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The hydrodynamic interactions (HIs) of two colloidal spheres characterized by the
translation–translation (T–T) couplings have been studied under various confinements,
but little is known regarding the HIs of anisotropic particles and rotational motions, which
are common in nature and industry. Here, we study the T–T, rotation–rotation (R–R) and
translation–rotation (T–R) hydrodynamic couplings of two colloidal ellipsoids sediment
on the bottoms of channels in experiment, theory and simulation. We find that the degree
of confinement and the particle shape anisotropy are critical tuning factors resulting in
anomalous hydrodynamic and diffusive behaviours. The negative R–R coupling reflects
the tendency of opposite rotations of two neighbouring ellipsoids. The positive T–R
coupling reflects that an ellipsoid rotates away from the channel axis as another ellipsoid
approaches. As the channel width increases, the positive T–T coupling changes to an
abnormal negative coupling, indicating that the single-file diffusion can exist even in
wide channels. By contrast, only positive T–T couplings were observed for spheres in
channels. The T–T coupling increases with the aspect ratio p. The R–R coupling is the
maximum at a moderate p ∼ 2.8. The T–R coupling is the maximum at a moderate degree
of confinement. The spatial range of HIs is longer than that of spheres and increases with
p. We propose a simple model which reproduces some coupling phenomena between two
ellipsoids, and it is further confirmed by low-Reynolds-number hydrodynamic simulation.
These findings shed new light on anisotropic particle diffusion in porous media, transport
through membranes, microfluidics and microrheology.
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1. Introduction

The motion of a particle in a fluid creates a local flow field which induces a drag force and
torque on a adjacent particle and in turn on itself (Yang & Kim 1995). Such interparticle
interactions mediated by the fluid, called hydrodynamic interactions (HIs), lead to the
translation–translation (T–T), rotation–rotation (R–R) and translation–rotation (T–R)
hydrodynamic couplings between particles (Happel & Brenner 1983). Hydrodynamic
interactions depend on particles’ size, shape and geometric confinement; they are of
fundamental importance in fluid mechanics, with broad applications. For example, HIs
play a critical role in the self- and collective diffusion (Dhont 1996), transportation (Doi
& Edwards 1988), dynamic structure (Grzybowski, Stone & Whitesides 2000), rheological
property (Foss & Brady 2000) and phase behaviours (Tanaka 2001, 2005). Colloids
are important systems for the study of hydrodynamic couplings owing to their broad
applications in soft matter, biophysics, chemical engineering, nanoscience and technology.
The spontaneous random Brownian motions provide a statistical way to measure their
coupled motions and HIs. Hydrodynamic interactions characterized by T–T couplings
have been intensively studied for colloidal spheres in three dimensional (3D), quasi-two
dimensional (q2D), and quasi-one dimensional (q1D) (Dufresne et al. 2000; Cui, Diamant
& Lin 2002; Lin et al. 2002; Cui et al. 2004; Valley et al. 2007; Diamant 2009; Novikov
et al. 2010; Misiunas et al. 2015) systems, but rarely for non-spherical particles and
rotational motions in either unbounded or confined fluids.

In natural and industrial systems, however, most particles are non-spherical and their
rotational motions and hydrodynamic torques are much more prominent than those of
spheres. Particle’s anisotropy and rotation strongly affect HIs resulting in rich behaviours
of dynamics, structures, phases, rheology and self-assembly (Somasi et al. 2002; Duggal
& Pasquali 2006; Han et al. 2006; Sokolov et al. 2007; Han et al. 2009; Zheng & Han
2010; Zheng, Wang & Han 2011; Zheng et al. 2014; Davidchack, Ouldridge & Tretyakov
2017). In addition, rotational motion and HIs are key factors in the cell–cell scattering
(Drescher et al. 2011), bacterial swarming (Brotto et al. 2013; Dunkel et al. 2013), biofilm
formation (Drescher et al. 2011; Mathijssen et al. 2016), feeding current in microorganism
colonies (Grünbaum 1995) and pattern formation for fish-like swimmers (Dai et al.
2018). Despite its importance, HIs between two anisotropic particles are challenging to
measure because they depend on not only particles’ separation but also their orientations.
Thus, two anisotropic particles have many more configurations than two spheres, and
the statistics at each configuration is not enough for HI measurements. Hydrodynamic
interactions for anisotropic particles have only been experimentally measured only in a
few special cases, e.g. the longitudinal T–T coupling between two parallel aligned thin
microrods trapped by optical tweezers (Di Leonardo et al. 2011) and the T–T couplings
between a sphere and a dimer confined between two glass plates (Villanueva-Valencia
et al. 2018). On the other hand, the rotational motion is difficult to detect experimentally
for spherical particles. Rotational couplings were only theoretically studied between two
spheres trapped in harmonic potentials with respect to both their positions and orientations
in three-dimensional unbounded fluids (Reichert & Stark 2004) and experimentally tested
for the temporal T–R coupling of two colloidal spheres in a special tangential relative
motion (Martin et al. 2006). Theoretical and simulation studies usually apply simplified
models and approximations inducing different levels of discrepancy with experiments (Cui
et al. 2002; Misiunas et al. 2015). The accurate prediction of HIs for anisotropic particles,
confined boundaries or rotational motions is much more difficult and complicated
because the simplest spherical symmetry and point sphere approximation are no longer
valid. Increasingly sophisticated methods have been developed to model suspension of
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non-spherical particles by constructing mobility matrix for many particles (Mazur & van
Saarloos 1982; Ladd 1994a,b; Berlyand & Panchenko 2007; Domínguez 2018), but the
required hydrodynamic mobility tensor is an input parameter in prior. Here, we employ
narrow channel confinement to reduce the possible configurations and perform long time
observations to obtain good statistics for all the T–T, T–R and R–R couplings between two
anisotropic particles.

Particle diffusions in geometric confinements are omnipresent in industrial and natural
processes of chemistry, nanotechnology, geology and biology. Channel confinement is
important in a wide range of problems from the transport of ions and proteins through
biomembranes and porous media (Cacciuto & Luijten 2006; Usta, Butler & Ladd 2007)
to the microfluidic applications in flow cytometry (Huh et al. 2005), bioassays (Huang
et al. 2007), drug delivery (Pagès, James & Winterhalter 2008) and lab-on-a-chip (Stroock
et al. 2000). Furthermore, a q1D channel leads to a single-file diffusion with non-trivial
correlations and intriguing behaviours qualitatively different from the normal diffusions
in two dimensions and three dimensions because particles cannot pass one another in
q1D (Pozrikidis 1992; Wei, Bechinger & Leiderer 2000; Cui et al. 2002; Misiunas et al.
2015). Single-file diffusion in q1D channels has been intensively studied in experiments
(Cui et al. 2002; Lin et al. 2002; Valley et al. 2007; Diamant 2009; Novikov et al.
2010; Misiunas et al. 2015), which are all about the translational motion and T–T HIs
of spherical particles. It has been found that a q2D or q1D confinement can strongly affect
the HIs of colloidal spheres: the T–T hydrodynamic coupling is long-ranged and decays
with interparticle distance X as 1/X in an unbounded three-dimensional fluid (Happel &
Brenner 1983) and near to a single wall (Blake 1971; Dufresne et al. 2000), and 1/X2

between two walls (Cui et al. 2004), but decays rapidly in q1D confinements to nearly zero
in an upper-side-open long groove (Cui et al. 2002; Valley et al. 2007; Diamant 2009;
Novikov et al. 2010) and a one-closed-ended short tube (Misiunas et al. 2015) or decays
to a finite value in an open-ended tube (Misiunas et al. 2015). By contrast, little is known
about the confinement effect on the HIs and single-file diffusion of anisotropic particles.

In this work, we present experimental measurements, theoretical modelling and
numerical simulations of the T–T, R–R and R–T HIs between two anisotropic particles
in channels for the first time, which all give consistent results. We directly measure the
coupling diffusivities of colloidal ellipsoids freely diffusing in long-groove channels by
fluorescent video microscopy. We explore the effects of particle anisotropy and degree
of confinement on HIs by varying the ellipsoids’ aspect ratio and the channel width; in
fact, the effect of degree of channel confinement has not even been studied for spherical
particles. Distinct HIs are discovered in different parameter regimes. We propose a
simplified dumbbell-in-cylinder model that describes the experimental results remarkably
well by fitting the dumbbell length and cylinder radius in different experimental parameter
regimes, and further perform finite element numerical simulations to validate the model
by quantitatively comparing with the experimental and theoretical results. Finally, we
interpret the observed HIs and diffusion phenomena from the flow fields calculated in
simulations. Because the colloidal particles are heavy enough to suppress out-of-plane
fluctuations (similar to Cui et al. (2002), Valley et al. (2007) and Novikov et al. (2010)),
the translational and rotational motions of the colloidal ellipsoids are measured in the
x–y plane, i.e. quasi-2D, which is different from the scenarios of suspended particles that
permit three-dimensional diffusion.

