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Abstract
Purpose – The openings on aircraft structures can be modeled from an aerodynamical point of view as lid-driven cavities (LDC). This paper aims to
show the primary verification and validation (V&V) process in computational fluid dynamics (CFD, and to investigate the influences of numerical
settings on the efficiency and accuracy for solving the LDC problem.
Design/methodology/approach – To dig into the details of CFD approaches, this paper outlines the design, implementation, V&V and results of an
efficient explicit algorithm. The parametric study is performed thoroughly focusing on various iteration methods, grid density discretization terms
and Reynolds number effects.
Findings – This study parameterized the numerical implementation which provides empirical insights into how computational accuracy and
efficiency are affected by changing numerical settings. At a low Reynolds number (not over 1,000), the time-derivative preconditioning is necessary,
and k = 0.1 can be the optimal value to guarantee the efficiency, as well as the stability. A larger artificial viscosity (c = 1/16) would relieve the
calculating oscillation issue but proportionally increase the discretization error. Furthermore, the iteration method and the mesh quality are two key
factors that affect the convergence efficiency, thus need to be selected “wisely”.
Practical implications – The study shows how numerical implementation can enhance an accurate and efficient solution. This workflow can be used to
determine the best parameter settings whenever CFD researchers applying this LDC problem as a complementary design tool for testing newly developed solvers.
Originality/value – The studied LDC problem is representative of CFD analysis in real aircraft structures. These numerical simulations provide a
cost-effective and convenient tool to understand the parameter sensitivity, solution receptivity and physics of the CFD process.
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Nomenclature

Symbols
B = time-derivative preconditioning parameter;
C(4) = fourth derivative constant in artificial viscosity;
Dtc = convective stability time limit;
Dtd = diffusive stability time limit;
f = source term of manufactured solution;
k = prescribed number to limit b ;
l = eigenvalue term in artificial viscosity;
p = pressure, Pa;
r = density, kg/m3;

S = artificial viscosity;
u = x-component of velocity, m/s;
Ulid = driven velocity of the lid, m/s; and
v = y-component of velocity, m/s.

Definitions, Acronyms and Abbreviations
AR = aspect ratio;
CFD = computational fluid dynamics;
CFL = Courant– Friedrichs–Lewy;
DE = discretization error;
DSE = downstream secondary eddy;
FD = finite difference;
FE = finite element;
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FV = finite volume;
LDC = Lid-driven cavity;
MMS =method of manufactured solution;
NSE =Navier-Stokes equation;
OOA = observed order of accuracy;
PJ = point Jacobi method;
Re = Reynolds number;
SIMPLE = semi-implicit method for pressure-linked

equations;
SGS = symmetric Gauss-Seidel method; and
USE = upstream secondary eddy.

1. Introduction

The lid-driven cavity (LDC) flow is not only technically
important but also of great scientific interest because it displays
almost all fluid mechanical phenomena in the simplest of
geometrical settings (Perumal and Dass, 2011). In the fields of
aerospace, LDC appears as the open surface of an airplane (for
example, weapon bay doors of a jet fighter), which has the
potential generating strong acoustic waves and resonance that
decrease flight efficiency or can damage components. Another
classical LDC issue is the aerodynamical noise generation due
to the cavity of landing gear during take-off and landing.
Therefore, experimental and numerical studies are essential to
understand and control this fundamental flow in relevant to
aerodynamics applications and academic research
(Abderrahmane et al., 2019).
As sketched in Figure 1, the LDC flow is themotion of a fluid

inside a rectangular cavity created by a constant translational
velocity of one side while the other sides remain at rest. A
rectangular container is among the most elementary confined
geometries of fluid motion. And the simplest mechanical
driving force acting on a fluid is the tangential in-plane motion
of a bounded wall (Kuhlmann and Romanò, 2019). This
geometrical simplicity facilitates abundant experimental

calibrations and benchmark data for comparison and validation
(Gaikwad et al., 2021).
With the advancement of computational fluid dynamics

(CFD) in the aerospace industry (Groth et al., 2019), CFD
methods have been used with the most popularity to study the
cavity flow, as some pioneer works of Burggraf (1966).
Afterward, the most famous benchmark results are presented
by Ghia et al. (1982), which has served as “The” result to
compare against ever since. They solved the steady two-
dimensional flow in a square cavity with boundary conditions of
three rigid walls and a lid moving with constant velocity. These
benchmark data are computed using a second-order accurate
scheme, with a Reynolds number up to 104 in the mesh level of
257� 257.
From the 1990s (Chiang et al., 1998), two-dimensional

