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ABSTRACT

The solid–liquid two-phase flow with coarse particles is ubiquitous in natural phenomena and engineering practice, which is characterized
by coarse particles, high particle concentration, and large particle size distribution. In this work, the numerical models describing two-phase
flows are reviewed, which given that the Eulerian–Lagrangian method is applicable in this work. Then, some modified models are proposed
for the situation where the conventional Eulerian–Lagrangian method is not applicable to deal with coarse particles. The continuous phase
equations of liquid are solved based on the finite volume method. The pressure implicit with splitting of operators algorithm for solving the
Navier–Stokes (N–S) equations of the pseudo-single-phase flow, considering phase fraction and momentum exchange source term, is pro-
posed. The discrete coarse particle is tracked in the Lagrangian method. A virtual mass distribution function is proposed for calculating
coarse particle volume fraction. A weighted function method relating to the particle size is given for the interpolation between the Eulerian
and Lagrangian fields. The barycentric coordinates are introduced into the particle localization. All the modified models are algorithmically
implanted in the open-source field operation and manipulation (OpenFOAM) as a new solver named coarse discrete particle method FOAM
(CoarseDPMFoam). Subsequently, the applicability of the numerical simulation method is verified by some typical test cases. The proposed
numerical simulation method provides new ideas and methods for the mechanism investigation and engineering application of the
two-phase flow with coarse particles.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0067553

I. INTRODUCTION

The solid–liquid two-phase flow with coarse particles is ubiqui-
tous and in natural phenomena and engineering practice, such as the
chemical, coal, and mining industries;1–7 the hydraulic fracturing in
unconventional oil and gas;8–12 the gas hydrates exploitation;13–16 and
debris flows,17,18 which is characterized by coarse particles, high parti-
cle concentration, and large particle size distribution. The movement
of the two-phase flow with coarse particles involves multiple geometric
scales such as pipe or fracture size, configuration, and particle size, and
is influenced by a variety of factors. Also, there are interactions
between the particles and the liquid and among particles. These factors
lead to a complex motion state of the two-phase flow, and predicting

its motion characteristics is difficult. Numerical simulation is an
important research method for this problem.

In general, continuous phase and discrete phase can be used to
distinguish the phases in a two-phase system. For example, solid is
described as discrete phase and liquid is described as continuous phase
in a solid–liquid two-phase flow. The difference between discrete
phase and continuous phase is mainly that the discrete phase has a cer-
tain attribute distribution.19 The motion of the discrete phase in a two-
phase system has a great influence on the flow characteristics. Hence,
the investigation of discrete phase is critical for understanding the flow
behavior of the entire system. In the numerical simulation of the two-
phase flows, the coupling between the discrete phase and continuous
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phase is divided into three types: one-way coupling, two-way coupling,
and four-way coupling, which are generally related to the volume frac-
tion of discrete phase (ad). Figure 1 is the classification map proposed
by Elghobashi.20 For highly diluted flow with ad � 10�6, one-way
coupling should be used in which the discrete phase has a negligible
effect on the continuous phase. For the particle volume fraction of
10�6 < ad � 10�3, the influence of the discrete phase on the continu-
ous phase needs to be considered. The degree of influence depends on
sP=sK, where sP ¼ qdd

2=ð18qc�cÞ is the particle reaction time, sK
¼ ð�c=eÞ

1
2 is the Kolmogorov time scale, qd and qc are the density of

the discrete phase and continuous phase, respectively, d is the particle
diameter, �c is the kinematic viscosity of the continuous phase, and e
is the turbulence dissipation rate. Small values of sP increase turbu-
lence dissipation rate, while large values of sP enhance turbulence
production. When ad > 10�3, the interaction between particles such
as particle collision and bonding must be considered due to the large
number of particles per unit volume, which are referred to as four-way
coupling.

First, a review of the numerical models describing multiphase
flows is given. The models describing multiphase flows can be divided
into microscopic model, mesoscopic model, and macroscopic model.21

Simulation based on microscopic model is also called direct numerical
simulation (DNS) of the multiphase flow. DNS of multiphase flow
mainly focuses on spatial resolution rather than solution accuracy.
The forces on particles are obtained by integrating the surface of the
particles, which is the true forces on the particles, rather than using a
force model such as WenYu drag model.22 The microscopic model is
suitable for micro-scale problems such as the movement of dozens of
particles or bubbles. The macroscopic model focuses on the macro-
scopic motion behavior of the multiphase flow. It is an
Eulerian–Eulerian method where variables of both the discrete phase
and continuous phase are obtained by solving locally averaged
Eulerian transport equation. Two fluid model (TFM)23 is the most
popular macroscopic model in the field of two-phase flows with the
advantages of high solution efficiency and wide application range.
However, it cannot be used to predict polydispersity effects and is not
applicable when the Knudsen number (Kn) of the discrete phase is

larger than 0.1.24 The mesoscopic model is proposed to overcome the
shortcomings that the macroscopic model can only simulate the parti-
cle field distribution and the microscopic model has a large amount of
computation. It is an Eulerian–Lagrangian method where the locally
averaged equations of motion for the continuous phase are solved in
an Eulerian framework and the discrete phase is tracked in a
Lagrangian method by solving Newton’s equations of motion. Models
for the interaction force and effective stress in the continuous phase
need to be defined. The computational fluid dynamics-discrete ele-
ment method (CFD-DEM)25–27 and the multiphase particle-in-cell
(MPPIC) method28,29 are all mesoscopic model. The difference
between the two methods lies in the way for handling particle colli-
sions. A particle stress model is proposed in MPPIC to reduce the
calculation cost, which can be expressed as

sMPPIC ¼
Pda

b
d

max ad;max � ad; cð1� adÞ
� � ; (1)

where sMPPIC is the particle stress, Pd is a constant with pressure
dimension, ad;max is the maximum volume fraction of particles, and b
and c are constants. In addition, the coupling of the CFD and the pop-
ulation balance equation (PBE) is also a mesoscopic model, which can
be used to describe the evolution of a population of particles by the
particle probability distribution function (PDF)

@/
@t
þr � ð/UdÞ þ rUd � ð/aÞ ¼ 0; (2)

where /ðx;Ud;qd;Vd; tÞ is the PDF, x is the position vector of the
particle, Ud is the particle velocity, Vd is the particle volume, and a is
the particle acceleration. The PBE is usually solved by method of
moments (MOM)30 due to its complex characteristics. As a result, the
coupling of CFD and PBE is also called Eulerian–MOM method. The
Eulerian transport equations for locally averaged variables of the dis-
crete phase can also be obtained from Eq. (2). The current numerical
simulation methods of multiphase flows are summarized in Fig. 2. The
capabilities of various numerical simulation methods are summarized
in Table I by referring Refs. 21 and 24.

To describe the solid–liquid two-phase flow in this paper, which
is characterized by coarse particles, high particle concentration, and
large particle size distribution, the Eulerian-Lagrangian method is used
in this paper based on the above analysis. In contrast to other methods,
it can handle a wide range of particle size distributions in both diluted
and dense flows and capture nonlinear, multiscale interactions as well
as non-equilibrium effects.31 The coarse particles may be eight times
larger than the fine particles. In conventional Eulerian-Lagrangian
method, the cell size for the continuous phase is chosen as five times
of the largest particles to achieve smoothed particle volume fraction
field. There is no sufficient scale resolution to capture the properties of
the flow field properly if the cell size is set based on the size of the
coarse particles.32,33 In addition, the conventional Eulerian-Lagrangian
method is inappropriate due to inapplicability of the interpolation
method between the Eulerian and Lagrangian field with coarse par-
ticles. Hence, the conventional Eulerian-Lagrangian method needs to
be optimized.

The particle centroid method (PCM) is widely used to calculate
the continuous quantities of the particles such as the particle volume
fraction in conventional Eulerian-Lagrangian method by dividing the

FIG. 1. Classification of coupling form between the discrete phase and continuous
phase,20 where two-way coupling 1 represents enhancing turbulence dissipation
and two-way coupling 2 represents enhancing turbulence production. [Reproduced
with permission from Elghobashi, “On predicting particle-laden turbulent flows,”
Appl. Sci. Res. 52, 309–329 (1994). Copyright 2021 Springer Nature.]
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added particle volume by the cell volume (ad ¼
Pn

i¼1 Vdi=Vcell, where
Vcell is the cell volume). Deen et al.34 found that the PCM can guaran-
tee accuracy when the ratio of particle size to cell size is less than 0.2.
The error can be up to 50% when the particle centroid is located near
the cell boundaries.35 It means that if several such particles locate near
the cell face and the particles size is close to or larger than the cell size,
nonphysically conditions occur in this cell. For example, the particle
volume fraction is larger than one and the fluid volume fraction is
smaller than zero. It will make the governing equations no sense and
result in non-smooth particle volume fraction with large gradients.
Except for the shortcomings mentioned above, the PCM, which is
seemingly unsophisticated, works well, especially when the particle
size is much smaller than the cell size. Due to the simplicity and easy
code implementation, the PCM is one of the most widely used proce-
dures. To deal with coarse particles, Goniva et al.36 proposed an indi-
cator point method by arranging a certain number of points inside
each particle, and then, the particle volume fraction is calculated by
determining the position of the indicator point. However, this method

requires a large amount of computation. The fictitious particle method
proposed by Tsuji, Higashida, and Okuyama37 is similar to the indica-
tor point method. The two-grid method33 can also be used to deal
with coarse particles by using coarse grids for discrete phase and fine
grids for continuous phase. It is relatively easy to be implemented in
structured grids, but difficult in unstructured grids. The statistical ker-
nel method (SKM)38–40 is also a recognized method to deal with coarse
particles by diffusing the coarse particles’ effects to the surrounding
grids. For example, the Gaussian kernel38 is expressed as

hðx � xiÞ ¼
1

ðb2pÞ
3
2

exp �ðx � xiÞTðx � xiÞ
b2

� �
; (3)

where x is the position vector, xi is the particle centroid, and b is the
bandwidth of the Gaussian kernel. The SKM is easy to implement and
fast in calculation, but special processing is required at the boundary.
Based on the idea of SKM, we propose a virtual mass distribution
function (VMDF) method to deal with coarse particles in the
Euler–Lagrangian method.

FIG. 2. Algorithms for multiphase flow.

TABLE I. Capabilities of the Eulerian-Eulerian (E-E) method, Eulerian-Lagrangian (E-L) method, and Eulerian-MOM (E-M) method.