In theory and simulation, the calculation of HIs is difficult in terms of balancing the
computational cost (Ermak & McCammon 1978; Happel & Brenner 1983; Diamant 2009)
and the accuracy (Brady & Bossis 1988; Karrila, Fuentes & Kim 1989; Tran & Phan 1989).
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The hydrodynamic coupling diffusivities, characterized by the off-diagonal terms of the
diffusion tensors in diffusion matrix

D =
(

Dxx Dxθ

Dθx Dθθ

)
, (1.1)

are usually obtained from a generalized Einstein relation (Montgomery & Berne 1977;
Mazo 2002)

D = kBTζ−1. (1.2)

The friction matrix ζ =
(

ζ xx ζ xθ

ζ θx ζ θθ

)
can be calculated through

(
F
L

)
= ζ ·

(
u
ω

)
, (1.3)

by measuring the total hydrodynamic forces F and torques L imposing on a particle pair

at the translational and rotational velocities u =
(

u1
u2

)
and ω =

(
ω1
ω2

)
. The diagonal or

off-diagonal terms in each friction tensor of ζ offer a velocity-independent measure of
the hydrodynamic drag force (or torque) on a particle exerted by the flow field induced
by its own or the other particle’s movement, respectively (Montgomery & Berne 1977;
Mazo 2002). Equation (1.2) reflects the fluctuation–dissipation relation which holds under
thermal equilibrium. For three-dimensional motions, the superscripts, x, θ in (1.1)–(1.3)
(see figure 1a,b) can also be replaced by y, z or φ. Previous studies only focused on the x–x
and y–y couplings of colloidal spheres (Meiners & Quake 1999; Dufresne et al. 2000; Cui
et al. 2002, 2004; Valley et al. 2007; Diamant 2009; Novikov et al. 2010; Misiunas et al.
2015) and here we study the x–x, x–θ , θ–θ , y–y, y–θ couplings, because the heavy colloidal
spheres and ellipsoids barely fluctuate in the z direction. It provides a way to obtain ζ by
measuring D from the random thermal displacements as used in the present experiment
and previous colloid experiments about HIs (Meiners & Quake 1999; Dufresne et al. 2000;
Cui et al. 2002, 2004; Lin et al. 2002; Martin et al. 2006; Valley et al. 2007; Novikov et al.
2010; Misiunas et al. 2015). Alternatively, ζ can be directly calculated from its definition
of (1.3) by measuring the force and the corresponding velocity without random thermal
motions, as used in the present simulation (i.e. numerical solution), previous numerical
simulation (Misiunas et al. 2015) and theory (Reichert & Stark 2004) about HIs. The total
hydrodynamic force and torque can be represented by the integral of the force distribution
density over the particle surface (Durlofsky, Brady & Bossis 1987; Ladd 1994a,b; Lisicki,
Cichocki & Wajnryb 2016). Higher precision in the hydrodynamic description can be
achieved by discretizing the particle surface finer and smoother at the expense of a higher
computational cost. Various simplification and approximation methods are resorted to
in an attempt to reduce the calculation expense and make the computation tractable,
such as the finite element method (Misiunas et al. 2015; Villanueva-Valencia et al. 2018;
Di Leonardo et al. 2011), the boundary element method (Palanisamy & den Otter 2018),
the bead model (García de la Torre et al. 2007; Wajnryb et al. 2013; Lisicki et al. 2016),
the lattice-Boltzmann model (Ladd 1994a,b), the raspberry swimmer model (de Graaf
2016) and the Oseen or Rotne–Prager approximation (Lin et al. 2002; Wajnryb et al. 2013;
Bleibel et al. 2014; Goddard, Nold & Kalliadasis 2016; Palanisamy& den Otter 2018). Our
theoretical model is in the spirit of the Stokeslet object model which is a recently developed
promising method because it enables the simplest form to extract the geometric properties
governing the HIs of arbitrarily shaped particles (Goldfriend, Diamant & Witten 2015;

933 A40-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
62

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1062


Hydrodynamic couplings of colloidal ellipsoids in grooves

(a)
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Figure 1. Coaxial (Y/w ∈ [0, 0.1)) and off-axis (Y/w ∈ [0.5, 0.7)) ellipsoid pairs in the q1D channel.
(a) Bright field (upper) and fluorescent (lower) microscopy images of the coaxial (left) and off-axis (right)
ellipsoid pairs. (b) Schematic diagram of sample geometry and ellipsoid separation. (c,d) Axial trajectories x(t)
(shifted 10 μm closer for clarity) of the coaxial (c) and off-axis (d) ellipsoid pairs; Insets are zoom-in views of
the 10 s trajectories in the blue dashed boxes when X is less than the screening length XSC. Aspect ratio p = 7.5
and channel width w = 6 μm.

Mowitz & Witten 2017; Witten & Mowitz 2019; Braverman, Mowitz, & Witten 2020;
Witten & Diamant 2020). In this method, the object consists of a discrete set of points
approximated as Stokeslets and separated by rigid distances, and the accuracy largely
depends on the design of Stokeslets’ configuration (Goldfriend et al. 2015; Mowitz &
Witten 2017; Witten & Mowitz 2019; Braverman et al. 2020; Witten & Diamant 2020).
Our findings indicate that the complex groove-like channels with different cross-sections
can be simplified by cylindrical tubes and the Stokeslet approximation can well capture
the hydrodynamic features of colloidal ellipsoids.

The remainder of the paper is organized as follows. We first describe the experimental
system and the parameters of different samples in § 2. Experimental results of the T–T,
R–R and T–R hydrodynamic couplings and comparison with other experiments are
presented in § 3. The aim of § 4 is to provide a simple theoretical model for experimental
results. Section 4.1 presents the dumbbell-in-cylinder model. Section 4.2 compares the
experimental results with the model. The aim of § 5 is to make a comprehensive connection
between experimental results and the model by the finite element numerical simulations.
Section 5.1 compares with the simulation, experimental and theoretical results and
§ 5.2 demonstrates the flow field induced by a moving ellipsoid in a cylinder, which
qualitatively explains the experimental results and the theoretical prediction. Finally, the
work is summarized and concluded in § 6. Discussions and comparisons between the
experimental, theoretical and numerical results can be found in §§ 5.1, 5.2 and 6.

2. Experimental systems

The sample cell comprised a polydimethysiloxane (PDMS) substrate with long straight
microgrooves and a glass slide. The substrate and slide were separated by two
100 μm-thick spacers. First, we placed a droplet of aqueous suspension of colloidal
ellipsoids onto the glass slide. The dilute colloidal suspension was absorbed into the
sample cell due to the capillary force. Then, we quickly sealed the sample cell with epoxy
glue. After approximately 30 min, the colloidal ellipsoids sediment onto the bottom of
the microgrooves in the PDMS substrates. Finally, the Brownian motions of the colloidal
ellipsoids in the grooves were observed under an optical microscope and recorded using a
charge-coupled device camera at 10 frames per second (see figure 1a). The centre-of-mass
(CM) positions (x, y) and orientations θ of individual ellipsoids (see figure 1b) were
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tracked according to our image processing algorithm with an angular resolution of 1° and
spatial resolutions of 0.07 and 0.04 μm along the long and short axes, respectively (Zheng
& Han 2010).

To make the microgrooves, we fabricated lines of photoresist with widths of w = 4, 5
and 6 μm; a height of d = 5 μm; and a length of l = 1 cm on a silicon wafer through
photolithography. Subsequently, the line patterns of the photoresist mask were printed on
the PDMS substrate using soft lithography to form upper-side-open microgrooves with
rectangular cross-sections and the same w, d and l. The PDMS rectangular grooves have
sharp corner edge and <100 nm surface roughness on the upper surface and bottom.

In bright-field microscopy, the position of an ellipsoid cannot be very accurately
measured due to the interference from the nearby channel edges. To accurately track
the ellipsoids, we fabricated ellipsoids by stretching fluorescent spheres (Han et al.
2009; Zheng & Han 2010) and imaged the ellipsoids under fluorescent microscopy (see
figure 1a). Briefly, we added 3.26 μm-diameter fluorescent polystyrene (PS) spheres (0.5%
by weight) into an aqueous solution of polyvinyl alcohol (PVA) (12% by weight) in a Petri
dish, and heated and stretched the solid PVA film after water evaporation. The PS spheres
embedded in the PVA film were stretched into ellipsoids at 110 °C, which is above the
glass transition temperatures of PVA (Tg = 85 °C) and PS (Tg = 90 °C). After cooling to
room temperature, the PVA was dissolved and washed away with deionized water several
times. We fabricated five batches of ellipsoids with aspect ratios p = a/b = 1.8, 2.2, 2.8,
5.2 and 7.5, where a and b were the semimajor and semiminor axes, respectively. The
polydispersity of p was carefully controlled to less than 3%. The size ratios between
the ellipsoids and the channel widths were chosen to enable quantitative exploration
of the effects of particle anisotropies and degree of channel confinement on HIs, and
to limit the particles’ orientational degrees of freedom to a small range by the narrow
channel confinement. Next, 7 mM sodium dodecyl sulphate was added to stabilize the
suspension (Zheng & Han 2010). The pair potential between two ellipsoids was calculated
from U(X) = −kBT ln g(X) according to the Boltzmann distribution at a low density
where the multibody effect is negligible. Here, X is the CM separation along the axial
direction (see figure 1b); and the one-dimensional radial distribution function, g(X) =
〈∑i /=0 δ(x − xi)〉/ρ, was directly measured from the histogram of X normalized by the
linear density ρ = N/l, where N is the total number of particles in the channel length
l. The colloidal ellipsoids showed a hard-core pair potential, indicating that they can be
regarded as hard particles without attractions or repulsions. According to the Boltzmann
distribution, ellipsoids exhibit an exponential distribution along the z direction with a
characteristic length of the gravitational height h = kBT/(mg) = 0.424 μm, where mg
is the buoyancy weight of the ellipsoid. Here, h is much smaller than the particle size,
indicating that the ellipsoids are heavy enough to sediment to the bottom of the channel
with little fluctuations in the z direction. Such small distance between the particle and
the bottom surface dominates particles’ drags, but does not qualitatively change HIs. It
confines the angle fluctuation to merely 2°–5° for ellipsoids with aspect ratios ranging
from 7.5 to 1.8. This is confirmed by the observation that ellipsoids’ centres and tips barely
fluctuate out of the focal plane, i.e. the fluctuation is less than the 0.4 μm focal depth of
the microscope objective.

