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ABSTRACT

The wall-modeled large-eddy simulation (WMLES) computational framework generally includes a wall-model solver outside the large-eddy
simulation (LES) infrastructure, with the two solvers communicating only at the matching location and the wall. Having a wall-model solver
outside the LES jeopardizes the performance of WMLES: first, the wall-model solver adds significant computational overhead; second, the
LES solution in the wall-adjacent cell is ambiguous; and third, it is very difficult to utilize the emerging high-order numerical schemes. This
paper addresses the above issues by abandoning wall-model solvers altogether and integrating wall models into LES solvers. We will employ
a set of physics-inspired bases for LES solution reconstruction in the wall-adjacent cell. The methodology gives rise to a computational
framework that effortlessly accounts for non-equilibrium effects in a high-order code without a stand-alone wall-model solver. We consider
channel flow for a proof of concept and periodic hill for validation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073506

I. INTRODUCTION

High Reynolds number flow problems that could only be han-
dled by non-scale-resolving tools like Reynolds averaged Navier Stokes
(RANS) before can now be handled using scale-resolving tools like
large-eddy simulation (LES). A notable example is LES of an entire
air-plane at flight/close-to-flight Reynolds numbers close/past stall,1,2

and other examples can be found in Refs. 3–6, to name a few. In addi-
tion to the increased computational power, high Reynolds numbers
LES is also enabled by wall models,7,8 and the reader is directed to
Refs. 9–11 for recent work on LES wall modeling. A wall-model mod-
els the flow in the wall layer, allowing a wall-modeled LES (WMLES)
to resolve the d-scaled eddies only,12 where d is the boundary-layer
height. Figure 1 is a schematic of a wall-modeled LES (WMLES). The
LES solves the (filtered) NS equation on the LES grid. Meanwhile, the
wall model (WM) solves the NS equation—usually the Reynolds aver-
aged thin boundary-layer equation—outside the LES infrastructure.
Consider, e.g., the equilibrium wall model, the non-equilibrium wall
model, and the integral wall model: the equilibrium wall model solves
the WM equations on a 1D grid;9 the non-equilibrium wall model
accounts for wall-parallel convection and wall-parallel pressure gradi-
ent and solves the WM equations on a 3D grid in the wall layer;13 the
integral wall model solves the vertically integrated NS equation

algebraically but also outside the LES solver.14 The wall model solves
the flow in the wall layer, but aside from the wall flux, a wall model’s
solution is not part of an LES’s solution. (This is, of course, not true
for hybrid RANS/LES.) While many models conform to this
practice,15–21 having a WM solver outside the LES infrastructure is the
root of many issues in WMLESs.

In the following, we explain these issues. First, not utilizing the
LES infrastructure, accounting for non-equilibrium effects is difficult
and computationally costly. For example, the non-equilibrium wall
model relies on solvers that add a � 100% computational over-
head,13,22 and the integral wall model solves a set of nonlinear alge-
braic equations whose derivation is long.14 Furthermore, because wall
models are developed outside the LES infrastructure, high-order LES
discretizations may or may not be compatible with the WM. Among
the limited work on WMLES in high-order codes, Frere et al.23 imple-
mented the model in Ref. 9 in a discontinuous Galerkin code and
found unphysical oscillations in the wall-adjacent cells, and Lv et al.24

had to alter their LES solver in the wall cells. Last, because the WM
solution of the flow in the wall layer is not part of the LES solution, the
LES solution in the wall-adjacent cell is left “unknown.” We briefly
explain this issue. Consider, e.g., a second-order finite-volume code.
Let us say, that we adopt the nth grid wall-model implementation in

Phys. Fluids 33, 125120 (2021); doi: 10.1063/5.0073506 33, 125120-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0073506
https://doi.org/10.1063/5.0073506
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0073506
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0073506&domain=pdf&date_stamp=2021-12-13
https://orcid.org/0000-0001-7971-9314
https://orcid.org/0000-0002-2606-0672
https://orcid.org/0000-0003-4940-5976
mailto:xzy48@psu.edu
https://doi.org/10.1063/5.0073506
https://scitation.org/journal/phf