Methods Can do Cannot do

E-E Applicable to dense flow; Cannot predict polydispersity effects;
Can simulate laboratory- and pilot-scale processes; Cannot predict trajectory crossing;

Inapplicable to highly diluted flow;
Similar equations for two phases; Difficult to account for interparticle forces;

E-L Tracking particle position; Requires constitutive model for fluid–particle interaction force;
Particle size distribution included;

Interparticle forces included; Assumed soft particle for reducing calculation cost;
Easy to implementation; Impractical for commercial-scale processes;

E-M Fast processing of coalescence and breakage; Complex and difficult to converge;
Can simulate laboratory-scale and commercial-scale systems; Cannot yet handle interparticle forces;

Particle size distribution included;
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The continuous phase field, such as continuous phase velocity
and pressure, at the particle centroid needs to be obtained during
particle tracking. However, the continuous phase field is usually
stored at cell center, and the particle centroid does not coincide
with the cell center. Therefore, the field at the cell center needs to
be interpolated to the particle centroid. There are usually two inter-
polation methods. The first one is to make the cell center value
equal to the particle centroid value. The second one is to interpolate
cell node value to the particle centroid based on the distance
between the particle centroid and the cell nodes. However, these
two methods are not suitable for coarse particles. When coarse
particles occupy multiple cells, the continuous phase field at the
particle centroid should not only be related to the cell where it is
localized, but also to all the cells it occupies. A new interpolation
method will be given in this paper for coarse particles.

The computational domain is discretized using cells to obtain the
numerical solution, so the particles have to be localized and the cell
where a particle is has to be determined. Haselbacher, Najjar, and
Ferry41 proposed a simple and robust particle localization algorithm
by determining for each cell face if the particle is on the right side of
the face. The outward unit normal of each cell face (ni) is computed
and then checks whether

ðf i � pÞ � niP0; (4)

where f i is the centroid of the ith cell face, and p is the particle posi-
tion. The particle is considered inside the cell if the test is passed for all
cell faces. The disadvantage of this method is that the calculation speed
will decrease significantly as the number of cells increases. The interac-
tion method42–44 is another popular particle localization method in
which the faces where the particle is passing through are searched. The
method takes the advantage of the previous particle’s cell location to
deduce the next cell where the particle is localized. It is very efficient as
it requests less calculation cost than the traditional localization
method. There is a problem with this method that the relative floating
point error related to the calculation of the location of the intersection
can be very large. The particle may be lost if the error means the inter-
section cannot be found. To avoid this problem, the barycentric coor-
dinates are used.

In this work, conventional Eulerian-Lagrangian method for two-
phase flow is optimized to deal with coarse particles. Some modified
models are proposed. For example, the VMDF method is proposed to
calculate the volume fraction field of the coarse particles, the weight
function method (WFM) relating to the particle size is proposed for
the date exchange between the Eulerian and Lagrangian framework,
and the barycentric coordinates particle tracking method (PTM) is
applied to the particle localization. The pressure implicit with splitting
of operators (PISO) algorithm is improved to make it suitable for solv-
ing the Navier–Stokes (N–S) equations for pseudo-single-phase flow
with volume fraction field and momentum exchange source term. The
algorithm is implanted in the open-source field operation and manip-
ulation (OpenFOAM), and a new solver named coarse discrete particle
method FOAM (CoarseDPMFoam) is developed.

The remainder of the paper is as follows: in Sec. II, the governing
equations, the modified models, and the numerical discretization
method are discussed. The solver development and implementation
are also described. In Sec. III, the solver is validated against three test
cases. Finally, conclusions are drawn in Sec. IV.

II. METHODS
A. Model equations

1. Discrete phase equations

The motion state of a particle in a continuous phase is translation
and rotation. The particle will collide with other particles as well as
walls and interact with the continuous phase during its movement. In
fact, the particle is not only affected by the surrounding fluid and
particles, but also the far fluid and particles due to the proliferation of
disturbance waves.45 However, in the numerical simulation, if a
numerical time step is set less than a critical value, the diffusion range
of the disturbance is about the same magnitude as the surrounding
particle and fluid (continuous phase) range in a time step.46 Hence,
the force on the particle can be directly regarded as the forces from the
surrounding fluid and particles at all times. The movement of each
single particle is governed by Newton’s second law of motion.47 The
particle motion equation is

md
dUd

dt
¼ mdgþ Fdc þ Fcol; (5)

Id
dxd

dt
¼ M; (6)

where Fdc is the interaction force between the particle and the fluid
(continuous phase), Fcol is the collision force between particles and the
collision force between the particle and the wall, md is the mass of
the particle, g is the gravity acceleration, xd is the angular velocity of
the particle, Id ¼ mdd2=10 is the moment of inertia, d is the diameter
of the particle, and M is the collision torque between particles and the
collision torque between the particle and the wall.

Particles in solid–liquid two phase flow are subjected to several
different forces,48,49 such as the drag force, the gravity force, the buoy-
ancy force, the pressure gradient force, the virtual mass force, the bas-
set force, the Magnus force, and the Saffman force. The drag force is
written as (in one-dimensional form)

Fd ¼ Kd Uc � Udð Þ; (7)

where Fd is the drag force, Kd is the coefficient of the drag force, Uc is
the velocity of fluid, and Ud is the velocity of particle. For simplicity,
Kd is written as22

Kd ¼ Vd
3
4
Cd

qcjUc � Udj
d

a�2:65c ; (8)

where Vd is the particle volume and Cd is drag coefficient. The pres-
sure gradient force is written as

FP ¼ Vd
@P
@x
; (9)

where FP is the pressure gradient force and P is pressure. The virtual
mass force is written as (for sphere particles)

FV ¼
1
2
p
6

qcd
3 dUc

dt
� dUd

dt

� �
; (10)

where FV is the virtual mass force. The Basset force is written as

FB ¼
3
2
d2

ffiffiffiffiffiffiffiffiffiffiffiffi
pqclc
p ðt

t0

dUcðsÞ
dt

� dUdðsÞ
dtffiffiffiffiffiffiffiffiffiffi

t � s
p ds; (11)
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where lc is the fluid viscosity. The Magnus force can be written as

FM ¼
p
8

qcd
3x Uc � Udð Þ; (12)

where FM is the Magnus force, and x is the angular velocity. The
Saffman force can be written as

FS ¼ 1:62d2
ffiffiffiffiffiffiffiffiffi
qclc
p

Uc � Udð Þ
ffiffiffiffiffiffiffiffi
dUc

dy

s
; (13)

where FS is the Saffman force. The ratio of Magnus force to the drag
force is

FM
FD
¼

p
8

qcd
3x Uc � Udð Þ

Vd
3
4
Cd

qcjUc � Udj
d

a�2:65c Uc � Udð Þ

¼ dx
CDjUc � Udja�2:65c

� 0:01: (14)

The ratio of Saffman force to the drag force is

FS
FD
¼

1:62d2
ffiffiffiffiffiffiffiffiffi
qclc
p

Uc � Udð Þ
ffiffiffiffiffiffiffiffi
dUc

dy

s

Vd
3
4
Cd

qcjUc � Udj
d

a�2:65c Uc � Udð Þ

¼
1:62d2

ffiffiffiffiffiffiffiffiffi
qclc
p

ffiffiffiffiffiffiffiffi
dUc

dy

s
p
8
CDqcjUc � Udja�2:65c

� 0:005: (15)

Assuming that the relative acceleration of the particles is constant and
approximately expressed in the differential form as follows:

dUcðsÞ
dt

� dUdðsÞ
dt

� Uc � Ud

t � t0
¼ const: (16)

Then, the ratio of basset force to the drag force is

FB
FD
¼

3
2
d2

ffiffiffiffiffiffiffiffiffiffiffiffi
pqclc
p ðt

t0

dUcðsÞ
dt �

dUdðsÞ
dtffiffiffiffiffiffiffiffiffiffi

t � s
p ds

Vd
3
4
Cd

qcjUc � Udj
d

a�2:65c Uc � Udð Þ

�
24d3

ffiffiffiffiffiffiffiffiffi
qclc
pffiffiffi

p
p

Cdqc
ffiffiffiffiffiffiffiffiffiffiffi
t � t0
p jUc � Udja�2:65c

� Oð10�6Þ: (17)

As a result, the Magnus force, the Saffman force, and the basset force are
neglected here. The ratio of pressure gradient force to the drag force is

FP
FD
¼

Vd
@P
@x

Vd
3
4
Cd

qcjUc � Udj
d

a�2:65c Uc � Udð Þ
� Oð1Þ: (18)

The ratio of virtual mass force to the drag force is

FV
FD
¼

1
2
p
6

qcd
3 dUc

dt
� dUd

dt

� �
Vd

3
4
Cd

qcjUc � Udj
d

a�2:65c Uc � Udð Þ
: (19)

For steady particle transportation in the engineering practice, such as
the hydraulic lifting in the chemical, coal and mining industries, the
hydraulic fracturing in unconventional oil and gas, and
dðUc � UdÞ=dt ! 0. FV=FD ! 0. In the case of dðUc � UdÞ=dt do
not tend to 0, the virtual mass force need to be considered. For pur-
poses of the current effort, only the effect of drag force and pressure
gradient force, which refers to force arising from a pressure gradient
(both static and non-static) are considered since these contributions
are the most important for the systems considered in this work.
Hernandez50 proposed two different forms of decomposition of the
fluid–particle interaction force ðFdcÞ

Fdc ¼ Kd Uc � Udð Þ � VdrP; (20)

Fdc ¼
Kd Uc � Udð Þ

ac
� qcVd g� DUc

Dt

� �
; (21)

where Uc is the velocity of the fluid (continuous phase) and ac is
the volume fraction of the fluid. The pressure gradient force in Eq.
(20) includes the force due to the pressure gradient in a static fluid
as well as the effect of relative motion on local pressure gradient.
However, the pressure gradient force qcVdðg� DUc=DtÞ in Eq.
(21) only includes the effect of the static pressure gradient. As a
result, the drag force in Eq. (21) is divided by the fluid volume frac-
tion ac.