numerical analyses reveal the large-scale flow characteristics
prevailing in the cavity, such as primary and secondary eddies,
Reynolds number of transitions. Because realistic flows are
three-dimensional, it is still necessary to apply three-
dimensional numerical simulation to investigate physical
subtleties in LDC. Since the 2000s, the use of a three-
dimensional (3D) model for CFD simulation has been growing
steadily because of technological advances in computer tools.
Albensoeder and Kuhlmann (2005) extended the method of
Botella and Peyret (1998) to three dimensions and investigated
cases for different cavity lengths in the spanwise direction. They
also applied different rigid and periodic boundary conditions at
the end walls, and provided highly accurate 3D flow fields for
Re = 103. At a high Reynolds number of 12,000, when the
transition happens and turbulent model shall be applied,
Bouffanais et al. (2007) carried out the large-eddy simulations
with spectral elementmethods to compute the turbulent flow in
a 3D cubical LDC. Other types of cavities are also investigated
numerically, such as Xia et al. (2019), who applied an O-H-
type grid, to avoid experimental complexity.
For the development of discretization schemes, besides the

Finite Difference method, other methods emerged
chronologically as listed by AbdelMigid (2017), such as (FE)
Finite Element (Goetzendorf-Grabowski and Mieloszyk,
2017), Finite Volume (FV) (Gaikwad et al., 2021), Modified
Differential Quadrature, Lattice Boltzmann (Perumal and
Dass, 2011), Incremental Unknowns, Discrete Singular
Convolution, (Cheb.) Chebyshev collocation, Boundary
Element, Smooth Particle Hydrodynamic and Control Volume
Finite Element Method. Among the above, the FV and the FE
methods take second and third place in the popularity of fluid
or solid simulations (Zhang et al., 2021; Ge et al., 2020). And
benchmark results for cavity flow can be found in works by
Magalhães (2013) and Barragy andCarey (1997).
Experimental investigations on LDC flow are always

undergoing a parallel development with CFD, from the 1980s
until recently (Sahak et al., 2020). Although with a certain
geometrical simplicity, the flow physics inside this LDC is not
such simple. Several flow characteristics which prevail in
processing industries, such as boundary layers, eddies of
different sizes and characteristics, and various instabilities, may
coexist (Chiang et al., 1998). Koseff (1983) experimentally
observed that the regular or periodic unsteadiness for LDC
flow is no longer sustained and evolves into turbulence when
the Reynolds number reaching the 6,000–8,000 range. Their

Figure 1 LDC flow
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results provide a benchmark for the transitional Re and were
confirmed by many numerical solutions obtained with
Reynolds numbers up to 104 (Hammami et al., 2018; Suman
et al., 2019).
In recent, the problem of rectangular LDC flow is

investigated toward many new extensions such as considering
mixed convection with heat transfer. Another prevailing area is
the control of cavity acoustics actively or passively on a range of
Mach numbers when the flow passing over a cavity such as the
landing gear (Abderrahmane et al., 2019). Other natural
extensions concern the variation of the cavity shape or
dimensions at the micro/nano scales where the Navier-stokes
equation (NSE) loses its validity (Mmukherjee et al., 2019). A
pioneering parametric study showed the effects of different
Reynolds numbers, lid velocity, cavity geometry and aspect
ratio on the LDC flow behavior at the macro/micro-scale can
be found in the literature (Shankar andDeshpande, 2000).
As succinctly stated by Shankar and Deshpande (2000) and

quoted by Abdelmigid (2017), the importance of cavity flow
case lies in that as follows:

“[. . .] internal recirculating flows generated by the motion of one or more of
the containing walls [. . .] are not only technologically important, but they
are also of great scientific interest because they display almost all fluid
mechanical phenomena in the simplest of geometrical settings. Thus, corner
eddies, longitudinal vortices, nonuniqueness, transition, and turbulence all
occur naturally and can be studied in the same closed geometry”.

In summary, it has been shown that the cavity flow simulation
has been highly developed especially in the past several
decades, typically with higher and higher Reynolds numbers
such as Re = 21,000 by Erturk et al. (2005; Erturk, 2009) and
grid density such as 2,049�2,049 by Suman et al. (2019).
Needless to say, most commercial CFD software can derive the
refined solution conveniently nowadays. During the authors’
research experiences, nevertheless, some subtle parameters
inside those numerical packages are still unclear for many
graduate students or entry-level engineers. It is in this light that
we have been stimulated to work on this numerical parametric
study in a fundamental 2D square LDC flow, taking advantage
of its unambiguous boundary conditions and simple geometry.
Instead of developing newer methods for computing the

NSE of LDC, as good results of its steady solutions are widely
published and universally accepted, the aim is to shed some
light on the details of parameter setting and help to understand
the fundamentals behind numerical methods. Case studies of
steady incompressible flow in LDC are investigated with a Re
range from 100 to 1,000, without the need to consider the
bifurcation issue. Results with a second-order spatially accurate
are verified and validated from different sources. Effects of
various parameters are detailed presented for the sake of serving
as a benchmark data set for future works on the same problem.
The next section is devoted to describing the multigrid solver

for the governing equations. An emphasis is given on the
explanation of added discretization terms during the time and
space discretization. The formulations of dimensions and
properties are: driven velocity Ulid = 1m/s, wall lengths Lx = Ly =
0.05m with the aspect ratio AR = 1, density r = 1kg/m3,
Reynolds numbersRe = 100,500,1,000. Using the concept of the
Kolmogorov length scale, the baseline mesh resolution
requirement can be estimated by l

h ¼ Re
3
4, and generates 32� 32,

106� 106, 178� 178 grid cases, accordingly.

