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The inverse cascade in freely decaying two-dimensional flows with periodic boundary conditions will 
lead to a quasi-steady long-term system of vortices, which has not been well investigated in literature. 
By performing a series of direct numerical simulations, we focus on the late dynamics of these large-
scale vortices. It is found that the theories of point vortices can be also approximately employed for 
both quadrate and hexagonal periodic conditions, however, in real flows the dynamics can switch among 
different motions, which differs from the theory of point vortices. It is observed as a special case of the 
wandering motions that the weakest vortex can migrate among different periods, with the other two 
vortices co-rotating. This phenomenon can be analogical to the physics of current flow. In addition, the 
merging procedure of large-scale vortices can be described by using the skewness of vorticity.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In two-dimensional (2D) turbulence, dual cascade exists, indi-
cating that energy transfers towards both large and small scales [1,
2]. A direct consequence of the inverse energy transfer is that the 
vortices will merge, and finally there will be a quasi-steady long-
term system of vortices (see e.g., Fig. 2 of Ref. [3]). The dynamics of 
the vortices, including the merging and motions, is an interesting 
research topic and has attracted many studies.

Before the quasi-steady state, kinetic energy exists at all scales, 
which implies that the flow contains lots of vortices at different 
scales. Existing studies for the dynamics of these vortices were 
usually based on statistical tools. It has been often proposed [4–7]
that the statistical equilibria of interacting point vortices can be 
used to interpret 2D turbulence. Equilibrium statistics of a clus-
ter of a large number of positive 2D point vortices in an infi-
nite region were studied analytically and numerical cases were 
performed to verify the equilibrium configurations [5]. The non-
equilibrium situation caused by a weak external velocity field has 
also been studied in which the negative viscosity effect that de-
scribes the increase of size and decrease of their displacement for 
interacting clusters arised [5]. Reference [8] showed that the inter-
acting vortices and the spin-up phenomenon in a rigid container 
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can be interpreted in terms of these statistical models. Other stud-
ies have been performed to investigate more general vortices with 
a typical size instead of a cluster of point vortices. Mcwilliams [9]
discussed the criteria of identification of vortex and proposed a 
procedure of vortex census from numerical results. The statistical 
characteristics such as the distribution of the density or popula-
tion, size, and radial profile of the coherent vortices that dominate 
the two-dimensional freely evolving turbulence were analyzed and 
interpreted [9]. The evolution of density was found to be decay-
ing. A scaling theory expressing the statistical properties in terms 
of one parameter was then proposed and supported by numerical 
simulations and solutions of a modified point-vortex model [10]. 
In Ref. [11], a scale-invariant behavior corresponding to the self-
similar scaling of compensation between density and mean vor-
tex intensity was found. In addition, geometrical structures and 
amount of coherent vortices generated by inverse cascade of 2D 
turbulence in a finite box was discussed in Ref. [12]. It was also 
proved theoretically in Ref. [13] that 2D decaying turbulence field 
with integrable initial vorticity distribution converges to the Os-
een vortex solution, which is coherent with the experimental and 
numerical observation of inverse energy cascade and form of large-
scale vortex structures [14].

There have been also investigations focusing on the merging 
procedure of several 2D vortices. The interaction and instability 
of a vortex pair has been studied in experiments for investigating 
three-dimensional elliptic instability of a counter-rotating vortex 
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pair to short waves [15] and the numerical studies on how coex-
isting the vertical shear and stratification affect the evolution of 
a vortex pair [16] were given. Elliptic short-wave instability was 
also found to be important in the merging process of co-rotating 
vortices, in configurations similar to those found in the extended 
near-wake of typical transport aircraft [17]. Experiments, numer-
ical cases and theoretical studies illustrated phenomena such as 
earlier merging and larger final vortex core [17]. In Ref. [17], the 
theoretical analysis was based on the point-vortex assumption. In 
2D flows, vortex merging is the principal ingredient of the inverse 
cascade [9,14,18]. The numerical and theoretical study of merging 
of a vortex pair were also performed in previous study such as 
how the Reynolds number affects each of the three phases that 
characterize this phenomenon [19].