50

The ErgunWenYu drag model51 is used in this work. To cover
the whole range of the fluid volume fraction, Gidaspow51 combined
the WenYu drag model22 and the Ergun drag model.52 For a fluid vol-
ume fraction greater than 0.8, the WenYu drag model is used. For a
fluid volume fraction less than 0.8, the Ergun drag model is used. The
ErgunWenYu drag model is expressed by

Kd¼
ac< 0:8; Vd 150

1�acð Þ
ac

lc

d2
þ1:75

qcjUc�Udj
d

� �
;

ac� 0:8; Vd
3
4
Cd

qcjUc�Udj
d

a�2:65c ;

8>>><>>>: (22)

Cd ¼ Re < 1000;
24 1þ 0:15Re0:687ð Þ

Re
;

Re � 1000; 0:424;

8<: (23)

Re ¼ qcjUc � Udjd
lc

; (24)

where Re is the relative Reynolds number.
In general, the contact between two particles during colliding

each other is a finite area because of the deformation of the par-
ticles. In the numerical simulation, if the two particles overlap; that
is, the distance between the centers of the two particles is less than
the sum of the radius of the two particles, the two particles are con-
sidered colliding each other, and the collision force is subsequent
calculated from the overlap (“deformation”).53 The particle colli-
sion force is calculated based on the “soft model.”46,54 More details
about the soft model in OpenFOAM can be found in Refs. 55
and 45.

Substituting Eq. (21) into Eq. (5), the particle motion equation
can be rewritten as

md
dUd

dt
¼mdg 1� qc

qd

� �
þKd Uc�Udð Þ

ac
þqc

md

qd

DUc

Dt
þFcol: (25)
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2. Continuous phase equations

The motion of the fluid phase is solved in terms of the locally
averaged variables over the computational mesh by solving the conti-
nuity and momentum equation of an incompressible fluid. The conti-
nuity and the momentum conservation equation of the fluid phase
are56

@

@t
acqcð Þ þ r � acqcUcð Þ ¼ 0; (26)

@

@t
acqcUcð Þ þ r � acqcUcUcð Þ � r � acqcscð Þ ¼ �rP þ qcg� fdc;

(27)

where sc is the stress tensor of the fluid and fdc is the momentum
exchange term between the particle and the fluid. The current work
focuses on the numerical treatment of the Eulerian-Lagrangian
method in CFD simulations for solid particle motions. Hence, the heat
transfer and mass transfer are neglected. The governing equations for
the continuous phase in the Eulerian-Lagrangian method are similar
to those in the Eulerian–Eulerian method. It is assumed that the pres-
sure drop only exists in the continuous phase equations because the
solid particle is tracked under Lagrangian framework. As a result, the
first and second term of the right-hand side of Eq. (27) is not multi-
plied by the fluid volume fraction. The stress tensor of the fluid is
expressed as

sc ¼ �c rUc þrUT
c

	 

� 2
3
�cr � UcI; (28)

where I is the identity matrix. The forces exerted by the fluid on the
particles are calculated on a per-particle basis and an opposite force is
applied to the fluid. Based on Eq. (20), the force per unit volume
exerted by the fluid on the particles in a cell is given by

fdc ¼
1

Vcell

Xn
i¼1

Fdc ¼
1

Vcell

Xn
i¼1

Kd Uc � Udð Þ � 1
Vcell

Xn
i¼1

VdrP

¼ fd � adrP; (29)

fd ¼
1

Vcell

Xn
i¼1

Kd Uc � Udð Þ; (30)

where fd is the momentum exchange term of the drag force,
ad ¼

Pn
i¼1 Vd=Vcell is the volume fraction of the particle, n is the

number of particles in a cell, and i is the particle index.
The fluid phase pressure P consists of a static fluid pressure

qg � h and relative motion pressure Prgh. The fluid phase pressure
gradient in Eq. (27) can be change to the bellow form to make the
definition of boundary conditions easier as well as reduce the false
velocity caused by hydrostatic pressure under non-orthogonal
grids57

rP ¼ rPrgh þ qgþ g � hrq; (31)

where h is the position vector of the cell center, and q ¼ acqc þ adqd
is the mixture density of the fluid and the particle, and ac and ad sat-
isfy the relationship ac þ ad ¼ 1. Substituting Eqs. (29) and (31) into
Eq. (27) and extracting the density item from Eqs. (26) and (27), the
continuity and momentum conservation equation of the fluid can be
rewritten as

@ac
@t
þr � acUcð Þ ¼ 0; (32)

@

@t
acUcð Þ þ r � acUcUcð Þ � Uc

@ac
@t
þr � acUcð Þ

� �
�r � acscð Þ ¼ �acr

Prgh
qc
� ac

q
qc
� 1

� �
g� ac

qc
g � hrq� fd

qc
:

(33)

Mathematically, the third term of the left-hand side of Eq. (33) is zero.
However, the equation is discretized based on the finite volume
method (FVM) in order to be solved numerically. Equation (33) might
actually be different without the third term on the left-hand side, as
the discretized continuity equation might not equal to zero. Hence, the
third term of left-hand side of Eq. (33) is retained because it helps to
maintain the boundedness of the solution variable and promotes better
convergence.58,59 In addition, the first term of the right-hand side of
Eq. (33) is multiplied by the fluid volume fraction due to pressure gra-
dient force added to the pressure gradient term.

B. Code implementation of governing equations

1. Continuous phase

It can be seen that Eq. (33) has no diffusion flux for implicitly dis-
cretizing. However, the discretization of equations based on the FVM
generates a numerical diffusion.58 Therefore, the stress tensor of the
fluid in Eq. (33) is decomposed into two terms for numerical
considerations60,61

sc ¼ sc � �crUc þ �crUc

¼ �c rUc þrUT
c

	 

� 2
3
�cr � UcI� �crUc þ �crUc

¼ �crUT
c �

2
3
�cr � UcI

� �
þ �crUc

¼ s0c þ �crUc: (34)

The diffusion term concerning Uc in Eq. (34) is artificially derived,
which can be implicitly discretized to decrease the numerical diffusion.
Substituting Eq. (34) into Eq. (33), the discretized momentum equa-
tion of the fluid can be written as

@

@t
achUcið Þ þ r � acUchUcið Þ � hUci

@ac
@t
þr � acUcð Þ

� �
�r � acs

0
c

	 

�r � ac�crhUcið Þ

¼ �acr
Prgh
qc
� ac

q
qc
� 1

� �
g� ac

qc
g � hrq� fd

qc
; (35)

where himeans implicit discretization. Equation (35) only gives a veloc-
ity prediction of the fluid, which will be corrected after the pressure is
updated because the pressure gradient term, the gravity force term, and
the momentum exchange term of drag force are explicitly discretized.
The discretized algebraic equation of Eq. (35) can be written as

APUc;P þ
X

ANUc;N � SP

¼ � acrPrgh
	 


P
� ac

q
qc
� 1

� �
g� ac

qc
g � hrq� fd

qc

" #
P

; (36)
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where AP and AN are the diagonal and off-diagonal elements of the
coefficients matrix, respectively, Uc;P is the fluid velocity of the cell P,
Uc;N is the fluid velocity of the adjacent cell, and SP is the source of the
algebraic equation. The discretized form of the pressure gradient term
is not given in Eq. (36) for preventing the pressure oscillations in the
spirit of the Rhie–Chow interpolation.62 Zhang, Zhao, and Bayyuk63

proposed that the gravity force term is better included in the pressure
Poisson equation. Hence, the gravity force term is not merged into SP.
There are many different methods to link the momentum exchange
term of drag force to the velocity of the fluid after the fluid velocity is
predicted based on Eq. (35) such as the fully explicit method, the par-
tially implicit method, the fully implicit method, and the partial elimi-
nation method.64,65 Miller and Miller66 studied the difference of these
methods. In the present paper, the fully explicit method is used
because the particle is larger than the cell. The fully explicit method
treats the momentum exchange term of drag force as a constant term.
Equation (36) can be written as

Uc;P ¼HbyAP �
ac;P
AP
rPrgh
	 


P

� 1
AP

ac
q
qc
� 1

� �
g� ac

qc
g � hrq� fd

qc

" #
P

; (37)

whereHbyAP is the finite volume representation of the spatial convec-
tive and diffusive fluxes of the phase momentum59,67 and is expressed
as

HbyAP ¼
1
AP
�
X

ANUc;N þ SP
� �

: (38)

The velocity field, Uc;P , does not satisfy the continuity constraint.
Hence, a pressure Poisson equation needs to be given to correct the
velocity field. Substituting Eq. (37) into Eq. (32), the pressure Poisson
equation can be constructed as follows:

r � a2c
AP
rPrgh

� �
¼ @ac

@t
þr � acHbyA� ac

AP
ac

q
qc
� 1

� �
g

�
� a2c
APqc

g � hrq� acfd
APqc

�
: (39)

Equation (39) is different from the basic pressure Poisson equation,
which is motivated by numerical stability considerations. In
OpenFOAM, except for the boundary surface, all variables are stored
at the cell centroid. The variables at the boundary are stored at the cen-
troid of the boundary face. The Rhie–Chow interpolation62 is adopted
to avoid pressure checker-boarding. The pressure Poisson equation is
multiplied by a2c instead of ac.

The continuous phase equations are solved as following steps:

1. Solving Eq. (35) to obtain the predicted velocity field;
2. Constructing the HbyA based on Eq. (38);
3. Solving Eq. (39) to obtain the pressure field;
4. Updating the velocity field based on Eq. (37);
5. Looping 2–4 steps to get the convergence results.

2. Discrete phase

Particle tracking is a process of following a particle as it pro-
gresses through a fluid cell. The PTM tracks the particle through a

polyhedral mesh. The polyhedral mesh (tetrahedra, pyramids, prisms,
and hexahedra) is decomposed into tetrahedra in OpenFOAM, and
the particle is at any time associated with the tetrahedron containing
it. In this paper, the barycentric coordinates, which are local to the tet-
rahedron related to the particle, are used to store the particle position
instead of the globe coordinates. The concept of barycentric coordi-
nates is well established and widely applied to computer graphics. In
addition, some researchers have taken the coordinates for particle
tracking in Eulerian-Lagrangian simulation.68,69 A short recapitulation
bellow aims to summarize the usage of the barycentric coordinates of
this paper in the particle tracking.

