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What is the most favorite and original chemistry developed in your 
research group? 
Our research centers at developing methods and theories to unravel 
molecular mechanisms of chemical and biological systems. By establish-
ing theoretical models, developing enhanced sampling methods combined 
with machine learning techniques, we are able to conduct comprehen-
sive thermodynamic and dynamic analyses for these complex systems. 

How do you get into this specific field? Could you please share some 
experiences with our readers? 
I got into theoretical chemistry as a PhD student. My PhD adviser Prof. 
Rudolph A. Marcus led me into this field and inspired me by his love of 
science. Enjoy life, always learn new things and be independent in  

thinking are something I learnt from my advisers (Professors Dalin Yang, 
Qihe Zhu, Rudy Marcus, and Martin Karplus) and would love to pass to my 
students. 

How do you supervise your students? 
We learn from each other. 

What is the most important personality for scientific research? 
Curiosity, passion, and persistence have been of great value to my career. 

What are your hobbies? What’s your favorite book(s)? 
Reading, Ping-Pong, and jogging. I always enjoy reading history. 

Who influences you mostly in your life? 
Too many, family, academic advisors, friends, students, and colleagues. 

 

Comprehensive Summary 

 

SPONGE (Simulation Package tOward Next GEneration 
molecular modeling) is a software package for molecu-
lar dynamics (MD) simulation of solution and surface 
molecular systems. In this version of SPONGE, the all- 
atom potential energy functions used in AMBER MD 
packages are used by default and other all-atom/coarse- 
grained potential energy functions are also supported. 
SPONGE is designed to extend the timescale being ap-
proached in MD simulations by utilizing the latest CUDA- 
enabled graphical processing units (GPU) and adopting 
highly efficient enhanced sampling algorithms, such as 
integrated tempering, selective integrated tempering and 
enhanced sampling of reactive trajectories. It is highly 
modular and new algorithms and functions can be in-
corporated con veniently. Particularly, a specialized Py-
thon plugin can be easily used to perform the machine 
learning MD simulation with MindSpore, TensorFlow, 
PyTorch or other popular machine learning frameworks. 

Furthermore, a plugin of Finite-Element Method (FEM) is also available to handle metallic surface systems. All these advanced features increase the 
power of SPONGE for modeling and simulation of complex chemical and biological systems. 
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1. Introduction 

Molecular dynamics (MD) simulation has been a useful tool in 
chemistry, physics, biology, materials science and many other 
fields. It helps in interpreting the experimental data and under-
standing the relationship between molecular structures, dynamics, 
and functions. During the last 40 years, various efficient computa-
tional algorithms

[1-8]
 and MD programs

[9-16]
 have been developed 

to study the dynamics of increasingly more complex and larger 
systems, such as RNA polymerase,

[17]
 membrane proteins in cell 

membranes,
[18]

 SARS-CoV-2 virus
[19-20]

 and many others. However, 

as the scope and scale of applications increase, much higher 
computing capability is required for molecular simulation soft-
ware. The most direct strategy to reduce the gap between simula-
tions and experiments is to utilize more powerful computational 
hardware. For example, Anton in D. E. Shaw Research, a specially 
designed MD platform, can perform millisecond simulations for a 
single domain protein with system sizes of a few hundred thou-
sand atoms.

[21-22]
 In contrast, use of graphics processing units 

(GPUs) is probably the most affordable and promising approach 
for most research groups. From another facet, many advanced 
computational algorithms extending the simulation time scales 
have also been developed and widely used. In particular, a num-
ber of enhanced sampling methods have been developed in the 
last few decades to allow fast thermodynamics and/or kinetics 
calculations. Such methods include but not limited to the widely 
used umbrella sampling,

[23]
 metadynamics,

[24]
 accelerated MD,

[25]
 

replica exchange molecular dynamics (REMD),
[26]

 parallel temper-
ing,

[27]
 simulated tempering,

[28]
 multi-caonical simulation,

[29]
 (es-

pecially implemented with the Wang-Landau algorithm
[30]

) and 
many others.  

