︷ ︸
DAR forcing

, (36a)

∂σ̂ (κ, t )

∂t
= −ikxUcσ̂ (κ, t )︸ ︷︷ ︸

convection

−b(κ)û(κ, t )︸ ︷︷ ︸
random sweeping

−2q(κ)σ̂ (κ, t )︸ ︷︷ ︸
damping

+
√

2b(κ)q(κ)�(κ)ξ̂ (κ, t )︸ ︷︷ ︸
white−in−time forcing

. (36b)

Here, Uc is the convection velocity. b(κ) ≈ k2
xV 2

x + k2
z V 2

z determines the spectral bandwidth,
where Vx and Vz are the streamwise and spanwise sweeping velocities, respectively. q(κ) =√

b(κ) is the damping coefficient; ξ̂ (κ, t ) is a complex white-in-time random forcing given by
〈ξ̂ ∗(κ, t )ξ̂ (κ ′, t ′)〉 = 2δ(κ − κ ′)δ(t − t ′). �(κ) is the spatial energy spectrum of the velocity û(κ, t )
and specifies the amplitude of the white-in-time random forcing.

In the DAR model, the evolution of the velocity component is governed by Taylor’s model subject
to a DAR forcing. The DAR forcing is determined by large-scale convection, random sweeping,
damping, and white-in-time noise, as shown in Eq. (36b). Therefore, the DAR model is consistent
with the picture of turbulent passage. In fact, the derivation of the DAR model is based on the picture
of turbulent passage by using dynamic autoregression.

The temporal correlations of velocity modes can be obtained from the DAR model

�(κ, τ ) = �(κ)(1 +
√

b(κ)|τ |)e−√
b(κ)|τ |−ikxUcτ , (37)

which gives the space-time energy spectra

�(κ, ω) = �(κ)
2b3/2(κ)

π [(ω − kxUc)2 + b(κ)]
2 . (38)

The most important observation is that the space-time energy spectra give the conditional mean
frequencies and spectral bandwidths as follows:

ωc(κ) =
∫

ω�(κ, ω)dω

�(κ)
= kxUc (39)

and

B(κ) =
∫

(ω − ωc)2�(κ, ω)dω

�(κ)
= b(κ) = k2

xV 2
x + k2

z V 2
z . (40)

The mean frequencies are the same as those in Taylor’s model, and the spectral bandwidths are the
same as those in the Kraichnan-Tennekes model. In particular, the spectral bandwidth at kx is given
by [27]

B(kx ) = k2
xV 2

x + V 2
z

∫
k2

z �(κ)dkz∫
�(κ)dkz

. (41)

In the DAR model, the inputs are spatial energy spectra and three parameters: convection
velocity Uc and streamwise and spanwise sweeping velocities, Vx and Vz. These parameters can
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FIG. 3. Comparison of the space-time energy spectra obtained from the DNS and the DAR model for the
streamwise velocity fluctuations at y+ = 270 in turbulent channel flows at Reτ = 550. (a) Contours obtained
from the DNS (colored shades with solid lines) and the DAR model (dashed lines with dots). (b) Cuts through
space-time energy spectra at three different wave numbers obtained from the DNS (colored solid lines) and the
DAR model (dashed lines). Figure adapted from Ref. [27].

be determined by matching with the EA model at small spatial and temporal separations, which are
given by

Uc =
∫

cu(kx )k2
x �(kx )dkx∫

k2
x �(kx )dkx

, (42)

V 2
z = B(kx )

∫
�(κ)dkz∫

k2
z �(κ)dkz

∣∣∣∣
kx=0

, (43)

V 2
x =

∫
B(kx )�(kx )dkx∫

k2
x �(kx )dkx

− V 2
z

∫
k2

z �(kz )dkz∫
k2

x �(kx )dkx
. (44)

The convection velocity in Eq. (42) is obtained from Eq. (15). The spanwise sweeping velocity
Vz in Eq. (43) is obtained from Eq. (41) at kx = 0. The streamwise sweeping velocity Vx is
obtained by substituting Eq. (41) into the average of the spectral bandwidth B(kx ) with the weight
�(kx )/

∫
k2

x �(kx )dkx. The parameters Uc, Vx, and Vz in the DAR model are different at different
wall-normal locations, since the wave-number-dependent convection velocity cu(kx ), the spectral
bandwidth B(kx ), and the spatial energy spectra are dependent on the wall-normal locations.