2. Theory and implementation

This incompressible flow is governed by a set of three,
nonlinear differential equations that are discretized and solved
using time-marching algorithms. The approaches taken here
include only explicit methods. The flowchart of this research is
shown in Figure 2 which can be seen mostly as an explicit
pressure rescaled equation scheme preceded by a grid
generation. The numbered steps represent the iteration scheme
and each step is composed of both discretization and solution of
the resulted linear algebraic equation system. A point Jacobi
method (PJ) and symmetric Gauss-Seidel method (SGS) are
implemented for the comparison of numerical behavior. Time-
derivative preconditioning is used to stabilize themethods, with
the assumption that these terms will tend toward zero as the
solution converges to a steady-state. Artificial viscosity is
included to mitigate any even-odd decoupling that the solution
may be prone to. Several methods are used to verify the
accuracy of the methods and various solution sensitivities and
accuracy studies are performed. Discretization and
interpolation techniques will be explained in detail next.

2.1 Governing equations
The set of equations (1)–(3) describe a two-dimensional flow
which is assumed to be incompressible, laminar and
Newtonian. A brief description is summarized below and
details for the CFD initialization can be found in the literature
by Brindhadevi (2021). Equation (1) requires that mass be
conserved through the flow and is often called the continuity
equation. Equations (2) and (3) require that momentum be
conserved in the flow and represent Newton’s Second Law of
motion. Together, these equations can be solved for pressure p;
the x-component of velocity u; and the y-component of velocity
v throughout the flow field. The fluid density r and the
dynamic viscosity m are constants here.

@r

@t
1 r

@u
@x

1 r
@v
@y

¼ 0 (1)

@ ruð Þ
@t

1 ru
@u
@x

1 rv
@u
@y

1
@p
@x

� m
@2u
@x2

1
@2u
@y2

 !
¼ 0

(2)

@ rvð Þ
@t

1 ru
@v
@x

1 rv
@v
@y

1
@p
@y

� m
@2v
@x2

1
@2v
@y2

 !
¼ 0

(3)

2.2 Time-derivative preconditioning
To solve the steady-state equations, a standard way is to march
the time-dependent terms to approach the steady-state. For
equations not containing time-dependent terms, pseudo time-
derivative preconditioning can be added which enables
reaching the steady-state faster. Although the time-derivative
preconditioning destroys the time accuracy in the transient
solutions, only the steady-state is of interest here. And as the
time-marching solutions converge to steady-state and do not
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change significantly from one time step to the next, this pseudo
time termwill become negligibly small.
As the continuity equation for the incompressible flow does

not contain any time derivatives, the pseudo-time derivative of
the pressure term 1

b 2
@p
@t is added to the left-hand side of the

continuity equation (1). Without this preconditioning term, the
system becomes ill-conditioned. The resulting modified
equation is given in equation (4).

1
b 2

@p
@t

1 r
@u
@x

1 r
@v
@y

¼ 0 (4)

The parameter by which this term is multiplied by, b 2, is called
the AC parameter. AC term has no physical meaning but it is
chosen to scale the eigenvalues of the system to the same order
of magnitude so that an efficient convergence rate can be
achieved. It must have units of velocity for the dimensional

Figure 2 Flowchart for enumeration algorithms
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consistency, for instance, b 2 = m2. However, this formulation
runs the risk of b 2 becoming too small and driving the system
unstable. And Turkel and Vatsa (1994) showed that, in the
interest of convergence rate, the AC parameter should be kept
as close as possible to the local convective velocity. Therefore,
we implement the formulation given in Equation (5) which
limits b 2 from getting too small. Here, k is a prescribed
number which is typically less than one, indicated by
Esfahanian and Akbarzadeh (2011). To further investigate the
effect of the choice of this k parameter, cases with different k
are studied and discussed in Section 4.3.

b 2 ¼ max u2 1 v2; kU2
lid

� �
(5)

2.3 Discretization
Although various higher-order discretization methods exist in the
literature, from an intention of simplicity and sufficient accuracy,
themost popular primitive variable formulation is applied here for
the LDC flows. Therefore, a second-order central difference is
used in space, and a first-order forward difference is used in time.
The schemes can be seen in equations (6)–(8).