In the past 15 years, we have devoted into the development 
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of efficient molecular simulation methods towards complex 
chemical and biological systems and designed a series of en-
hanced sampling methods, which allow fast sampling of the con-
figuration and trajectory spaces and realized fast calculations of 
thermodynamic and dynamic properties of complex systems. Re-
cently, we have developed a home-grown MD simulation software 
package named SPONGE (Simulation Package tOward Next 
GEneration  molecular modeling), which implements not only 
GPU-accelerated conventional MD simulations but also the effi-
cient enhanced sampling methods proposed by our group. The 
software package is highly modular and additional functions or 
algorithms, especially the latest deep learning potentials and al-
gorithms can be easily incorporated. 

2. Efficient Simulation Method and Software Package 
for Solution and Surface Molecular Systems 

Although there are a number of molecular dynamics simula-
tion software developed, such as AMBER, CHARMM, GROMACS, 
LAMMPS, NAMD, ACEMD etc., we have designed and imple-
mented a new MD software package: SPONGE recently with the 
expectation of providing an efficient MD algorithm developing 
framework to incorporate new algorithms and functions more 
conveniently. The name ‘SPONGE’ is coming from the full name 
‘Simulation Package tOward Next GEneration molecular modeling’ 
and it also implies that the goal is to set up a MD platform which 
can efficiently ‘absorb’ all kinds of ideas and algorithms like 
sponge does. SPONGE 1.1 is released under the GNU General 
Public License v2 (GPLv2) and can be obtained free of charge from: 
http://www.spongemm.cn.  

 

Figure 1  Program structure of SPONGE. 

2.1. Classical MD module in SPONGE 

The basic MD simulation steps consist of (1) evaluation of po-
tential energy and force, (2) integration of coordinates and mo-
menta, and (3) thermostat or barostat calculations. SPONGE takes 
the same potential energy function form as AMBER by default, 
therefore, the similar parameter and topology file formats as 
AMBER are followed in SPONGE. Currently, the leap-frog and the 
velocity-Verlet algorithm are available for the integration of coor-
dinates and momenta. The widely used Langevin thermostat and 
Mont Carlo barostat is used for the temperature and pressure 
regulation, respectively. Liu’s ‘middle’ thermostat scheme for 
Langevin dynamics

[31]
 is also supported in constant temperature 

simulations. SPONGE has an efficient simulation engine imple-
mented using CUDA and C++, so that all calculations of bonded 
and non-bonded energies and forces are accelerated on 
CUDA-enabled GPU. Currently, SPONGE can only support simula-
tions on single GPU card. Supporting for running on multiple- 
GPUs is under development.  

The classical MD module in SPONGE can be used to perform 
classical MD simulations on chemical and biological systems such 
as ionic aqueous solution, ionic crystal surface, and protein 

aqueous solution, etc. To illustrate the reliability and efficiency of 
SPONGE classical MD module, we simulated a system which con-
sists of 7000 SPC/E water molecules in a cubic periodic box using 
both SPONGE and AMBER 16. The simulations were carried in NPT 
ensemble, NVT ensemble and NVE ensemble for 100 ns, respec-
tively. The temperature of the whole system was maintained at 
300 K and the pressure was regulated to 1 bar. Hardware/soft-
ware configurations and simulation conditions applied in the 
testing of GPU-accelerated MD packages: SPONGE and AMBER 16 
are summarized in Table 1. 

