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ABSTRACT

The wall-resolved large-eddy simulations of turbulent flows over periodic hills are carried out to study the Reynolds number effect on flow
statistics. Five different Reynolds numbers ranging from 2800 to 37 000 are considered. The present simulations are validated by comparing
the time-averaged flow statistics with those from the literature. The Reynolds number effect is first examined on the skin friction and pres-
sure coefficients, the isosurfaces of p0 and Q criteria, and the vertical profiles of flow statistics. The results show that (1) at most locations the
magnitude of friction coefficient decreases with the increase in Reynolds number, while the pressure coefficient varies in the opposite direc-
tion; (2) smaller turbulence structures arise at higher Reynolds numbers; and (3) the mean velocities and Reynolds stresses in general exhibit
asymptotic behaviors with the increase in Reynolds number. The statistical properties of turbulence structures are further examined via the
probability density function and time correlation of velocity fluctuations. At last, the dynamics in the separation bubble is investigated by
examining the flow statistics and the budget equation of mean kinetic energy (MKE) on the coordinate with its origin fixed at the recircula-
tion center, and the power spectral density of the velocity fluctuations. Similarities are in general observed for the mean velocities, Reynolds
stresses, and the MKE budget in the rear part of the separation bubble. The mean convection term and turbulence convection term are
observed playing a key role on the decrease in bubble size with the increase in Reynolds number.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062786

I. INTRODUCTION

Separation and reattachment occur in many environmental and
industrial flows at high Reynolds numbers, for example, underwater
vehicle, fuselages at high incidence, curved ducts, and stalled wings
and turbine blades. Their characteristics and mechanisms depending
on case-specific initial and boundary conditions are not well under-
stood yet. This poses a great challenge on developing wall models for
large-eddy simulation (LES), which can significantly reduce the com-
putational cost compared to direct numerical simulation (DNS) and
has the potential to become the next-generation computational fluid
dynamics tool for engineering designs.1–4 The turbulent flows over
periodic hills, which has all the essential flow features, is considered to
be ideal for understanding the fundamental fluid dynamics and testing
different wall models.5,6 Studies of the periodic hill case have been car-
ried out for different Reynolds numbers. The objective of this work is
to systematically examine the effects of Reynolds number on turbu-
lence statistics of the flow over periodic hills.

The flow over periodic hills, originally proposed by Almeida et al.7

and modified by Mellen et al.,8 is featured by separation from a curved

surface, re-circulation, reattachment, and strong pressure gradient in the
streamwise direction, which has been employed to test the accuracy of
numerical methods9–12 and turbulence models5,13–15 and gain physical
insight into separated turbulent flows.16–18 Throughout this paper, the
Reynolds number is defined as Reh ¼ qUbh=l, where Ub is the bulk
velocity, h is the height of the hill, q is the fluid density, and l is the
dynamic viscosity. Experiments have been carried out in the literature
to provide experimental data for the development and validation of
computational models. Breuer et al.16 carried out measurements in a
water channel at Reh � 5600 and 10595 using the particle image veloc-
imetry (PIV) technique. Rapp and Manhart19 undertook the two-
dimensional PIV measurements in a water channel at four different
Reynolds numbers in the range of 5600 � Reh � 37 000, with valida-
tion using the point-by-point one-dimensional laser Doppler anemome-
try (LDA) measurements. Kahler et al.20 performed the high-resolution
PIV and particle tracking velocimetry (PTV) measurements in a water
tunnel at Reynolds numbers of 8000 and 33000 at a spatial resolution
comparable to that of DNS, which provides database for a precise analy-
sis of the near-wall flow features.
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Different numerical methods have been employed in the litera-
ture to study the turbulence statistics of the flow over periodic hills.
DNS was employed by Breuer et al.,16 Balakumar,21 Krank et al.,17 and
Xiao et al.22 for the flow at Reynolds numbers of 100 � Reh � 10 595.
In most studies,5,6,16,23 wall-resolved large-eddy simulation (WRLES)
solving the incompressible Navier–Stokes equations was employed
with a finite difference/finite volume method of second-order accuracy
for the spatial discretization. A compressible solver was employed by
Ziefle et al.24 and Balakumar.21 High-order discretization schemes
were employed by Balakumar,21 Krank et al.,17 and Gloerfelt and
Cinnella.18 In the work by Temmerman et al.5 and Ziefle et al.,24 dif-
ferent subgrid-scale (SGS) models were tested. To date, the highest
Reynolds number carried out using WRLES is Reh¼ 37 000. Using
wall-modeled large-eddy simulation (WMLES), the periodic hill case
at Reh ¼ 105 was carried out by Gao et al.23

Since flows in realistic applications often happen at much higher
Reynolds numbers, it is of vital importance to understand how
Reynolds number affects the statistics of the turbulent flows over peri-
odic hills, which influences how well we can apply the knowledge
obtained at low Reynolds numbers to cases at high Reynolds numbers
and the extrapolation properties of data-driven models trained using
data from cases at low Reynolds numbers.25 Breuer et al.16 numerically
and experimentally investigated the flow over periodic hills with
Reynolds number in the range of 100 � Reh � 10 595. It was observed
that both the separation and reattachment locations move upstream
with increasing Reh, while the former one reaches its minimum at
Reh¼ 5600 and then increases, and the latter one shows a local mini-
mum at Reh¼ 2800. Based on observations on the instantaneous flow
structures, they found that the flow state changes from steady to
unsteady at approximately Reh¼ 200. Rapp and Manhart19 compared
the vertical profiles of mean velocities and Reynolds stresses measured
in a water channel for Reynolds numbers Reh ¼ 5600; 10 600;
19 000; 37 000. They found that the recirculation zone behind the hill
flattens and the reattachment position moves upstream with increas-
ing Reh. Recently, Gao et al.

23 investigated the Reynolds number effects
on the dynamics inside the recirculation zone using WMLES for
Reynolds number up to Reh ¼ 105. It was found that the length of the
separation bubble behind the hill decreases with Reh. In addition to the
flow over periodic hills, there are various studies about the Reynolds
number effect on the flow separation for different flows. Song and
Eaton26 performed experiments of a separating, reattaching, and
recovering boundary layer in the closed-loop wind tunnel mounted
inside a pressure vessel and proposed empirical Reynolds number scal-
ings for the mean velocity and Reynolds stresses for different flow
regions. They found that the mean flow is a weak function of Reynolds
number, while turbulence quantities strongly depend on Reynolds
number. Abe27 examined DNS datasets of a pressure-induced turbu-
lent separation bubble on a flat plate in which the Reynolds number
effects on wall-pressure fluctuations, power spectra, and instantaneous
fields were investigated. It was observed that the mean velocities and
Reynolds stresses are dependent on the Reynolds number, but the scal-
ing law of wall-pressure fluctuation near reattachment is attained inde-
pendently of the Reynolds number and pressure gradient. Later, the
effects of Reynolds number and pressure gradient on the momentum
transport were studied by Abe28 for the same flow. Coleman et al.29

performed DNS of a family of separation bubbles by varying the sever-
ity of pressure gradients and the Reynolds number, and investigated

the Reynolds number dependence of skin-friction in different flow
regions. It is noted that these studies on Reynolds number effects are
mainly limited to the time-averaged velocities, Reynolds stresses, and
the separation and reattachment locations.