To our knowledge, there is no systematic investigation about 
the late dynamics of large-scale vortices in 2D flows (an example 
can be Fig. 2b of Ref. [3], where the flow finally evolves to two vor-
tices). In Refs. [9–11], the evolution of vortex in 2D flows was in-
vestigated in a statistical way and they concentrated on a relatively 
early stage with a great number of vortices. Obviously, the scale of 
these vortices will be comparable to the size of computational do-
main, indicating that the boundary condition can be important for 
the late dynamics of large-scale vortices. Aiming at generating ho-
mogeneous isotropic flows, the most common method is to use 
periodic conditions in a cube, but we can also introduce periodic 
conditions in a hexagon [20]. From Fig. 11 of Ref. [20] it can be ob-
served that different periodic conditions affect the late evolution of 
large-scale energies, but it is still unclear how they affect the late 
dynamics of large-scale vortices.

If we approximately consider the large-scale vortices as point 
vortices, analytical results can be found in literature. We refer 
to Ref. [21] as a comprehensive review. Some studies focused on 
the stationary configurations of point vortices in an unbounded 
region [22,23], as well as their instability properties [24,25]. Ref-
erence [26] extracted the motion of three-vortex system with zero 
total circulation near equilibrium position using asymptotic analy-
sis. For the nonstationary configurations, the problem of motion 
can be translated to a Hamiltonian dynamical system, which is 
usually nonintegrable for four and more point vortices [27]. An-
alytical researches then focused on three vortices system [28–30]. 
Considering the periodic boundary conditions, Ref. [31] also pro-
vided a detailed analytical analysis on the motion of three point 
vortices. Typical cases of three point vortices system in unbounded 
domain with an opposite-signed vortex pair and a fixed vortex has 
been widely studied. It was pointed out that the entrapping of the 
vortex pair can be predicted only by calculating two parameters 
which are the ratio of distances to the fixed vortex and the ratio of 
strengths [32–34]. In addition, Aref [31] noted that simply chang-
ing the shape of periodic parallelogram that contains three point 
vortices introduces new qualitative behavior, leading to possible 
implications for numerical simulations of 2D turbulence which are 
conducted traditionally with quadrate periodic conditions. How-
ever, it is still not clear whether these results for point vortices 
can be used to real 2D flows.

In brief, systematic investigation about the late dynamics of 
large-scale vortices in 2D flows is still lack. The effects of different 
periodic conditions are not clear, and the applicability of the point-
vortex theories is needed to be verified. In the present contribution 
we will perform numerical simulations by using the algorithms in-
troduced in Ref. [20], to clarify these questions and to reveal new 
phenomena.
2

Table 1
Number the cases with different long-term categories.

Hexagonal Cases Cartesian Cases

Two-vortices 46 cases 41 cases
Three-vortices 13 cases 17 cases
Three-vortices to Two-vortices 12 cases 22 cases
Four-vortices to Two-vortices 9 cases 0 case

2. Descriptions of problem

2.1. General descriptions

As introduced in the previous section, during the evolution of 
2D turbulence, the condensation of all the vorticities into sev-
eral large-scale vortices can be observed in long time. When an 
isotropic freely decaying turbulent field is generated by introduc-
ing quadrate periodic boundary conditions in two directions of 
coordinate axis, the most frequent observation is the formation 
of a two-vortices system in a periodic square. Fig. 1 is an exam-
ple of the initial vorticity field in a direct numerical simulation 
(DNS) case and of the two-vortices structure after long time evolu-
tion. Dashed lines indicate the periodic boundaries. A characteristic 
length L, defined from the minimal distance �k = 2π/L between 
the wavenumbers in spectral space (see Fig. 1 of Ref. [20] as a 
sketch), is used for normalization. Another example can be found 
in Fig. 2 of Ref. [3]. The dynamics of the two-vortices structure is 
simply a uniform rigid translation motion, therefore it can be con-
sidered as trivial.

Besides the two-vortices system, in practice we also observe 
other types of large-scale vortices for long time. As an example, in 
Fig. 2(a) we show that the flow can evolve to a quasi-stable three-
vortices coherent structure in a period. The values of vorticity or 
strength of these three vortices are two positive and one negative, 
respectively. Their trajectories are shown in Fig. 2(b). As will be 
analyzed in the following parts, this kind of motion is the paired 
motion. In Fig. 3, we show that the three-vortices coherent struc-
ture can also occur under hexagonal periodic conditions (dashed 
lines indicate the periodic boundaries). Due to the complexity of 
dynamics, we will focus on the dynamics of these vortices systems 
in the following parts.