Table 1  Hardware/software configurations and simulation conditions for 

the testing of GPU-accelerated MD packages 

Item Specification 

Operating System Ubuntu 16.04 

CPU AMD Ryzen 7 2700X@3.7 GHz 

GPU  NVIDIA GeForce RTX 2080 SUPER 

Compiler  NVCC 

CUDA CUDA Toolkit 9.0 

SPONGE  SPONGE 1.1 (Single Precision, SP)a 

AMBER AMBER 16 (Hybrid Precision, SPDP) 

Thermostat 
Langevin Dynamics, Temperature 300 K 

Collision Frequency 3.0 ps‒1  

Nonbonded Cutoff 10.0 Å, Skinb 2.0 Å 
a SPONGE 1.1 can only support single precision mode currently. The next 

version of SPONGE will support the hybrid precision mode. b Cutoff is the 

truncation distance for evaluating nonbonded interactions and Skin is the 

distance buffer in addition to Cutoff for building atom neighbor list. 

The bulk water density calculated in NPT ensemble by the two 
MD programs agrees with each other very well (1.031 g/cm

3
 for 

AMBER 16 and 1.039 g/cm
3
 for SPONGE). As for NVE ensemble, 

the total energy deviation in SPONGE 1.1 is ~5% during 100 ns 
simulation and the corresponding value of AMBER 16 is ~1%. 
Other thermodynamic and kinetic characteristics of the system 
obtained in AMBER 16 and SPONGE 1.1 are also in good agree-
ment, as shown in Figure 2. 

 

Figure 2  Comparison of thermodynamic and kinetic characters. (a) 

Mean-square displacement (MSD) of oxygen atoms. (b) Rotation relaxa-

tion of the dipole of water molecules. (c) Radial distribution function (RDF) 

of O—H. (d) RDF of O—O. 

Next, we applied SPONGE to the systems which are well stud-
ied using MD simulations and tried to reproduce the results ob-
tained by the previous simulations, for example, the interfacial 
transport of sodium ions by Peng and coworkers.

[32]
 The simula-
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tion system was composed of a hydrated Na
+
, hydration water 

molecules (molecule number is from 1 to 5) and a NaCl (001) sur-
face. AMBER 14 was used to perform MD simulations in this study. 
The same system and simulation setup were followed in SPONGE 
simulations. As shown in Figure 3, the similar diffusion rates of 
Na

+
 with respect to the hydration number are obtained in 

SPONGE and Ref. [32]. 

 

Figure 3  MSD of the hydrated Na+ obtained by SPONGE and Ref. [32]. 

To show the reliability of SPONGE in biological systems, we 
then applied both SPONGE 1.1 and AMBER 16 to simulate a 
system with the alanine dipeptide (ACE-ALA-NME) solvated in a 
cubic periodic water box. AMBER FF96 all atom protein force field 
was used to modeled the peptide and 655 water molecules were 
described using TIP3P water model. The simulation was per-
formed for 100 ns in NVT ensemble. As shown in Table 2, the 
differences of the different potential energy terms obtained by 
AMBER 16 and SPONGE are smaller than the fluctuations. In addi-
tion, the comparison of single point energies is shown as Figure 
S1 in SI. 

Table 2  Comparison of different energy terms obtained by AMBER 16 

and SPONGE 1.1 

  Ebond Eangle Edihedral Eelec Evdw E1—4 

⟨E⟩a 
AMBER 16 1209.8 8.834 4.522 ‒8564.4 1281.0 49.16 

SPONGE 1.1 1210.7 8.847 4.536 ‒8572.4b 1285.1c 49.12 

σE
a 

AMBER 16 35.4 2.366 1.429 83.3 45.1 2.69 

SPONGE 1.1 35.4 2.342 1.418 83.8 45.2 2.65 
a The average and the standard deviation of energy is in unit of kcal/mol. 
b PME algorithm is applied to calculate the electrostatic interactions. 
c Heaviside step function is used as the switch function in Lennard-Jones 

potential calculations. 

Then the benchmark performance tests of SPONGE on the bi-
ological systems with 100—500 thousand atoms (Figure 4) were 
executed on a NVIDIA GeForce RTX 2080 Super GPU. The perfor-
mances show that it is practical to use SPONGE to simulate 
large-scale biological systems (Table 3). 

 

Figure 4  The two biological systems for performance tests. 

Table 3  Performance tests of SPONGE on large biological systems under 

NVT conditions. 