Ref. 9. The LES solution in the second to the nth grid follows a piece-
wise linear reconstruction per the finite-volume scheme, but the linear
basis function cannot be applied in the wall-adjacent cell, nor could
the wall-model solution. This is illustrated in Fig. 2. If one were to
apply the linear basis function for solution reconstruction in the wall-
adjacent cell like in Fig. 2(b), the solution gives rise to a wall velocity
Uw ¼ Uhwm � swhwm=ðq�Þ that is negative and unphysical. Here, Uw

is the wall velocity, hwm is the LES/WM matching location, q is the
fluid density, � is the kinematic viscosity, and sw is the wall-shear

stress. Forcing the solution to give WM’s gradient at the wall is also
why Frere et al.23 found oscillation in the solution. Now, if one were to
take the solution of the wall model like in Fig. 2(c), the WM solution
matches the LES solution at the matching location, i.e., the nth LES
grid point, but not at the first off-wall LES grid points. Consequently,
the LES solution contains discontinuities at the first off-wall grid, as
indicated in Fig. 2(c).

This paper aims to address the above issues. We will establish a
wall-model integrated computational framework for LES. We shall
abandon WM solvers altogether and integrate the wall model seam-
lessly into the LES infrastructure. The wall model will account for
non-equilibrium effects at no additional computational cost (as
required by the non-equilibrium wall model) nor extra coding efforts
(as required by the integral wall model).

We organize the rest of the paper as follows. The basic idea is
explained in Sec. II with detailed formulation in Sec. III. We show
WMLES results in Sec. IV. The paper finishes with conclusions in Sec. V.

II. METHODOLOGY
A. Basic idea

In this section, we explain how/why we can integrate wall-model
solvers into LESs. We begin by considering a second-order finite-
volume method. The solution in, e.g., wall-adjacent cell is

u==ðyÞ ¼ a1y þ a0; (1)

where u== is the wall-parallel velocity, y is the wall-normal coordinate,
and a0 and a1 are coefficients. The LES solver solves the NS equation
for a0 and a1. For brevity, we limit the discussion here in the wall-
normal direction and the wall-parallel velocity component. If the reso-
lution is such that the viscous sublayer is resolved, the velocity follows
a linear scaling as a function of y in the wall-adjacent cell, and

FIG. 2. Reconstruction of the solution in
the wall-adjacent cell. (a) The LES solu-
tion if one were to impose a no-slip condi-
tion at the wall. (b) The LES solution if
one were to reconstruct the solution in the
wall cell by forcing the wall model’s gradi-
ent at the wall. (c) The LES solution if one
were to take WM’s solution.

FIG. 1. Schematic of WMLES. The LES grid is coarse and resolves only large-
scale eddies. The small-scale eddies in the wall layer are modeled. Consider, e.g.,
the equilibrium wall model.9 It solves the WM equations (not shown here) on a 1D
wall model grid. The resulting wall-shear stress is supplied to the LES as the wall
boundary condition.
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therefore the reconstruction in Eq. (1) is a close approximation of the
reality. The corresponding wall-shear stress is

sw=q ¼ �
@u==
@y

����
y¼0

¼ �a1; (2)

where the a0 term does not carry any wall-shear stress. If the wall layer
is not resolved, the reconstruction in Eq. (1) is a poor approximation
of the flow in the wall-adjacent cell, and Eq. (2) underestimates the
wall-shear stress. In this case, a wall model is needed. A wall model is
usually built up on the law of the wall. For low-speed flows, the loga-
rithmic law of the wall may be written as

u== ¼ aw/w; /wðyÞ ¼
1
j
log

y þ y0
y0

� �
; (3)

where the Von K�arm�an constant j is 0.41, and according to the law of
the wall, aw is the friction velocity us, y0 is viscous/roughness length
scale, and the wall-shear stress sw is

sw=q ¼ u2s ¼ a2w : (4)

In other words, if we view /w as a basis function, the corresponding
coefficient straightforwardly tells us the shear stress. In general, we
may include other terms for solution reconstruction, e.g.,

u== ¼ aw/w þ a1y þ a0; (5)

where a set of bases, f1; y; /wg, is employed. If one follows the above
analysis, the shear stress carried by Eq. (5) is

sw=q ¼ a2w þ �a1; (6)

which is the sum of wall-shear stresses carried by the logarithmic
term and linear term in order. The discussion up to this point
assumes a poorly resolved wall layer. If the wall layer is resolved, the
term /w degenerates to a linear term (as the flow follows a linear
scaling in the viscous sublayer) and may be combined with the linear
y term.