First, the particle position with respect to a tetrahedron needs to
be defined. Considering a tetrahedral element, which is defined by its
vertices a, b, c, and d [Fig. 3(a)], with an arbitrary point p within it.
The global coordinates of the element vertices and point pðxp; yp; zpÞ
are given. The arbitrary point p can be expressed using a set of local
coordinates ðk1; k2; k3; k4Þ associated with the element vertices. The
local coordinates are defined as barycentric coordinates with respect to
the element if they exhibit the following properties:

FIG. 3. The barycentric coordinates, (a) point p in tetrahedral element gabcd, and
(b) the tetrahedral element after transformation.
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(1) ki P 0; i ¼ 1; 2; 3; 4 for all points p 2 element;
(2) k1 þ k2 þ k3 þ k4 ¼ 1 for all points p;
(3) p ¼ k1aþ k2bþ k3cþ k4d.

The point p in the element divides the tetrahedron into four sub-
tetrahedrons: Vpbcd; Vpacd; Vpabd, and Vpabc. Then, the barycentric
coordinates of the arbitrary point p are given by

k1 ¼
Vpbcd

Vabcd
¼ 1� k2 � k3 � k4; (40)

k2 ¼
Vpacd

Vabcd
¼ 6Vpacd

6Vabcd
¼ ap � ac� adð Þ

ab � ac� adð Þ ; (41)

k3 ¼
Vpabd

Vabcd
¼ 6Vpabd

6Vabcd
¼ ap � ad� abð Þ

ab � ac� adð Þ ; (42)

k4 ¼
Vpabc

Vabcd
¼ 6Vpabc

6Vabcd
¼ ap � ab� acð Þ

ab � ac� adð Þ ; (43)

where Vpbcd; Vpacd; Vpabd, and Vpabc are the volume of the four sub-
tetrahedrons, ap ¼ p� a; ab ¼ b� a; ac ¼ c� a; ad ¼ d� a. For
example, if the barycentric coordinates are (1, 0, 0, 0), the point p is on
the position of vertex a. In addition, if one of the coordinates is zero,
the point p is on the element face corresponding to the coordinate,
such as the barycentric coordinates (0.5, 0, 0.2, 0.3) representing the

point p on the face facd. For point outside the element, some of the
barycentric coordinates can be negative or greater than one. For an
arbitrary point p in the tetrahedron element gabcd, the barycentric
coordinates satisfy the relationship

06 kiðpÞ6 1; i ¼ 1; 2; 3; 4: (44)

The transformation from the barycentric coordinates to the
global coordinates is based on the properties, three mentioned above
by the following matrix transformation:

p ¼ Ak pð Þ !
xp
yp
zp

24 35 ¼ xa xb xc xd
ya yb yc yd
za zb zc zd

24 35 k1
k2
k3
k4

2664
3775: (45)

The matrix A is called the transform matrix, which is composed
of the global position of the element vertices. Similar to the transform
matrix, a reverse transform matrix T needs to be defined for the trans-
formation from the global coordinates to the barycentric coordinates.
The reverse transform matrix T is expressed as

T ¼ bd� bc ac� ad ad� ab ab� ac½ �: (46)

The barycentric displacement from point a to point p is calculated by

ka!p ¼ k pð Þ � k að Þ ¼ ap � T
detA

¼ ap � bd� bcð Þ ap � ac� adð Þ ap � ad� abð Þ ap � ab� acð Þ
� �

ab � ac� adð Þ ; (47)

where detA is the determinant of the matrix A and is written as ab � ðac� adÞ. Then, the barycentric coordinates of the point p are expressed as

k pð Þ ¼ k að Þ þ ap � T
detB

¼ ð1; 0; 0; 0Þ þ ap � bd� bcð Þ ap � ac� adð Þ ap � ad� abð Þ ap � ab� acð Þ
� �

ab � ac� adð Þ

¼ 1þ ap � bd� bcð Þ
ab � ac� adð Þ ;

ap � ac� adð Þ
ab � ac� adð Þ ;

ap � ad� abð Þ
ab � ac� adð Þ ;

ap � ab� acð Þ
ab � ac� adð Þ

 !
: (48)

The reverse transformmatrix T can be written as

T ¼
yd � ybð Þ zc � zbð Þ � zd � zbð Þ yc � ybð Þ yc � yað Þ zd � zað Þ � zc � zað Þ yd � yað Þ
zd � zbð Þ xc � xbð Þ � xd � xbð Þ zc � zbð Þ zc � zað Þ xd � xað Þ � xc � xað Þ zd � zað Þ
xd � xbð Þ yc � ybð Þ � yd � ybð Þ xc � xbð Þ xc � xað Þ yd � yað Þ � yc � yað Þ xd � xað Þ

2664
yd � yað Þ zb � zað Þ � zd � zað Þ yb � zað Þ yb � yað Þ zc � zað Þ � zb � zað Þ yc � yað Þ
zd � zað Þ xb � xað Þ � xd � xað Þ zb � zað Þ zb � zað Þ xc � zað Þ � xb � xað Þ zc � zað Þ
xd � xað Þ yb � yað Þ � yd � yað Þ xb � xað Þ xb � xað Þ yc � yað Þ � yb � yað Þ xc � xað Þ

375: (49)

The determinant of the matrix A is a constant for a given element and is expressed as

detA ¼ ab � ac� adð Þ ¼ xb � xa yb � ya zb � za½ �
yc � yað Þ zd � zað Þ � zc � zað Þ yd � yað Þ
zc � zað Þ xd � xað Þ � xc � xað Þ zd � zað Þ
xc � xað Þ yd � yað Þ � yc � yað Þ xd � xað Þ

2664
3775

¼ xb � xað Þ yc � yað Þ zd � zað Þ � xb � xað Þ zc � zað Þ yd � yað Þ þ yb � yað Þ zc � zað Þ xd � xað Þ
� yb � yað Þ xc � xað Þ zd � zað Þ þ zb � zað Þ xc � xað Þ yd � yað Þ � zb � zað Þ yc � yað Þ xd � xað Þ: (50)
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For a point pmoving through pointm to point n with intersection

point s between the vector pn and the face fbcd as shown in Fig. 4(a),

where the point p andm are inside the tetrahedron gabcd and the point

n is outside the tetrahedron gabcd, the barycentric displacement related

to the tetrahedron gabcd from point p to point n is calculated by

kp!n ¼ k nð Þ�k pð Þ ¼
an �T
detA

� ap �T
detA

¼ pn �T
detA

¼ pn � bd�bcð Þ pn � ac� adð Þ pn � ad� abð Þ pn � ab� acð Þ
� �

ab � ac� adð Þ :

(51)

The face fabc; fadc, and fabd are parallel to the face gpb1c1 ; gpd1c1 ,
and gpb1d1 in Fig. 4(a). Similarly, the barycentric displacement from
the point p to pointm is expressed as kp!m ¼ pm � T=detA. The sign
of the flour elements of barycentric displacement kp!n can be different
with the intersection point s on the different area of the face fbcd as
shown in Fig. 4(b).

Figure 4(b) is the top view of the face fbcd, which is divided into
seven different regions. For example, if the intersection point s is in
the region gb1c1d1 , the first element of kp!n is negative and the vector
pn only intersect with the face fbcd. What’s more, if the intersection
point is in the region gb1b3c2c1 , the vector pn intersects with the facefbcd in point s first and then intersects with the face fabc in point t
[Fig. 4(c)] with negative value of the first and fourth element of kp!n.
As a result, the vector pn will intersect with the relating element face
when the barycentric displacement is negative. This method is also
applicable to the vector pm with whose extension will intersect the
face bcd. The barycentric coordinates of the intersection point s relat-
ing to the tetrahedral element gabcd can be calculated by adding the
kðpÞ and the barycentric displacement kp!s

kðsÞ ¼ kðpÞ þ kp!s ¼ kðpÞ þ ps � T=detA ¼ kðpÞ þ l1kp!n;

(52)

where l1 is the ratio of the magnitude of the vector ps and pn

l1 ¼
jpsj
jpnj ¼

jpej
jpf j ¼

bp � bd� bcð Þ
�pn � bd� bcð Þ ¼ �

k1 pð Þ
k1p!n

; (53)

where k1ðpÞ and k1p!n are the first element of the barycentric coordi-
nates kðpÞ and barycentric displacement kp!n.

However, if the vector pn intersects the face fabc in point s first
and then intersects the face fabc in point t as shown in Fig. 4(d), the
sign of the barycentric displacement kp!n is ð� þþ�Þ, which is the
same sign as Fig. 4(c). The barycentric coordinates of the point p and t
in Fig. 4(d) are expressed as

kðsÞ ¼ kðpÞ þ l4kp!n; (54)

kðtÞ ¼ kðpÞ þ l1kp!n; (55)

where l4 ¼ k4ðpÞ=k4p!n. Equation (44) can be used to determine
whether the point s and t are in the tetrahedron gabcd. The point s is in
the tetrahedron gabcd and satisfies the relationship of Eq. (44). It can be
concluded that the vector pn intersects the face fabc first. This method
can be used to determine which face the vector pn intersects with first
considering an arbitrary point n outside the tetrahedron gabcd.

The position, velocity, cell containing information, tetrahedron
containing information, and step fraction of a particle are stored

FIG. 4. Diagram for judging the intersection of particle trajectory and cell face. (a)
Diagram of the intersection of particle trajectory [pn) and tetrahedral element facefbcd. The vector pf is perpendicular to the face bcd. (b) Sign of the four elements of
barycentric displacement of different intersection point s on face fbcd. (c) Particle
trajectory [pn) intersects with the face fbcd (first) and fabc (second). (d) Particle tra-
jectory [pn) intersects with the face fabc (first) and fbcd (second).
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during the particle tracking. The step fraction is the ratio of the current
displacement to the total displacement of the particle in a fluid time
step. For example, considering the particle moving from point a to
point b in a fluid time step, the step fraction of the particle in point r is
jarj=jabj (Fig. 5). The particle tracking is complete in the fluid time
step when step fraction¼ 1. The particle tracking is divided into many
steps according to the intersection of the particle trajectory and the tet-
rahedron face in a fluid time step. Figure 5 shows a particle moving
through a hexahedral cell, which is divided into twelve tetrahedra with
the same vertex c (cell center). The point p, q, r, s, and t are the inter-
section point. Then, the particle tracking in this cell is divided into
four steps p! q! r! s! t. The cell and tetrahedron containing
information are the label of the cell and tetrahedron where the particle
is localized.