System 
Atom 

number 
Cutoff/Å 

Time 
step/fs 

Performance 
(ns/d) 

DNA linker between two 
nucleosomes 

108 373 8.0 4.0 140 

DNA wrapped around  
histone 

553 708 8.0 4.0 20 

 
It needs to be mentioned that the performance of SPONGE 

1.1 (in terms of speed) is currently lower than that of the latest 
version of AMBER and GROMACS (Tables S8 and S9 in SI). How-
ever, we believe that as a newly developed program, SPONGE has 
great potential in performance improvement. We are consistently 
working to improve the efficiency of this simulation package. 
Furthermore, it is enhanced sampling, machine learning based 
algorithms and other unique functions that distinguish SPONGE 
from traditional molecular simulation packages. These unique 
features of SPONGE are the focus of the following sections.  

2.2. Enhanced sampling module in SPONGE 

Besides the basic MD simulation algorithms, SPONGE now 
supports several enhanced sampling algorithms. As stated in In-
troduction section, in order to accelerate thermodynamics and/or 
kinetics calculations, many enhanced sampling methods have 
been proposed. Usually, most of the enhanced sampling methods 
can be classified into two categories: collective variable based and 
collective variable free methods. The enhanced sampling methods 
belong to the former category usually introduce bias potentials 
along predefined reaction coordinates or collective variables to 
the Hamiltonian of the systems to accelerate thermodynamics cal-
culations. The most popular and widely used enhanced sampling 
methods such as umbrella sampling and metadynamics fall into 
this category. Unfortunately, the proper reaction coordinates are 
not easily identified for many systems, such that, generalized- 
ensemble methods that do not need predefined collective varia-
bles are also desired. In most collective variable free methods, the 
canonical probability distribution is altered to a distribution that 
induces a broader sampling of the potential energy. As a result, an 
efficient sampling of the configurational space will be obtained 
accordingly. Some examples of generalized-ensemble methods are 
parallel tempering, simulated tempering, replica exchange molec-
ular dynamics (REMD), simulated tempering, multi-canonical sim-
ulation, among others.  

At present the enhanced sampling methods implemented in 
SPONGE are integrated tempering sampling (ITS) and its variants 
proposed by our group. In the following, the basic idea of en-
hanced sampling methods ITS, selective integrated tempering 
sampling (SITS) and enhanced sampling of reactive trajectories are 
briefly introduced at first, then the implementation and testing of 
SITS enhanced sampling module of SPONGE is presented.  

2.2.1. Integrated tempering sampling method. In 2008, we 
proposed the integrated tempering sampling (ITS)

[33-34]
 method, 

which combines some of the advantages of both biasing potential 
and generalized-ensemble methods. It possesses the most im-
portant feature of generalized-ensemble methods: no predefined 
collective variable is needed in ITS. Secondly, ITS has almost the 
similar computational cost as biasing potential methods. Instead 
of running parallel simulations at many different temperatures in 
REMD, ITS generates an energy distribution covering a broad 
range of energies in a single simulation. Therefore, the ITS meth-
od avoids multiple parallel calculations and exchange operations 
between parallel trajectories, and thus requires fewer computa-
tional resources. In ITS an effective potential Ueff is generated at 
simulation temperature β0 based on a sum-over-temperature 
non-Boltzmann distribution   ( )  ∑     ( ) 

 , which can be 
considered as a linear combination of a series of Boltzmann dis-
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tribution   ( )     (    ) at a range of different tempera-
tures *  + with coefficients *  +. This operation allows efficient 
sampling in a desired energy range without requiring a pre-de-
fined collective variable: 

         ∑    
     

      (1) 

where U is the potential energy of the system under study, β0 = 
1/kBT0 (kB is the Boltzmann constant and T0 is the temperature of 
the system), βk denotes a series of temperatures that cover both 
low and high temperatures around T0, and nk denotes weighting 
factors obtained through an iterative procedure. The biased force 
Feff used in the simulations is: 