In summary, we view wall modeling as solution reconstruc-
tion according to a pre-specified set of basis functions in the wall-
adjacent cell. The wall-shear stress is a direct result of the solution
reconstruction. Considering that an LES solver computes these
coefficients [aw; a, and a0 in Eq. (5)], we should no longer need a
stand-alone WM solver, and by abandoning WM solvers alto-
gether, we get rid of RANS legacies in WMLES. The above is the
basic idea of WM-integrated computational framework for
WMLES.

This idea is inspired by the von K�arm�an Pohlhausen (VKP)
method.25,26 The basic idea of the VKP method is to project the lami-
nar velocity profile onto a set of polynomial bases,

u==
u1

¼ b1gþ b2g
2 þ b3g

3 þ b4g
4; (7)

where u1 is the freestream velocity, g ¼ y=d is the similarity variable,
d is the boundary-layer thickness, and bi are coefficients. Pohlhausen
invoked von K�arm�an’s vertically integrated momentum equation and
solved for the coefficients in Eq. (7). Although the bases in the VKP
method are different from that in Eq. (5), they are both weak solutions
to the NS equations.

B. Remarks

We remark on the methodology.

1. Removing RANS legacies

By abandoning the WM solver, we remove RANS legacies at the
same time. However, we are not the first to try to remove RANS lega-
cies in LES. The first attempt was by Bose and co-authors.27–29 They
acknowledged the inadequacies of polynomials for solution recon-
struction in the wall-adjacent cell. Their idea is to invoke a slip wall
that sustains a non-zero turbulent flux. The slip wall eliminates the
sharp velocity gradient at the wall, making it possible for solution
reconstruction via polynomials. The model, however, has numerical
difficulty in some codes.

2. Wall modeling in high-order codes

The reader may find this work reminiscent of Refs. 23 and 24,
where wall modeling in DG codes is attempted. Here, we briefly review
Refs. 23 and 24, and it should be clear that the two are different from
the present study. In Ref. 23, Frere et al. solved the polynomial coeffi-
cients in LES but computed the wall flux according to the logarithmic
law of the wall. The method in Ref. 24 is to add the logarithmic func-
tion as a basis in the wall-adjacent cell, but the authors chose not to
remove any polynomial basis. With the additional basis function, the
coefficients cannot be solved directly in LES, and Lv et al. solved the
coefficient in front of the logarithmic term separately outside the LES
solver.

3. Choice of basis functions

It is possible to include more terms as basis functions for solution
reconstruction than those in Eq. (5). For example, one may employ
the following set of basis functions for a Pp scheme:

fyi; i ¼ 0; 1; 2; 3;…; p� 2; log ððy � y0Þ=y0Þg: (8)

Here, a Pp scheme is an order p scheme. For example, a P2 scheme
is a second-order scheme, and a P3 scheme is a third-order scheme.
The bases are terms in the Taylor expansion of the velocity around
the logarithmic law of the wall. The y0 basis corresponds to wall
translation. The logarithmic term is the law of the wall. The other
bases account for deviations from the law of the wall. The solution
is, in principle, more accurate as one increases p, but the computa-
tional cost also increases. It is quite curious to notice that except for
the logarithmic term and y, other terms do not carry wall-shear
stress (dyi=dy ¼ 0 at y¼ 0 for i � 2). Hence, P3 seems to be a good
compromise between cost and accuracy. In fact, the integral wall
model truncates at p¼ 3. Hence, if one employs the bases in Eq. (5)
for solution reconstruction in the wall-adjacent cell, (s)he is practi-
cally applying the integral wall model—but without an algebraic
solver outside the LES.