2.2. Descriptions of DNS cases

The evolution of 2D freely decaying turbulence is computed us-
ing pseudo-spectral Fourier code in a stream-vorticity formulation. 
Detailed information on the in-house code can be found in Ref. [3]. 
The initial field is generated by using the Rogallo method [35]. 
Two groups of DNS cases are performed by using traditional carte-
sian Fourier transform (denoted as Cartesian cases) and hexagonal 
Fourier transform (denoted as Hexagonal cases), respectively. Note 
that the hexagonal Fourier transform does not change the mesh in 
physical space, i.e., the computations are performed in a rectangle 
domain which can be rearranged to a hexagon under hexagonal 
periodic boundary conditions (see Fig. 3 for a sketch). The numer-
ical resolutions for all cases are selected as the same 5122. The 
time resolution is chosen with respect to the convergence criterion 
of Courant-Friedrichs-Lewy (CFL) number. All the cases are com-
puted for 2 ×106 time steps to assure the time of evolution is long 
enough: it is observed that all cases converge to several large-scale 
vortices after this long time. We perform in total 160 cases, which 
means 80 Hexagonal cases and 80 Cartesian cases (see Table 1). 
Post-processings are performed based on these 160 cases.

We focus on the later evolution stage of 2D turbulence during 
which large-scale vortices dominate the system due to the back-
ward energy transfer. As shown in Table 1, the cases are classified 
into four main categories respectively: fast formation of periodical 
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Fig. 1. Vorticity snapshots of a 2D freely decaying flow under square periodic boundary conditions. (a) Initial field. (b) After long-time evolution. Dashed lines indicate the 
boundary of a period. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. (a) Vorticity snapshot of three-vortices coherent structure under square periodic boundary conditions, and (b) the trajectories of three vortices while maintaining the 
stable paired motion. The solid circles indicate the initial time of forming a system of three vortices.

Fig. 3. Vorticity snapshots of three-vortices coherent structure under hexagonal periodic boundary conditions. The area in one hexagon is a period. (a) Initial field. (b) After 
long-time evolution. Dashed lines indicate the boundary of a period.
3
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two-vortices coherent structure (denoted as Two-vortices), main-
tain of formation of periodical three-vortices coherent structure 
(denoted as Three-vortices), formation of periodical two-vortices 
coherent structure after maintaining periodical three-vortices co-
herent structure for long time (denoted as Three-vortices to Two-
vortices), and formation of periodical two-vortices coherent struc-
ture after maintaining periodical four-vortices coherent structure 
for long time (denoted as Four-vortices to Two-vortices). As re-
marked in the previous subsection, the Two-vortices cases are triv-
ial and hence not interesting. The following discussions will focus 
on the other motions.

2.3. Theoretical analysis

In 2D flow, the vorticity �ω is always a vector perpendicular to 
the flow plane. Considering the vorticity spectrum, we have

�̂ω(�k) = F(∇ × �v) = i�k × �̂v(�k), (1)

where �̂ω is the vorticity spectrum, �k is the wave vector, �v is the 
velocity in physical space and �̂v is the velocity in spectral space. 
Taking �k as �0 leads to

�̂ω(�0) = �0 =
∫
�r

�ωd�r, (2)

which indicates that the vorticity flux over a period of the present 
cases should be zero.

As shown in Figs. 1, 2 and 3, the vorticity is condensed in 
the vicinity of several large-scale vortices in long time. Theoreti-
cal analysis can approximately consider these large-scale vortices 
as point vortices. From Eq. (2) the summation of strength of these 
point vortices should be zero. For a system of three point vortices 
in a periodic parallelogram, the dynamics has already been stud-
ied systematically in Ref. [31]. In the following we will revisit the 
spirit of these theories of point vortices dynamics, in order to de-
scribe the physical quantities which will be used in the present 
post-processings.