In this work, we first give a comprehensive comparison of flow
statistics between the previous experimental and numerical studies
(DNS and WRLES) and the present WRLES results of turbulent flows
over periodic hills in the range of Reh ¼ 2800 � 37 000. Then, the
effects of Reynolds number on the global flow features, instantaneous
turbulence structures, and statistical properties are systematically
examined. At last, the dynamics and Reynolds number effects are
investigated for the separation bubble by analyzing the flow statistics
and the budget of mean kinetic energy (MKE) on the coordinate with
its origin fixed at the bubble, and the power spectral density of velocity
fluctuations.

In the rest of the paper, the methodology and the case setups are
described in Sec. II. In Sec. III, the present simulation results are vali-
dated using data from the literature. Then, the Reynolds number
effects are systematically analyzed in Sec. IV. At last, conclusions from
this study are drawn in Sec. V.

II. METHODOLOGY

In this section, we describe the employed numerical method and
the simulation setup for the WRLES cases carried out in this work.

A. Numerical method

We employ the Virtual Flow Simulator (VFS-Wind)30,31 code for
WRLES of turbulent flows over periodic hills. The VFS code has been
successfully applied to industrial and environmental turbulent flows.32–39

In VFS-Wind code, the governing equations are the three-dimensional
unsteady spatially filtered incompressible Navier–Stokes equations in
non-orthogonal, generalized curvilinear coordinates shown as follows:
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where xi and ni are the Cartesian and curvilinear coordinates, respec-
tively; nil ¼ @ni=@xl are the transformation metrics; J is the Jacobian of
the geometric transformation; ui is the ith component of the velocity
vector in Cartesian coordinates; Ui ¼ ðnim=JÞum is the contravariant

volume flux; gjk ¼ njln
k
l are the components of the contravariant met-

ric tensor; and p is the pressure. In the momentum equation, sij repre-
sents the anisotropic part of the subgrid-scale stress tensor, which is
modeled by the Smagorinsky model,

sij � 1
3
skkdij ¼ �2�t�Sij; (2)

where �Sij ¼ 1
2

@Ui
@xj

þ @Uj

@xi

� �
is the filtered strain-rate tensor and �t is the

eddy viscosity calculated by

�t ¼ CD2j�Sj; (3)
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where C is the model coefficient calculated dynamically using the pro-

cedure of Germano et al.,40 j�Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�Sij�Sij

q
and D ¼ J�1=3 is the filter

size, where J�1 is the cell volume.
The governing equations are spatially discretized using a second-

order accurate central differencing scheme and integrated in time
using the fractional step method. An algebraic multigrid acceleration
along with generalized minimal residual method (GMRES) solver is
used to solve the pressure Poisson equation. A matrix-free
Newton–Krylov method is used for solving the discretized momentum
equation. More details about the flow solver can be found in the
literature.30,41,42

B. Simulation setup

The geometry of the periodic hills is shown in Fig. 1. As seen, the
height of the hill is h, a flat plate is placed 2:036h above the crest of the
hill and the distance between the crests of two hills is Lx ¼ 9h. In the
spanwise direction, the size of the computational domain is Lz ¼ 4:5h.
The bulk velocity is defined as Ub ¼ Q=ðqLz � ðLy � hÞÞ, where Q is
the mass flux. No-slip boundary condition is applied at the top wall
and the surface of the hills. In the streamwise and spanwise directions,
periodic boundary condition is applied. The flow is driven by a pres-
sure gradient uniformly applied to whole domain to maintain a con-
stant mass flux.

The computational domain is discretized using a body-fitted cur-
vilinear grid (as shown in Fig. 1). Five different Reynolds numbers,
that is, Reh¼ 2800, 5600, 10 595, 19 000, 37 000, are considered as
listed in Table I. The simulation is first carried out for about 22T
(flow-through time T ¼ Lx=Ub) for the flow to achieve a fully devel-
oped state. Then, the flow is further advanced for about 50T for time-
averaged quantities.

To evaluate the quality of the employed body-fitted curvilinear
grid, we examine the distributions of wall-normal grid size in wall unit
Dyþ defined as Dyþ ¼ Dycus=�, where us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
denotes the

local friction velocity, sw denotes the wall shear stress, and � ¼ l=q
denotes the kinematic viscosity, and the streamwise grid size in wall
unit Dxþ is defined in a similar way. As seen in Fig. 2, the cell sizes in
the streamwise direction are in general below 20 wall units. As for

Dyþ, the values of Dyþ are approximately below 0.5 except for the
windward and the crest of the hill for Reh ¼ 10 595–37 000.

The temporal series of the three components of the velocity and
the pressure on four different x – y slices are saved for subsequent
analyses. The temporal increment between two successive snapshots is
0:01h=Ub for all cases. The spanwise spacing between two neighbor
slices is 1:125h. At the two boundaries at z=h ¼ 0 and z=h ¼ 4:5,
only the data on the slice located at z=h ¼ 0 are saved considering the
periodic boundary condition applied in the spanwise direction. For the
cases with Reh ¼ 2800; 5600; 10 595, 45000 snapshots are saved. For
the cases with Reh ¼ 19 000; 37 000, 22 500 and 11 300 snapshots are
saved, respectively.