The DAR model is applied to the streamwise velocity fluctuations in turbulent channel flows at
Reτ = 550 [27]. The bulk Reynolds number Re ≡ Ubh/ν is approximately 10 000, where h is the
channel half-height, Ub is the bulk velocity, and ν is the kinematic viscosity. Figure 3 compares
the space-time energy spectra and the temporal spectra at different wave numbers obtained from
the DNS and the DAR model at y+ = 270. The line contours from the DAR model are in good
agreement with those from the DNS.

To reproduce the space-time energy spectra and wave-number-dependent convection velocities in
the near-wall region, linear stochastic estimation (LSE) [71] is employed to represent the large-scale
motions, which leads to

ûL(κ, t ; yW ) = α(κ; yW , yO)û(κ, t ; yO) (45)
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FIG. 4. Comparison of the space-time energy spectra obtained from the DNS and the DAR model with
LSE for the streamwise velocity fluctuations at y+ = 5 in turbulent channel flows at Reτ = 550. (a) Contours
obtained from the DNS (colored shades with solid lines) and the DAR model (dashed lines with dots). (b) Cuts
through space-time energy spectra at three different wave numbers obtained from the DNS (colored solid lines)
and the DAR model (dashed lines). Figure adapted from Ref. [27].

and

α(κ; yW , yO) = 〈û∗(κ, t ; yO)û(κ, t ; yW )〉
〈û∗(κ, t ; yO)û(κ, t ; yO)〉 , (46)

where ûL(κ, t ; yW ) is the large-scale motion at the near-wall location yW and û(κ, t ; yO) is the
velocity at the location yO in the outer layer. The correlation of the spatial Fourier modes between
the near-wall location yW and outer-layer location yO, 〈û∗(κ, t ; yO)û(κ, t ; yW )〉, is used to calculate
α(κ; yW , yO). Therefore, the remaining part of the near-wall velocity fluctuations is given by

ûR(κ, t ; yW ) = û(κ, t ; yW ) − ûL(κ, t ; yW ). (47)

The DAR model is used to generate the small-scale motions that have the space-time energy spectra
of the remaining part ûR, in which the parameters �(κ), Uc, Vx, and Vz are determined from the
remaining part by using Eqs. (42), (43), and (44). In fact, the DAR model is able to generate
the small-scale motions of the correct spectral bandwidths in the near-wall region. However, the
parameter Uc in the DAR model is taken as a constant and thus cannot represent the wave-number
dependence of the convection velocity. Therefore, the combination of DAR and LSE is used to
reproduce the wave-number-dependent convection velocity consistent with the DNS results.

Figure 4 compares the space-time energy spectra and the temporal spectra at different wave
numbers obtained from the DNS and the DAR model with LSE at y+ = 5. The velocities at y+

O = 92
in the outer layer are used to perform the LSE. Again, the results from the DAR model with LSE
are in agreement with those from the DNS. Figure 5 plots the temporal evolutions of the streamwise
velocity fluctuations at y+ = 5 obtained from the LSE, the DAR model, and the combination of
the DAR model with LSE. The preference angles of the velocity contours obtained from LSE are
significantly smaller than those from the DAR, indicating that the large-scale motions propagate
more quickly than the small-scale motions near the wall [14]. The DAR result is consistent with
the result obtained from the remaining part of the near-wall velocity fluctuations. Consequently, the
result obtained from the DAR model with LSE is consistent with the DNS result.
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FIG. 5. Temporal evolutions and wave-number-dependent convection velocities of the streamwise velocity
fluctuations at y+ = 5 in turbulent channel flows at Reτ = 550. Top: The LSE results. Middle left: Subtraction
of LSE from DNS. Middle right: The DAR model. Bottom left: The DNS results. Bottom right: The DAR
model with LSE.