@p
@t

¼ pn1 1
i;j � pni;j

Dt
(6)

@u
@x

¼ ui1 1;j � ui�1;j

2Dx
(7)

@2u
@y2

¼ ui;j1 1 � 2ui;j 1 ui;j�1

Dyð Þ2 (8)

Here, the indices i and j refer to the nodes in a uniform and
non-staggered mesh as can be seen in Figure 3. This represents

the discretized physical space for which the equations will be
solved. The final discrete equations are represented in
equations (9)–(10). Detailed discretization steps can be seen in
the literature byGhadge and Prakash (2021).

1
b 2

i;j

pn1 1
i;j � pni;j

Dt
1 r

uni1 1;j � uni�1;j

Dx
1

vni1 1;j � vni�1;j

Dy

� �
¼ 0

(9)

un1 1
i;j � uni;j

Dt
1 r ui;j

ui1 1;j � ui�1;j

Dx
1 vi;j

ui1 1;j � ui�1;j

Dy

� �
1

pi1 1;j � pi�1;j

2Dx
� m

ui1 1;j � 2ui;j 1 ui�1;j

Dxð Þ2 1
ui;j11 � 2ui;j 1 ui;j�1

Dyð Þ2
 !

¼ 0

(10)

vn1 1
i;j � vni;j

Dt
1 r vi;j

vi1 1;j � vi�1;j

Dx
1 ui;j

vi1 1;j � vi�1;j

Dy

� �
1

pi1 1;j � pi�1;j

2Dy
� m

vi1 1;j � 2vi;j 1 vi�1;j

Dxð Þ2 1
vi;j1 1 � 2vi;j 1 vi;j�1

Dyð Þ2
 !

¼ 0

(11)

2.4 Stability criteria
The stability for this explicit method comes from a combination
of the convective stability time limit and the diffusive time
limit. The convective time step comes from the following
equation (12):

Dtc � min Dx;Dyð Þ
jl jmax

(12)

where jl jmax = max (l x,l y), and l x ¼ 1
2 juxj1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 14b 2

p� �
,

l y ¼ 1
2 jvyj1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 14b 2

p� �
.

The diffusive time step is calculated from equation (13):

Dtd � DxDy
4v

; v ¼ m=r (13)

Then the stability time step limit can be obtained by combining
the convective time step and the diffusive time step from
equation (14):

Dt � min Dtc;Dtdð Þ ¼ CFL �min Dtc;Dtdð Þ (14)

For the explicit methods, the Courant– Friedrichs–Lewy
(CFL) number can be adjusted between zero and one based on
the calculation convergence condition. In this study, theCFL is
selected as 0.5 which generates a stable solution and was
validated by Bruneau and Saad (2006).

2.5 Artificial viscosity
Notice that the continuity equation (9) does not have any kind
of damping or diffusion term. With central differencing, the
value at one node is based on the values at adjacent nodes but
not necessarily on that node itself (“checkboard effect”). That
is to say, the value at this node is slightly decoupled from its
adjacent nodes and only even nodes are coupled with other

Figure 3 Example of a 33� 33 numerical grid for discretizing the fluid
domain
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even ones, and vice versa for odd nodes. The local values can
oscillate between nodes in a phenomenon often called odd-
even decoupling. This issue can be mitigated by introducing an
artificial viscosity term, S into the continuity equation as shown
in equation (15).

1
b 2

i;j

pni;j � pn�1
i;j

Dt
1 r

ui1 1;j � ui�1;j

Dx
1

vi1 1;j � vi�1;j

Dy

� �
� S ¼ 0

(15)

Here, the artificial viscosity term S is proportional to the fourth
derivative of pressure which must also be discretized by
multiplying a constant C(4). Because the fourth derivative of
pressure is small throughout the fluid flow, this term should be
negligible upon convergence. The purpose of S is to re-couple
the odd and even nodes. And the value of S is given through
the equations (16) – (18), where jl xjmax is the magnitude of the
largest eigenvalues in (x, t) space, jl yjmax is the magnitude of
the largest eigenvalues in (y, t) space and typically C(4) ranges
from 1

128 to
1
16.

Si;j ¼ Sx i;jð Þ 1Sy i;jð Þ

¼ jl xjmaxC
4ð ÞDx3

b 2

@4p
@x4

1
jl yjmaxC

4ð ÞDy3

b 2

@4p
@y4

(16)

Sx i;jð Þ ¼
1
2 jui;j j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i;j 14b 2

q� �
C 4ð Þ

b 2Dx
pi1 2;j � 4pi1 1;j 1 6pi;j � 4pi�1;j 1 pi1 2;jð Þ (17)

Sy i;jð Þ ¼
1
2 jvi;j j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i;j 1 4b 2

q� �
C 4ð Þ

b 2Dy

pi;j1 2 � 4pi;j1 1 1 6pi;j � 4pi;j�1 1 pi;j1 2ð Þ (18)

The values at the boundary condition which cannot be
calculated with the fourth derivative will be duplicated directly
from a nearby row or column. The values at four corners will be
calculated as the average of nearby values.