The HIs were measured as functions of the particle CM separation (X, Y) (see
figure 1b) with sufficient statistics for accurate measurements in different parameter
regimes ( p,w, Y/w) via very long (>24 h) observations for each sample with a certain
p and w. The linear packing fraction φ = 2aN/l was moderately low (0.05 ≤ φ ≤ 0.3) to
form many isolated ellipsoid pairs in channels; that is, other ellipsoids were more than 10a
away and had little effect due to the short-range nature of HIs in the narrow grooves. In a
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long video of an equilibrium q1D dilute gas, all the video sections with isolated ellipsoid
pairs (i.e. X< 10a and other particles >10a away) are used for HI measurements. Both
approaching and receding motions of two ellipsoids are observed.

3. Experimental results

3.1. The x–x, x–θ , θ–θ , coupling diffusivities
The HIs of ellipsoid pairs are characterized by the x–x, θ–θ and x–θ coupling diffusivities,
as follows: ⎧⎪⎨

⎪⎩
Dxx

C = 〈�x1�x2〉/(2t),

DθθC = 〈�θ1�θ2〉/(2t),

Dxθ
C = 〈�x1|�θ2|〉/(2t) = −〈|�θ1|�x2〉/(2t) = −Dθx

C ,

(3.1)

where �xi is the CM displacement along the channel axis, and �θi is the angular
displacement with −π/2 ≤ θ ≤ π/2 of ellipsoid i during time interval t (see figure 1b).
Here 〈 〉 is an average over trajectories of all isolated pairs at all times from experimental
trials. The first equation in (3.1) has been used in previous studies about colloidal spheres
(Cui et al. 2002, 2004; Mazo 2002; Valley et al. 2007; Diamant 2009; Novikov et al. 2010),
but the latter two about rotational motions have not been applied to colloidal experiments.
In the diffusion matrix (Montgomery & Berne 1977; Mazo 2002) D(X, Y) (see (1.1)),
Dxx

C , DθθC and Dxθ
C are the off-diagonal terms of the diffusion tensors Dxx, Dxθ , and Dθθ ,

while the diagonal terms are the self-diffusivities Dxx
S ≡ 〈�x2

1〉/(2t), DθθS ≡ 〈�θ2
1 〉/(2t)

and Dxθ
S ≡ 〈�x1�θ1〉/(2t).

The experimental results of Dxx
C (X), DθθC (X) and Dxθ

C (X) at different degrees of off-axial
distance Y/w are shown in figure 2 for different p and in figure 3 for different w. The effects
of (w, Y/w) have not been explored even for T–T HIs of two spheres. In our experiment,
they all show strong couplings at small X which decay with increasing X and vanish beyond
XSC, reflecting a screening effect of the channel confinement on the HIs. The screening
length XSC is defined as the minimal X where |DC(X)| ≤ 0.1|DC(X)|MAX . The screening of
HIs results in uncorrelated axial trajectories of ellipsoid pairs at X > XSC (see figure 1c,d).
Interestingly, we find that Dxx

C changes sign as Y/w increases: Dxx
C > 0 at Y/w < 0.5 and

X<XSC for various p (see figure 2a–c) and various w (see figure 3a–c), whereas Dxx
C < 0

at Y/w > 0.5 (see figures 2d and 3d). Such positive and negative x–x couplings are directly
observed from the concerted single-file movements of ellipsoid pairs that are in the same
directions at Y/w < 0.1 (see inset of figure 1c) but in opposite directions at Y/w > 0.5
(see inset of figure 1d). We emphasize that the positive axial HI (Dxx

C > 0) dominates in
q1D confinements with w/b < 4 which is too strong to allow particles passing each other,
while the anomalous negative axial HI (Dxx

C < 0) occurs in weak channel confinement
(w/b > 4). By contrast, for spherical particles in q1D or wide channels, only positive x–x
couplings were observed (Cui et al. 2002; Lin et al. 2002; Novikov et al. 2010; Misiunas
et al. 2015). It is well known that the single-file movements of the spheres occurred only in
q1D confinements (Cui et al. 2002; Lin et al. 2002; Misiunas et al. 2015). By contrast, our
result shows that single-file diffusions of ellipsoids can occur in wide channels because
two off-axis ellipsoids tend to separate apart (Dxx

C < 0) when they get close to each other.
The θ–θ coupling is negative (DθθC < 0) at X<XSC for various p, w and Y/w

(see figures 2e–h and 3e–h), indicating that an ellipsoid’s clockwise rotation tends to
induce its neighbour’s anticlockwise rotation. The x–θ coupling is positive (Dxθ

C > 0)

933 A40-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
62

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1062


Z. Zheng, X. Xu, Y. Wang and Y. Han

6

D
xx

 (×
10

–2
 µ

m
2  

s–1
)

c
D
θθ

 (×
10

–3
  s

–1
)

c
D

xθ
 (×

10
–3

  µ
m

 s
–1

)
c

X (µm)

Y/w < 0.1 0.1≤Y/w < 0.3 0.3≤Y/w < 0.5 0.5≤Y/w < 0.7

4

2

0

–2

–4

20

10

0

5 10 15 20

(a) (b) (c) (d)

(e) ( f ) (g ) (h)

p 1.8 2.2 2.8 5.2 7.5

(i) ( j ) (l)

X (µm)
5 10 15 20

X (µm)
5 10 15 20

X (µm)
5 10 15 20

0

0

–2

–4

0

–2

–4

20

10

0

–6

(k)

Figure 2. The experimental coupling diffusivities of ellipsoid pairs with different aspect ratio p as functions
of interparticle distance (X,Y) in a channel of width w = 6 μm. Here (a–d) Dxx

C , (e–h) DθθC and (i–l) Dxθ
C . The

transverse interparticle separation Y/w ∈ [0, 0.1), [0.1, 0.3), [0.3, 0.5) and [0.5, 0.7) in (a,e,i), (b, f,j), (c,g,k)
and (d,h,l), respectively.

(see figures 2i–l and 3i–l), indicating that an ellipsoid tends to rotate away from the channel
axis as a neighbour approaches, and vice versa.

The screening lengths measured from figures 2 and 3 for various p and w are shown in
figure 4. We find that XSC linearly increases with the long axis of ellipsoids (see figure 4a),
leading to a rapid amplification of XSC with particles’ shape anisotropy. For the same p,
XSC slowly increases with w (see figure 4b), reflecting a slightly stronger screening of HIs
in a narrower channel. These results indicate that XSC is much more sensitive to the particle
elongation than the channel width in upper-side-open groove channels. By contrast, XSC
is on the length scale of w for colloidal spheres in the upper-side-open groove channels
(Lin et al. 2002; Valley et al. 2007). Therefore, particle elongation can extend the effective
range of HIs exceeding the channel width (XSC � w) as shown in figure 4(b). In addition,
we find that XSC/a is the largest for Dxx

C and the smallest for DθθC , indicating a stronger
suppression of rotational HIs than axial translational HIs by the channel confinement.
Particles at different Y/w have similar behaviours of XSC.

The HIs can also be characterized by the Pearson correlation coefficient (Misiunas
et al. 2015): ρxx ≡ cov(�x1,�x2)/(σ (�x1)σ (�x2)) and similarly defined ρθθ and ρxθ ,
where cov is the covariance, σ is the standard deviation. They are equivalent to the
normalized hydrodynamic coupling diffusivities ρxx = Dxx

C /D
xx
S , ρθθ = DθθC /D

θθ
S and

ρxθ = Dxθ
C /(D

xx
S DθθS )

1/2, which exclude the influence of channel confinement and particle
anisotropy on self-diffusivities and enable a more precise comparison of HIs in different
regimes of parameters ( p,w, Y/w) (Riley, Hobson & Bence 2006; Misiunas et al. 2015).
Figure 5 presents ρxx, ρθθ and ρxθ as functions of the tip-to-tip distance of the ellipsoid
pair. For the same tip-to-tip distance, the absolute value |ρxx| increases more than one time
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Figure 3. The experimental results of coupling diffusivities of ellipsoid pairs of aspect ratio p = 5.2 as
functions of interparticle separation (X, Y) in channels of different width w. Here (a–d) Dxx

C , (e–h) DθθC and
(i–l) Dxθ

C . The transverse interparticle separation Y/w ∈ [0, 0.1), [0.1, 0.3), [0.3, 0.5) and [0.5, 0.7) in (a,e,i),
(b, f,j), (c,g,k) and (d,h,l), respectively.