A briefly description is given bellow to describe the particle track-
ing process in a cell shown in Fig. 5. It is assumed that the step fraction
when particle moves through point p is SF1. The cell and tetrahedron
containing information need to be changed after the particle passing
point p because the particle hit a cell face f278 and enter from one cell
to another cell. Then, the particle is tracked from point p to point b
with the intersection point q on face fc87. The barycentric coordinates
of the point p and barycentric displacement of the vector pb relating
to the tetrahedron gc728 are calculated based on Eqs. (47) and (51).
Based on the method of determining the intersection point and face
between a vector and a tetrahedron given above [Eqs. (51)–(55)], the
intersection face fc78 can be determined and the barycentric coordi-
nates of the intersection point q relating to the tetrahedron gc728 can
be calculated by Eq. (52). The global coordinates of the point q are
achieved from Eq. (45). After the particle moving to the point q, the
step fraction needs to be updated by

stepfraction ¼ SF1 þ 1� SF1ð Þli; (56)

li ¼ �
ki pð Þ
kip!b

; (57)

where li is jpqj=jpbj, which is similar to Eq. (53), and i is the ith
(intersection) face of the tetrahedron gc728 in Fig. 5. The tetrahedron
containing information is changed from the tetrahedron gc728 to gc678,
while the cell containing information does not need to be changed due
to the same cell where the particle is localized. Then, the particle is
tracking from q to r, r to s, and s to t with the same process of p to q.
It should be noted that both the cell and tetrahedron containing infor-
mation need to be changed after the particle passing the point t

because the particle hit the cell face g3654. The particle collisions are
processed at the end of each time step. During calculating the velocity
and position of the particle in the next time step, the velocity changing
caused by the particle collision is separated from the velocity changing
resulting from other forces such as the gravity force, the pressure gra-
dient force, and so on because the collision of particles is instanta-
neous. The leapfrog integration algorithm (LIA)70 is used to calculate
the velocity of the particle due to the particle collisions. The equations
for updating position and velocity of the particle are

U
tþDt

2
dcol ¼ Ut

dcol þ
Ftcol
md

Dt
2
; (58)

xtþDt
dcol ¼ xtdcol þ U

tþDt
2

dcolDt; (59)

UtþDt
dcol ¼ U

tþDt
2

dcol þ
FtþDt
col

md

Dt
2
; (60)

where Udcol and xdcol are the particle velocity and displacement caused
by the particle collisions, respectively. The process of LIA can be sum-
marized as: (a) applying half DUdcol with the particle collision force
stored in the previous time step, (b) moving the particle with the new
particle velocity and getting the new particle position based on the
PTM, (c) calculating the particle collision force in the new particle posi-
tion, and (d) applying half DUdcol with the new particle collision force,
where DUdcol is the velocity changing caused by the particle collision.

The particle velocity resulting from other forces is calculated
based on the implicit Euler scheme. Removing the particle collision
force from Eq. (25)

md
dUdoth

dt
¼ mdg 1� qc

qd

� �
þ Kd Uc � Udothð Þ

ac
þ qc

md

qd

DUc

Dt
; (61)

where Udoth is the particle velocity resulting from other forces.
Applying the implicit Euler discretization to Eq. (61)

UtþDt
doth �Ut

doth

Dt
¼ 1� qc

qd

� �
gþ

Kd Ut
c�UtþDt

doth

� �
mdatc

þqc
1
qd

DUt
c

Dt
: (62)

The superscript t and t þ Dt represent the value of the variable at this
time step. Then, the velocity of the particle at the next time step
(t þ Dt) relating to other forces is expressed by

UtþDt
doth ¼

Ut
doth þ 1� qc

qd

� �
gþ Kd

mdatc
Ut

c þ qc
1
qd

DUt
c

Dt

" #
Dt

1þ Kd

mdatc
Dt

: (63)

The velocity of the particle causing by the particle collisions and other
forces is calculated based on Eqs. (60) and (63), respectively. As a result,
the particle velocity and position at the next time step are calculated by

UtþDt
d ¼ UtþDt

dcol þ UtþDt
doth ; (64)

xtþDt
d ¼ xtd þ Ut

doth þ U
tþDt

2
dcol

� �
Dt: (65)

C. Aggregation and interpolation

The Eulerian framework, specific locations in a space through
which the fluid flows are focused on as time passes. An individualFIG. 5. Particle moving through a cell.
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point is followed as it moves through space and time in the
Lagrangian framework. The flow field of the continuous phase is
solved in the Eulerian framework, while the motion of the discrete
phase is solved in the Lagrangian framework in this work. Hence,
the bridging between the continuous phase and the discrete phase
needs to be illustrated, such as the momentum exchange term of
the drag force in Eq. (33) and the continuous phase velocity in Eq.
(25). Here, aggregation means the mapping from discrete phase to
continuous phase and interpolation means the mapping from con-
tinuous phase to discrete phase. Sometimes, the aggregation and
interpolation are also referred to as “forward” and “backward”
interpolations, respectively.

1. Aggregation

The PCM is used to calculate the continuous quantities of the
particles such as the particle volume fraction (ad) and the momentum
exchange term of the drag force (fd) in OpenFOAM. The PCM only
corresponds to the cell where the particles’ centroid locate, which may
be suitable for fine particles where the particle size is smaller than the
cell size (d < 0:2� 0:4Dx, where Dx ¼

ffiffiffiffiffiffiffiffi
Vcell

3
p

is the cell size).34 To
overcome the drawback of the PCM for large particles (d=DxP 1), a
VMDF is given in this paper for calculating the volume fraction of
large particles. In general, the true mass distribution function (TMDF)
for a particle is

MTðrÞ ¼
ðr
jcj¼0

mTðcÞdc; (66)

mT cð Þ ¼
jcj � R; qd;
jcj > R; 0;



(67)

where c ¼ x � p, x is the position vector of an arbitrary point in the
flow field, p is the position vector of the particle center, R is the particle
radius, and mTðcÞ is the true density distribution function (TDDF). In
the numerical simulation, if the cell size is larger than the particle
diameter (d=Dx < 1), the particle volume fraction is computed as

ad ¼
1

Vcell

Xn
i¼1

ð
jcj2Vcell

1
qd

mT;iðcÞdc: (68)

Notice that the cell volume is larger than the particle volume and a
packing limit or maximum particle volume fraction is set as 0.9 before
for preventing the particle volume fraction from too large in a cell.
Therefore, it may result in a rigorous relation of 06 ad < 1. However,
if the cell volume is smaller than the particle volume, all the particle
volume fraction in the containing cell is 0.9 due to the packing limit,
which will cause calculation divergence or inaccurate calculation
results. A coarse mesh can be used to achieve practical particle volume
fraction field. Yet, this method may also lead to inadequate simulation
results of the continuous phase. Therefore, the VMDF is proposed to
overcome the drawback. As shown in Fig. 6, a large particle occupies
several cells, and the VMDF spreads the influence of particle from the
containing cell into the surrounding cell. An appropriate VMDF
should follow the criteria as follow:39

1. The integral of the virtual density distribution function (VDDF)
needs to be converging and finite, that is,

lim
r!þ1

MVðrÞ ¼
ðr
jcj¼0

mVðcÞdc; (69)

whereMVðrÞ is the VMDF, and mVðrÞ is the VDDF.
2. The particle mass should be conserved when using the VMDF;

that is, the mass computed from the VMDF should be the same
as the true particle. The conservation requirement can be
expressed as

MVð1Þ ¼
ð1
jcj¼0

mVðcÞdc ¼
ð1
jcj¼0

mTðcÞdc ¼ MTð1Þ: (70)

3. There should be a truncation radius Rt that satisfies

MVð1Þ ¼
ð1
jcj¼0

mVðcÞdc �
ðRt

jcj¼0
mVðcÞdc ¼ MVðRtÞ: (71)

4. The VMDF should be a smooth function to prevent numerical
instability caused by discontinuities on the particle surface.

To guarantee the conservation requirement of the VDDF, we
notice the linear partial differential equations

@uðb; sÞ
@s

¼ r2uðb; sÞ;

uðb; sÞjs¼0 ¼ dðbÞ

8><>: (72)

has the analytical solution of

uðb; sÞ ¼ 1

ð4psÞ
3
2

exp �b2

4s

� �
; (73)

where s is a time parameter, and dðbÞ is the Dirac function. Figure 7
shows the change of uðb; sÞ with jbj at different time parameter s. It

FIG. 6. The virtual mass distribution function.
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can be seen that limjbj!þ1 uðbÞ ¼ 0, and
Ð1
jbj¼0 uðbÞdb ¼ 1. Hence,

the VDDF can be defined as

mVðcÞ ¼
4
3
pR3qduðc; sÞ: (74)

Then, MVð1Þ ¼ 4
3pR

3qd ¼ MTð1Þ. Furthermore, the VDDF given
in Eq. (74) has a truncation radius of about Rt ¼ 2:5R and the VMDF
is a smooth function. The VMDF defined by Eq. (74) meets all the cri-
teria given above.

It is assumed that there is only a large particle p locating at the
cell F in the flow field, as shown in Fig. 6. Applying the VMDF to cal-
culating the particle volume fraction, the particle volume fraction field
at cell E relating to the particle p locating at cell F with any mesh scale
can be written as

adðxEÞ ¼
1

VcellðFÞ

ð
jcj2VcellðEÞ

1
qd

mVðcÞdc

¼
ð
jcj2VcellðEÞ

4
3

pR3

VcellðFÞ
1

ð4psÞ
3
2

exp � c2

4s

� �
dc

¼
ð
jcj2VcellðEÞ

ad;PCMðxFÞ
ð4psÞ

3
2

exp � c2

4s

� �
dc; (75)

where xE and xF are the cell center of the cell E and F, respectively;
VcellðEÞ and VcellðFÞ are the volume of the cell E and F, respectively;
and ad;PCMðxFÞ is particle volume fraction at cell F calculated based on
the PCM and can be regarded as a square integrable function because
the particle volume fraction in a cell is the same. The cell E can be an
arbitrary cell in the flow field. Based on the Green’s function, Eq. (75)
is the solution of the following equation:

@uðb; sÞ
@s

¼ r2uðb; sÞ;

uðb; sÞjs¼0 ¼ ad;PCMðxFÞdðxFÞ:

8><>: (76)

To conclude, in order to get the particle volume fraction field relating
to the particle p (Fig. 6), Eq. (76) can be solved with the boundary con-
dition of zero gradient to meet the conservation requirement.71 If there
are many large particles in the flow field, the particle volume fraction

field can be added together. The concept of VMDF is for computation
of the particle volume fraction field only.