2.6 Boundary conditions
To solve the equations within the computational domain, the
boundary conditions are imposed at the edge nodes for each of the
three variables p, u and v. The implement of velocity value is
straightforward at boundary nodes as each component is set to zero
for the left, right and bottom walls to impose a “no-slip” condition.
The upperwall is set to have unity velocity in x and no y-component
of velocity. Velocity components are then solved only on the inner
nodes. Pressure boundary conditions are a bit more complicated as
the value of pressure along the walls is nonzero and unknown. The
condition that we impose here is that the second-order derivative of
pressure normal to thewall is zero or the pressure gradient normal to
the wall is constant. The pressure is solved for at the interior nodes
and values at the boundary and then extrapolated via equation (19)
for the bottom wall and equation (20) for the right wall, and
similarly for the other boundaries. For each point at four corners,
the boundary value is the average of nearby twopoints.

pni;1 ¼ 2pni;2 � pni;3 (19)

pnimax ;j ¼ 2pnimax�1 ;j � pnimax�2;j (20)

2.7 Time-marching algorithms
Two iteration methods are implemented for comparison
purposes in this study. The first is a point Jacobi iterative
method, which uses equations (21)–(23) with spatial derivative
terms being evaluated at n � 1 to solve for p, u and v at a time
step n. The Jacobi method is a so-called point-wise iteration
method because the solution is updated sequentially node by
node or point by point. As the right-hand side of the update
formula uses only previous iteration values, the pattern used to
sweep through the nodes in the computational domain is not
relevant.
The other method used is the point SGS method, which

updates the values in the special derivatives to be at the current
time step n where possible. As this algorithm sweeps forward in
the x-direction, only the values at i � 1 are updated and used,
which can cause preference toward a certain side of the mesh.
This issue can be solved by alternating the direction of sweeps
during one iteration, that the SGS method first sweeps forward
and then backward to produce a more “symmetric” algorithm.
The convergence behavior of these two PJ and SGS methods
will be discussed in the next Section 3.1.

pn1 1
i;j ¼ pni;j

�b 2
i;jDt r

uni1 1;j � uni�1;j

2Dx
1 r

vni;j1 1 � vni;j�1

2Dy
� Si;j � fmass x; yð Þ

	 

(21)

un1 1
i;j ¼ uni;j �

Dt
r

runi;j
uni1 1;j � uni�1;j

2Dx
1 rvni;j

uni;j1 1 � uni;j�1

2Dy

	

1
pni1 1;j � pni�1;j

2Dx
� m

uni1 1;j � 2uni;j 1 uni�1;j

Dx2

� m
uni;j1 1 � 2uni;j 1 uni;j�1

Dy2
� fxmtn x; yð Þ



(22)

vn1 1
i;j ¼ vni;j �

Dt
r

runi;j
vni1 1;j � vni�1;j

2Dx
1 rvni;j

vni;j1 1 � vni;j�1

2Dy

	

1
pni;j1 1 � pni;j�1

2Dy
� m

vni1 1;j � 2vni;j 1 vni�1;j

Dx2

� m
vni;j1 1 � 2vni;j 1 vni;j�1

Dy2
� fymtn x; yð Þ



(23)

3. Model verification and validation

Verification and validation (V&V) are the primary means to
assess accuracy and reliability in computational simulations. By
Sargent (2013), model verification is defined as “ensuring that
the computer program of the computerized model and its
implementation are correct”. And model validation is defined
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as the “substantiation that a model within its domain of
applicability possesses a satisfactory range of accuracy
consistent with the intended application of the model”. In this
study, the “code verification” is performed by comparing the
computational solution with a manufactured analytical solution

in Section 3.2. And the “solution verification” is shown by the
quantification of the discretization errors (DEs) in Section 3.3.
The fundamental strategy of validation is to assess how
accurately the computational results comparing with the
experimental data, with quantified error and uncertainty

Figure 4 Iteration comparison of the different numerical schemes

Figure 5 Comparison of (a) manufactured exact solution results with (b) numerical solution
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Figure 7 L2 Norms of DE for each of three variables

Figure 8 OOA for each of three variables p, u, v from left to right

Figure 6 DE for each of three variables (a) u, (b) v and (c) p
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estimates for both. Here the “Ansys Fluent” solution (Section
3.4) and a benchmark solution (Section 3.5) are used as the
“real” phenomenal data because both solutions are validated
extensively by researchers. In Section 3.6, the Reynolds
number effect is analyzed using this verified and validated
numerical model.