                 ∑      
     

    ∑    
     

  (2) 

where F is the force in the original system. In ITS simulations, a 
converged calculation yields a biased distribution function in the 
configuration space, 𝑝ITS( ) ∝    0 eff(𝑟). The desired distribu-
tion px(r) at any object temperature βx∈{βk} is easily recovered 
as: 

𝑝𝑥( )  𝑝ITS( ) 
 , 𝑥 (𝑟)  0 eff( )- (3) 

In contrast to the REMD method, ITS not only requires fewer 
computational resources, but also circumvents the problem of 
re-equilibration for the kinetic energy arising from the exchange 
events in REMD. Recently, You et al. showed ITS is highly efficient 
and found that ITS is equivalent to simulated tempering with the 
attempt switching frequency going to infinity.

[35]
  

To characterize the sampling efficiency in obtaining the ther-
modynamics properties, the convergences of thermodynamic 
calculations were investigated for accelerated molecular dynamics 
(AMD), REMD and ITS (Table 4). The model system is an ALA-PRO 
peptide that has a high free-energy barrier of ~20 kcal/mol for its 
transition between trans and cis conformations. It is clear that the 
potential of mean force (PMF) obtained from the AMD simula-
tions converges very slowly owing to the under-sampling of low- 
energy states. REMD and ITS both obtain better convergence of 
thermodynamics calculations. In particular, ITS simulations give 
the best convergence with the least computational time. 

Table 4  Convergence and computational costs for ALA-PRO peptide 

Method 
Trajectory 

length/ns 

Wall clock 

time/h 
CPU time/h 

RMSDa/ 

(kcal·mol‒1) 

AMD 800 12.4 99 1.22 

REMD 2400 25 600 0.48 

ITS 800 12.5 100 0.21 
a RMSD: the root-mean-square deviation of free energies that is used to 

characterize the convergence of the methods. RMSD( 1,  2)  

√𝐸( 1   2)
2. 

2.2.2. Selective integrated tempering sampling method. 
Since the enhanced sampling of ITS is performed in the energy 
space, it is convenient to divide the system into subspaces and to 
enhance the sampling for a preselected subsystem. Therefore, the 
selective integrated tempering sampling or SITS

[36]
 was proposed, 

which is especially practical in the simulations of the systems 
including a large amount of explicit solvent. For example, in ex-
plicit solvent simulations of protein folding, the protein atoms can 
be targeted for enhanced sampling and a large amount of protein 
conformations can be sampled while the solvent is kept at the 
near-room-temperature conformations. At first, the system is 
divided into different components. For example, in a protein solu-
tion, the protein is considered as one component (the central 
group, labeled as P) and the water as the other (the bath, labeled 
as W). The potential energy of this system U is then written as: 

U = EP + EW + EPW (4) 

where EP, EW, and EPW are, respectively, the internal energy of the 
central group (protein), the internal energy of all water molecules 
and the energy of interaction between the protein and water. The 
differentiated sampling of such a system is conveniently achieved 
by introducing an effective potential in the form: 

     𝐸     ∑    
   (      ) 

      (5) 

As shown in Eq. 5, the enhanced sampling is applied selectively to 
the degrees of freedom that are involved in the region of interest, 
whereas the rest of the system such as the solvent is kept as close 
as possible to its equilibrium.  

SITS has been applied to study protein folding and DNA base 
flipping in aqueous solution.