(a)

XSC

w = 6 µm p = 7.5

a (µm)

θθ

30

20

xx Linear fit

xθ

θθ

xx Linear fit

xθ

10

30

20

10

w (µm)
4 5 62 3 4 5 6 7

(b)

Figure 4. The screening lengths XSC (symbols) for Dxx
C , DθθC and Dxθ

C of the coaxial ellipsoid pairs
(Y/w ∈ [0, 0.1)). Here (a) XSC for different p and w = 6 μm and (b) XSC for different w and p = 7.5. The
lines are linear fittings.

as p increasing from 1.8 to 7.5 (see figure 5a–d), reflecting an enhanced T–T HIs for more
anisotropic particles. Here |ρθθ | is non-monotonic with p and reaches the maximum at
p = 2.8 (see figure 5e–h), reflecting the strongest R–R HIs at medium aspect ratios. We
attribute the weak R–R HI as the small torque of the short moment arm for small p and
the suppression from the channel confinement for large p. Here |ρxx| and |ρθθ | decrease
at larger Y/w, reflecting the suppression of T–T and R–R HIs for off-axis particle pairs
which are closer to the channel walls. By contrast, figure 5(i–l) show that the maximum ρxθ
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Figure 5. The Pearson correlation coefficients of coupling diffusivities of ellipsoid pairs as functions of the
interparticle tip-to-tip distance (X − 2a,Y) in a channel of width w = 6 μm. Here (a–d) ρxx, (e–h) ρθθ and
(i–l) ρxθ . The transverse interparticle separations Y/w ∈ [0, 0.1), [0.1, 0.3), [0.3, 0.5) and [0.5, 0.7) in (a,e,i),
(b, f,j), (c,g,k) and (d,h,l), respectively.

appears at middle Y/w, reflecting the strongest T–R HIs for moderate off-axis particles.
The non-monotonic changes of ρθθ with p (see figure 5e–h) and ρxθ with Y/w (see
figure 5i–l) reflect non-trivial θ–θ and x–θ couplings. We explain these experimental
results based on a theoretical model and low-Reynolds-number numerical simulation in
the following sections.

3.2. The y–y and y–θ coupling diffusivities
We next measure HIs about the transverse displacements by the y–y and y–θ coupling
diffusivities as functions of (X, Y): Dyy

C = 〈�y1�y2〉/(2t) and Dyθ
C = 〈�y1�θ2〉/(2t) =

〈�θ1�y2〉/(2t) = Dθy
C in figure 6, where �yi is the CM displacement of ellipsoid i in the

transverse direction of the channel during time interval t. Here Dxx
C (X) and Dyy

C (X) of two
spheres have been measured in three dimensions (Meiners & Quake 1999) and quasi-two
dimensions (Cui et al. 2004; Valley et al. 2007; Diamant 2009). In the present study, we
comprehensively measure Dxx

C , DθθC Dxθ
C , Dyy

C and Dyθ
C for ellipsoid pairs as a function of X

and Y (see figures 2, 3 and 6).
Figure 6 shows that Dyy

C (X) and Dyθ
C (X) are nearly zero for different p and Y/w, reflecting

vanishing y–y and y–θ couplings. This is attributed to the strong suppression of transverse
motion in channel confinement as shown from the very small fluctuations in the transverse
trajectories of ellipsoids (see figure 7a). In addition, we observe that two neighbouring
ellipsoids with 2a<X<XSC tend to locate symmetrically in the transverse direction about
the central axis (y = 0) of the channel, that is, y1(t) = −y2(t) (see figures 1a,b and 7); and
the isolated single ellipsoids tend to equilibrate on the central axis, that is, |y(t)| < 0.05w
(see figure 7a). Note that X> 2a always hold since the ellipsoids cannot pass by each
other in the narrow channel. Similar phenomena were observed in constant microfluidic

933 A40-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
62

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1062


Hydrodynamic couplings of colloidal ellipsoids in grooves

D
yy

 (×
10

–2
 µ

m
2  

s–1
)

c
D

yθ
 (×

10
–3

 µ
m

 s
–1

)
c

–1

0

1

–2

0

1.8 2.2 2.8 5.2 7.5

2
(a) (b)

(c) (d)

p
Dc

X (µm)
5 10 15 20

X (µm)
5 10 15 20

Figure 6. The experimental results of y–y and y–θ coupling diffusivities. Here (a,b) Dyy
C and (c,d) Dyθ

C indicate
no hydrodynamic coupling. Ellipsoid pairs with different p and at different axial interparticle distance X in a
channel of w = 6 μm. (a,c) Coaxial (Y/w ∈ [0, 0.1)) and (b,d) off-axis (Y/w ∈ [0.5, 0.7)) ellipsoid pairs.

flows in which the isolated polymers diffused towards the channel central axis (Usta,
Ladd & Butler 2005) and the adjacent spherical droplets located symmetrically about the
central axis and form zigzag patterns (Beatus, Tlusty, & Bar-Ziv 2006; Fleury et al. 2014).
These phenomena have been interpreted as resulting from the dipolar flow field around
each particle in the channel confinement (Uspal & Doyle 2014). However, the HIs and
diffusion behaviours of particles due to the dipolar flow have not been measured. Our
results indicate that the channel confinement suppresses the transverse motion much more
than the rotational motion due to the large viscous drag along the ellipsoid short-axis.
That is to say, the effect of the transverse component of a local dipolar flow created by a
moving particle imposes a torque on the other particle and induces a rotational motion of
that particle rather than a transverse motion.

4. Theoretical analysis

4.1. Dumbbell-in-cylinder model
The flow field created by a moving particle is usually estimated using the point force
(Stokeslet) approximation (Batchelor 1970; Cui et al. 2002, 2004; Hernández-Ortiz, de
Pablo & Graham 2006; Valley et al. 2007; Diamant 2009; Novikov et al. 2010). For
example, a spherical particle, an elongated particle and a long-thin rod or fibre are often
modelled as a point force (Cui et al. 2002, 2004; Valley et al. 2007; Diamant 2009;
Novikov et al. 2010), a dumbbell of two point forces (Hernández-Ortiz et al. 2006;
Bukowicki, Gruca, & Ekiel-Jeżewska 2014) and a line of point forces (Batchelor 1970; Di
Leonardo et al. 2011; de Graaf et al. 2016), respectively. The T–T hydrodynamic coupling
of colloidal spheres has been described by treating the moving sphere as a point force
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Figure 7. (a) Typical transverse positions y(t)/w of an ellipsoid pair with 2a<X<XSC (blue curves) and a
single ellipsoid (black curve). The channel boundary is at Y/w =±0.5. (b) The corresponding histogram of the
transverse positions H(y1/w) and H(y2/w) of the ellipsoid pair with 2a<X<XSC (symbols) and the Gaussian
fits (curves). The aspect ratio p = 7.5, and the channel width w = 6 μm.

(a)

�θ1 �θ2
�yF1 �xF1

�xF2

�x1=
�x2

�yF2

Effective cylinder

2R 2R
F1

F2(xF2, yF2)

F1(xF1, yF1 = –yF2)

F1
′ F2

′XF

w

Channel
y

x
XOFXOF

F2

(b)

Figure 8. Schematic diagram of the dumbbell-in-cylinder model. (a) Rotational displacement�θ and (b) axial
displacement �x of an ellipsoid pair between time = 0 (solid ellipses with filled circles) and time = t (dashed
ellipses with open circles) in the effective cylinder (green dashed contours) of diameter 2R which is equivalent
to a channel (solid blue lines) of width w. The subscript represents ellipsoid 1 or 2. The dumbbell of point forces
F (xF, yF) and F ′(xF′ , yF′ ) at the red circles are symmetric about the ellipsoid’s CM (black circle) at (x, y) along
the long axis. The transverse force Fy = −F′y in (a) and axial force Fx = F′x in (b) are proportional to the
translational and axial displacements (red arrows) �yF = −�yF′ and �xF = �xF′ , respectively (Goldfriend
et al. 2015).

at the sphere centre (Cui et al. 2002, 2004; Valley et al. 2007; Diamant 2009; Novikov
et al. 2010). The translation of a spheroid in unbounded flow has been described by a
line distribution of Stokeslets between the foci (Chwang & Wu 1976). Here, we proposed
a simplified dumbbell-in-cylinder model to estimate the T–T, R–R and T–R coupling of
two ellipsoids in channels. This model is based on the following three approximations as
illustrated in figure 8 and summarized in table 1. (i) The motion of an ellipsoid is treated
as a dumbbell of point forces (F ,F ′), that is to say, the effect of the flow field induced
by an ellipsoid on the other is equivalent to exerting (F ,F ′) on the fluid. The dumbbell
length is 2XOF along the long axis with the centre coinciding with the ellipsoid’s CM.
(ii) The HIs between two ellipsoids are dominated by the point-force pair F 1 and F 2 near
the centre of the two ellipsoids. Here F ′

1 and F ′
2 at the far ends can be neglected due to the

strong screening of HIs in the channel. (iii) The confinement effect of a rectangular groove
with an open side is equivalent to that of a cylinder with a radius R>w as confirmed
in Cui et al. (2002), Diamant (2009) and Novikov et al. (2010). These assumptions hold
well under the low Reynolds number (∼10−6), the no-slip boundary conditions (Happel &
Brenner 1983), b 
 R, and (a − XOF) 
 XF.