Similar procedure can be applied to the momentum exchange
term of the drag force (fd) in Eq. (27). The momentum exchange term
of the drag force fd is expressed by Eq. (30), which is a source term in
the continuous phase momentum equation. The source term must be
distributed into surrounding cells because a large particle occupies sev-
eral cells. To ensure conservation, the distribution function uðc; sÞ is
still used to distribute the momentum exchange term of the drag force
as follows:

fdðnÞ ¼ fd;PCMðxÞuðx � n; sÞ; (77)

where fd;PCM is the momentum exchange term of the drag force calcu-
lated based on the PCM. Equation (77) can also be achieved by solving
the following equation:

@fd;PCM
@s

¼ r2fd;PCM;

fd;PCMjs¼0 ¼ fd;PCMðxÞdðxÞ;

8><>: (78)

where x is center of the containing cell of the particle. The VMDF
given above can be used to deal with coarse particles.

2. Interpolation

The mapping from continuous phase to discrete phase, which is
called interpolation, can also be different for fine particles and coarse
particles. The field relating to the continuous phase such as the velocity
field, the volume fraction field, and the pressure field is stored in the
center of the cell or cell face. However, if the interaction force between
the particle and the fluid is calculated form Eqs. (21)–(24), the contin-
uous phase velocity Uc at the particle centroid is unknown and need
to be achieved from the stored velocity in the cell first because the par-
ticle centroid is neither in the center of the cell F nor in the center of
the cell face. The barycentric interpolation method (BIM) can be used
for fine particles. For example, a small particle p locates in a tetrahe-
dral cell gabcd as shown in Fig. 3(a). The velocity of the continuous
phase (Uc) at the cell vertex is known, and then, Uc at the particle cen-
troid can be calculated based on the barycentric coordinates of p relat-
ing to the tetrahedron gabcd

UcðxpÞ ¼ k1ðpÞUcðxaÞ þ k2ðpÞUcðxbÞ þ k3ðpÞUcðxcÞ
þ k4ðpÞUcðxdÞ; (79)

where xp; xa; xb; xc, and xd are position vector. When considering
large particles, the barycentric interpolation is not applicable. Another
interpolation method called weighted function method (WFM) is pro-
posed for large particles in this paper. The quantities of the continuous
phase are collected among the surrounding cells according the distance
between the surrounding cell centers and the particle centroid, which
is used to construct the weighted function. Figure 8 shows a large par-
ticle in the flow field with surrounding nine cells. The weight functions
wi allocating into CFD cells are calculated by

wi ¼
1=jxp � xijXNs

i¼1
1=jxp � xij

; (80)

FIG. 7. The change of uðb; sÞ with jbj at different time parameter s.
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where xi is the position vector of the center of the surrounding cells,
and Ns is the number of the surrounding cells. Then, the continuous
phase velocity at the particle center is written as

UcðxpÞ ¼
XNs

i¼1
wiUcðxiÞ: (81)

D. Numerical platform

The numerical models given in Secs. IIA–IIC, which are released
as a new solver named CoarseDPMFoam for modeling gas–solid or
fluid–solid two-phase flow, are conducted by means of OpenFOAM.
OpenFOAM is a Cþþ tool box for the development of customized
numerical solvers, and pre-processing and post-processing utilities for
the solution. The proposed CoarseDPMFoam is built upon through
the FVM for the continuous phase equations and the centroid method
for the discrete phase equations. The motion of the continuous phase
is described by the macroscopic continuum approach, which is set by
the continuity and momentum conservation equations. The discrete
phase particles are tracked individually based on Newton’s second law
of motion.47 Thus, the distributions of the continuous phase, and the
velocities and trajectories of the discrete phase are obtained in the cells.
Figure 9 shows the flow chart of the CoarseDPMFoam. The Eulerian-
Lagrangian CFD simulation requires processes both at particle scale
such as the collision force, pressure gradient force, drag force, and
relating velocity to be solved in the Lagrangian framework and at
macro-scale including phase velocity and volume fraction in the
Eulerian framework.21 In each time step, the discrete phase calculation
is performed first, and then, the continuous phase calculation followed

because the volume fraction of the continuous phase depends on the
position of the discrete phase particles.

III. NUMERICAL SIMULATIONS AND MODEL
VALIDATION

For accessing the accuracy of the numerical models
(CoarseDPMFoam), some test cases are presented. The first one is the
particle distribution case, the second one is a gas–solid fluidized bed
case, the third one is a liquid–solid particle size segregation case, and
the last one is a granular column collapse case. The equations govern-
ing gas–solid and liquid–solid flows are the same in the incompressible
region, and the difference lies in the physical properties of the continu-
ous phase (gas or liquid). The previous equation derivation does not
involve separate equations for gas–solid and liquid–solid flows.
Therefore, the gas–solid and liquid–solid flow cases are given to prove
that the solver is suitable for both gas–solid and liquid–solid flows.

A. Distribution of particle volume fraction

To verify the accuracy of the VMDF method for calculating the
particle volume fraction field, two distributions of particles located in
the middle and near boundaries of a two-dimensional domain with
size of 160d � 160d in length (x-direction) and height (y-direction),
respectively, are used. Simulations are performed on meshes with only
one layer of cell in z-direction. The thickness of the cell in z-direction
is the same as the particle diameter. All particles locate on the same
plane normal to z-direction. The test case is only used to verify the
particle volume fraction distribution. As a result, both particles and
fluid remain stationary, which means no CFD or DEM simulations
are performed in this test case. 5000 spherical particles are random dis-
tributed in the computational domain (Fig. 10). In addition to the
results obtained from the VMDF method, the particle volume distri-
bution based on the two-grid method and the PCM (in OpenFOAM)
is also given. The coarse mesh of the two-grid method obtains 4� 4
cells in this paper. Figure 11 shows the comparison of the particle vol-
ume fraction along the red dashed line in Fig. 10 between the VMDF
method, the two-grid method, and the PCM. It can be seen that the
particle volume fraction obtained by using VMDF method and that by
using the two-grid method agree well in both the middle and bound-
ary part. Due to the lower resolution of the coarse mesh for two-grid
method, the results obtained from the VMDF method are smoother.
However, as is evident from the comparison, extreme high or low val-
ues of the particle volume fraction are most frequent in the PCM
results with largest value of about 0.6, which is close to the maximum
possible value for close-packed spherical particles in two-dimensional
domain. It is attributed to the model defects of the PCM. In contrast,
no such phenomenon is present in the results obtained with the two-
grid method and that from the VMDF method. The VMDF proposed
in this paper gives accurate calculation results with clear physical
meaning. The important thing is that this method is easy to implement
and overcome the shortcomings of the PCM in OpenFOAM. It has a
wider range of applications than the two-grid method because the
two-grid method is difficult to be implemented in unstructured grids.

B. Gas–solid fluidized bed

A gas–solid fluidized bed, where both motion of the continuous
phase gas and the discrete phase particles are resolved in a pseudo-2D

FIG. 8. The diagram of the weighted function method (WFM).
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FIG. 10. Diagram of the particle distribution in (a) the middle of the domain and (b) the boundary of the domain.

FIG. 9. The flow chart of the CoarseDPMFoam.
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geometry, is simulated. The numerical test case references the fluidized
bed experiments of Muller.72,73 The geometrical and flow conditions
are reproduced in the numerical test case. In the experiments, the
scales of the fluidized bed are width � length � height¼ 10
� 44� 120mm3 (aligned with the x, y, and z axes, respectively, in the
numerical test case coordinate system). Poppy seeds with diameter
1.2mm and density 1000 kg=m3 are used as fluidized bed particles,
which have a kindly-like shape. Initially, the fluidized bed height is
30mm, consisting of 9240 poppy seed particles, and these seeds are
fluidized with the air. Figure 12 gives the geometry along with the
coordinate system used in the numerical simulations of the gas–solid
fluidized bed. Magnetic resonance is used for the gas volume fraction
measurement73 and the particles velocity detection.72 The mesh reso-
lution in the numerical simulation is Nx � Ny � Nz ¼ 8� 36� 100,
where Nx, Ny, and Nz are the number of cells in the width, length, and
height of the fluidized bed, respectively. The y-direction faces are set to
be walls with no-slip boundary conditions, x-direction faces are set to
symmetry, the top face (upper z-direction) is set to be zero value for

the relative motion pressure (Prgh) divided by the gas density, and the
bottom face (lower z-direction) is set to a fixed velocity for the gas
phase. For the bottom face, the velocity, which is called interstitial inlet
velocity, is calculated by dividing the specified gas velocity with the
local solid volume fraction at the bottom face. Due to the changing of
the particle volume fraction resulting from the particle movement
near the bottom face, the actual average velocity may be a little differ-
ent to keep the constant flow rate along time.

The parameters used in the numerical simulation of the fluidized
bed are listed in Table II. A fixed time step of 1� 10�5 s is used in the
simulation. The experiment data measured by magnetic resonance can
only obtain time-averaged measurements. As a result, the instanta-
neous particle velocity and gas volume fraction have to be time-
averaged to compare the results of the simulation and the experiment.
The simulations are averaged for 15 s, which is long enough to obtain
statistically time-averaged results. Sections III B 1–IIIB 4 show the
comparison between the present simulation results with the experi-
ment results and other numerical simulations such as the CFD-
DEM,72,73 TFM-kinetic theory of granular flow (KTGF), and
DPMFoam results. The TFM-KTGF model is an Eulerian–Eulerian

FIG. 11. Comparison of the particle volume fraction between the VMDF method,
the two-grid method, and the PCM, (a) the particle volume fraction along the red
dashed line showed in Figs. 10(a), and (b) the particle volume fraction along the
red dashed line showed in Fig. 10(b).

FIG. 12. Geometry representation of the simulated fluidized bed.
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method combining the TFM with the kinetic theory of granular flow
(KTGF), which is used to model the particle collisions. The details
about the TFM-KTGF can be found in Refs. 74 and 75. This model
has been implanted in OpenFOAM with a solver named
twophaseEulerFoam.76 The DPMFoam45 is a Eulerian-Lagrangian
method solver in OpenFOAM similar to the proposed solver
CoarseDPMFoam. The DPMFoam solver uses the PCM method to
calculate the particle volume fraction and uses the cell interpolation
method for the mapping from continuous phase to discrete phase. The
grid size for the DPMFoam solver is set as Nx � Ny � Nz ¼ 3� 12
� 33, with the ratio of the cell size to the particle size is Dx=d ¼ 3.