The DAR model can be rewritten in matrix form for the velocity component and the external
forcing, given by

∂

∂t

[
û(κ, t )

σ̂ (κ, t )

]
=

[
LNS (κ) 1

LSW (κ) LNL(κ)

][
û(κ, t )

σ̂ (κ, t )

]
+

[
0

LF (κ)

]
ξ̂ (κ, t ), (48)

where LNS (κ) = −ikxUc, LSW (κ) = −b(κ) = −(k2
xV 2

x + k2
z V 2

z ), and LNL(κ) = −ikxUc − 2q(κ) =
−ikxUc − 2

√
k2

xV 2
x + k2

z V 2
z . Comparing the matrix differential equation (48) with Eq. (26), we find

that (i) the velocity component is not explicitly dependent on white-in-time forcing (hence, the
DAR model avoids divergent spectral bandwidths) and (ii) the DAR forcing is dependent on the
velocity component through the spectral bandwidth. Thus, the DAR model accounts for the random
sweeping effect.

In the Appendix, we describe how the DAR model in HIT is derived from the NS equations,
where the operator LSW corresponds to the random sweeping effect. The results show that the DAR
model in HIT reproduces the same spectral bandwidths as the random sweeping model.

IV. RECONSTRUCTING SPACE-TIME ENERGY SPECTRA FROM AN INCOMPLETE DATA SET

Reconstructing space-time energy spectra from time series of velocity fluctuations at a limited
number of measurement points is important in experimental study. In this section, we discuss the
LMW model for this purpose. The central idea is as follows: Space-time energy spectra can be
approximately estimated from localized wavelike structures. In terms of definition, for a fixed
frequency, a space-time energy spectrum is the Fourier transform of the spatial correlation of
temporal Fourier modes with respect to space separation. If the temporal Fourier mode can be
approximately represented by a local modulated wave with two local wave numbers, the space-time
energy spectrum at a fixed wave number is determined by the ensemble average of the local
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modulated waves whose wave numbers are equal to the fixed wave number. The local modulated
wave can be estimated from the time series of velocity fluctuations at neighboring measurement
points.

The LMW model is given by [30]

�LMW(kx, ω)

�(ω)
= 〈a2(x, ω)δ(kx − k+

x (x, ω))〉
2〈a2(x, ω)〉 + 〈a2(x, ω)δ(kx − k−

x (x, ω))〉
2〈a2(x, ω)〉 , (49)

k+
x (x, ω) = ∂xθ + a−1∂xa, (50a)

k−
x (x, ω) = ∂xθ − a−1∂xa, (50b)

where k+
x (x, ω) and k−

x (x, ω) are the wave numbers of the local modulated wave and determined
by the phase and amplitude derivatives of temporal Fourier modes, as shown in Eq. (50). Again,
a(x, ω) and θ (x, ω) are the amplitude and phase of the temporal Fourier mode û(x, ω), respectively,
as shown in Eq. (10). In practice, the phase and amplitude derivatives are obtained from differences
of temporal Fourier modes at neighboring measurement points; the ensemble average is taken for
all measurement points at which the local wave numbers are equal to the desired wave numbers.

The derivation of the LMW model is summarized as follows. The space-time energy spectra
can be expressed in terms of the spatial correlations of temporal Fourier modes at two different
locations,

�(kx, ω)

�(ω)
= 1

2π

∫ 〈û∗(x, ω)û(x + r, ω)〉
〈û∗(x, ω)û(x, ω)〉 e−ikxrdr. (51)

It is assumed in the LMW model that the temporal Fourier mode at one point is related to another
mode at the adjacent point through a local modulated wave, such that

ûLMW(x + r, ω) = û(x, ω)

[
ei(a−1∂xa·r−π/4)

√
2

+ e−i(a−1∂xa·r−π/4)

√
2

]
ei∂xθ ·r . (52)