[37]
 SITS is also naturally introduced to 

QM/MM calculations,
[38-41]

 in which only a small part of the simu-
lation system is treated using quantum mechanics and the rest by 
classical molecular mechanics. For such calculations, since nor-
mally the interested events, such as chemical reaction, occur in 
the quantum region, it is desirable to explore the molecular con-
figurations of the quantum mechanically treated subsystem. One 
can therefore make use of the SITS scheme to enhance sampling 
over the QM region whereas keep the MM part less perturbed by 
introducing the following effective potential: 

     𝐸      ∑    
   (          ) 

      (6) 

where EMM is the self-energy of the MM region (e.g., the solvent), 
EQM is the self-energy of the QM region (e.g., the reacting mole-
cule), and EQM/MM interacting energy between the QM and MM 
regions. In a series of studies, we applied SITS-QM/MM to the 
aliphatic Claisen rearrangement reaction, in which the solute, or 
the reactant, alone was embedded in QM-frames, and solvent 
molecules were treated with MM. Since the high-performance 
sampling of QM-treated parts, the reactant reached a conforma-
tional equilibrium between compact and extended conformation 
in simulations. And the compact conformation, which was the 
proper configuration for the subsequent electron rearrangement, 
was found to be polarized with respect to the extended confor-
mation according to Mulliken population analysis of QM/MM- 
calculated data. SITS allows the chemical transition process over-
coming high barriers to be realized in silico without any intrinsic 
reaction coordinates (IRC). SITS herein exhibits excellent capacity 
and adaptability for sampling chemical events. 

2.2.3. Enhanced sampling of reactive trajectories. Both ITS 
and SITS are highly effective in conformation searching and ther-
modynamics calculations. However, dynamics as well as kinetics 
information of the original system is lost owing to the use of ef-
fective Hamiltonians in ITS/SITS. Inspired by transition path sam-
pling (TPS),

[42]
 we introduced a combined approach that takes 

advantages of both ITS/SITS-MD and TPS (shooting) methods 
(enhanced sampling of reactive trajectories, ESoRT

[38-40]
 for short). 

In this method, we first carry out ITS/SITS-MD simulations to 
identify the active phase space of the reaction of interest and 
then path sampling (shooting) is performed on the original poten-
tial-energy surface starting from the phase space points identified 
by the ITS/SITS-MD simulation. Since the statistical weight of each 
trajectory can be calculated using Eq. 3, the rate constant of the 
original system can be obtained directly as the ratio of the reac-
tive and total trajectories: 

R    ∑   ( )    
          ∑   ( )    

          (7) 

Although ITS/SITS-MD provides a biased sampling of the 
phase space, the phase space points which are more likely to be 
‘reactive’ will be chosen with a high probability for the forward/ 
backward trajectory shooting. Therefore, ESoRT has four major 
advantages compared to the traditional TPS: (1) the initial trajec-
tories are automatically generated by efficient ITS/SITS-MD simu-
lation; (2) a thorough sampling of the phase space avoids the 
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entrapment of trajectories in a particular pathway(s), allowing the 
search of multiple pathways separated by high barriers; (3) ESoRT 
further reduces the computational cost by reducing the sampling 
over the unsuccessful transition paths; and (4) a direct calculation 
of both reactive and non-reactive trajectories that avoids the pre-
determined reaction coordinate and the calculation of the reac-
tive flux. 

ESoRT sampling method was successfully applied to the 
QM/MM simulation of Claisen rearrangement mentioned above. 
The prerequisite for the enhanced sampling of reactive trajecto-
ries is to generate trajectories that connect the reactant and prod-
uct without or merely with a few predefined reaction coordinates. 
Successfully reacted trajectories from QM(DFTB)/MM simulations 
were collected and registered as ‘reactive trajectories’, with 
atomic coordinates, velocities, charges and the effective weighting 
factors recorded. Then, along each reactive trajectory, a series of 
configurations, which contain both reactant-like structures and 
configurations near transition states but not product-like ones, 
were selected as the initial structures for the following transition 
trajectory shooting. Finally, after a number of short (~2 ps) NVE 
simulations, the rate constant was retrieved as the ratio between 
the probability of reacted and that of non-reacted trajectories, 
each reweighted to reflect their probability distribution in the 
unbiased ensemble. The results calculated were in good agree-
ment with the experimental results. The reaction pathway infor-
mation can also be obtained by projecting the calculated visiting 
probabilities to the post-selected coordinate. By providing dy-
namic observations of transition events, this method puts the 
investigation of condensed phase reactions under molecular-de-
tailed perspectives. 