III. VALIDATION

In this section, we compare the flow statistics computed in this
work with the reference data. Before presenting the comparison
results, we first show in Fig. 3 the contour of the streamwise velocity
with streamlines at Reh¼ 37 000 to showcase the typical flow structure
for the flow over periodic hills. In the figure, the center of the recircula-
tion zone is located at the intersection of the isolines with the zero
mean streamwise and vertical velocities. Then, the flow quantities on
the streamwise and vertical profiles through the center of the recircula-
tion zone are extracted and compared on the coordinate with its origin
fixed at the recirculation center in Sec. IV D. Figures 4 and 5 show the
comparison at ten different streamwise stations located at x/h¼ 0.05,
0.5, 1, 2, 3, 4, 5, 6, 7, 8 for four different Reynolds numbers. In the hor-
izontal axis, the bracket h i denotes the ensemble average of the flow
quantities over time and the spanwise direction. The data employed
for comparison include the DNS data of Krank et al.17 at
Reh ¼ 5600; 10 595, the WRLES data of Gloerfelt and Cinnella18 at
Reh ¼ 10 595; 19 000; 37 000, and the PIV measurements of Rapp and
Manhart19 at all four different Reynolds numbers. The results from
the present simulations agree well with the DNS and measured data
for all quantities at different streamwise locations with the relative
error less than 5% for all the four different Reynolds numbers except
for certain components of the Reynolds stress at Reh¼ 5600 and
37 000. The major differences are observed between the computed
results and measurements at the upper part of profile x=h ¼ 0:05
�2:0 and lower part of profile x=h ¼ 2:0 � 6:0 for hu0u0i for the case
with Reh¼ 5600, and the lower part of profile x=h ¼ 0:05–6:0 for
hv0v0i for the case with Reh¼ 37 000, respectively. It is seen that the
results from the present simulation and those from the simulation in
the literature agree well with each other. This indicates that such dif-
ferences are possibly caused by the uncertainty of the experiment,
which can be justified by plotting the measured hu0u0i or hv0v0i from

FIG. 1. Schematic of the periodic hills, computational domain (Lx ¼ 9:0h; Ly
¼ 3:036h; Lz ¼ 4:5h), and the employed curvilinear mesh on a x–y plane at
Reh¼ 10595 (on which every fifth grid line is displayed).

TABLE I. Parameters of the WRLES of flow over periodic hills.

Case Reh Mesh (Nx � Ny � Nz) Dt � Ub=h Dyc
a / h

1 2800 297� 193� 187 0.01 0.0015
2 5600 297� 193� 187 0.01 0.0015
3 10 595 297� 193� 187 0.01 0.0015
4 19 000 460� 300� 290 0.005 0.00075
5 37 000 759� 493� 477 0.0025 0.0005

aDyc denotes the distance of the center of the first off-wall cell from the wall.
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different Reynolds numbers (not shown in this paper), showing that
the measured values of hu0u0i and hv0v0i are off the trend at those loca-
tions for Reh¼ 5600 and Reh¼ 37 000, respectively.

IV. RESULTS
A. Global flow features

In this section, we examine the dependence of some global flow
features on Reynolds number. In Fig. 6, we evaluate the effects of
Reynolds number on the skin friction and pressure coefficients, which
are defined as follows:

Cf ¼ hswi
1
2
qU2

b

; Cp ¼ hpi � pref
1
2
qU2

b

; (4)

where p is the pressure and pref is the reference pressure at x¼ 0 on
the bottom wall. Figure 6 displays the distributions of skin friction
and pressure coefficients along the bottom wall. It is seen that the
magnitude of both the maximum Cf at the windward of the hill

(at x=h � 8:5) and the minimum Cf in the recirculation zone (at
x=h � 2 � 5) decreases with the increase in Reynolds number.
Interestingly, the second maximum Cf, which is close to the separation
location, increases monotonously with the Reynolds number.

In Fig. 6(c), the pressure coefficients from cases of different
Reynolds numbers are compared. First of all, it is observed that the
pressure gradients computed from the present cases agree well with
the DNS results.17 For the comparison between different Reynolds
numbers, it is seen that the magnitudes of pressure coefficient increase
monotonously with Reynolds number until Reh¼ 19 000, and does
not change significantly by further increasing the Reynolds number to
Reh¼ 37 000.

Figure 7 shows the variations of the separation and reattachment
locations via Reynolds number with the results from the literature.
When compared with the results from the literature, differences are
observed for both separation and reattachment locations, which high-
lights the difficulty to accurately predict them, although good agree-
ments are observed for the vertical profiles of mean velocity and
Reynolds stresses (Figs. 4 and 5). There are two reasons for such differ-
ences: (1) the complex dynamics involved near the separation and
reattachment points that a small change in the incoming turbulence or
pressure gradient can alter the location where separation or reattach-
ment occurs; (2) the approach for determining these two location may
introduce errors, for example, a 4% (of the maximum cf.) on the fric-
tion coefficient can introduce differences on the separation and reat-
tachment points as high as 15%. Considering the sensitivity of these
two points, differences less than 20% shown in Fig. 7 are acceptable.
With the increase in the Reynolds number, the separation location
moves downstream starting from Reh¼ 5600, which confirms the
finding by Breuer et al.16 The reattachment location gradually moves
upstream with the increase in Reynolds number for the considered
cases, which supplements the observation for Reynolds number in the
range of 2800 � Reh � 10 595.16

In Fig. 8, we examine the vortex structures from cases with differ-
ent Reynolds numbers, which are identified using the isosurface of p0

FIG. 2. Distribution of (a) Dxþ and (b) Dyþ along the bottom wall for cases with different Reynolds numbers.

FIG. 3. Contour of time-averaged streamwise velocity with streamlines from the
WRLES case at Reh¼ 37 000. Two points are extracted from the flow fields at dif-
ferent Reh, the first one is the center of the recirculation zone, and the second one
is located at x=h ¼ 2:23; y=h ¼ 1:13 in the shear layer. According to the coordi-
nate of the first point, the flow quantities on the blue, solid lines along the x and y
axes are extracted for comparison, and the green, dashed rectangle denotes the
range of flow field that we concerned.
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and Q criteria and colored using the instantaneous streamwise veloc-
ity. Here, p0 denotes the pressure fluctuation andQ denotes the second
invariant of velocity gradient tensor.6,17,43 As for the negative p0 region,
hairpin-like spanwise structures with the size in the spanwise dimen-
sion comparable to the spanwise width of the computational domain
tend to emerge after the separation point. The spanwise structures
become increasingly larger along the separated shear layer and form
large-scale spanwise rollers above the recirculation zone, which were
also observed in the backward facing step flow44 and the turbulent
boundary layers with adverse pressure gradient and separation.27,45

Then, the spanwise structures break at further downstream locations
and transform into inclined streamwise structures as approaching the

windward of the downstream hill. With the increase in Reynolds num-
ber, the number of small scales increases inside large scales, and the
finer turbulent structures start to appear as identified by both Q and p0

criteria.27

B. Comparison of mean profiles at typical streamwise
locations

In this section, we examine the Reynolds number dependence of
different flow statistics at four typical streamwise locations, that is,
x=h ¼ 0:05; 2; 6; 8 for the flow before separation with adverse pres-
sure gradient, within the separation bubble, after reattachment and

FIG. 4. Comparison of the vertical profiles obtained from the present WRLES with the DNS of Krank et al.,17 the WRLES of Gloerfelt and Cinnella18 (WRLES_RT, the LES
with Regularization term strategy) and PIV measurements of Rapp and Manhart19 for the mean streamwise velocity hui, the vertical velocity hvi, and the Reynolds stress
hu0u0i and hv0v0i, and hu0v0i for (a) Reh¼ 5600 and (b) Reh¼ 10 595.
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before reaching the hill crest with positive pressure gradient, and dif-
ferent vertical locations.