As derived in Ref. [31], the dynamics of point vortices with zero 
net circulation in a periodic parallelogram can be represented by 
the following equations:

dzα

dt
= 1

2π i

N∑
β=1,β �=α

�β

{
ζ(zα − zβ) + (

η1

ω1
− ω1π

ω�
zβ + π

�
zβ)

}
,

ζ(z;ω1,ω2) = 1

z
+

∑
(m,n)∈Z2,m �=n

(
1

z − 
mn
+ 1


mn
+ z


2
mn

)
,


mn = 2mω1 + 2nω2,

η1 = ζ(ω1;ω1,ω2),

� = 2i(ω1ω2 − ω1ω2),

(3)

where N is the number of vortices in one period, zα is the complex 
position of the αth vortex with zα = xα + iyα , �β is the strength 
of the βth vortex, ω1 and ω2 are the complex half-periods, and ζ
is the Weierstrass function. According to the expression of Weier-
strass function, the motion of one vortex is influenced not only by 
the other vortices in the same period, but also by the vortices and 
its images in other periods. It can be deduced that for a system of 
two point vortices with zero net circulation in a periodic parallelo-
gram, the properties of the motion is the same with the aperiodic 
case where there are only two vortices in an unbounded domain. 
4

However, for a system of three vortices, the case will be more com-
plicated. In Ref. [31], by defining the parameter of strength and 
invariant of a three-vortices system with zero net circulation in a 
periodic parallelogram, there is

�1

�3
= −

(
1

2
+ γ

)
,

�2

�3
= −

(
1

2
− γ

)
,

�1z1 + �2z2 + �3z3 = Q + i P ,

(4)

where γ is the parameter of strength and we only consider the 
case where �1 ≥ �2 > 0 and �3 < 0 without loss of generality. 
Q and P are the real and imaginary parts of the invariant of the 
three-vortices system in one period, respectively. Note that the val-
ues of Q and P are sensitive to the selection of the basic three 
vortices. In order to write the equations in a more compact form, 
one can map ω1 to the real axis by rotating the coordinates. Ac-
cordingly, the equations write

dz1

dt
= 1

2π i

[
�2ζ(z1 − z2) + �3ζ(z1 − z3) + η1

ω1
(Q + i P ) − P

�

]
,

dz2

dt
= 1

2π i

[
�1ζ(z2 − z1) + �3ζ(z2 − z3) + η1

ω1
(Q + i P ) − P

�

]
,

dz3

dt
= 1

2π i

[
�1ζ(z3 − z1) + �2ζ(z3 − z2) + η1

ω1
(Q + i P ) − P

�

]
.

(5)

Defining Z = z1 − z2, X = −(Q + i P )/�3 and subtracting the first 
two equations of (5), the only independent equation for Z writes

dZ

dt
= − �3

2π i

[
ζ(Z) + ζ

(
X −

(
1

2
+ γ

)
Z

)

+ ζ

(
X +

(
1

2
− γ

)
Z

)]
, (6)

then the equation of motion for z1 can be written in terms of Z . 
Also, z2 and z3 can be easily deduced using Q , P and γ .

In Ref. [31], the analysis was focusing on Eq. (6) by choosing 
different parameter γ and by considering the problem as the ad-
vection of a passive particle by a certain set of point vortices. 
The analysis of the motion regimes of three vortices in a peri-
odic parallelogram was based on the analysis of the streamline 
pattern of this passive particle. We remark that the two periodic 
boundary conditions that we use in DNS computation can also be 
both written in form of the periodic parallelogram. Specifically, the 
Hexagonal cases in the present contribution imply two periodical 
directions that constitute the two adjacent sides of parallelogram, 
i.e., i and 

√
3/2 + i/2 in the complex plane (denoted as �R1 and �R2

in Fig. 4(a) respectively).
In the present post-processing, identification of vortices is per-

formed by searching for 2D extremums of vorticity magnitude 
above a threshold. The detailed procedure can refer to Ref. [9], 
while the threshold in the present paper is set as 20% of the 
maximal vorticity magnitude. The vortices are approximately con-
sidered as point vortices, while the strength for each vortex is 
calculated by integrating the vorticity in its vicinity. The vicinity 
for each vortex is determined by distinguish the minimum distance 
to one of the three vortices in one period and their images in the 
other eight periods around. Accordingly, at each instant, we can 
finally obtain the strength of three vortices with the total circula-
tion to be zero. We remark that the present post-processing is an 
approximation by involving the concept of point vortices, but they 
are not exactly the same. A difference is that the strength calcu-
lated for each vortex will vary with the evolution of the present 
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Fig. 4. Trajectory of Z(t) with unbounded regime. (a) Hexagonal case No. 38. (b) Cartesian case No. 27.