4. Computational cost

The cost of the equilibrium wall model and the non-equilibrium
wall model was reported in Refs. 30 and 31. For a grid of size
Oð106 � 107Þ, the non-equilibrium wall model adds a 100%–150%
overhead to the LES, and the ODE-based equilibrium wall model adds
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a 30%–40% overhead. The non-equilibrium wall model is more costly
because it solves 3D RANS equations in the wall layer. The WMLESs
are found to scale up to 256 cores (Intel Xeon E5–2670 2.6GHz) for a
grid of size 107, i.e., 40 thousand points per core. The cost of the inte-
gral wall model and the algebraic equilibrium wall model is reported
in Ref. 14. The cost of these two models is usually not more than 5%
of the stand-alone LES. A conventional wall model incurs a computa-
tional overhead because it requires a wall-model solver outside the
LES solver. We abandon wall-model solvers altogether and compute
the wall fluxes in the LES solver. As a result, the integrated wall model
has exactly 0 cost. That is, the cost of a WMLES with the integrated
wall model is exactly the same as an LES without a wall model, and the
scalability of the WMLES is solely determined by the LES solver.

C. Wall-shear stress formulation

By integrating the WM solver into the LES solver, the WMLES
no longer needs an externally supplied wall flux. Rather, the WMLES
computes the wall flux within the LES solver—no different from com-
puting a flux on an internal cell’s surface. Following the notational
convention, y-direction is the local wall-normal direction, and x- and
z-directions are the local wall-parallel directions. The wall-parallel
velocity components are

ux ¼ a0w/w þ a01y þ a00; uz ¼ a00w/w þ a001y þ a000 : (9)

Here, we use 0 to denote quantities in the x direction and 00 to denote
quantities in the z direction. By extending the derivation in Sec. IIA, it
is not difficult to show that the wall-shear stress takes the form of

sw;x=q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0wð Þ2 þ a00wð Þ2

q
a0w þ �a01;

sw;z=q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0wð Þ2 þ a00wð Þ2

q
a00w þ �a001:

(10)

Specific to a P3 code, the polynomial components as functions of x
and zmust be included,

ux ¼ a0w/w þ a01y þ a00
� �

b02x
2 þ b01x þ b00

� �
c02z

2 þ c01z þ c00
� �

;

uz ¼ a00w/w þ a0 01y þ a000
� �

b002x
2 þ b001x þ b000

� �
c002z

2 þ c001z þ c000
� �

;

(11)

and accordingly, the wall-shear stresses are

sw;x=q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0
wð Þ2 þ A00

wð Þ2
q

A0
w þ �A0

1;

sw;z=q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0
wð Þ2 þ A00

wð Þ2
q

A00
w þ �A00

1 :
(12)

where A0
w ¼ a0wðb02x2 þ b01x þ b00Þðc02z2 þ c01z þ c00Þ; A0

1 ¼ a01ðb02x2
þ b01xþ b00Þðc02z2 þ c01z þ c00Þ; A00

w ¼ a00wðb002x2 þ b001xþ b000Þðc002z2 þ c001z
þ c000Þ, and A00

1 ¼ a001ðb002x2 þ b001xþ b000Þðc002z2 þ c001z þ c000Þ.
III. LES SOLVER

We employ the Scalable mUlti-Physics Entropy-Stable (SUPES)
solver.32 The code uses a DG scheme and handles arbitrary elements
(be it tetra or hex mesh). The solver has been extensively validated24,33

and the DG algorithm is achievable 10� speed-up compared to a
state-of-the-art finite-volume solver on unstructured meshes but
remains more costly on structured curvilinear meshes.34 To achieve
higher computational efficiency, the SUPES is extended by

implementing a high-resolution finite-volume scheme–Piecewise
Parabolic Method (PPM). Except for the wall-adjacent cells, which
rely on the DG variational formulation, other cells in the computa-
tional domain are treated algorithmically with the finite-volume
approach. In the following, we show further details of the solver.

A. Governing equations

We solve the compressible LES equations in the conservative
form,

@t�q þr � ð�q~uÞ ¼ 0; (13a)

@tð�q~uÞ þ r � ð�q~u~uTÞ þ r�p ¼ r � �s þ sSGSð Þ þ f ; (13b)

@tð�q~EÞ þ r � ð~uð�q~E þ �pÞÞ ¼ �r � �q þ qSGS
� �

þr � ðð�s þ sSGSÞ � ~uÞ: (13c)

where q is the density, u is the velocity, p is the pressure, E is the total
energy, and f is the body force. The Reynolds- and Favre-filtered
quantities are denoted as ð�Þ and ~ð�Þ. The filtered viscous stress tensor
and heat flux are

�s ¼ l r~u þ ðr~uÞT
h i

� 2
3
lðr � ~uÞI; (14a)

�q ¼ �kr~T ; (14b)

where l is the dynamic viscosity, and k is the thermal conductivity.
The subgrid-scale (SGS) fluxes are

sSGS ¼ lt~S; qSGS ¼ � lt
Prt

r � ~h; (15)

where the eddy-viscosity lt is evaluated per the Vreman model35,36

and the turbulent Prandtl number is 0.9. The working fluid is an ideal
gas, i.e.,

�p ¼ ðc� 1Þ�q ~E � ~u � ~u
2

� �
; (16)

where the adiabatic index is c ¼ 1:4. For brevity, we will omit �ð:Þ and
~ð:Þ in the following.