1. Comparison of the time-averaged fields

The gas volume fraction ac is measured at two different heights,
z¼ 16.4 and 31.2mm (the middle and the top of the fluidized bed) in
the fluidized bed experiment.73 Hence, the gas volume fraction at the
two heights is also extracted in the numerical simulation. The compar-
ison with the experimental results, the CFD-DEM simulations,73 the
TFM-KTGF simulation results, and the DPMFoam results is given in
Fig. 13. The gas volume fraction calculated from the present
CoarseDPMFoam solver agrees well with the experimental results. It
should be noted that the gas volume fraction obtained from the
numerical simulation (CoarseDPMFoam and CFD-DEM) is greater
than the experimental results near the wall. This phenomenon is espe-
cially obvious when z¼ 31.2mm. Martin, Loth, and Lankford44 attrib-
uted this phenomenon to the over-prediction of the bubbles width in
the CFD-DEM solvers, which will lead to large gas volume fraction
near the wall. In addition, the gas volume fraction profiles obtained
from the TFM-KTGF model are very different from the experimental

value. A possible explanation is that the KTGF not applicable when
the particles are larger than the cells. The error of solid viscosity and
the solid pressure may be relatively large. The DPMFoam results are
larger than the experimental results in the whole region, which may
result from the inaccurate flow field simulation based on the coarse
mesh.

The time-averaged vertical velocities of the poppy seed particles
obtained from the experiments and different numerical simulations
(CoarseDPMFoam, CFD-DEM, TFM-KTGF, and DPMFoam) at two
different heights, z¼ 15 and 25mm, are shown in Fig. 14. The numer-
ical simulation results from the CoarseDPMFoam, the CFD-DEM,
and the DPMFoam are all give a good prediction of the particle time-
averaged vertical velocities. However, the results of the optimized
CoarseDPMFoam method are slightly better than the CFD-DEM and
DPMFoam solver in OpenFOAM. In addition, it can be found that the
time-averaged particle vertical velocity calculated by the CFD-DEM

TABLE II. Parameters used in the numerical simulation of the fluidized bed.

Parameters Values

Geometry of the fluidized bed
Width, length, height 10, 44, 120mm

Particle properties
Density qd 1000 kg=m3

Diameter d 1.2mm
Number 9240
Young’s modulus E 1.2 �105 Pa
Poisson’s ratio � 0.33
Coefficient of restitution for
particle–particle/wall a=aw

a
0.02/0.01

Coefficient of friction for
particle–particle/wall l=lw

b
0.10/0.09

Gas properties
Density qc 1.2 kg=m3

Kinetic viscosity �c 1.5 �10�5 m2=s
Inlet velocity Uz 0.9m/s
Cells in x, y, and z direction
Nx; Ny , and Nz

8, 36, 100

aParameters in soft model (Sec. II A 1).
bParameters in soft model (Sec. II A 1).

FIG. 13. Gas volume fraction comparison between the CoarseDPMFoam with the
experiment results, the CFD-DEM results,73 the TFM-KTGF simulation results, and
the DPMFoam results. The results are extracted at two different heights of the fluid-
ized bed, (a) z¼ 16.4 mm, and (b) z¼ 31.2 mm. [Reproduced with permission from
M€uller, “Validation of a discrete element model using magnetic resonance meas-
urements,” Particuology 7, 297–306 (2009). Copyright 2009 Chinese Society of
Particuology and Institute of Process Engineering, Chinese Academy of Sciences.]
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method and the DPMFoam solver is greater than the experiment value
over the entire section (z¼ 15 and 25mm). This is because the particle
volume fraction field calculated based on the conventional CFD-DEM
method is not smooth, and the particle volume fraction in a certain
cell may be large. The drag force between the particle and the gas
increases dramatically with the increase in the particle volume fraction,
which lead to large particle vertical velocity, although it can be seen
from Fig. 13 that the time-averaged gas volume fraction is basically the
same. The drag force between the particle and gas is calculated based
on the instantaneous volume fraction. The instantaneous particle vol-
ume fraction in a certain cell can be large when the CFD-DEM
method and DPMFoam solver are used. Consequently, it results in
large drag force between the particle and gas, and thus large time-
averaged particle vertical velocity. The time-averaged particle vertical
velocity obtained from the TFM-KTGF model tends to zero in the
whole region. The first reason may be the inapplicability of KTGF for

coarse particles. The second reason may be the boundary conditions
for the zero value of the particle velocity at the side walls, which may
be different from the experiment. However, the results based on the
CoarseDPMFoam seem to give prediction closer to the experiment
except for a minor over-prediction at the center of the fluidized bed.
In general, the numerical simulation results given by the
CoarseDPMFoam solver are in good agreement with the experiment
results and the previous CFD-DEM simulation of the same case.

2. Comparison of the Ergun pressure drop

When the gas passes through the poppy seed particles, the pres-
sure will loss in the fluidized bed due to the frictional resistance. As
the gas velocity increases, the pressure drop increases accordingly.
When the upward drag force of the gas on the poppy seed particles is
equal to the buoyant weight of the particles in the fluidized bed, the
bed reaches the fluidization state because the particles are lifted by the
upflow gas and the separation of the particles increase. As the inlet
velocity of the gas increases, bed expansion continues accordingly. For
spherical particles, the fluidization is found to begin when the gas vol-
ume fraction exceeds a value of about 0.46, which is nearly that for the
void fraction in cubical arrangement of spherical particles (loosest sta-
ble form).77 This phenomenon means that the fluidization does not
start before the bed reaches the equivalent of the loosest stable form.
Ergun and Oring77 investigated the fluid flow through packed and flu-
idized bed and proposed a general equation, which related the pressure
drop to the gas flow for fixed beds

DP
L
¼ 150

1� acð Þ2

a3c

lcUz

d2
þ 1:75

1� ac
a3c

qcU
2
z

d
; (82)

where L is the bed height, and lc is the gasdynamic viscosity.
According to Eq. (82), the ratio of the pressure drop to the gas inlet
velocity is a linear function of the gas mass flow rate. The coefficients
of the linear function depend on the gas volume fraction, the particle
diameter, and the gasdynamic viscosity. The fixed bed will expend
after pressure drop equals the buoyant weight of the particles per unit
area of the bed, which is called the minimum fluidization. The general
equation for the fixed bed can also be applied to the expanding bed or
fluidized bed. The pressure drop stays constant at the fluidization state.
In addition, the inlet velocity at the minimum fluidization ðUz;mf Þ can
be predicted by the correlation

Ar ¼ a 	 Remf þ b 	 Re2mf ; (83)

where Ar is the Archimedes number and is expressed by
Ar ¼ d3qcðqd � qcÞg=l2

c ; Remf ¼ qcUz;mfd=lc is the Reynolds
number, and a and b are constants. Many researchers have studied the
constants a and b, which is summarized by Subramani, Mothivel
Balaiyya, and Miranda.78 The pressure drop obtained from the
CoarseDPMFoam solver is compared with that calculated based on
the analytical formula given by Ergun and Oring77 (as shown in
Fig. 15). It can be seen that the numerical simulation results correctly
predicts the pressure drop of the fluidized bed. The pressure drop
obtained from the CoarseDPMFoam solver is slightly different from
the analytical curve. The numerical simulation predictions of the pres-
sure drop are over-estimated at the turning point of the analytical
curve. However, with the increase in the inlet velocity of the gas, the

FIG. 14. Particle vertical velocity comparison between the CoarseDPMFoam with
the experiment results, the CFD-DEM results,72 the TFM-KTGF simulation results,
and the DPMFoam results. The results are extracted at two different heights of the
fluidized bed, (a) z¼ 15mm, and (b) z¼ 25 mm. [Reproduced with permission
from M€uller et al., “Granular temperature: Comparison of magnetic resonance mea-
surements with discrete element model simulations,” Powder Technol. 184,
241–253 (2008). Copyright 2007 Elsevier B.V.]
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numerical pressure drop approaches the constant value of the analyti-
cal pressure drop.

3. Mesh independence

As discussed above, the PCM may be suitable for fine particles
where the particle size is smaller than the cell size or to be more precise
d < 0:2� 0:4Dx. Here, the numerical simulation results based on the
CoarseDPMFoam solver at different cell size need to be studied. As a
result, the gas volume fraction and the particle vertical velocity at the
same location are compared by using five different cell size Dx=d ¼ 5,
3, 2, 1, and 0.5, arranged with increasing the mesh resolution. The
details of the cell size are given in Table III.

The gas volume fraction at two cross sections where z¼ 31.2mm
(horizontal direction) and y¼ 10mm (vertical direction) is exacted for
comparison. Although the experimental data at the cross sections
y¼ 10mm are unknown, it does not impair the investigation of the
effect of the mesh size on the simulation results because the compari-
son of the simulation results obtained from different mesh size is
mainly focused on in this section. The particle vertical velocity is also
obtained at two cross sections z¼ 25mm and y¼ 10mm. Figure 16
shows the time-averaged gas volume fraction and the particle vertical
velocity at two cross sections obtained from the five different meshes
(M1-M5). It can be seen that the same simulation results are achieved
in the prediction of the gas volume fraction and particle vertical veloc-
ity at all the five meshes. However, some minor discrepancies are

found in the simulation results of mesh M1 (Dx=d ¼ 5). For example,
the gas volume fraction in cross section z¼ 31.2mm obtained from
mesh M1 is slightly larger than other simulation results, and the parti-
cle vertical velocity at z¼ 25mm near the middle domain of the fluid-
ized bed [e.g., between y¼�10mm and y¼ 10mm in Fig. 16(c)] is
smaller than other results. The minor discrepancies may result from
inadequate mesh resolution. The mesh independence investigation the
CoarseDPMFoam solver shows that this solver can be used for differ-
ent mesh size and Dx=d is better less than 5.

4. Interpolation method

The WFM relating to the particle size is given for the interpola-
tion between the Eulerian and Lagrangian field for coarse particles.
The influence of different interpolation method on the simulation
results is investigated. Three interpolation methods are used: bary-
centric interpolation, WFM, and cell interpolation, which makes the
cell center value equal to the particle centroid value. Figure 17 gives
the comparison of the particle vertical velocity between the WFM,
barycentric interpolation method, the cell interpolation method, and
the experiment results. The ratio of the cell size to the particle size is
Dx=d ¼ 0:5. Other parameters are same to those in Table II. The
barycentric interpolation and cell interpolation method are only
applied for fine particles. The comparison shows that the WFM pro-
posed gives more accurate prediction results than the other two
interpolation methods.