As a result, the local modulated wave is a wavelike structure with a single frequency and two distinct
wave numbers. In other words, it is the superposition of two distinct waves. Taking the Taylor
expansions of the amplitude and phase in Eq. (52) up to first order, we obtain

aLMW(x + r, ω) ≈ a(x, ω) + ∂xa · r, (53a)

θLMW(x + r, ω) ≈ θ (x, ω) + ∂xθ · r. (53b)

The characteristic length scale r in Eq. (53b) is given by r 
 (1 + U/
√

〈u2〉)(∂xθ )−1 [30], where
U is a local mean velocity and

√
〈u2〉 is the rms of the local velocity fluctuation. Substitution of

Eq. (52) into Eq. (51) leads to the LMW model. Evidently, the spatial variations in the phase and
amplitude are taken into account in the LMW model.

The LMW model is a high-order approximation to temporal Fourier modes in terms of the Taylor
expansions of their amplitudes and phases; see Eq. (53). This point of view can be used to re-
examine Taylor’s model and the local wave number (LW) model [28,29]. In Taylor’s model, the
temporal Fourier mode is assumed to be a traveling wave of constant convection velocity U . As
a result, the amplitude derivative is zero, and the phase derivative is independent of the spatial
location. Therefore, the Taylor expansions of its amplitude and phase can be expressed as

aTA(x + r, ω) = a(x, ω), (54a)

θTA(x + r, ω) = θ (x, ω) + ωr/U . (54b)

Substitution of Eq. (54) into Eq. (51) leads to Taylor’s model

�TA(kx, ω)

�(ω)
= δ(kx − ω/U ). (55)
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Again, it is shown that the energy spectrum from Taylor’s model is concentrated on the dispersion
relation, kx = ω/U , leading to vanishing spectral bandwidths.

In the LW model, the temporal Fourier mode is assumed to be a local wave. As a result, the
amplitude derivative is zero and the phase derivative is dependent on the spatial location. Therefore,
the Taylor expansions of its amplitude and phase can be expressed as

aLW (x + r, ω) = a(x, ω), (56a)

θLW (x + r, ω) = θ (x, ω) + ∂xθ · r. (56b)

Substitution of Eq. (56) into Eq. (51) leads to the LW model

�LW (kx, ω)

�(ω)
= 〈a2(x, ω)δ(kx − kLW

x (x, ω))〉
〈a2(x, ω)〉 , (57)

kLW
x (x, ω) = ∂xθ. (58)

The above discussions highlight an attack line to reconstruct space-time energy spectra by succes-
sive approximation to energetic coherent structures in turbulent flows.

The LMW model can be shown to exactly reproduce the mean wave number and spectral
bandwidth, which are given in Eqs. (11) and (12). The LW model exactly reproduces the mean
wave number. However, this model underpredicts spectral bandwidths since the second term in the
right-hand side of Eq. (12) is zero. The LMW model is consistent with the dynamics of the turbulent
passage. The decorrelation of small-scale structures is affected by the shearing of large-scale eddies
and the interaction of smaller-scale eddies, resulting in variations in both phase and amplitude. In
the LMW model, the variations are approximately represented by local modulated waves. Note that
the LMW model can also be performed for the spatial Fourier mode, in which the local wave number
is replaced by the instantaneous frequency.

The LMW model is used for the space-time energy spectra of the streamwise velocity fluctuations
in turbulent channel flows at Reτ = 550 [30]. The time series of velocity fluctuations u(x, y, z, t ) and
u(x + �x, y, z, t ) at pair points are extracted from the DNS data, with the separation distance �x
taken to be the streamwise grid size �x. To perform the ensemble averages in Eq. (49), spatial loca-
tions (x, z) are taken on the x-z plane for every 10 grid points in the streamwise direction and every
grid point in the spanwise direction. The total sampling time is 5.12h/Ub. The Hanning window
is applied to the time series to minimize spectral leakage. The spatial averages can be replaced by
temporal averages if the total sampling time at a pair of neighboring points is sufficiently large.
Figure 6 compares the space-time energy spectra and the spatial spectra at different frequencies
obtained from the DNS and the LMW model at y+ = 92. Both the line contours and the spatial
spectra at different frequencies from the LMW model are in good agreement with those from the
DNS. Furthermore, it was shown [30] that the relative errors of the bandwidths at y+ = 92 from
the LMW model are less than 10% for low and moderate frequencies at �x+ ≈ 90. Wang et al.
[72] used the LMW model to reconstruct the space-time energy spectrum from the spatial mode in
turbulent channels, where the instantaneous frequency is taken. Their results show that the LMW
model ensures correct convection velocities and spectral bandwidths at all scales and represents
the most relevant energy in the frequency wave-number domain. In addition, the LMW model can
accurately reconstruct the space-time energy spectrum of a propagating Gaussian signal modulated
by a nonpropagating Gaussian amplitude [30]. These results show that the LMW model not only
provides a method to reconstruct the space-time energy spectra but also offers a theoretical tool to
study the coupling of propagation and distortion in turbulent flows.