B. Discontinuous Galerkin (DG) discretization scheme

We employ DG for discretization. The details of the DG formula-
tion are shown below. We write the governing equations, i.e., Eq. (13),
in the following compact form:

@tqþr � Fc ¼ r � Fv þ S; (17)

where q represents the vector of solution variables in the conservative
form; Fc and Fv denote the inviscid and viscous fluxes, respectively;
and S is the local source term (such as the body force). The nonlinear
viscous flux, i.e., Fv , involves second-order derivatives, which is com-
puted according to

Fv ¼ D : rq; (18)

where D is the Jacobian of the diffusion flux functions with respect to
the gradients of solution variables. The reader is directed to Ref. 32 for
additional details of D. With Eq. (18), the semi-discretized form of Eq.
(17) is
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0¼
ð
Xe

/T
e @tqþr �Fc �r �Fv �Sð Þdx

�
ð
Xe

/T
e /edx

� �
dt~qe �

ð
Xe

r/T
e � Fcdx

þ
ð
@Xe

/Tþ
e F̂

cðqþe ;q�e ;~nÞdsþ
ð
Xe

r/T
e � ðD :rqeÞdx

þ
ð
@Xe

r/Tþ
e � D : ðq̂e � qþe Þ~n

� 	
ds�

ð
@Xe

/Tþ
e F̂

v �~nds�
ð
Xe

Sdx;

(19)

where the terms on right hand side, listed in sequence, are the tempo-
ral derivatives of solution variable, interior contribution of the convec-
tive flux, the Riemann flux, interior contribution of the viscous flux,
the dual consistency term, the viscous flux term, and the local source
term.~n is the outward pointing normal vector with respect to the local
element Xe. The Riemann flux, F̂

c
, is specified with a local

Lax–Friedrichs formulation on interior elemental interfaces, while
reverts to a Euler flux with prescribed boundary state Ub on walls. The
strongly imposed boundary condition, although might not converge as
fast as the conventional weak boundary condition as pointed out by
Collis,37 rigorously enforces the conservation laws and avoids drifting
of total mass/energy in the simulations of internal flows. At the inte-
rior elemental interfaces, the traces of the viscous terms are defined
according to the symmetric interior penalty method,38

q̂ ¼ qf g ; F̂
v ¼ D : rqf g þ r

l
h
q½ �; (20)

in which the operators f�g and ½�� are defined as �f g 	 1
2 ½ð�Þþ þ ð�Þ��

and ½�� 	 ð�Þþ~n � ð�Þ�~n (þ and – indicate the interior and exterior
faces, respectively, with respect to the local element Xe). h denotes the
size of the local elements and r is a stability parameter.39 On the
domain boundary, the trace of the solution variable is set to a pre-
scribed boundary state, Ub. Only the isothermal no-slip wall boundary
condition is considered in this study, and Ub is set with zero velocity
and a fixed temperature value. The trace of viscous momentum flux is
prescribed based on the wall-shear stress, formulated in Sec. II C.

The resulting ODE system of Eq. (19) is advanced explicitly in time
via a third-order Runge–Kutta scheme.