C. Particle size segregation

Granular materials composed of particles with different densities,
sizes, or shapes will experience particle segregation during flow.79,80

For example, as shown in Fig. 18, a mixture of particles with different
sizes moves to the right and particle segregation occurs due to different
drag forces exerted on the particles. Two test cases are taken to investi-
gate the particle size segregation in this chapter.

1. One-way coupling

First, a one-way coupling test case is given. The movement of
particles with different sizes along the horizontal direction as reported
in Fig. 18 is simulated. Initially, a mixture of particles with three differ-
ent sizes (d¼ 0.2, 1.2, and 2mm) are at a certain location and move to
the right horizontal direction with an equal velocity of 0.5m/s. The
continuous phase remains stationary, whose velocity is set as 0m/s.
The continuous phase is not affected by the discrete phase due to the
one-way coupling, which means that the velocity of the continuous
phase is 0m/s all the time. The density of the continuous phase and
the particles are 100 and 1000 kg=m3, respectively, and the drag coeffi-
cient CD is set as 0.424 for simplicity. The width of the particle mixture
is 0.15m. Only the drag force is considered in this test case. The par-
ticles will stop at a certain time due to the drag force. It is worth noting
that the particle with different size decelerates differently because the
drag force is dependent on the particle size.

Because only the drag force is considered in the test case, the analyt-
ical solution of Eq. (25) can be obtained. Equation (25) is simplified to

md
dUd

dt
¼ �KdUd: (84)

FIG. 15. Comparison of the pressure drop between the CoarseDPMFoam results
and the analytical results obtains from Ergun equation [Eq. (82)].

TABLE III. The details of the mesh sizes for investigating the effect of the mesh size
on the numerical simulation results.

Mesh Nx Ny Nz Dx=d

M1 2 7 20 5
M2 3 12 33 3
M3 4 18 50 2
M4 8 36 100 1
M5 16 72 200 0.5
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The analytical solution of Eq. (84) is

Ud ¼
Ud0

aUd0t þ 1
; (85)

where Ud0 is the initial velocity of the particles and a ¼ 3
4
CD
d

qc
qd
is a con-

stant. Then, the displacement of the particles is calculated by
dx=dt ¼ Ud and is written as

xðtÞ ¼ lnðaUd0t þ 1Þ
a

: (86)

From the known parameters, the displacement of the particles with
different sizes can be obtained. The comparison of the numerical sim-
ulation results of the particle displacement (d¼ 0.2, 1.2, and 2mm)
with the analytical solution is reported in Fig. 19. It can be seen that
both the numerical simulation results agree well with the analytical
solution, which confirms the suitability of the CoarseDPMFoam solver
in simulating the particle size segregation and verifies it implementa-
tion. The particle with diameter d¼ 2mm moves farther than the
other particles due to large inertial force. As time increases, the particle
mixtures gradually segregate each other.

2. Four-way coupling

The above test case is a one-way coupling simulation of the parti-
cle size segregation. Then, a four-way coupling test case is presented
here to show the capabilities of the CoarseDPMFoam solver. There are

FIG. 16. Mesh independence investigation of the CoarseDPMFoam solver, showing the gas volume fraction ac at two cross sections located at (a) z¼ 31.2 mm, and (b)
y¼ 10mm, respectively, and giving the particle vertical velocity at two cross sections located at (c) z¼ 25 mm, and (d) y¼ 10mm, respectively. The simulation results
obtained from five different meshes are compared.

FIG. 17. Comparison of the particle vertical velocity between the WFM, barycentric
interpolation method, the cell interpolation method, and the experiment results.
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a few experimental data for solid–liquid particle size segregation. An
experimental apparatus is designed in this paper (as shown in Fig. 20),
which mainly includes four parts: vertical pipe, circulating water sys-
tem, control system, and image acquisition device. The vertical pipe
has an inner diameter of 50mm and a height of 3m. An electromag-
netic flowmeter is installed in the middle of the pipe to measure the
flow rate. 700 particles of diameter 6 (600) and 13mm (100) are placed
at the bottom of the pipe initially. A steel filter is installed at the bot-
tom to prevent particles from falling. Then, the pump is turned on to
form a delivery water flow. The particles are glass beads with density
2600 kg=m3 and flat surface, which can be used to study the particle
size segregation under ideal conditions. The water density and viscos-
ity are 1000 kg=m3 and 0.001 Pa s. The particle movement is recorded
as the flow rate increasing.

As the flow rate increases slowly from 0 m3=h, the mixed par-
ticles remain static. When the flow rate reaches 0.12 m3=h, few par-
ticles start to move on the upper part of the particle bed. When the
flow rate reaches 0.28 m3=h, some of the particles of diameter 6mm
have moved to the upper part of the bed. Then, the particles of diame-
ter 6mm are completely separated from the particle bed with obvious
segregation when the flow rate reaches 0.35 m3=h. The particles of
diameter 6mm are in a fluidized state, while the particles of diameter
13mm have not reached the fluidized state. When the flow rate
reaches 0.7 m3=h, the expansion height of the particle bed increases
and the particles of diameter 13mm reach the fluidized state.
However, the coarse and fine particles still have an obvious interface.

The same test case is simulated based on CoarseDPMFoam. The com-
parison between the experimental results and the numerical simula-
tion results at different flow rates is given in Fig. 21. The numerical
simulation results are basically consistent with the experimental
results.

It is found that the overall motion of the particles has obvious
pulsation characteristics in both numerical simulations and experi-
ments. The motion of the particles is similar to a spring, which shows
a state of up and down [Fig. 21(c)]. The velocity of the water in the
pipe will increase due to the particle blocking. The particles move
upward under the water lifting effect. As the particles move upward,
the gaps between the particles become larger. Then, the flow area
of the water gradually increases, and the fluid velocity decreases.
When the downward forces of the particles are larger than the lifting
force, the particles will fall. Similarly, as the particles fall, the gap
becomes smaller and the water velocity increases. When the upward
force of the particles is greater than the downward force, the particles
begin to move upward. In addition, the pulsation amplitude of the par-
ticles of diameter 6mm is much smaller than that of 13mm. This may
be because of larger gap between the coarse particles. The gap change
of coarse particles is larger than that of the fine particles, so the velocity
of the water also changes greatly, resulting in stronger pulsation.

D. Granular column collapse process

The granular column collapse is a typical process of the debris
flow or landslide. Lee, Huang, and Yu,81 Lee, and Huang82 studied the

FIG. 18. Particle size segregation resulting from different drag forces exerted on particle with different sizes.

FIG. 19. Comparison of the numerical simulation results of the particle displace-
ment (d¼ 0.2, 1.2, and 2mm) with the analytical solution. FIG. 20. The vertical pipe apparatus.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 113307 (2021); doi: 10.1063/5.0067553 33, 113307-20

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


collapse of saturated granular columns immersed in water. Zhang
et al.83 paid attention to granular column collapse in air. The experi-
mental results extracted from Zhang et al.83 are used in this section.
Figure 22 is a schematic diagram of the granular column collapse in
this study. The height and length of the initial particles are
H0 � L0¼ 120� 40mm2. The granular column is on one side of the
cuboid, and free collapse of the granular column is studied. The granu-
lar materials are glass beads with a density of 2650 kg=m3 and a uni-
form size of 2.5mm. The density of the air is 1.2 kg=m3, and the
viscosity is 1.8 �10�5 Pa s. The initial volume fraction of particles is
set to 0.55 with particles numbers of about 1000. A same case is simu-
lated based on the CoarseDPMFoam solver and DPMFoam solver.
The mesh size is 1.0� 1.0� 1.0mm3 for CoarseDPMFoan and
4� 4� 4mm3 for DPMFoam. The simulation results are shown in
Fig. 23. The results obtained from CoarseDPMFoam are obviously bet-
ter in line with the experimental results than the DPMFoam results.

IV. CONCLUSION

In this work, an optimized Eulerian-Lagrangian method for two-
phase flow with coarse particles is proposed and implemented in the
open-source CFD code OpenFOAM as CoarseDPMFoam solver. It
mainly includes five parts: derivation of governing equations, equation

solving strategies, Eulerian-Lagrangian coupling, solver structure, and
test cases.

A review of the numerical models describing multiphase flows
is given in this paper to illustrate the capabilities of different models.
Then, some modified models are proposed for conventional
Eulerian-Lagrangian method. Considering the interphase interaction
and the influence of the high hydrostatic pressure, the locally aver-
aged equations of motion for the continuous phase, which is solved
in an Eulerian framework, are obtained based on N–S equations of
single-phase flow. Then, the PISO algorithm for solving the N–S
equations of the continuous phase with phase fraction and momen-
tum exchange source term is proposed. The discrete phase is tracked
in a Lagrangian method by solving Newton’s equations of motion, in
which the implicit Euler scheme and the leapfrog integration algo-
rithm are adopted to separate the velocity changing caused by the
particle collisions from the velocity changing resulting from other
forces. In dealing with Eulerian-Lagrangian coupling, the VMDF is
proposed to calculate the volume fraction fields and the momentum
exchange source term fields of the coarse particles based on the idea
of SKM. The WFM relating to the particle size is given for mapping
data from continuous phase to discrete phase. Our algorithm and
implementation are validated against four test cases. One is the parti-
cle distribution case to verify the application of the VMDF method
for coarse particles. The second is the gas–solid fluidized bed experi-
ment, which verifies the time-averaged fields, pressure drop, and
mesh independence of the fluidized bed, respectively. The third is the

FIG. 21. Comparison of the solid–liquid particle segregation between
CoarseDPMFoam results and the experiment data at different water volume
flow rate, (a) 0.35 m3=h, (b) 0.70 m3=h, and (c) 1.05 m3=h.

FIG. 22. Diagram of granular column in water.

FIG. 23. Simulation results of the granular column collapse process at different
time, (a) t¼ 0.15 s, and (b) t¼ 0.45 s.
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verification of particle segregation based on the experimental results
from a self-developed particle transportation apparatus. The last one
is a granular column collapse case, which is based on experimental
results in the literature. The proposed numerical simulation method
provides new ideas and methods for the mechanism investigation
and engineering application of the two-phase flow with coarse
particles.
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