According to this theoretical model, the T–T, T–R and R–R HIs between ellipsoids
are treated as derived from the x–x, x–y and y–y components of the Stokeslet tensor.
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System Ellipsoid pair in experiment Point-force pair in dumbbell-in-cylinder model

Parameters a, b, w XOF , R

Coordinates (x1, y1, θ1), (x2, y2, θ2) (xF1 = x1+XOF , yF1 ≈ y1), (xF2 = x2−XOF , yF2 ≈ y2)

Separations X = |x1 − x2|, Y = |y1 − y2| = 2|y1| XF = X − 2XOF , YF ≈ Y

Displacements (�x1, �θ1), (�x2, �θ2) (�xF1 =�x1, �yF1 ≈ XOF�θ1), (�xF2 =�x2, �yF2 ≈−XOF�θ2)

Coupling diffusivities Dxx(X, Y), Dxθ (X, Y), Dθθ (X, Y) Δxx(XF/R,YF/R), Δxy(XF/R,YF/R), Δyy(XF/R,YF/R)

Table 1. Summary of the parameters, coordinates and coupling diffusivities in the experiment and theoretical models with subscript 1 or 2 denoting the left or right
ellipsoid in figure 8.
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Figure 9. Theoretical estimates of the (a) x–x, (b) y–y and (c) x–y coupling diffusivities of point-force pairs
as functions of the rescaled axial distance XF/R and transverse distance YF/R calculated from (4.2).

The axial translational and rotational displacements (�x,�θ) of an ellipsoid can be
represented by the axial and transverse displacements (�xF,�yF) (see figure 8 and
table 1). Consequently, DC(X, Y) of an ellipsoid pair in a channel can be approximately
transformed into the dimensionless coupling diffusivities in an effective cylinder

Δ
μν
F ≡ 〈�μF1�νF2〉/(2tkBT/6πηR), (4.1)

as functions of the rescaled axial and transverse separations XF/R = (X − 2XOF)/R and
YF/R ≈ Y/R (see figure 8 and table 1), where μ, ν= x or y and η is the fluid viscosity.
By substituting the Stokes-flow Oseen tensor in a cylinder derived from Liron & Shahar
1978 and Blake 1979 into (4.1), we obtained the theoretical equations

Δ
μν
F (XF/R, YF/R) = 6π2

3∑
k=0

3∑
n=1

{
[aμν

kn (YF/R) cos(αkn · XF/R)

+ bμν
kn (YF/R) sin(αkn · XF/R)] e−βkn·(XF/R)

+ cμν
kn (YF/R) e−γkn·(XF/R)

}
, (4.2)

where the values of (αkn, βkn, γkn) and (aμν
kn , bμν

kn , cμν
kn ) can be obtained from Liron &

Shahar (1978). Details about the theoretical expression are given in the Appendix (A). The
theoretical results ofΔμν

F at different (XF/R, YF/R) in the dumbbell-in-cylinder model are
shown in figure 9.

4.2. Comparisons between the experimental and theoretical results
We quantitatively compare the experimental DC with the theoretical prediction of the
aforementioned model in figure 10. The two parameters XOF and R in different ( p,w, Y/w)
regimes can be fitted from two out of three couplings �xx

F , �
yy
F and Δxy

F . For example, the
fitted XOF and R fromΔxx

F , Δ
yy
F can describeΔxy

F well, and have no discernable difference
from their best fits from all the three couplings, indicating that the dumbbell-in-cylinder
model is effective. Moreover, figure 11(a) shows that R fitted at a certain (w, Y/w) is
robust at different p, indicating that R is a good parameter for describing the effects of
the channel without the effects of ellipsoids. Figure 11(d) shows that XOF at a certain p
is robust at different (w, Y/w), indicating that XOF is a good parameter for describing the
effects of particles without the effects of the channel. We find that the theoretical model
can describe the experimental data well by taking only the leading terms. As depicted in
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Figure 10. Rescaled coupling diffusivities (a–d) Δxx
F , (e–h) Δyy

F and (i–l) Δxy
F as functions of ξ x = XF/R. The

experimental data (symbols) for all p and w collapse onto the theoretical fittings of (4.2) (solid curves) except
for the negative part of Δyy

F . The transverse separation of the ellipsoid pairs Y/w ∈ [0, 0.1), [0.1, 0.3), [0.3,
0.5) and [0.5, 0.7) in (a,e,i), (b, f,j), (c,g,k) and (d,h,l), respectively, with the fitted Y/R = 0.04, 0.14, 0.32 and
0.52. Vertical dashed lines mark the screening length XF

SC/R.

figure 10, the experimental ΔF(XF/R) (symbols) for all p and w at each Y/w collapse
onto the theoretical curves at the corresponding Y/R, suggesting a general mechanism of
the Stokes-flow-induced hydrodynamic couplings. The experimental positive and negative
x–x couplings of ellipsoid pairs at Y/w < 0.5 (see figures 2a–c and 3a–c) and Y/w > 0.5
(see figures 2d and 3d) are described well by the theoretical Δxx

F > 0 at YF/R < 0.5 (see
figure 10a–c) and Δxx

F < 0 at YF/R > 0.5 (see figure 10d), respectively. The negative θ–θ
(see figures 2e–h and 3e–h) and positive x–θ (see figures 2i–l and 3i–l) couplings of
ellipsoid pairs agree with the theoretical Δyy

F > 0 (see figure 10e–h) and Δxy
F > 0 (see

figure 10i–l). These consistent results reflect that the axial and transverse flows drive the
axial and rotational motion of an ellipsoid, and T–T, R–R and T–R couplings reflect well
the effect of HIs mediated by the x–x, y–y and x–y components of the induced flow.
A reverse sign in Δyy

F at XF/R ∼ 1.0 is predicted to arise from the alternating signed
eddies of the Stokeslet along the channel (Liron & Shahar 1978; Blake 1979), which is not
observed experimentally here for ellipsoids nor for colloidal spheres previously (Novikov
et al. 2010). This discrepancy probably occurs because the surface of ellipsoid 1 between
the point force and the tip, i.e. in the range of (x1 + XOF, x1 + a) near ellipsoid 2, produces
positiveΔyy

F and vice versa, which superposes onto the negativeΔyy
F when the interparticle

distance is more than the screening distance (X > XSC in the experiment, i.e. XF > XF
SC

in the model). An accurate description needs an integration over the whole surface of
the particle, see the finite element numerical simulations in § 5 which fully recover the
experimental Δyy

F ; however, our dumbbell model approximates each ellipsoid only by one
point force which can describe the average effect within the screening distance (XF < XF

SC
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Figure 11. The effective cylinder radius R and semidumbbell length XOF in the dumbbell-in-cylinder model.
Here (a) R (symbols) versus Y/w obtained from figure 10 with linear fittings (solid lines) for experiments at
different w and for all p; (b) 2R/w versus Y/w rescaled from (a) with the linear fittings (solid lines); (c) Y/R
versus Y/w rescaled from (a) with power-law fittings (solid curves), in (b,c), the black fitting curves are for
square and triangle symbols; (d) XOF/a versus p for experiment (black squares) obtained from figure 10 and
for numerical simulation (red circles) fitted from figure 13(c,d) with the curve guiding for the eyes.

in figure 10), but deviates from the experimental Δyy
F at XF > XF

SC. A more complicated
model including multiple point forces may smear out the shallow negative Δyy

F derived
from our model with single Stokeslet approximation. Nevertheless, the agreement between
the experimental and theoretical results in figure 10 ensures the validity and efficiency of
this simple analytical model to describe the strongly screened HIs of ellipsoids in channel
confinement.

Here, Δxx
F , Δ

yy
F and Δxy

F decay to zero at XF
SC/R ≈ 1.5, 0.5 and 0.8, respectively, for

various p and w (vertical dashed lines in figure 10). Here XF
SC is the screening length of

Δ
μν
F . These different values of XF

SC/R indicate that the channel confinement suppresses the
transverse local flow more than the axial flow. It explains the experimental phenomena in
figure 4 that the screening length XSC is shortest for R–R coupling, intermediate for T–R
coupling and longest for T–T coupling of two ellipsoids.