2.2.4. Test of SPONGE on enhanced sampling – SITS. SITS 
enhanced sampling method has been implemented as an inde-
pendent module in SPONGE. As shown in section 2.2.1. and 2.2.2., 
the algorithm of SITS is easily to be implemented. However, the 
partition of the energy and force in readily available MD program 
causes difficulties. Since SPONGE is specifically designed to be 
easily controlled, it is much easier for SITS module of SPONGE 
accessing and updating all the internal data. The same alanine 
dipeptide (ACE-ALA-NME) test case mentioned above is used to 
illustrate the efficiency and the accuracy of the SITS module. As 
shown in Figure 5, the potential of mean force in ψ calculated 
using SPONGE reproduced the results of Ref. [36]. 

 
Figure 5  Comparison of the potential of mean force in ψ using SPONGE 

and Ref. [36]. 

2.3. Other unique functions in SPONGE 

Besides ITS and SITS enhanced sampling methods, metady-
namics and the combination of metadynamics and ITS/SITS: 
metaSITS is also implemented in SPONGE.  

In addition, SPONGE provides a specific FEM module to 
calculate electrostatic interactions using finite element method 
(Figure 6). As shown in Figure 6, FEM module first initializes finite 
element grids, after which the electric potential distribution is 
obtained by solving Poisson’s equation under a given boundary 
condition. The principle of FEM is presented in Figure 7 and the 

mathematical details of this method will be illustrated elsewhere. 
FEM is particularly useful to systems with strong polarizable effect, 
for example, the systems containing metal surfaces. As shown in 
Figure 8, the electric field induced by ions and metals would 
strongly influence the dynamics of charged particles. For this type 
of systems, SPONGE suggests the using of FEM to calculate the 
molecular electrostatic interaction instead of the traditional parti-
cle mesh Ewald method used in the most other MD programs. 

 

Figure 6  Flowchart of MD with FEM and Python plugins. 

 

Figure 7  Illustration of FEM in SPONGE. Above the metal surface, the 

potential Φ satisfies Poisson’s Equation. Closing to the metal surface, the 

equipotential surface (black line) gives the boundary condition. The red 

line gives the periodic boundary condition.  

 

Figure 8  The numerical solution of Poisson’s Equation above the metal 

surface. The electric field lines show that the electric field induced by ions 

and metals would strongly influence the dynamics of charged particles. 

SPONGE also provides a Dissipative Particle Dynamics (DPD) 
module for coarse-grained simulations of macromolecules, soft 
matter, complex fluids, and so forth.

[43-44]
 This module is designed 

to address micro-to-mesoscale problems with preserved hydrody-
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namics. Moreover, the DPD module without the conservative 
portion of the force field can also be implemented as a thermo-
stat. As an example, we performed simulations of the mono-com-
ponent DPD fluids in a cubic box of side length 8.52 nm. Both 
SPONGE and LAMMPS were used to measure the diffusional pro-
perties of the fluids. As shown in SI, almost the same exponential 
decay of the translational diffusion coefficient Dt with dissipative 
constant γ are obtained both in SPONGE and LAMMPS. Details 
about the DPD simulation example can be found in SI. 

Python programming interface is supported by SPONGE (Fig-
ure 6). Deep learning, with the artificial intelligent Go game pro-
gram “AlphaGo” being their representative, showed great poten-
tial in many areas, including computational chemistry. Since most 
of the current machine learning frameworks are based on python, 
the support of python programming interface enables SPONGE 
the capability of incorporating deep learning techniques to de-
velop high precision force fields and efficient enhanced sampling 
algorithms. As an example, a low-cost fluctuating charge model 
was implemented in SPONGE for the MD simulations of cellulose 
with the degree of polymerization of n = 6 in ionic liquid 
[C1MIM]