Figure 9 shows the comparison at x=h ¼ 0:05, the position just
before flow separation. As seen, the boundary layer near the bottom
wall is very thin with its thickness decreasing with the increase in the
Reynolds number. The flow, which just accelerates from the windward
of the hill, is featured by a peak in the streamwise velocity near the
wall and a positive vertical velocity indicating an upward motion of
the flow. With the increase in Reynolds number, an increase is
observed on the magnitude of the peak of the streamwise velocity
located near the hill surface with a decrease on the magnitude of the
vertical velocity. For the normal Reynolds stresses, it is observed that

the peaks near the hill surface are significantly larger than those near
the top wall. Interestingly, it is seen that the normal Reynolds stresses
from different Reynolds numbers are very close to each other.
Complicated variations are observed on the vertical profiles of the pri-
mary Reynolds shear stress hu0v0i. Two peaks are observed near the
hill surface, with the first peak located just next to the wall at y=h � 1
and the second peak located at y=h � 1:5. The magnitude of the first
peak increases, while the magnitude of the second peak decreases with
the increase in Reynolds number. The variation of hu0v0i is very differ-
ent from that of the channel flow or the plenary boundary layer flows,
indicating complex momentum transfer at this location and the chal-
lenge of wall modeling based on equilibrium hypothesis. Importantly,

FIG. 5. Comparison of the vertical profiles obtained from the present WRLES with the WRLES of Gloerfelt and Cinnella18 and PIV measurements of Rapp and Manhart19 for
the mean streamwise velocity hui, the vertical velocity hvi, and the Reynolds stress hu0u0i and hv0v0i, and hu0v0i for (a) Reh¼ 19 000 and (b) Reh¼ 37 000.
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it is observed that the profiles from the cases with Reh ¼ 19 000;
37 000 are very close to each other indicating a certain degree of
Reynolds number independence.

Figure 10 shows the comparison at x=h ¼ 2 located within the
recirculation zone. A recirculation zone is identified easily from the
sign of the streamwise velocity, with a boundary layer appearing just
above the hill surface within the recirculation zone. With the increase
in Reynolds number, an asymptotic behavior is observed for the
streamwise velocity. As moving away from the hill surface, the vertical

velocity changes from positive to negative indicating upward motion
and downward motion near the hill surface and above the recircula-
tion bubble, respectively. The extent of the vertical motion deceases
near the wall, while increases above the recirculation bubble, respec-
tively, with the increase in the Reynolds number. As for Reynolds
stresses, the overall distributions are similar for different Reynolds
numbers. Differences are observed in terms of the value and location
of the peaks of the Reynolds stresses. With the increase in Reynolds
number, a clear asymptotic behavior is not observed for the Reynolds
stresses.

Figure 11 shows the comparison at x=h ¼ 6, the position just
after the reattachment. At this position, the flow recovers from the
recirculation zone with positive streamwise velocity and negative verti-
cal velocity indicating a downward motion of flow. It is observed that
the recovery rate of the streamwise velocity is increased with less level
of downward motion as the increase in the Reynolds number. A clear
asymptotic behavior is observed for the streamwise and vertical veloci-
ties except that differences between results at Reh¼ 19 000 and
Reh¼ 37 000 are minor. Except for Reh¼ 2800, the magnitude of the
peak of the Reynolds stresses gradually decreases as the Reynolds
number increases. The differences between the results from the cases
with Reh¼ 19 000 and Reh¼ 37 000 are minor indicating asymptotic
trends for the Reynolds stresses at this position.

Figure 12 shows the comparison at x=h ¼ 8, which is located at
the windward of the hill. It is seen that at this position, the flow is fea-
tured by an upward motion. This upward motion is enhanced with
the increase in the Reynolds number. Decreases on the magnitudes of
the peaks of the streamwise and vertical components of the normal
Reynolds stresses are observed. Interestingly, it is observed that the
magnitudes of the spanwise component of the Reynolds stresses are
larger than the other two components, which is not observed in turbu-
lent channel flows and plenary boundary layer flows. As for the pri-
mary Reynolds shear stress, two peaks are observed, one positive one
located near the hill surface and the other negative one located away
from the hill surface. With the increase in the Reynolds number,
asymptotic behaviors are observed for both mean velocities and
Reynolds stresses except for the spanwise component of the Reynolds
stress.

C. Statistics of velocity fluctuations

After examining the Reynolds number effect on time-averaged
velocity and Reynolds stresses, here we examine the probability density
function (PDF) and time correlations of the velocity fluctuations for
the whole computational domain, and the four different vertical loca-
tions, that is, at Dy=h ¼ 0:03, 0.1, 0.3, and 1.0 away from the wall, are
extracted for discussion. Figures 13–16 show the PDF of velocity and
pressure fluctuations at Dy=h ¼ 0:03 on the typical vertical profile
x=h ¼ 0:05, 2.0, 6.0, and 8.0, where r denotes the standard deviation
of the flow quantity. At this near-wall position, the PDFs are far from
the Gaussian distribution. For the PDF of velocity fluctuation, the
streamwise component exhibits negative deviation compared to
the Gaussian distribution at vertical profile x=h ¼ 0:05 and 2.0 due to
the reversed flow, and exhibits positive deviation at vertical profile x=h
¼ 6:0 and 8.0; the vertical component exhibits nearly symmetric dis-
tribution at vertical profile x=h ¼ 0:05 before the flow separation, and
then, the negative deviation arises from the flow separation at x=h
¼ 2:0 and 6.0, and the deviation becomes positive at the windward of

FIG. 6. Comparison of (a) the skin friction coefficient Cf and (b) pressure coefficient
Cp along the bottom wall between the present WRLES and the DNS17 for different
Reh.