IV. WMLES
A. Cases

We consider two flows, i.e., channel flow and periodic hill.
Figure 3 is a sketch of the two flows. The size of the plane channel is
Lx � Ly � Lz 2 2ph� 2h� 2ph, where Lx;y;z is the dimension of the
computational domain in the x-, y-, or z-directions and h is the half
channel height. Grids of size N ¼ nx � ny � nz ¼ 323, 643, and 1283

are used. The grid spacing is uniform in all three directions, and there
is no near-wall grid refinement. We vary the Reynolds number from
Res ¼ 180, to 2000, and 50 000, where Res ¼ hus=� is the friction
Reynolds number, � is the kinematic viscosity, and us is the friction
velocity. Channel flow is very well studied. DNS data at Res ¼ 180,
and 2, 000 is publicly available.40,41 The size of the periodic hill is
Lx � Ly � Lz ¼ 9H � 3:036H � 4:5H and L1 ¼ 1:929H (see Fig. 3
for the definition of L1), whereH is the hill height. The hill geometry is
given analytically in Appendix A of Ref. 42 and is not repeated here
for brevity. Two grids are used, namely N ¼ nx � ny � nz ¼ 64� 32
�32, and 64� 64� 64. The grids are body fitted as sketched in Fig. 4.
The flow Reynolds number is Reb ¼ HUb=� ¼ 10 595, where Ub is the
bulk velocity defined at the top of the hill. This periodic hill has also
been extensively studied.43,44 Experimental measurements and wall-
resolved LES data are available in the ERCOFTAC database45 and in
Ref. 42, respectively. Both the channel flow and the periodic hill flow
are driven by a constant body force. The boundary conditions are as
follows. Periodicity is imposed in both the streamwise (x) and the
spanwise (z) directions in the two flows. The walls are no-slip, no-pen-
etrating, and we employ both the equilibrium wall model in Ref. 9 and
the integrated wall model described in Sec. II C for wall modeling.
Further details of the cases are shown in Tables I and II.

B. Results

In this section, we present the WMLES results. The LES solves
the full NS equation, and since the solution reconstruction in the

FIG. 3. (a) A sketch of the channel geometry. (b) a sketch of the periodic hill geometry.
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wall-adjacent cell involves a logarithmic term, a linear term, and a con-
stant term, the code readily accounts for non-equilibrium effects like
the integral wall model.

1. Channel flow

Channel flow is considered as a proof of concept. First, we study
the effect of grid resolution at a fixed Reynolds number Res ¼ 2000
and show that our formulation responds to the non-equilibrium
effects instantaneously. Figure 5 shows the mean velocity profiles and
Fig. 6 shows the velocity rms’ and the Reynolds shear stress. The mean
flow in WMLESs follows the DNS data closely, irrespective of the grid
resolution. The velocity rms and the Reynolds shear stress in
WMLESs agree more closely with the DNS as grid resolution increases
—similar to other WMLESs.46,47 Next, we examine how the coeffi-
cients aw and a1 respond to the instantaneous flow. Figures 7(a) and
7(b) show the contours of the instantaneous streamwise velocity u at
the first off-wall grid and the coefficient in front of the logarithmic
basis function, i.e., a0w in Chan-2kR, where, again, the superscript 0

denotes the x direction, and we use 00 to denotes the z direction. We
see that the coefficient a0w correlates very well with the velocity at the

FIG. 4. A sketch of the grid for the periodic hill. The grid in the FIG is of size nx � ny ¼
32� 16 for illustration purposes.

TABLE I. Details of the channel flow WMLESs. The left most column is the nomen-
clature. The nomenclature is as follows: Chan-[Re][grid], where [grid] may be C
(coarse), R (regular), and F (fine). D1 is the height of the wall-adjacent grid.

Res N WM Dþ
1

Chan-2kC 2000 323 Integrated WM 125
Chan-2kR 2000 643 Integrated WM 63
Chan-2kF 2000 1283 Integrated WM 31
Chan-0.18k 180 64� 128� 64 Integrated WM 2.81
Chan-50k 50 000 643 Integrated WM 1:6� 103

TABLE II. Details of the periodic hill WMLESs. The left most column is the
nomenclature.

N WM D1=H

Hill-C 64� 32� 32 Integrated WM 0.063–0.094
Hill-R 643 Integrated WM 0.031–0.047
Hill-Equil 643 Equilibrium wall model 0.063–0.094

FIG. 5. Mean velocity profile. The symbols are WMLES with different grid resolu-
tions, and the thin black line is the DNS.41

FIG. 6. Reynolds stresses. (a) Root mean square of the streamwise velocity fluctu-
ation urms, (b) root mean square of the wall-normal velocity fluctuation vrms, (c) root
mean square of the spanwise velocity fluctuation wrms, (d) Reynolds shear stress
hu0v0i. The legends are the same as in Fig. 5.