3.1 Residual history for p, u and v
To verify themethods implemented, one would like to compare
the solution to an exact solution for the flow. This is often not
possible as an analytic and exact solution could be nonexistent
or unknown. Therefore, this study will use a method of
manufactured solution (MMS), in which we prescribe an
analytic solution and add source terms to the original
equations ensuring they are satisfied based on the
prescribed functions of pmms, umms, vmms. The resulting
system is given in equations (24)–(26). Where fmass,
fx-momentum, fy-momentum are determined correspondingly by
inputting pmms(x,y), umms(x,y), vmms(x,y) into the governing
equations:

r
@u
@x

1 r
@v
@y

¼ fmass x; yð Þ (24)

@u
@t

1 ru
@u
@x

1 rv
@u
@y

1
@p
@x

� m
@2u
@x2

1
@2u
@y2

 !
¼ fx�momentum x; yð Þ

(25)

@v
@t

1 ru
@v
@x

1 rv
@v
@y

1
@p
@y

� m
@2v
@x2

1
@2v
@y2

 !
¼ fy�momentum x; yð Þ

(26)

The discretization methods of point SGS and point Jacobi
discussed above are implemented to obtain numerical
solutions. The results are compared to the exact functions
specified in the manufactured solution, with Re = 10. To
evaluate the accuracy and behavior at a variety of mesh levels,
the grid family with a refinement factor of 2 is created
including grids with 9, 17, 33, 65 and 129 nodes in a single
direction. Above that, the higher grid-level would take more
than 200,000 iteration steps to be converged and is time-
consuming.
The converging speed of different numerical algorithms of

point Jacobi and SGS can be compared in Figure 4. Among
different mesh sizes, it could be noticed that the finer mesh, the
longer time it takes to converge.Moreover, the PJ is slower than

Figure 9 Comparison of (a) Fluent results; with (b) the current solution for p, u, v fields from left to right
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SGS with the same grid level, for instance, SGS is almost three
times faster in the 129�129 case. This is because the PJ
scheme does not use the updated results in the current
iteration. Conversely, SGS can perform “two sub-iterations” in
a single iteration step with an updated value obtained in the
current iteration. Therefore, the Gauss-Seidel scheme has a
higher degree of implicitness than the Jacobi method, and
yields faster convergence. As indicated by Mazumder (2015),
the added implicitness would manifest itself only if the
sweeping pattern is strictly adhered to, whatever that might be.
Otherwise, the convergence behavior may revert to that of the
Jacobi method.

3.2 Comparison withmanufactured solutions
The contour plots of the Numerical Solution of MMS
[Figure 5(a)] and MMS exact solution [Figure 5(b)] are
compared. At a mesh level of 65� 65, it is hard to notice
substantial differences between the numerical solution and the
manufactured exact solution. It proves that the solution using
the point-Jacobi or SGS algorithm can be verified as an
accurate approximation to the solution of the discrete
equations.

3.3 Discretization error and observed order of accuracy
The discretization error (DE) of the 65�65 grid case is shown
in Figure 6. As expected, the DE values are low enough as less
than 10�4. The values prescribed at the domain boundaries
have no error, but error starts occurring near the boundary as
the derivatives at this location are approximated by the
solution.
To study the behavior of the DE with mesh size, the L2

norms of the DE for each of the three variables are shown in
Figure 7. The mesh sizes are chosen as 9� 9, 17�17, 33� 33,
65�65, 129�129, and the iteration method is SGS. As the

mesh is refined, the DE is expected to diminish at a rate
consistent with the discretization scheme. As the scheme used
here is second-order in space, it would be expected that the
slope to be consistent with a second-order slope.
The second-order accuracy can also be shown by plotting the

observed order of accuracy (OOA) which is a natural logarithm
ratio of DEs divided by the natural logarithm of corresponding
mesh spacing, for instance, 8 and 16 or 64 and 128. As shown
in Figure 8, which shows that the accuracies of the three
variables p, u, v are around 2. The discrepancy or uncertainty in
the methods could be the influence of time derivative
preconditioning or due to the insufficiency of the artificial
viscosity term to overcome the odd-even decoupling.With finer

Figure 10 Comparison of (a) literature results; with the (b) current solution

Figure 11 Comparison of current solution with results from the
literature for centerline velocity
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mesh, the OOA becomes closer to the expected order of 2 (see
the rightmost 64/128 finest case).