FIG. 7. Separation and reattachment locations predicted by the present WRLES,
the WRLES_RT of Gloerfelt and Cinnella,18 and the DNS of Krank et al.17 at differ-
ent Reynolds numbers.
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the hill (x=h ¼ 8:0); the spanwise component is almost symmetrical
with the mean value of zero for all profiles. The PDF of pressure fluc-
tuation shows good symmetry at x=h ¼ 2:0 and 6.0, but exhibits sig-
nificant positive deviation at x=h ¼ 8:0 because of the raising of

pressure gradient at the windward slope of the hill. Interestingly, the
PDF of vertical velocity fluctuation exhibits exponential distribution
and the decay rate on the right are larger than the growth rate on the
left at x=h ¼ 2:0 and 6.0.

FIG. 8. Vortex structures identified using isosurface of instantaneous pressure fluctuations p0 (left column) and Q (right column) for different Reynolds numbers.
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To quantitatively measure the asymmetry and the deviation from
the normal distribution of the PDF of the velocity fluctuations, we calcu-
late the skewness and flatness factors of the PDF, which are defined as

Sx ¼ h x � hxið Þ3i
h x � hxið Þ2i3=2

; Fx ¼ h x � hxið Þ4i
h x � hxið Þ2i2 : (5)

Figures 17 and 18 plot the contours of the computed skewness
and flatness factors of PDFs for velocity fluctuations on the x–y
plane. The most important observation from these two figures is
that the overall distributions of both skewness and flatness factors
computed from cases with different Reynolds numbers are similar
with each other, which is consistent with the similarity observed

FIG. 9. Mean velocities (a and b) and Reynolds stresses (c–f) at x=h ¼ 0:05.
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on the turbulence structures shown in Fig. 8. Furthermore, it is
observed that the skewness and flatness factors deviate differently
from 0 and 3, which are the values for the Gaussian distribution,
for different velocity components. For the spanwise velocity fluctu-
ation, the skewness factors are approximately zero in nearly the

whole region, and the flatness factors are close to three at most
locations, indicating that the Gaussian distribution can approxi-
mate well the PDF of the spanwise velocity fluctuations. Even
though the periodic boundary condition is applied in the spanwise
direction, this is nontrivial considering the highly heterogeneous

FIG. 10. Mean velocities (a and b) and Reynolds stresses (c–f) at x=h ¼ 2:0.
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flow field on the x–y plane. The skewness factors of the streamwise
velocity fluctuations are less than zero in the region roughly
extended slantwise from the hill crest to the center of channel,
while these are greater than zero in a small region (without consid-
ering the size, it is roughly mirrored with the spanwise region with

negative skewness factors) in the recirculation bubble and near the
bottom and top walls, indicating positive and negative medians of
the streamwise velocity fluctuations in the corresponding regions,
respectively. The skewness factors of the vertical velocity fluctua-
tions are distributed in an opposite way with positive and negative

FIG. 11. Mean velocities (a and b) and Reynolds stresses (c–f) at x=h ¼ 6:0.
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skewness factors above and below the hill crest, respectively, sug-
gesting higher probability of negative and positive vertical velocity
fluctuations in the corresponding regions, respectively. With the
increase in Reynolds number, the distribution of skewness
becomes more fragmented due to the smaller turbulence

structures. For the flatness factors, the values computed from the
streamwise velocity fluctuations, which are roughly larger than
and smaller than three in upper and lower part of the region,
respectively, are within the range of {2, 4} at most locations. The
flatness factors of the vertical velocity fluctuations, on the other

FIG. 12. Mean velocities (a and b) and Reynolds stresses (c–f) at x=h ¼ 8:0.
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FIG. 13. PDFs of (a) streamwise, (b) vertical and (c) spanwise velocity fluctuations, and (d) pressure fluctuation at Dy=h ¼ 0:03 vertically away from the bottom wall at
x=h ¼ 0:05.

FIG. 14. PDFs of (a) streamwise, (b) vertical and (c) spanwise velocity fluctuations, and (d) pressure fluctuation at Dy=h ¼ 0:03 vertically away from the bottom wall at
x=h ¼ 2:0.
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FIG. 15. PDFs of (a) streamwise, (b) vertical and (c) spanwise velocity fluctuations, and (d) pressure fluctuation at Dy=h ¼ 0:03 vertically away from the bottom wall at
x=h ¼ 6:0.

FIG. 16. PDFs of (a) streamwise, (b) vertical and (c) spanwise velocity fluctuations, and (d) pressure fluctuation at Dy=h ¼ 0:03 vertically away from the bottom wall at
x=h ¼ 8:0.
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FIG. 17. Contours of skewness factors of PDF for (a) streamwise, (b) vertical, and (c) spanwise velocity fluctuations for cases with Reh ¼ 2800� 37 000.

FIG. 18. Contours of flatness factors of PDF for (a) streamwise, (b) vertical, and (c) spanwise velocity fluctuations for cases with Reh ¼ 2800� 37 000.
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hand, are equal to or larger than four in the upper part of the
domain, which implies a higher probability of having velocity fluc-
tuations of large magnitudes.

Figures 19 and 20 plot the joint PDFs of the streamwise and
vertical velocity fluctuations at Dy=h ¼ 0:03 and 1.0 on different
vertical profiles, respectively.46 First, the quadrant of scatter distri-
bution indicates the sign of skewness factor, for example, the nega-
tive for streamwise velocity fluctuation and the positive for vertical
velocity fluctuation at Dy=h ¼ 1:0, and the range of scatter distribu-
tion indicates the magnitude of flatness factor, for example, larger
for the streamwise and vertical velocity fluctuations at Dy=h ¼ 0:03
and smaller at Dy=h ¼ 1:0. Second, the wider scatter distribution at
Dy=h ¼ 0:03 demonstrates the possible existence of extreme events
for the vertical velocity fluctuation. Finally and interestingly, the
scatters mainly distributes at the first and third quadrants on the
position of x=h ¼ 8:0 and Dy=h ¼ 0:03, which is responsible for
the positive Reynolds shear stress. In addition, the Reynolds num-
ber effects can also be observed from the variation of scatter distri-
bution ranges.

To quantify the decorrelation property of the flow quantities, we
define the time correlation as

Rxx ¼ h xðtÞ � hxðtÞið Þ xðt þ DtÞ � hxðt þ DtÞið Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h xðtÞ � hxðtÞið Þ2i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h xðt þ DtÞ � hxðt þ DtÞið Þ2i

q ; (6)

where h i denotes the average over the flow domain and time, and Dt
denote the time interval.