Fig. 5. Evolution of vortex strengths with unbounded regime. (a) Hexagonal case No. 38. (b) Cartesian case No. 27.
system, but for a point vortices system they are constant. As a re-
sult, the parameter γ will vary with time in the present DNS cases, 
which, by contrast, is a constant in a point vortices system.

In the following section, we will focus on the wandering motion 
with unbounded regime which was defined in Ref. [31] and com-
pare the difference between the regimes occurred under different 
periodic conditions. Also, we will turn to the paired motions which 
are the most frequently observed bounded regimes in DNS cases.

3. Results

3.1. Analysis on the wandering motion with unbounded regime

As introduced in Eq. (6), the displacement between two vor-
tices of the same sign, Z(t), can be considered as a characteristic 
quantity for the dynamics of a three-vortices system. If the evolu-
tion of Z(t) is unbounded, the situation was named as unbounded 
regime. A direct conclusion is that an initial set of three vortices 
in a period cannot always stay in a single period. As concluded 
in Ref. [31], when γ = 0, the only motion under the unbounded 
regime is the wandering motion, i.e., Z(t) migrates towards a typi-
cal direction. Under quadrate periodic conditions this direction can 
be one of the periodic directions; in a periodic parallelogram with 
two periodic directions that are not perpendicular, for example un-
der hexagonal periodic conditions, this direction can be either one 
5

of the two periodic directions that defines the parallelogram, or 
the third direction defined by a linear combination of them.

In our DNS cases, wandering motions are also observed un-
der both periodic conditions, but differences exist by comparing 
with point-vortex theories. Fig. 4 illustrates the difference in un-
bounded regime between two periodic conditions by giving two 
typical examples respectively. We remark that in each Cartesian 
DNS case with unbounded regime of three-vortices system, two 
periodic directions are the only typical directions for Z(t). The 
third direction under hexagonal periodic conditions is marked in 
Fig. 4(a), by comparing with the two periodic directions �R1 and 
�R2. These directions are well consistent to the theoretical analy-
sis in Ref. [31]. Differences exist between the present cases and 
the theoretical results of point vortices. As observed in Fig. 4, for 
both periodic conditions the direction in which the particle travels 
can change. This is contrary to Ref. [31], where wandering mo-
tions should always lead to migration in only one direction. There 
are two underlying reasons: i) the present vortices have vorticities 
distributed in a certain area and are not point vortices; ii) in the 
present cases the pre-condition of the theories of point vortices, 
γ = 0, cannot be satisfied. These facts mean that the dynamics of 
large-scale vortices can switch among different wandering motions 
of unbounded regimes, as observed in Fig. 4.

We also show the evolution of vortex strengths of these two 
cases in Fig. 5. The value of time on x-axis is normalized by using 
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Fig. 6. Trajectories of vortices with unbounded regime. (a) Hexagonal case No. 38. (b) Cartesian case No. 27.

Fig. 7. Vorticity snapshots of two cases with unbounded regime. (a) Hexagonal case No. 38. (b) Cartesian case No. 27.
a characteristic time 1/ max(|�1|, |�2|, |�3|) at t = 0. It is clear that 
the total strength �1 +�2 +�3 is very close to zero, which supports 
both our post-processing techniques and the zero-vorticity deduc-
tion in point-vortex theories [31]. The corresponding trajectories 
and vorticity snapshots are shown in Fig. 6 and 7 respectively. 
From Fig. 5(a) �2 corresponds to the vortex which migrates among 
different periods in the Hexagonal case, while the vortex pair with 
strengths �1 and �3 remains always in a single period. It is in-
teresting that �2 is the weakest vortex among the three vortices 
in the Hexagonal case, and its location is far from the other two 
vortices as shown in Fig. 5(a). We remark that this phenomenon 
can be analogical to the physics of current flow: the weakest and 
smallest vortex is analogical to the outer-shell electron which can 
move among atoms, while the other two vortices are analogical to 
the proton and inner-shell electron. For comparison, in Fig. 5(b) 
there is no such kind of phenomenon.