+
·Cl

‒
. In classical molecular dynamics simulations, charge 

distributions of molecules are usually fixed. Although this assump-
tion is reasonable for systems with weak polarizability, it may fail 
in the highly polarizable systems. The fluctuating charge model is 
a feasible way to include polarizability of the system, which re-
quires charge refitting based on quantum chemical calculations 
every certain steps in simulations, such that, huge computational 
cost is requested. By taking use of SITS module, python program-
ming interface of SPONGE and the neural network algorithms 
implemented in MindSpore, one can largely reduce the computa-
tional cost of the fluctuating charge model. Firstly, SITS was used 
to obtain sufficient typical molecular conformations, then quan-
tum chemical calculations were performed for these typical con-
formations to yield varied charge distributions. These pre-ob-
tained conformations and charge distributions then were used to 
build up the training and testing set for the supervised learning 
models provided by MindSpore. When the training of the neural 
network model was successfully accomplished, the updating of 
molecular charges could be immediately achieved as the output 
of the neural network through using the newly reached confor-
mations as the input. In this way, the computational costs of tradi-
tional fluctuating charge models were largely reduced. We are 
also trying to transfer the other deep learning based molecular 
simulation algorithms into SPONGE, such as Information Distilling 
of Metastability (IDM, to perform clustering in the meantime of 
reducing the dimensionality for molecular systems),

[45]
 variational 

adversarial density estimation (VADE, to approximate the free 
energy surface by parametric models and without supervision)

[46]
 

and targeted adversarial learning optimized sampling (TALOS, to 
re-formulate the enhanced sampling problem as a distribution 
learning problem).

[47]
  

3. Conclusions 

As the continuous increase of the demanding on both system 
size and simulation time, a number of efficient and reliable sam-
pling methods have been developed in the recent two decades 
for studies of complex chemical and biological systems. A series of 
efficient algorithms based on the integrated tempering sampling 
approach developed in our group can enhance sampling in both 
phase and trajectory space, which combines the advantages of 
both biasing potential and generalized-ensemble method. The 
successful applications of the ITS/SITS to the chemical and biolog-
ical systems have shown its efficiency in configuration searching 
and thermodynamics calculations. Furthermore, ITS/SITS can be 
combined with the transition path sampling technique (ESoRT) to 

enhance the sampling of reactive trajectories and rate constant 
calculations. All these methods are expected to have broad ap-
plications for a large variety of complex systems. 

Partly to efficiently incorporate these enhanced sampling 
simulations, we have designed and developed a home-grown MD 
software platform SPONGE. The comprehensive tests on classical 
and ITS/SITS enhanced sampling simulations have shown that 
SPONGE is a reliable and robust simulation program. In our opin-
ion, a promising MD program should meet two requirements: 1. 
as many as possible commonly used force fields should be sup-
ported, 2. as many as possible efficient MD algorithms should be 
easily incorporated. Therefore, SPONGE is designed to be modu-
larization in structure and to be ready for users incorporating new 
algorithms and functions. In addition, SPONGE supports not only 
classical MD simulations (AMBER, OPLS-AA, CHARMM27/CMAP 
and CHARMM36 force fields are currently supported), enhanced 
sampling simulations, but also deep learning based force fields/ 
algorithms, which is implemented through a flexible python pro-
gramming interface. Furthermore, we are now integrating 
SPONGE into the machine learning framework: MindSpore. In this 
framework, all force computations including bond, angle, dihedral, 
Lennard-Jones and Coulomb interactions in MD calculations are 
expressed as MindSpore arrays and operations. Therefore, a pio-
neering branch of SPONGE called MindSPONGE is invoked, which 
is designed to be an end-to-end differentiable MD engine. Since it 
is based on MindSpore which has a developing neural network 
ecosystem, MindSPONGE enables researchers to incorporate 
machine learning models into their workflows seamlessly. In this 
sense, SPONGE is indeed a simulation package toward next gen-
eration molecular modeling and is expected to be robust, 
self-learning, and widely applicable.  
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