Finally, we briefly review the application of the LW model to estimate local space-time energy
spectra. For spatially evolving flows, such as wakes, jets, and separated flows, velocity fluctuations
are inhomogeneous in the streamwise direction. As a result, there is no global wave that is translation
invariant. In this case, a local wave number has to be introduced to represent the dependence of
Fourier modes on locations. Therefore, a local energy spectrum is defined as the energy density

100504-16



SPACE-TIME ENERGY SPECTRA IN TURBULENT SHEAR …
�

�

�

�

�

�

�

(a) (b)

FIG. 6. Comparison of the space-time energy spectra obtained from the DNS and the LMW model for the
streamwise velocity fluctuations at y+ = 92 in turbulent channel flows at Reτ = 550. (a) Contours obtained
from the DNS (colored shades with solid lines) and the LMW model (dashed lines with dots). (b) Cuts through
space-time energy spectra at three different frequencies obtained from the DNS (colored solid lines) and the
LMW model (dashed lines).

of the Fourier mode with the local wave number at one location. Jones et al. [73] used the LW
model to reconstruct the local space-time energy spectra of the velocity fluctuations in the plane
wake transition. The results show that the spectral bandwidth is very small in the transition region
and large in the turbulent region. In addition, throughout the transition, the spectral bandwidth is
smaller for the coherent frequencies and larger for those far away from the coherent frequencies.
They further demonstrated the significant difference between the local spatial spectra obtained from
the LW model and those from Taylor’s model in the turbulent region. Thomas and Chu [74] obtained
similar observations in the plane jet transition. Mostafa et al. [75] used the LW model to study the
local space-time energy spectrum of the surface pressure fluctuations in the separation region of the
flow around a bluff body. Their measurements show that the local space-time energy spectrum is
dominated by large-scale motions in the early region of separation and is distributed over a broad
range of frequencies and wave numbers in the region where intermittent reattachment occurs. de
Kat and Ganapathisubramani [29] used the LW model to investigate the space-time energy spectra
and the spatial energy spectra of velocity fluctuations in a turbulent boundary layer at Reτ = 2700.
Their results show that the premultiplied spatial spectrum obtained by the LW model exhibits a
single peak, while the premultiplied spatial spectrum obtained by Taylor’s model displays the double
peak.

V. SUMMARY AND FUTURE WORK

The preliminary characterization of space-time energy spectra in turbulent flows is that the energy
density distributes over a broad range of wave numbers and frequencies. The two-dimensional
surfaces of space-time energy spectra spread to large wave numbers and frequencies and decay
most slowly in the direction of convection velocity. Analogous to the probability distribution, space-
time energy spectra can be described by using conditional moments. The first-order conditional
moments at a fixed frequency (wave number) give mean wave numbers (frequencies), which are
used to calculate the scale-dependent convection velocities. The second-order conditional moments
at a fixed frequency or wave number give spectral bandwidths, which measure the spreading of
energy density distributions. Higher order conditional moments can also be introduced to describe
space-time energy spectra.
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Taylor’s frozen-flow hypothesis and Kraichnan-Tennekes random sweeping hypothesis proposed
a picture for turbulent passage. This picture can be used to understand the decorrelation process
of turbulent fluctuations and develop the models of space-time energy spectra. The energy cascade
process alone, which leads to the scaling of spatial energy spectra, is not sufficient to determine
space-time energy spectra. However, it remains a challenge to find an exact expression for space-
time energy spectra from the NS equations, analogous to the Kármán-Howarth equation for spatial
correlations, to better understand the picture of turbulent passage.