Similar to the aforementioned plots of PDF, Figs. 21–24 show
the time correlations of velocity and pressure fluctuations at Dy=h
¼ 0:03 in four vertical profiles. At x=h ¼ 0:05, the time correlations
of streamwise velocity fluctuation exhibit similar decaying tendency,
but the deviations of curves between different Reh increase with the
increasing Dy. More importantly, the decay rate of time correlation
increases monotonously with the Reynolds number for small tempo-
ral separations, which is mainly affected by the scale variations of
turbulent structures in Fig. 8. For x=h ¼ 2:0 � 8:0, the vertical dis-
tance Dy=h ¼ 0:03 is located at the boundary layer for almost all the
cases, and the case at higher Reynolds number exhibits the larger
velocities and turbulent fluctuations. Thus, the monotonic variation
of time correlation with Reh can be seen for the four flow quantities,
and it is most obvious for the vertical velocity fluctuation, which has
the smallest decorrelation time shown by the display range at the
horizontal axis. At x=h ¼ 2:0, the time correlation of pressure

FIG. 19. Joint PDFs of the streamwise and vertical velocity fluctuations at Dy=h ¼ 0:03 vertically away from the bottom wall at (a) x=h ¼ 0:05, (b) x=h ¼ 2:0, (c)
x=h ¼ 6:0, and (d) x=h ¼ 8:0.
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fluctuation exhibits a negative extreme value, demonstrating the exis-
tence of specific time scale. The time interval Dt reaching the extreme
value increases with the decreasing Reh, and the higher Dy, the
smaller Dt (not shown in this paper, refer to Fig. 25).

After analyzing the time correlations at several specific locations,
in this paper we examine the spatial distribution of the integral time
scale on the x–y plane, which is defined as follows:

T ¼
ð1
0
RðsÞds: (7)

The computed integral time scales are shown in Fig. 25 for three
components of velocity fluctuations at different Reynolds numbers.
First, it is observed that the integral time scales of the streamwise
velocity fluctuations are in general larger than the other two compo-
nents. Regardless of the relative magnitudes, the time scales from both
streamwise and vertical velocity fluctuations are larger in the recircula-
tion zone when compared with the other region. For the integral scales
of the spanwise velocity fluctuations, it is observed that they are larger
in the layer next to the bottom wall and in the shear layer over the sep-
aration bubble. As for the comparison among integral time scales

computed from cases with different Reynolds numbers, the overall
patterns are similar but with differences observed on certain local fea-
tures like the location and the shape of the region with large integral
time scales.

D. Reynolds number effects on characteristics of the
recirculation zone

The separation bubble is the most important feature for the flow
over periodic hills. In this section, we examine the characteristics of
the separation bubble for different Reynolds numbers, which include
the size and the center of the separation bubble, comparison of flow
quantities, the budget of the mean kinetic energy on the coordinate
with its center fixed at the bubble center, and the power spectral den-
sity of velocity fluctuations at two locations within the separation bub-
ble and in the shear layer, respectively.

First, we examine the size and the center of the separation bubble.
As illustrated in Fig. 3, the center of the recirculation zone is identified
as the location with zero mean streamwise and vertical velocities. The
obtained coordinates of the recirculation center from cases with

FIG. 20. Joint PDFs of the streamwise and vertical velocity fluctuations at Dy=h ¼ 1:0 vertically away from the bottom wall at (a) x=h ¼ 0:05, (b) x=h ¼ 2:0, (c) x=h ¼ 6:0,
and (d) x=h ¼ 8:0.
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FIG. 21. Time correlations of (a) streamwise, (b) vertical and (c) spanwise velocity fluctuations, and (d) pressure fluctuation at Dy=h ¼ 0:03 vertically away from the bottom
wall at x=h ¼ 0:05.

FIG. 22. Time correlations of (a) streamwise, (b) vertical and (c) spanwise velocity fluctuations, and (d) pressure fluctuation at Dy=h ¼ 0:03 vertically away from the bottom
wall at x=h ¼ 2:0.
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different Reynolds numbers are shown in Fig. 26. As seen, the vertical
center of the separation bubble moves downward with increasing Reh,
demonstrating the flattening effect of increasing Reynolds number
on the height of the separation bubble. The streamwise location of the
separation bubble is observed moving upstream with the increase
in Reh, being consistent with the upstream movement of the reattach-
ment point as shown in Fig. 7. A local minimum for the streamwise
coordinate of the bubble center appears at Reh¼ 10 595. Moreover,
it is observed that the differences between the streamwise locations
of the separation bubble at Reh¼ 10 595, 19 000, and 37 000 are
less than 5%.

We have shown the separation and reattachment points, the cen-
ter of the separation bubble in Figs. 7 and 26, respectively. To get a bet-
ter idea on the changing of the bubble geometry with Re numbers, the
streamlines enclosing the separation bubble with its center are shown
in Fig. 27. As seen, the bubble shrinks in size mostly in its rear part as
the Reynolds number increases, with significant differences on the
reattachment points, while less changes on the center of the separation
bubble, especially for Reynolds number higher than 2800.

Figures 28 and 29 plot the mean velocities and Reynolds stresses
on the vertical and horizontal lines passing through the center of the
recirculation zone as demonstrated in Fig. 3. As seen, on the coordi-
nate with its origin located on the center of the recirculation zone, the
overall variations in the vertical and streamwise directions are similar
with each other. First, we examine the flow characteristics along the
vertical line passing through the bubble center. It is observed from Fig.

28(a) that the mean streamwise velocity from different Reynolds num-
bers overlaps with each other in the separation bubble except in the
near wall region because of the different distances of the bubble center
from the wall. For the mean vertical velocity, upward and downward
motion is observed in the lower part and upper part of the bubble,
with the magnitude of the downward velocity increasing with the
increase in Reynolds number by approximately 25% for Reh changing
from 2800 to 37 000. The upward motion is also observed on the verti-
cal line but without observing an asymptotic behavior. For different
components of the Reynolds stresses, similarities are observed for the
overall variations in the vertical directions. Differences, on the other
hand, are observed on their magnitudes with the maximum differences
approximately 20%. The peaks of the magnitudes of the Reynolds
stresses are observed located around the top boundary of the separa-
tion bubble. The maximum values of hu0u0i are observed larger than
the other two components with similar magnitudes. One interesting
observation is that hu0u0i; hv0v0i; hw0w0i and hu0v0i all vary in almost
a linear way except for hw0w0i in the very near wall region for high
Reynolds numbers, where peaks are observed. Overall, similarities are
in general observed on the vertical line passing through the bubble
center.

Then, we examine the flow characteristics along the horizontal
line passing through the bubble center. In Fig. 29(a) for the streamwise
velocity, differences are observed at locations both upstream and
downstream of the bubble center probably because of the change of
bubble length in both directions. At locations downstream of the

FIG. 23. Time correlations of (a) streamwise, (b) vertical and (c) spanwise velocity fluctuations, and (d) pressure fluctuation at Dy=h ¼ 0:03 vertically away from the bottom
wall at x=h ¼ 6:0.
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FIG. 25. Contours of integral time scale for (a) streamwise, (b) vertical, and (c) spanwise velocity fluctuations for cases with Reh ¼ 2800–37 000.