The fittings in figures 10 and 11 show that the cylinder radius R is sensitive to w and Y/w
but not to p, while the dumbbell length XOF is sensitive to p but not to w and Y/w. The
effects of channel confinement, i.e. w and Y/w and particle anisotropy, i.e. p, on HIs are
captured separately and quantitatively by the cylinder radius R and the dumbbell length
XOF in our theoretical model. Figure 11(a) shows that R increases with w and linearly
decreases as Y/w increased. It reflects the stronger geometric confinement for particles
closer to the channel wall can be linearly characterized by the smaller R. This results in
that R/w decreases and Y/R increases with Y/w (see figure 11b,c), respectively. Here R/w
or Y/R show different trends as a function of Y/w for channels with different cross-section
shapes (figure 11b,c). Here, we discover that the fitted cylinder radius R is sensitive to
both the degree of channel confinement (w, Y/w) and the channel geometry (w/d). As
illustrated in figure 11(d), XOF/a increases with p and becomes asymptotic to 1 at large
p, indicating that the effective point forces move toward the ellipsoid tips as the ellipsoid
shape becomes more anisotropic. It predicts the increase of screening length XSC = XF

SC +
2XOF with a and p (see figure 4a). At small p, the logarithmic extrapolation of XOF/a in
figure 11(d) correctly yields XOF/a = 0 at p = 1 for spheres (Cui et al. 2002, 2004; Valley
et al. 2007; Diamant 2009; Novikov et al. 2010), reflecting the accuracy of the dumbbell
model. As a result, XSC = XF

SC for Dxx
C of spheres in q1D groove channels (Cui et al. 2002)

is much shorter than XSC for ellipsoids.
This model also explains the change in coupling strength at different parameter regimes

in figures 2, 3 and 5. The more enhanced T–T coupling for ellipsoids of larger p (see
figures 2a–d and 5a–d) arises from the larger Δxx

F for closer point-force pair, i.e. at
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shorter XF = X − 2XOF due to longer XOF (see figure 11d). The weak θ–θ coupling for
ellipsoids with p ≤ 2.2 (see figures 2e–h and 5e–h) can be attributed to that the moment
arm XOF/a < 0.5 is too small for slightly anisotropic particles to induce sufficient torque
against thermal fluctuations. The θ–θ coupling decreases at p ≥ 5.2 in figures 2e–h and
5e–h can be regarded as a result of the accumulation of negative Δyy

F (see figures 9b and
10e–h) along the surface of largely anisotropic ellipsoids. The strongest T–R coupling at
middle Y/w (see figures 2i–l, 3i–l and 5i–l) is consistent with the maximumΔ

xy
F at middle

Y/R (see figures 9c and 10i–l).

5. Numerical simulation

5.1. Comparisons between the simulation, experimental and theoretical results
We further perform three-dimensional finite element numerical simulations to verify the
theoretical model by comparing the experimental, simulation and theoretical results, and
to interpret the experimental HIs by calculating the flow field. The finite element numerical
simulations are carried out using the software Comsol Multiphysics v5.2. To connect
between the experimental system and theoretical model in the simulation, we use the
geometries of two ellipsoids in an effective cylinder in the theoretical model, and input the
parameters of the size (a, b) and axial and angular velocities (u, ω) of the ellipsoids, and
the fitted radius R of the cylinder for the groove channels with width w in the experiment.
The two ellipsoids are separated with (X, Y) and symmetrically located about the central
axis of the cylinder. We set no-slip boundary conditions on the surface of the ellipsoids
and cylinder, and open boundary conditions at the two ends of the cylinder.

In order to simplify the calculation, we apply an instantaneous axial velocity u =
(u1 = �x1/�t, u2 = 0) or an instantaneous angular velocity ω = (ω1 = �θ1/�t, ω2 =
0) separately on the ellipsoid pair at each (X, Y) in a cylindrical channel with radius R (see
figure 8), i.e. let one ellipsoid move and the other be at rest. We set the typical velocities
(u1 = 1 μm s−1, ω1 = 2◦ s−1) and �t = 0.1 s according to the ellipsoid motions and
frame rate in the experiment. We solve the Stokes equation in the cylinder and yield
F and L from integrating the force distribution density over the ellipsoid surface. Thus
each component term of ζ is directly calculated through (1.3), and the matrix of diffusion
tensors D at each (X, Y) is obtained through (1.2) (Montgomery & Berne 1977; Mazo
2002). Due to the velocity-independency of ζ , a different set of velocity and �t will
not change the results as long as (i) the Reynolds number is approximately 10−6 for
micron-sized particles and (ii) x1(0)− 0.1a < x1(�t) < x1(0)+ 0.1a for ellipsoid 1. Here
0.1a is the bin size in the analysis of experimental results. Such a numerical method in
the Comsol software has been used in the study of HIs of two spheres in a cylindrical
channel in Misiunas et al. (2015). More benchmarking studies for the numerical method
can be found in Dettmer et al. (2014), Misiunas et al. (2015) and Misiunas & Keyser
(2019). The numerical simulation results of hydrodynamic coupling diffusivities Dxx

C (X),
Dxθ

C (X) and DθθC (X) for an ellipsoid pair in the effective cylinder are shown in figure 12,
which reproduce the experimental results for the coaxial and most off-axis ellipsoid pairs
in the groove channels in figure 2. The screening lengths XSC in the effective cylinder
obtained in simulation (see figure 13) are consistent with those in the groove channels
measured in experiments (see figure 5). Applying velocities in opposite directions gives
the same quantitative results. The agreement between the experimental and simulation
results confirm the validity of using the tube model to mimic the groove-like channel for
the in-plane motions.
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Figure 12. Numerical simulation results of coupling diffusivities DC(X). (a,c,e) The coaxial (cylindrical
radius R = 9.8 μm corresponding to Y/w ∈ [0, 0.1) and w = 6 μm in experiments) and (b,d, f ) the off-axis
(R = 6.5 μm, Y/w ∈ [0.5, 0.7) and w = 6 μm) ellipsoid pairs with different p. The vertical arrows mark the
screening length XSC. Here DC is calculated from the simulation result of ζ based on (1.2) in order to compare
with the experimental DC in figure 2.

We further transform the numerical simulation results of DC intoΔμν
F and quantitatively

compare them with the theoretical prediction by fitting the dumbbell length 2XOF.
Figure 14 shows that both the simulation and experimental results of Δxx

F , Δ
yy
F and Δxy

F
coincide with their theoretical curves. The fitted XOF at each p from the simulation are
the same in the three curves and consistent with those fitted from the experiment with
only a 3%–5% systematic exceedance (see figure 11d). This exceedance probably reflects
the larger hydrodynamic diameter than the geometrical diameter, which results in their
effective aspect ratios slightly smaller than those used in the simulation.

5.2. Flow field induced by a moving ellipsoid in a cylinder
We measure the flow field induced by the moving ellipsoid in the numerical simulation
to illustrate the effects of channel confinement and particle anisotropy on x–x, θ–θ and
x–θ HIs. These flow fields in figures 15–17 are more complicated than those of colloidal
spheres in strong q1D confinements (Cui et al. 2002; Misiunas et al. 2015) where the
coaxial flow induced by an axially moving sphere dominated, and only a positive x–x
coupling was observed. Here, we can see that the axial and rotational motion of an ellipsoid
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Figure 13. The numerical simulation counterpart of figure 4. The screening lengths XSC (symbols) for Dxx
C ,

DθθC and Dxθ
C of the coaxial ellipsoid pairs at Y/w ∈ [0, 0.1). Here (a) XSC for different p and w = 6 μm and

(b) XSC for different w and p = 7.5. The lines are linear fittings.
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Figure 14. Rescaled coupling diffusivities Δμν
F (XF/R). The experimental data (symbols in a,b) and the

numerical simulation data (symbols in c,d) for all p and w collapse onto the theoretical curves (solid curves)
of (4.2) with parameters R and XOF except for the negative part of Δyy

F . (a,c) The coaxial (Y/w ∈ [0, 0.1)) and
(b,d) the off-axis (Y/w ∈ [0.5, 0.7)) ellipsoid pairs. The vertical arrows mark XF

SC/R.

actually reflects the axial and transverse component of the local flow field. For the coaxial
ellipsoid pair in figure 15(a,c,e), a rightward axial motion of the right ellipsoid induces a
rightward axial flow pulling the left ellipsoid (see figure 15a), which leads to the positive
x–x coupling. The axial flow turns transversely near the ellipsoid tips causing the rotation
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Figure 15. Numerical simulation results of the flow fields created by the motion of an ellipsoid. (a–d)
Translational and (e, f ) rotational motions of the right ellipsoid. (a,c,e) The coaxial (cylinder radius
R1 = 9.8 μm corresponding to Y/w ∈ [0, 0.1) and w = 6 μm in experiments) and (b,d, f ) the off-axis (R2 =
6.5 μm, Y/w ∈ [0.5, 0.7) and w = 6 μm) ellipsoid pairs with p = 7.5. The length and direction of the black
arrows describe the local flow velocities. The colour represents the local flow speed uν in the ν direction.

of the left ellipsoid towards the axis (see figure 15c), which leads to the positive x–θ
coupling. A rotation of an ellipsoid induces a whirling flow imposing a torque on the
other ellipsoid in an opposite direction (see figure 15e), which leads to the negative θ–θ
coupling.