FIG. 7. (a) contours of the instantaneous velocity u at the first off-wall grid and (b)
contours of the instantaneous coefficient a0w in Chan-2kR. Normalization is by the
wall units.
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first off-wall grid. This is very much expected because channel flow is
an equilibrium flow, and the logarithmic mode is a good working
approximation of the flow in the wall-adjacent cell.

In Sec. III, we argue that the linear term responds to and accounts
for deviations from the log law like in the integral wall model. Here,
we present supporting evidence. Figures 8(a) and 8(b) show contours
of Nx and the coefficient in front of the linear basis function a01, where
Nx ¼ ~u � r~u þ 1=qrpjy¼D is the sum of the convective term and the
pressure gradient term and measures the non-equilibrium effects at
the first off-wall grid. Figures 8(a) and 8(b) have very similar patterns,
but it is not immediately clear from Fig. 8 whether Nx and a01 are cor-
related. Figure 9 shows the joint probability density function of Nx and
a01, and a correlation clearly emerges. Figure 10 shows the probability
density function ofNx and a01 at the three grid resolutions, and the cor-
relation persists across the three grids. Here, we remark on the shape
of the PDFs. A coarser grid applies a more severe grid filtering.
Because the flow is, on average, at equilibrium, a more severe grid fil-
tering translates to less severe instantaneous Nx values and a more
concentrated PDF of Nx. Here, we show only Nx and a01. The results in
the spanwise direction, i.e., Nz and a001 , show similar trends and are not
shown here for brevity.

In addition to accounting for non-equilibrium effects, the linear
term would take over if the grid resolves the wall layer. Figures 11 and
12 show the mean velocity profile and the Reynolds stresses in Chan-
0.18k. The WMLES grid is nx � ny � nz ¼ 64� 128� 64 and is

FIG. 8. (a) contours of the instantaneous non-equilibrium terms N at the first off-
wall grid and (b) contours of the instantaneous coefficient a01 in Chan-2kR. The
coefficient a01 is normalized by u

2
s=h.

FIG. 9. Joint probability density function of Nx and a01 in Chan-2kR.

FIG. 10. Probability density function of (a) Nx and (b) a01 in Chan-2kC, Chan-2kR,
and Chan-2kF.

FIG. 11. Mean velocity profile. The symbols are WMLES with different grid resolu-
tions, the bold black line is the DNS,40 and the thin black line is the logarithmic law
of the wall (j ¼ 0:41, B¼ 5.2).

FIG. 12. Reynolds stresses in Chan-0.18k. The symbols are WMLES, and the lines
are DNS.40 (a) root mean square of the streamwise velocity fluctuation urms, (b)
root mean square of the wall-normal velocity fluctuation vrms, (c) root mean square
of the spanwise velocity fluctuation wrms, (d) Reynolds shear stress hu0v0i.
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such that the wall is resolved. We see that the Chan-0.18k follows the
DNS40 closely not only in the logarithmic layer but also in the viscous
sublayer and the buffer layer. The Reynolds stresses are slightly off in
the buffer layer, but since the grid away from the wall is still coarse,
there is no reason to expect the WMLES to match the DNS. Besides
the WMLES results at Res ¼ 180, we include the Res ¼ 2000 and
50 000 results for comparison purposes as well. We see that WMLES
is able to capture the logarithmic law of the wall at any Reynolds
numbers—again, without a WM solver outside the LES.

We briefly summarize. Channel flow is considered as a proof of
concept. We show that the integrated wall model works fairly well for
simple plane channel flow. Specifically, we show that the WMLES cap-
tures the mean flow at high and low Reynolds numbers on coarse and
fine grids. We also show that by employing a P3 scheme, the linear
term responds to the non-equilibrium effects like in an integral wall
model.

2. Periodic hill

We present results for the periodic hill cases. Figure 13 shows
contours of the instantaneous streamwise and spanwise velocities. We
see a high speed region above y=H ¼ 1 and a low-speed region below.
A shear layer emerges downstream of the hill’s peak and breaks before
reaching the windward side of the next hill. The flow separates at the
leeside of the hill, and because of the unsteady nature of the shear
layer, the separation bubble is also highly unsteady. Figure 14 shows
the contours of the velocity magnitude and the streamlines of the
mean flow. The flow subjects to an adverse pressure gradient and

FIG. 13. Contours of (a) instantaneous streamwise velocity, and (b) instantaneous spanwise velocity in the periodic hill case, visualized by PyVT.49

FIG. 14. Contours of the velocity magnitude and the streamlines.