FIG. 24. Time correlations of (a) stream-
wise, (b) vertical and (c) spanwise velocity
fluctuations, and (d) pressure fluctuation
at Dy=h ¼ 0:03 vertically away from the
bottom wall at x=h ¼ 8:0.
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bubble center, the magnitude of the streamwise velocity increases
monotonically with the increase in Reynolds number by approxi-
mately 20% at 3h from the center. As for the vertical velocity shown in
Fig. 29(b), its maximum magnitude upstream of the bubble center is
increased by as high as 40% when Reh changed from 2800 to 5600 and
higher. At locations downstream of the bubble center, on the other
hand, no significant differences are observed. Together with Figs. 28(a)
and 28(b), it shows that the velocity magnitude in the upper region of
the bubble increases monotonically with the increase in the Reynolds
number, while that in the lower part of the separation bubble does not
change obliviously with the Reynolds number. For the streamwise var-
iations of the Reynolds stresses shown in Figs. 29(c)–29(f), surprisingly
it is observed that the overall variations are similar with each other for
different Reynolds numbers, even though the bubble lengths change
by approximately 1:5h. Unlike the variations close to linear observed
in the separation bubble in the vertical direction, a peak at approxi-
mately h from the bubble center is observed for all the considered
Reynolds numbers. As for the magnitudes of Reynolds stresses, differ-
ences less than 20% are observed for different Reynolds numbers.
Together with the observations on the vertical line, similarities are in
general observed for the mean velocity and Reynolds stresses, except
for the mean velocity in the upper part of the separation bubble where

asymptotic behavior is observed. This indicates that the bulk velocity
(Ub) and the hill height (h) are appropriate for characterizing these
large-scale structures.

So far, similarities are in general observed for the flow character-
istics within the separation bubble. However, we have observed the sig-
nificant changes of the geometry of the separation bubble, especially
its length. To find the causes for these phenomena, we examine differ-
ent terms in the budget equation for MKE, which is formulated as

0 ¼ �huji @huiihuii=2
@xj

� @

@xj

1
q
hpihuji þ hu0iu0jihuii

�

� 2ð� þ �tÞSijhuii
�
þ hu0iu0ji

@huii
@xj

� 2ð� þ �tÞSij @huii
@xj

; (8)

where the various terms of the right-hand side of the above equation
are in the order: (1) the convection of the MKE by the mean flow
(MC, mean convection); (2) transport terms due to mean pressure
(PT, pressure transport), turbulence fluctuations (TC, turbulence con-
vection), and diffusion due to molecular and eddy viscosity (DF); (3)
loss in MKE (negative production) due to transfer of energy from the
mean flow to turbulence (TP, turbulence production); and (4) dissipa-
tion (DP).

Figures 30 and 31 show the vertical profiles of MKE budget at
different streamwise locations relative to the bubble center to investi-
gate how the mean kinetic energy is transported downward for differ-
ent Reynolds numbers. First, it is observed that different terms in the
MKE budget equation vertically vary in a similar way at different
streamwise locations. The key contributing terms are the MC, TC, PT,
and TP terms, while the magnitudes of the DF and DP terms are rela-
tively small, which will not be discussed in detail. Different terms play
different roles. MC term in general plays as a source of MKE at differ-
ent locations, while the PT and TP terms in general extract energy
from the MKE. The role of the TC term is complicated that it is mostly
negative above the top boundary of the separation bubble, while it is
positive in the separation bubble, indicating that it plays an important
role in advecting the MKE from the shear layer and above downward
into the separation bubble. The MKE within the shear layer and above,
on the other hand, is mainly brought into via the MC term. Below the
top boundary of the separation bubble, the MC term, which is bal-
anced by the TP and TC terms, plays a role in extracting energy from
the MKE for locations upstream the center of the bubble, while these
are negligible downstream the center of the separation bubble.
Although the PT term extracts energy from MKE at most locations, it
adds energy to MKE around the shear layer at 1h and 0:5h upstream
of the bubble center, and below the bubble center at locations down-
stream of the bubble center, respectively, which can be related to the
adverse pressure gradient for x=h 2 ½2:2; 4:0� as shown in Fig. 6(c)
and the variation of mean streamwise velocity. In the very near wall
region at locations downstream of the bubble center, negative values of
the MC and TC terms and positive value of TP term are observed in
Fig. 31, which is probably related to the negative wall shear stress.

Comparing different terms at different streamwise locations, it is
observed that the maximum of the MC term is largest at 1:5h
upstream of the bubble center, decrease abruptly until 0:5h upstream
of the bubble center, remains nearly the same (slightly increase from
the bubble center to its 0:5h downstream) at further downstream loca-
tions. Similar downstream variations are observed for the maximum

FIG. 26. The streamwise and vertical coordinates of the center of the recirculation
zone at different Reynolds numbers.

FIG. 27. The range of recirculation zone represented by the streamlines at various
Reynolds numbers. The symbols denote the center of the recirculation zone, and
the thick lines denote the isolines of zero mean streamwise velocity, which divide
the recirculation zone into two parts.
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of the TC term. For the PT term, relatively complex vertical variations
are observed at locations upstream of the bubble center. After the bub-
ble center, the maximum magnitudes of the PT term gradually
increase as moving further downstream. For the TP term, the maxi-
mum magnitude is also observed at 1:5h upstream of the bubble

center, abruptly decrease until 0:5h bubble upstream, and gradually
decrease at further downstream locations. One interesting observation
is that the location for the peak of the MC term is located approxi-
mately 0:5–0:7h above the bubble center for all downstream locations,
although the height of the separation bubble gradually decreases as

FIG. 28. Mean velocities (a and b) and Reynolds stresses (c–f) at the z� profile through the center of the recirculation zone.
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traveling downstream. For the vertical location of the maximum of the
TC term, it gradually decreases from approximately 0:5h above the
center at xc � 1:5h to 0:15h at xc þ 1:5h. The vertical location for the
peak of the TP term is also observed decreasing as moving down-
stream from approximately 0:5h above the bubble center at xc � 1:5h
to 0:3h at xc þ 1:5h.