Three distinct approaches of successive approximation have been used to develop the models
of space-time energy spectra. The first approach is the successive approximation of the contours
of space-time correlations or energy spectra [18,19]: the first-order approximation leads to Taylor’s
model, and the second-order approximation leads to the EA model. The second approach is the
successive approximation of flow patterns in turbulent flows [30]: the first approximation is the
local waves that yield the LW model, and the second approximation is the local modulated waves
that yield the LMW model. The third approach is the dynamic autoregression of velocity fluctuations
[27]: If we start with Taylor’s model, the first autoregression results in white-in-time random forcing
and the second autoregression results in dynamic autoregressive forcing.

Physics-based or data-driven stochastic dynamic models for space-time energy spectra have
been developed to investigate coherent structures [24,49,50,55,56] and enrich large-eddy simula-
tions [76,77]. Taylor’s model used in the DAR model can be replaced by LNSEs to study the
spatiotemporal dynamics of coherent structures. In fact, LNSEs and the resolvent operator with
random forcing are successfully used to study the dynamic evolution of streamwise vortices and
streaks in wall-bounded turbulence [39,45,49]. The LNSEs with random forcing are hopefully used
to generate turbulent fluctuations that are unresolved in conventional large-eddy simulations, such as
missing scales in turbulence-generated noise and turbulent mixing. It remains a challenge to develop
the LNSEs with random forcing to reproduce the space-time energy spectra of near-wall velocity
fluctuations in wall-modeled large-eddy simulations [27].
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APPENDIX: THE DAR MODEL FOR HOMOGENEOUS ISOTROPIC TURBULENCE

In HIT, Kraichnan [12] and Tennekes [13] used the random sweeping hypothesis to describe the
distortion caused by the small-scale interaction. The random sweeping model gives the decorrelation
timescales and thus predicts the spectral bandwidths. In this Appendix, we show that the DAR model
reproduces the same spectral bandwidths as the Kraichnan-Tennekes random sweeping model.

We start with the Fourier representation of the NS equations in HIT [78]

∂ ûi(k, t )

∂t
= σ̂i(k, t ) − νk2ûi(k, t ), (A1a)

σ̂i(k, t ) = − i

2
Pi jm(k)

∑
p+q=k

[û j (p, t )ûm(q, t )], (A1b)
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where σ̂i(k, t ) denotes the sum of the nonlinear convection terms and the pressure gradient terms.
It is treated as nonlinear forcing in the framework of the resolvent operator. The nonlinear forcing
is solenoidal, such as kiσ̂i = 0. Pi jm(k) = kmPi j (k) + k jPim(k) and Pi j (k) = δi j − kik j/k2 are the
projection tensors. For wave number k in the inertial range, the viscous term in Eq. (A1a) can be
ignored.

The DAR forcing for HIT can be deduced from the NS equations, given by

∂σ̂i(k, t )

∂t
= −k2v2ûi(k, t ) − η(k)σ̂i(k, t ) + D(k)ξ̂i(k, t ). (A2)

Here, η(k) is the damping coefficient. ξ̂i(k, t ) is a solenoidal and white-in-time random forcing with
its intensity D(k). The most important parameter, expressed as v2 = 〈u2

1〉 = ∑
q [û1(−q, t )û1(q, t )],

is the variance of one velocity component. We analytically solve Eqs. (A1a) and (A2) to obtain the
velocity modes, which give the spectral bandwidths

B(k) = k2v2. (A3)

This is exactly the same as the results from the Kraichnan-Tennekes random sweeping model.
The main derivation can be described as follows:
(i) Governing equations of nonlinear forcing
Taking the time derivative of σ̂i(k, t ) and using the property of the projection tensors Pi jm(k) =