FIG. 15. (a) mean velocity, (b) Reynolds stress hu0v0i, (c) turbulent kinetic energy
profiles at various x locations. The symbols are the experiment,45 the solid red lines
are Hill-R, the dashed red lines are Hill-C, and the blue lines are Hill-Equil. FIG. 16. Pressure coefficient. WRLES data are from Ref. 42.
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separates at the hill’s leeside. The distance between the leeside and the
wind side is so long that the flow reattaches before reaching the wind
side.48 Again, we employ a P3 scheme. The linear basis function, as we
have shown in Sec. IVB1 should be able to model the effect of pres-
sure gradients. Hence, we expect the WM-integrated LES yield more
accurate results than the equilibrium wall model. In this section, we
shall see that the numerical evidence bears out our expectations.

Figure 15 shows the profiles of the mean velocity, the Reynolds
stress hu0v0i, and the turbulent kinetic energy at 10 streamwise loca-
tions. Both Hill-C and Hill-Equil capture the mean flow very well. The
Reynolds stress and the turbulent kinetic energy in Hill-C and Hill-
Equil are slightly off at the leeside, but the two WMLESs generally
agree with the experiment. The grid seems to have a more notable
impact on the results than the wall model: Hill-C, i.e., the coarse grid
LES, is noticeably worse than Hill-R and Hill-Equil, i.e., the regular
grid LESs. Xu et al. had the same observation.50 They found that cap-
turing the pressure force is more important than capturing the skin
friction when pressure is the dominant momentum sink.
Consequently, wall models, which concern only the friction force, are
not as important as they are, e.g., in the NASA bump flow. Xu et al.’s
finding also explain the results in Fig. 15. In fact, we see from Fig. 16
that the coarse gridWMLES Hill-C does not capture the pressure force
as well as the regular grid cases Hill-R and Hill-Equil, which is why
Hill-C does not do very well in capturing the mean flow.

Following the discussion above, the acid test for a wall model is
the friction coefficient Cf ¼ sw=ð2qU2

b Þ. Figure 17 shows then friction
coefficient. Although separation is still a difficulty and the wall models
cannot capture the skin friction from 0 to about 2, we see that the Hill-
R, i.e., the embedded WM, gives considerable more accurate estimates
of the skin friction than Hill-Equil, i.e., the equilibrium wall model, in
both the leeside and near the peak of the hill.

V. CONCLUSIONS

We abandon WM solvers and along with it RANS legacies in
LES solvers by integrating WM into LES. The method is as follows.
We replace a monomial basis function with a physics-inspired basis
function, in this case, the law of the wall containing both the viscous
layer and the logarithmic layer. The LES solves the full NS equation
including the convective term and the pressure gradient term for coef-
ficients in front of these basis functions, and therefore we effortlessly
account for non-equilibrium effects. When an LES grid is given, how
well this methodology models turbulence in the wall layer depends on
the LES scheme: higher-order schemes have more terms for solution
reconstruction and therefore are more accurate (which, of course, is
also more costly). In this work, we employ a moderate P3 scheme,

which seems to be a good compromise between cost and accuracy.
The linear basis function accounts for the deviations from the logarith-
mic law of the wall—like the integral wall model. Again, because the
LES solves the coefficient in front of the linear term, we effortless
accounts for non-equilibrium effects in the wall layer—unlike the inte-
gral wall model and the non-equilibrium wall model, the former of
which requires a long mathematical derivation and the latter of which
adds � 100% computational overhead. This framework is employed
for plane channel and periodic hill, and the results are favorable.

This study opens up new directions for research. If one adopts
the wall-model integrated computational framework for WMLES,
machine learning ought to focus on finding the most appropriate basis
functions (rather than finding a network that predicts the wall-shear
stress42,51) Also, the wall model itself may not be the only issue in
WMLES—as pointed out in Refs. 52 and 53 advances in WMLES
requires novel modeling venues encompassing physical insights,
together with improved gridding and numerical methods.54,55 This
work is along the same line: rather than working on the WM itself, we
try to merge WM and LES.
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