3.4 Comparison with commercial software solutions
As a replacement for experimental data, the well-established
solutions are used to validate current outputs with the same

assumptions, grids, boundary conditions, etc. In this section,
the physical issue of driven-cavity is solved and validated with
the ANSYS Fluent solutions at Reynolds number of 100. All
the boundary conditions are specified to be consistent with the
implementation described above. The density of the fluid is set
to unity and the dynamic viscosity is used to control the

Figure 12 Vortex formation for Reynolds numbers of (a)100, (b) 500, (c) 1,000 with p, u, v fields from left to right
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Reynolds number of the flow, which is not equal to the actual
fluid property. The case is initialized and run to a convergence
tolerance of 1e-8. The results for a Reynolds number of 100
with 81� 81 grids are compared in Figure 9. It can be seen that
the solutions are nearly identical. Fluent uses a pressure
correction method known as the Semi-Implicit Method for
Pressure-Linked Equations (SIMPLE), which is widely used
and validated for half a century.

3.5 Comparison with the literature
To better understand the accuracy of the current algorithm, the
streamlines and velocity distribution along the central line are
compared to the benchmark solution gained by Ghia (1982).
The results are shown in Figures 10 and 11, in which u is along
the vertical centreline while v is along the horizontal centreline.
It could be noticed that the similarity of the streamline and
velocity components solutions. This provides further validation
that the methods used properly produce results that are
accurate enough.

3.6 Reynolds number effects
Despite the rising interest in the transition Reynolds number, it
cannot be denied the low to medium Re cavity problem still be
analyzed with various additional problem modifications. The
cases of three different Reynolds numbers Re = 100, 500 and
1,000 are chosen to analyze the effect of Rewith the samemesh size
of 121�121. These effects can be seen in Figures 12(a)–12(c).
The resulting flow field shows three different swirling flow
structures, which include one primary vortex core in the center and
two secondary vortices of USE (upstream secondary eddy) and
DSE (downstream secondary eddy) defined by Chiang (1998).
The size differences between pairs of smaller vortices at the bottom
corner are noticeable comparing three pressure field plots (left). As
Re increases, the low-pressure zone becomes smaller while the size
of the two smaller circulation vortices in each corner increases.
Similar to gears, viscous forces at the lid drive the large core
structure which then drives the smaller corner eddies. As the
Reynolds number increases, the lid’s velocity imposes a relatively

less viscous effect on the adjacent fluid compared with the inertial
effect. As time goes by, the strength from inertial forces from the
incoming flow made the small vortex, especially DSE at the
preferred right corner, increase in size as there is less viscous shear
resistance. From u-velocity plots (middle), the negative u-velocity
zone becomes lower and wider. While for v-velocity plots (right),
the negative v-velocity zone becomes thinner and longer. These
phenomena are consistent with the experimental results and can be
explained by a highermass transfer rate of the fluid inside the cavity
as Re increases (Sahak et al., 2020). From all these findings, the
flow topology is proved to be highly dependent upon the Reynolds
number.

4. Parametric effects on numerical behavior

4.1Mesh size influence on convergence
Mesh size from coarsest 11� 11 to finest 161�161 are
compared with Re = 100, CFL = 0.5, � = 0.1, C(4)= 0.01 and
SGSmethod. From Figure 13, it can be seen that the mesh size
has a significant influence on convergence. For the coarsest
11� 11 grid level, the spatial resolution has deviated too much
that leading to divergence in a short time. Excluding that, a
finer mesh typically requires more iterations and time to
converge. Two facts account for this as follows: on the one
hand, asmesh size decreases, smaller time steps need to be used
due to the stability criteria; on the other hand, as the artificial
viscosity term is of magnitude Dx3, the residual which comes
from artificial viscosity will decrease, which needs more
iterations to shrink the DE between discretized equations with
artificial viscosity and physical equations. Results (in terms of
iteration steps trend) agree well with the CFD simulation of an
engine nacelle byOlejnik et al. (2021).

4.2Mesh size sensitivity
As stated by Erturk (2005), the accuracy of a finite difference
solution is set by the mesh size, and by the spatial order of the
FD equations and the boundary approximations. Therefore,
mesh fineness is not only a very influential parameter to the

Figure 13 Residual history comparison for different grid sizes 11, 21, 41, 81, 121 and 161
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computation speed but also the solution accuracy. As the
number of nodes grows, the steps are made smaller and more
computations per time step are required. This motivates the
need to determine an efficient but also sufficiently small size
based upon results. The influence of mesh size on the flow field
solution accuracy is shown in Figure 14. For the 21� 21 and
41�41 grid cases, the edges of the blue color area (v
component of reversed y-direction) are irregular in these
coarser meshes as they are not able to be resolved accurately.
From cases of 81� 81 and 161�161 grid levels, it is apparent
that the mesh size does not have a significant influence on the
solution. It is confirmed that the 81� 81 medium size of the
current domain is large enough for an accurate prediction,
which is consistent with the computational study of an airfoil by
Duddempudi et al. (2007). For finer mesh cases, the v
component contour lines are arranged much smoother as
approaching a more accurate solution. As the number of grids

used increases, the mesh size Dh gets smaller. Defined as Rec =
uDh/v, this cell Reynolds number Rec or so-called Peclet
number decreases as well. Thus, the small corner vortices can
be resolved better enabling an accurate solution, and the
numerical stability characteristics are also improved.