By contrast, for the off-axis ellipsoid pair (see figure 15b,d, f ), a rightward axial motion
of the right ellipsoid induces a leftward backflow near the opposite sidewall repelling the
left ellipsoid (see figure 14b), which leads to an anomalous negative x–x coupling as shown
in the experiments, see figures 2(d) and 3(d). The weak channel confinement at w/b > 4
enables the propagation of the backflow which is necessary for the negative x–x coupling.
This repulsive HI ensures the single-file motion of ellipsoids in opposite directions even in
channels moderately wider than 4b. It is in contrast to the strong q1D confinement where
the piston-like motion of a sphere can only push other particles move in the same directions
(Cui et al. 2002; Misiunas et al. 2015). The turning flow between the two ellipsoids’ tips
in figure 15(d) is much stronger than that for the coaxial ellipsoids in figure 15(c), which
results in the most enhanced x–θ coupling at middle Y/w in figures 2(i–l), 3(i–l) and
5(i–l). The whirling flow in figure 15( f ) leads to similar negative θ–θ coupling as that
of coaxial ellipsoids in figure 15(e). The smaller radius of the effective cylinder for more
off-axis ellipsoids corresponds to stronger screening effect of the channel. As a result, the
fast decay of flow field near the cylinder wall predicts weaker couplings for more off-axis
ellipsoids as shown in figures 2, 3 and 5. Figure 16 shows that an ellipsoid moving in
directions opposite to that in figure 15 produces similar patterns of the induced flow fields
with reverse signs, which leads to the same behaviour of hydrodynamic couplings.

We further compare the flow fields of ellipsoids with different aspect ratios. Figure 17
shows that a more anisotropic ellipsoid induces a stronger flow in a larger range, which
explains the longer XSC and stronger HIs for larger p (see figures 2–5). Especially, the
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Figure 16. Simulation results of the flow fields created by the motion of an ellipsoid in the opposite direction
to that in figure 15. (a–d) Translational and (e, f ) rotational motions of the right ellipsoid. (a,c,e) The coaxial
(R1 = 9.8 μm corresponding to Y/w ∈ [0, 0.1) and w = 6 μm in experiments) and (b,d, f ) the off-axis (R2 =
6.5 μm, Y/w ∈ [0.5, 0.7) and w = 6 μm) ellipsoid pairs with p = 7.5. The length and direction of the black
arrows describe the local flow velocities. The colour represents the local flow speed uν in the ν direction.

1

0

–1

0.06

0

–0.06

ux(µm s–1) ux(µm s–1)(a) (b)

(c) (d )

Figure 17. Numerical simulation results of the flow fields created by the motion of an ellipsoid. (a,b)
Translational and (c,d) rotational motions of the right ellipsoid. The cylinder of R = 9.8 μm corresponding
to the coaxial (Y/w ∈ [0, 0.1)) ellipsoid pairs with (a,b) p = 2.2 and (c,d) p = 7.5 in a channel with w = 6 μm.
The length and direction of the black arrows describe the local flow velocities. The colour represents the local
flow speed uν in the ν direction.

weaker backflow at smaller p in figure 17(a,c) indicates that the backflow can be hardly
probed by spheres, which may explain why the negative x–x coupling has not been
observed before. The dipolar pattern of the local flow field in figures 14–16 confirms
the validity of the dumbbell model for the ellipsoids. The transverse flow shows opposite
directions at the two ends of an ellipsoid (see figure 15c–f ). It verifies our interpretation
for the suppressed transverse motion of the ellipsoids that the local flow induces mainly
an effective torque rather than a transverse force. We find that the transverse flow in
figure 15(e, f ) decays much faster than the axial flow in figure 15(a,b), corresponding to
the strongest screening of θ–θ coupling with shortest XSC and the weakest screening of
x–x coupling with longest XSC by the channel confinement (see figures 2–5). Therefore,
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the effective region of the transverse flow is relatively shorter for longer ellipsoids. This
screening effect on the anisotropic particles is featured by the longer XOF for larger p in
the dumbbell model (see figure 11d). It results in the effective point force very close to the
ellipsoid tip at p ≥ 5.2, which leads to a slight decrease in θ–θ coupling at p ≥ 5.2 (see
figures 2e–h and 5e–h).

The cylindrical tube with an appropriate diameter in our model reflects the average
effects from all three walls and the open top of the groove. Particles have similar distances
to the cylinder walls in the model, but a much closer distance to the bottom wall in the
experiment. Such asymmetry with the lubrication flow in the bottom gap leads to a flow
field distribution in the z direction different from that in the cylinder, which may make
the flow field in the cylinder model quantitatively deviate from that in the experiment.
Nevertheless, the HIs are still short-ranged due to the screening effect of the two sidewalls
(figures 2 and 3) (Cui et al. 2002; Valley et al. 2007; Diamant 2009; Novikov et al.
2010), thus whether the top of the groove is open or closed and whether the particles
are closer to the bottom wall should not qualitatively change the results when the channel
is not too narrow compared with the particle size. A qualitatively different case is a very
narrow tube whose diameter is close to the particle size, where T–T HI is long-ranged
due to the piston flow induced by the particle (Misiunas et al. 2015). By contrast, for
a cylinder with a radius much larger than the ellipsoid (R � b), the short-ranged swirl
and back flows induced by an ellipsoid (figures 15–17) are similar to those induced by
a Stokeslet (point force) in the cylinder model (Liron & Shahar 1978; Blake 1979). The
open-top channels and the cylinder with comparable scale (1 < R/w <∼ 1.75) have similar
confinement effects on HIs in the horizontal direction for ellipsoids much smaller than
the channel width (2.99 < w/b < 7.3 in all cases) because R/b and w/b are of the same
order. The lubrication flow in the narrow bottom gap does not affect the short-range
nature of the HIs in the groove because the fluid can easily flow from the sidewalls or
the open top. That is, the HIs are short-ranged and the similar swirl and back flows can
be qualitatively expected for two ellipsoids either sediment to the bottom of an open-top
channel or in the middle of a cylinder; the numerical results of two ellipsoids in a
cylinder (figures 12 and 13) agree with the experimental results in the channel (figures 2
and 4); both experimental and numerical results are fitted by the model with consistent
fitting parameters (figures 10, 11 and 14). Qualitatively, the decay length of flow field
is comparable to w in the groove and comparable to R in the cylinder model, which is
confirmed by the measured 0.8 <∼ XF

SC/w <∼ 2 and 0.5 <∼ XF
SC/R <∼ 1.5 for various p and w

in figures 11 and 12. Therefore, the cylinder model with the Stokeslet approximation can
capture the main features of the experimental T–T, T–R and R–R couplings (figures 10 and
11). Such a simple analytical cylinder model has successfully captured the main features
of short-ranged T–T coupling between colloidal spheres in open-top grooves (Cui et al.
2002; Valley et al. 2007; Diamant 2009; Novikov et al. 2010).

6. Conclusion

Our experiment, numerical simulation, and theory yield consistent results for non-trivial
translational and rotational HIs in different parameter regimes of ( p,w, Y/w) (figures 2–5,
10–14). All the parameters in the experiment and the model are summarized in table 1,
including geometries, interparticle separations, displacements, coupling diffusivities, etc.
The quantitative relations between the fitting parameters and ( p,w, Y/w) are shown
in figure 11. The particle anisotropy amplifies the range of HIs. The negative R–R
and positive T–R couplings non-monotonically change with p and Y/w, respectively.
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Particularly, the positive axial HI (Dxx
C > 0) under strong q1D confinements (w/b < 4)

becomes anomalously negative (Dxx
C < 0) under weak confinements (w/b > 4) due to

backflows in wider channels. This effect is stronger for ellipsoids with large p, which
may explain its absence in previous observations of colloidal spheres. In conventional
single-file diffusions, spheres are strongly confined in q1D channels and always exhibit
positive axial HIs, which lead to the collective concerted motion of several neighbouring
spheres (Pozrikidis 1992; Wei et al. 2000; Cui et al. 2002; Misiunas et al. 2015). By
contrast, the negative axial HIs of ellipsoids can effectively separate ellipsoids along a
channel, leading to a single-file system in wide channels. Thus, single-file diffusion is not
limited to strong q1D confinement, which is previously unexpected.

These distinct HIs and diffusion behaviours of particles in different parameter regimes
could involve critical implications for the migration, morphology and self-organization of
particles (Raven & Marmottant 2009; Uspal, Eral & Doyle 2013) in microfluids and the
two-particle microrheology (Crocker et al. 2000; Levine & Lubensky 2000) in confined
systems (Keen et al. 2009). For example, the positive axial HI with Dxx

C > 0 in q1D channel
(w/b < 4) could enhance the transport of multiple particles through channels (Misiunas
et al. 2015), whereas the negative axial HI with Dxx

C < 0 in weak confinement (w/b >
4) could suppress the collective transport. Spherical particles in q1D channels exhibit
interesting phonons and zigzag modes (Beatus et al. 2006; Fleury et al. 2014; Uspal &
Doyle 2014). Our results suggest that these phenomena could be different and much richer
for particles of different anisotropy in channels of different widths.