Pim j (k), we obtain

∂σ̂i(k, t )

∂t
= −iPi jm(k)

∑
p+q=k

[
∂ û j (p, t )

∂t
ûm(q, t )

]
. (A4)

Substitution of Eq. (A1) into Eq. (A4) leads to

∂σ̂i(k, t )

∂t
= Ti(k, t ) + Qi(k, t ), (A5)

where

Ti(k, t ) = −ûl (k, t )Pi jm(k)
∑

q

[Pjls(k − q)ûs(−q, t )ûm(q, t )], (A6)

Qi(k, t ) = −1

2
Pi jm(k)

∑
k′+p′+q=k

k′ �=k,p′ �=k,q �=k

[Pjls(k − q)ûl (k′, t )ûs(p′, t )ûm(q, t )]

+ iνPi jm(k)
∑

p+q=k

[p2û j (p, t )ûm(q, t )]. (A7)

Note that the summation in Ti(k, t ) contains the energy factor ûs(−q, t )ûm(q, t ). Qi(k, t ) consists
of two parts: the first part is the summation of wave-number triplets k′, p′, and q, in which k′ �= k,
p′ �= k, and q �= k; the second part is the summation of wave-number pairs. Ti(k, t ) and Qi(k, t ) are
evaluated by using LSE. The coherent parts in Ti(k, t ) and Qi(k, t ) relative to ûi(k, t ) are given in
(ii) and (iii). The incoherent parts in Ti(k, t ) and Qi(k, t ) relative to ûi(k, t ) are modeled by using
damping and white-in-time noise since they are most responsible for energy transfer and random
backscattering. It is noted in this case that the intensities of damping and the white-in-time noise do
not change the spectral bandwidths.

(ii) LSE of Ti(k, t )
The first part Ti(k, t ) can be simplified by using Kraichnan’s approximation in DIA [78]: The

energy factor ûs(−q, t )ûm(q, t ) with |q| 
 |k| is dominant, where the wave number k is in the
inertial range. In this case, the approximation Pjls(k − q) ≈ Pjls(k) can also be made. Therefore,
we obtain

Ti(k, t ) ≈ −ûl (k, t )Pi jm(k)Pjls(k)
∑

q

[ûs(−q, t )ûm(q, t )]
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= −ûl (k, t )Pi jm(k)Pjls(k)v2δsm

= −ûl (k, t )Pi jm(k)Pjlm(k)v2. (A8)

In LSE, the coherent portion in T1(k, t ) relative to û1(k, t ) is expressed as follows:

T LSE
1 (k, t ) = α(k)û1(k, t ), (A9)

where

α(k) = 〈û∗
1(k, t )T1(k, t )〉

〈û∗
1(k, t )û1(k, t )〉 . (A10)

The following relationship exists for the velocity spectrum tensor in HIT [79]:

〈û∗
1(k, t )ûi(k, t )〉

〈û∗
1(k, t )û1(k, t )〉 = P1i(k)

P11(k)
. (A11)

Substituting Eq. (A11) into Eq. (A10), we obtain

α(k) = −k2v2. (A12)

Therefore, we have

T LSE
i (k, t ) = −k2v2ûi(k, t ). (A13)

Note that α(k) depends on the magnitude of the wave-number vector k but is independent of its
direction.

(iii) LSE of Qi(k, t )
In LSE, the coherent portion in Q1(k, t ) relative to û1(k, t ) is expressed as follows:

QLSE
1 (k, t ) = β(k)û1(k, t ), (A14)

where

β(k) = 〈û∗
1(k, t )Q1(k, t )〉

〈û∗
1(k, t )û1(k, t )〉 . (A15)

There are two parts in Q1(k, t ): ûl (k′, t )ûs(p′, t )ûm(q, t ) (k′ �= k, p′ �= k, q �= k) and
û j (p, t )ûm(q, t ). According to the normality hypothesis, the correlations of the two parts with
û∗

1(k, t ) are zero, that is to say,

β(k) = 0. (A16)

Therefore, Qi(k, t ) does not contain any coherent portion relative to ûi(k, t ).
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