As for the comparison between different Reynolds numbers, sig-
nificant differences are observed upstream the center of the separation
bubble, especially at xc � 1:5h and xc � 1h locations. It is observed
that the higher the Reynolds number, the higher the maxima of the
MC and TC terms, especially at xc � 1:5h. Another interesting phe-
nomena observed at xc � 1:5h is that the maximum of the TC term

FIG. 29. Mean velocities (a and b) and Reynolds stresses (c–f) at the y� profile through the center of the recirculation zone.
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moves upward with the region with positive TC term becoming nar-
rower with the increase in the Reynolds number, indicating the role of
smaller eddies in advecting MKE at higher Reynolds numbers. At loca-
tions downstream of the bubble center, the vertical variations (includ-
ing locations of peaks and magnitudes) are similar for different
Reynolds numbers with the maximum differences approximately 20%.

Overall, these results suggest that the smaller separation bubble
observed at higher Reynolds number is caused by the higher mean
convection (related to the thinner boundary layer) and increased tur-
bulence convection at higher Re numbers.

To examine the frequency characteristics in the recirculation
zone and in the shear layer above, the power spectral density (PSD) of

FIG. 30. Vertical profiles of MKE budget for different Reynolds numbers at (a and b) 0:5h, (c and d) 1:0h, and (e and f) 1:5h upstream of the recirculation center. The gray
solid line and long-dashed line denote the upper edge of recirculation zone at Reh¼ 2800 and 37 000, respectively.
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FIG. 31. Vertical profiles of MKE budget
for different Reynolds numbers at (a and b)
the recirculation center, (c and d) 0:5h,
(e and f) 1:0h, and (g and h) 1:5h
downstream of the recirculation center.
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the velocity fluctuations in time at two typical points (shown in Fig. 3)
is calculated and compared in Fig. 32. First, it is observed that at both
points, a range of the spectra follows a slope close to�5=3, which indi-
cates the existence of the inertial subrange, for all the velocity compo-
nents and all considered Reynolds numbers. The cutoff frequency for
the inertial subrange increases monotonously with the Reynolds num-
ber for the point located within the bubble. For the point located in
the shear layer, on the other hand, the critical frequency is the same
for the three lower Reynolds numbers and then increases monoto-
nously for higher Reynolds numbers. Comparing the PSD at the two
points, it is seen that the PSD of the three components is close to each
other at the point located within the separation bubble, while in the
shear layer the PSD of the streamwise velocity fluctuations is higher
than the other two components at low frequencies, indicating the tur-
bulence within the bubble are more isotropic compared with that in
the shear layer. As for the critical frequency, its value is observed
higher (i.e., wider inertial range) within the shear layer when com-
pared with that in the separation bubble, revealing higher local
Reynolds number and richer turbulence structures within the shear
layer.

V. CONCLUSION

WRLES of flow over periodic hills are carried out for studying
the Reynolds number effect on the flow statistics. Five different
Reynolds numbers ranging from 2800 to 37 000 are considered. To
validate the accuracy of the present simulations, the vertical profiles of
the mean velocities and Reynolds stresses are detailedly compared
with the DNS, WRLES, and experimental data in the literature.

The dependence of global flow features on Reynolds number is
examined by comparing the skin friction and pressure coefficients
from different cases. The comparison shows that the magnitude of
friction coefficient in general decreases with the increase in Reynolds
number, while the pressure coefficient varies in the opposite direction.
For the largest two Reynolds numbers (i.e., Reh ¼ 19 000; 37 000), dif-
ferences between the friction coefficients are still observed, while the
pressure coefficients almost overlap with each other. As for the instan-
taneous flow structures identified using the isosurfaces of pressure
fluctuation and Q criteria, it is observed that the higher the Reynolds
number, the smaller the turbulence structures. The vertical profiles of
the time-averaged flow statistics at four typical streamwise locations
are examined in detail. It is shown that the mean streamwise velocity

FIG. 32. Power spectral density of one-dimensional spectra of (a and c) the three velocity components and (b and d) the streamwise component at different Reynolds numbers.
The results for the center of the recirculation zone and the location in the shear layer at x=h ¼ 2:23; y=h ¼ 1:13 are shown in subfigure (a and b) and (c and d), respectively.
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exhibits monotonous variations with the Reynolds number at all four
streamwise locations, with the negligible differences between the pre-
dictions from Reh¼ 19 000 and 37 000. For the vertical profiles of the
vertical component of the mean velocity and the Reynolds stresses,
asymptotic behavior is observed at locations without flow separations,
which is less pronounced at the location (i.e., x=h ¼ 2) featured by the
separation bubble.

Then, the statistical properties of turbulence structures are exam-
ined via the PDF and the time correlation of velocity fluctuations. The
results show that the PDF of the spanwise velocity fluctuation can be
approximated well with the Gaussian distribution, while those of the
streamwise and vertical velocity fluctuations deviate at different
extents from the Gaussian distribution at different locations. An over-
all similar pattern of the skewness and flatness factors of the PDFs is
observed for cases with different Reynolds numbers. For the time cor-
relation, the decay rate increases monotonously with the Reynolds
number for small temporal separations, which is due to the smaller
turbulence structures observed at higher Reynolds number. For the
integral time scale, an overall similar distribution is observed for cases
with different Reynolds numbers with those of the streamwise velocity
fluctuation larger than the other two components.

At last, the dynamics and the Reynolds number effects are inves-
tigated for the separation bubble, which is the most important feature
for the flow over periodic hills, by analyzing the flow statistics, the
MKE budget on the coordinate with its origin fixed at the center of the
separation bubble, and the power spectral density of velocity fluctua-
tions from a point in the bubble and a point in the shear layer. For the
geometrical features of the separation bubble, it is observed that with
the increase in Reynolds number it shrinks in size both vertically and
horizontally mostly in the rear part. For the comparison of mean
velocities and Reynolds stresses on the coordinate with its origin
located on the recirculation center, similarities are in general observed
for different Reynolds numbers except for the mean velocity in the
upper part of the separation bubble where asymptotic behavior is
observed. To further probe into the dynamics of the separation bubble,
we examine different terms in the budget equation for mean kinetic
energy and the power spectral density of velocity fluctuations in the
separation bubble and in the shear layer, respectively. As for the power
spectral density, a wider inertial subrange is observed for higher
Reynolds numbers. The results of the MKE budget show that the
mean convection (MC) term and the turbulence convection (TC)
term play an important role on MKE in the region, for the former
brings MKE to the region above the separation bubble and the latter
convects MKE downward from the shear layer and above to the sepa-
ration bubble. For the MKE budgets from different Reynolds numbers,
similarities are in general observed at different locations downstream
of the bubble center. At the beginning of the separation bubble (e.g.,
1:5h upstream of the bubble center), the maxima of the MC and TC
terms increase significantly with the increase in the Reynolds number,
which plays a key role on the decrease in the size of the separation
bubble.
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