We find that the Stokeslet approximation is suitable not only for spherical particles (Cui
et al. 2002) and slender bodies (Di Leonardo et al. 2011), but also for ellipsoids with
different aspect ratios for which the configuration of Stokeslet objects depends on both
the geometric confinement and the particle shape. This method can be applied to other
anisotropic particles in channel confinement, which avoids the expensive computational
cost with regard to the detailed surface geometries of particles and channels.
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Appendix A. Theoretical expression of the dumbbell-in-cylinder model

We estimate the HI of two neighbouring ellipsoids in a channel by a dumbbell-in-cylinder
model. The effect of flow field induced by the motion of an ellipsoid on the neighbouring
ellipsoid is treated as equivalent to the flow field induced by the dumbbell of point
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forces (F , F ′). For each ellipsoid, the positions of the two point forces are (xF, yF) and
(xF ′ , yF ′) on the long axis (see figure 1b and table 1), which are symmetric around the
ellipsoid’s CM at (x, y). Because �θ is small in the narrow channel, �yF1 = �θ1 ×
XOF for the left ellipsoid and �yF2 = −�θ2 × XOF for the right ellipsoid in figure 8,
representing that the rotational motion of the ellipsoid is dominated by the transverse
displacement of point (xF, yF). Hence, the axial translational motion �x = �xF = �xF′
and the rotational motion �yF = −�yF′ are proportional to the axial force Fx = F′x and
transverse force Fy = −F′y, respectively. This dumbbell-in-cylinder model for ellipsoids
in channel is a generalization of the point-force approximation for colloidal spheres in
Cui et al. (2002) and Novikov et al. (2010). The point-force approximation was used
to describe the translational coupling of spheres, and our dumbbell-in-cylinder model
enables representation of the translational, rotational and cross-couplings, as described
subsequently. According to Appendix B of Liron & Shahar (1978), the dimensionless
hydrodynamic coupling tensor for a point force in a cylinder

Δ
μν
F ≡ Dμν

F,C(XF/R, YF/R)/(kBT/6πηR) = 〈�μF1�νF2〉/(2tkBT/6πηR) = 6πηRGμν,

(A1)

with μ and ν denoting either x or y component. Here, the Stokes-flow Oseen tensor in the
cylinder

Gμν = uμν/(ηR), (A2)

where η is the viscosity and R is the radius of the cylinder. By substituting (A2) into (A1),
we obtain the dimensionless coupling diffusivity

Δ
μν
F = 6πuμν. (A3)

The dimensionless uμν(xF1 = 0, yF1 = y1, xF2 = XF, yF2 = y2) is the fluid velocity at
(xF2, yF2) in the μ direction induced by a unit point force at (xF1, yF1) pointing to the
ν direction (Liron & Shahar 1978; Blake 1979):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uxx(ξX, ξ y1, ξ y2) =
∞∑

k=−∞

{
−2π

∞∑
n=1

e−βknξ
x

Im[eiαknξ
x
Fxx

1,kn(ξ
y1, ξ y2)]

−π

∞∑
n=1

e−γknξ
x

Im[Fxx
2,kn(ξ

y1, ξ y2)]

}
,

uyy(ξX, ξy1, ξy2) =
∞∑

k=−∞

{
−2π

∞∑
n=1

e−βknξ
x

Im[eiαknξ
x
Fyy

1,kn(ξ
y1, ξ y2)]

−π

∞∑
n=1

e−γknξ
x

Im[Fyy
2,kn(ξ

y1, ξ y2)]

}
,

uxy(ξX, ξ y1, ξ y2) =
∞∑

k=−∞

{
2π

∞∑
n=1

e−βknξ
x

Re[eiαknξ
x
Fxy

1,kn(ξ
y1, ξ y2)]

+π

∞∑
n=1

e−γknξ
x

Re[Fxy
2,kn(ξ

y1, ξ y2)]

}
.

(A4)
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Here, ξX = |x2 − x1|/R = XF/R, ξ y1 = y1/R and ξ y2 = y2/R. Here Im and Re denote the
imaginary and real parts of a complex number, respectively. Here also⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fxx
j,kn(ξ

y1, ξ y2)

= ψx(s j
kn, k, ξ y1)Ik(s

j
knξ

y2)+ [s j
knξ

y2I′
k(s

j
knξ

y2)+ Ik(s
j
knξ

y2)]πx(s j
kn, k, ξ y1)

D′k(s
j
kn)

,

Fyy
j,kn(ξ

y1, ξ y2)

=
{
ψy(s j

kn, k, ξ y1)I′
k(s

j
knξ

y2)+� y(s j
kn, k, ξ y1)kIk(s

j
knξ

y2)

(s j
knξ

y2)+ πy(s j
kn, k, ξ y1)s j

knξ
y2I′′k(s

j
knξ

y2)

}
/D′

k(s
j
kn),

Fxy
j,kn(ξ

y1, ξ y2)

= −ψ
y(s j

kn, k, ξ y1)Ik(s
j
knξ

y2)+ [s j
knξ

y2I′
k(s

j
knξ

y2)+ Ik(s
j
knξ

y2)]πy(s j
kn, k, ξ y1)

D′k(s
j
kn)

,

(A5)

where Ik is the kth-order modified Bessel function of the first kind. Here sj=1
kn = αkn +

iβkn and sj=2
kn = iγkn are two independent roots of Dk(s) = sIk(s)(Ik−1(s)Ik+1(s))′ −

2(sIk(s))′Ik−1(s)Ik+1(s) = 0. The detailed functions of ψ(s, k, ξ y1), �(s, k, ξ y1) and
π(s, k, ξ y1) are given in Liron & Shahar (1978). By substituting (A5) into (A4), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uxx(ξX, ξ y1, ξ y2) =
∞∑

k=−∞

{
2π

∞∑
n=1

[axx
kn(ξ

y1, ξ y2) cos(αknξ
X)

+ bxx
kn(ξ

y1, ξ y2) sin(αknξ
X)]e−βknξ

X + π

∞∑
n=1

cxx
kn(ξ

y1, ξ y2) e−γknξ
X

}
,

uyy(ξX, ξ y1, ξ y2) =
∞∑

k=−∞

{
2π

∞∑
n=1

[ayy
kn(ξ

y1, ξ y2) cos(αknξ
X)

+ byy
kn(ξ

y1, ξ y2) sin(αknξ
X)] e−βknξ

X + π

∞∑
n=1

cyy
kn(ξ

y1, ξ y2) e−γknξ
X

}
,

uxy(ξX, ξ y1, ξ y2) =
∞∑

k=−∞

{
2π

∞∑
n=1

[axy
kn(ξ

y1, ξ y2) cos(αknξ
X)

+ bxy
kn(ξ

y1, ξ y2) sin(αknξ
X)] e−βknξ

X + π

∞∑
n=1

cxy
kn(ξ

y1, ξ y2) e−γknξ
X

}
.

(A6)

Here, the values of the parameters αkn, βkn and γkn are available in Liron & Shahar (1978).
Here aμν

kn (ξ
y1, ξ y2) = −Im[Fμν

1,kn(ξ
y1, ξ y2)], bμν

kn (ξ
y1, ξ y2) = −Re[Fμν

1,kn(ξ
y1, ξ y2)] and

cμν
kn (ξ

y1, ξy2) = −Im[Fμν
2,kn(ξ

y1, ξy2)] for μ = ν, and aμν
kn (ξ

y1, ξ y2) = Re[Fμν
1,kn(ξ

y1, ξ y2)],
bμν

kn (ξ
y1, ξ y2) = Im[Fμν

1,kn(ξ
y1, ξ y2)] and cμν

kn (ξ
y1, ξ y2) = Re[Fμν

2,kn(ξ
y1, ξ y2)] for μ /= ν.
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In our experiments, y1 = −y2, as shown in § 3.2, that is, ξ y1 = −ξ y2 . By substituting
(A6) into (A3) and taking (ξ y1 = −ξY/2, ξ y2 = ξY/2), we obtain (4.2) in § 4.1 of the
main text. We find that the experimental data ofΔμν

F (ξX = (X − 2XOF)/R, ξY = Y/R) =
6πuμν(ξX, ξY) is well-described theoretically by taking k = 0, 1, 2, 3 and n = 1, 2, 3 in
(A6) (see figures 9 and 10). Here XOF and R are obtained by fitting the three types of
couplings: Δxx

F , Δ
yy
F and Δxy

F . Note that Δyy
F mainly characterizes the θ–θ coupling, while

Dyy
C characterizes the y–y coupling.
To compare the simulation results of hydrodynamic couplings with the theoretical

model, we fit the simulation results of the rescaled dimensionless coupling diffusivities
(Liron & Shahar 1978; Cui et al. 2002) Δμν

F ≡ Dμν
F,C(XF/R = (X − 2XOF)/R, YF/R =

Y/R)/(kBT/6πηR) with the theoretical prediction and compare the fitting parameters in
experiments and simulations. Here Δμν

F is calculated by transforming the hydrodynamic
couplings DC of ellipsoids in (1.2) to Dμν

F,C of point forces through substituting the friction
matrix (Reichert & Stark 2004)

ζF =
(

ζ xx ζ xy

ζ yx ζ yy

)
=
(

ζ xx ζ xθX−1
OF

ζ θxXOF
−1 ζ θθX−2

OF

)
(A7)

into DF = kBTζ−1
F in the dumbbell-in-cylinder model. Thence, the dumbbell length 2XOF

is the only fitting parameter in the simulation, which agrees well to the experimental results
in figure 11(d).
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