4.3 Influence of prescribed j value
As stated in Section 2.2, with the time-derivative preconditioning
term the resultant scheme becomes a symmetric hyperbolic
system for the inviscid terms, which is called a well-posed system.
Numerical methods can be used with marching this hyperbolic
system in time. The parameter b added can be chosen to
accelerate the convergence to the steady-state.
To study the effects of this b term, cases with five different

values of k which multiplying the lid velocity in the
determination of b when the x-component of velocity is small
[Equation (5)], are investigated. The parameters are chosen as

Figure 14 Solutions for grid sizes of 21, 41, 81 and 161
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grids 65�65, Re = 100, CFL = 0.5, k = [0.001, 0.01, 0.1, 0.3,
0.9], and C(4) = 0.01. The resulting convergence histories can be
seen in Figure 15. For larger values of k , the maximum of u21 v2

for the inside nodes are always smaller than kU2 throughout the
iteration. Thus, the value of k ranging from 0.01 to 0.9 will not
generate significantly different convergence times. When k is as
small as 0.001, b would be determined by u2 1 v2 leading to a
relatively large pseudo-time derivative of 1

b 2
@p
@t which significantly

affect the numerical behavior of the solution. Because b is
updated locally at each node, instead of a constant, that the
algorithm takes a much longer time to converge. Therefore,
though a smaller k inducing a larger 1

bwould enhance the

computation stability, it shall be selected without significantly
slowing the computation or destroying the time accuracy of the
governing equations.

4.4 Effects of artificial viscosity
The exact value of the coefficient C(4) multiplying in the
artificial viscosity term has the potential to influence flow
solutions because it can add too much viscosity to the slower
waves (Turkel and Vatsa, 1994). The numerical parameters
studied are chosen as CFL = 0.5, k =0.1, C(4)=[ 116,

1
32,

1
64,

1
100

and 1
128]. TheDE versus� from 0 to 0.05m at the centerlines of

y = 0.025 m is calculated for MMS solutions. As shown in
Figure 16(a), with increasing of C(4) from 1/128 to 1/16, the
peaks of absolute DE of the u-component increase
proportionally from 1e-5 to 8e-5 by 8 times. A similar trend can
be observed from Figure 16(b) for DE of the v-component and
Figure 16(c) for DE of the pressure with different significance.
Undoubtedly, a lowerC(4) means the calculation is less affected
by artificial viscosity, thus a more accurate solution. However,
the odd-even decoupling issue could be seen for low enough
values of this coefficient, that numerical values could oscillate
between adjacent nodes. In sum, this coefficient C(4) shall be
selected wisely as a compromise of mitigating DE and odd-even
decoupling effects using a preliminary test.

5. Conclusion

The cavity flows arise extensively in aerospace industrial
applications, such as structural integrity analysis, noise control

and CFD solver verification. This paper presents an extensive
review of the literature about the CFD development in LDC
flow, discusses methods and procedures for assessing V&V and
explained fundamental issues, such as code verification,
solution V&V. A detailed parametric study introduces the best
way to choose a rapid and effective numerical setting when
applying LDC flow as a validation tool for the new solver
development. The detailed design suggestions can be
summarized as follows:
� The SGS Method can be more than three times faster (or

fewer iteration steps) than the Jacobi method at the same
parameter settings, implying that the more implicit the
iterative scheme, the faster the convergence. From the
verification with MMS, the OOA is gradually converged
to two which is the formal order of accuracy for both
iteration methods. Both schemes have the advantage that
they are time-saving to implement and are applicable to
any mesh topology. And the computational cost per
iteration of both methods is also very low, making them
attractive choices.

� For different Reynolds numbers, the flow structures are
different due to viscous effects with different m . Until the
Reynolds number reaches 100, the corner eddies near the
lid plane are small even hardly visible. For Reynolds
numbers approaching 500 to 1,000, the primary core
moves to the center, and the DSE/USE starts to grow and
detach from the side walls. At higher Reynolds numbers,
steady numerical solutions can only be obtained using
finer grid meshes, otherwise, results would be periodic.

� Finer meshes require more time steps to converge while
coarse mesh can be more easily driven unstable. Our
computations indicate that the DE norm is decreased with
the mesh size decreasing. Therefore, finer grid mesh is
necessary to obtain a steady solution and also resolve the
vortices that appear at the corners of the cavity, especially
at high Reynolds number cases.

� Time-derivative preconditioning is necessary to the
stability of the scheme and k must be sufficiently large to
allow stability. The effects of artificial viscosity can be
observed by changing C(4), and artificial viscosity would
proportionally affect the value of DE.

Figure 15 Residual history comparison for different time-derivative preconditioning factors
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