Since in the present cases vortices cannot preserve constant 
strength, it is interesting to ask how much difference between DNS 
and point-vortex theories due to this variation of strength. In prac-
tice, we calculate the point-vortex evolution based on certain in-
stants respectively by freezing the strengths of three vortices, and 
compare these analytical predicted trajectories with the real trajec-
tories in Fig. 8. Coincidence can be observed in short term, while 
in long term they diverge. The corresponding temporal evolution 
of the distance (in practice, at each instant we calculate the mean 
6

value of the distances of three vortices) is shown in Fig. 9. Given 
a threshold distance value 10%, it is observed that the normalized 
time for reaching this threshold is of the magnitude of 105. This 
fact indicates that the point-vortex theories can be approximated 
used in a time interval of about 105. In order to give an intuitive 
view on this time length, we note that the time from a Gaussian 
initial field to a three-vortices state is about 6 × 106 ∼ 8 × 106.

3.2. Analysis on the paired motion with bounded regimes

According to Ref. [31], there are different motions in bounded 
regimes. From DNS results, it is observed that most cases with 
bounded regimes are paired motions, indicating that the paired 
motion represents the most important dynamics of the system 
of three vortices. In this section we will focus on two typical 
cases with almost similar initial vortex strengths, under different 
periodic conditions. Fig. 10 shows two examples with bounded 
regimes. Clearly the trajectories of Z(t) are quasi periodic within a 
boundary. Fig. 11 further shows the evolution of vortex strengths. 
It is clear that each case is a system of three vortices, with two 
negative vortices of almost the same strength, and one positive 
vortex.

Fig. 12 shows the motion of each vortex. It is found that both 
cases evolve similarly, where �3 corresponds to a quasi-straight 
translation, while the two negative vortices, �1 and �2, co-rotate 
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Fig. 8. Comparison of trajectories of vortices between DNS and analytical solutions by freezing the strength. Solid circles indicate different time instants of strength freezing. 
(a) Hexagonal case No. 38. (b) Cartesian case No. 27.

Fig. 9. Mean value of the trajectory distances of three vortices between DNS and analytical solutions by freezing the strength, at different time instants respectively. Domain 
period L is used for normalization. Horizontal dotted lines correspond to 10% distance, and vertical dashed lines indicate the time that the distance reaches 10%. (a) Hexagonal 
case No. 38. (b) Cartesian case No. 27.

Fig. 10. Trajectory of Z(t) with bounded regime. (a) Hexagonal case No. 6. (b) Cartesian case No. 16.
7
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Fig. 11. Evolution of vortex strengths with bounded regime. (a) Hexagonal case No. 6. (b) Cartesian case No. 16.

Fig. 12. Trajectories of vortices with bounded regime. (a)Hexagonal case No. 6. (b) Cartesian case No. 16.
and form a pair. This indicates that the paired motions, as de-
scribed in Ref. [31] for point vortices, also exist in the real periodic 
2D flows.

However, differences between Hexagonal case and Cartesian 
case can be observed in long time. As shown in Fig. 13, at ini-
tial time each of the two cases has three vortices in one pe-
riod (marked with dashed lines), but after the same time (t =
2.57 ×106) the Hexagonal case evolves to two vortices while Carte-
sian case remains three. We show accordingly the evolution of 
distances between each two vortices in Fig. 14. It is shown that 
in long time, the distance between �1 and �2 in Hexagonal case 
tends to zero, indicating that the two vortices merge to one vor-
tex (it is also shown in Fig. 12(a) where the final merging stage 
is marked with a red circle). By contrast, in the present Carte-
sian case the vortices do not merge in the same time. We remark 
that this does not mean that the Hexagonal cases are always easier 
to merge vortices. In fact, from Table 1 the possibilities of merg-
ing, i.e., the total numbers of “Three-vortices to Two-vortices” and 
“Four-vortices to Two-vortices”, are almost the same for different 
periodic conditions (21 cases versus 22 cases). Here we are rather 
interested in searching for a physical quantity to represent this 
merging procedure more easily.

In order to describe the merging procedure, we introduce the 
skewness of vorticity (for 2D cases the only non-zero component 
8

of vorticity is in the direction perpendicular to the flow plane, de-
noted as ω), defined as

Sω =
〈
ω3

〉
(〈
ω2

〉)3/2
, (7)

where ensemble average 〈〉 is implemented by using spatial av-
erage. The ensemble average in denominator is proportional to 
the enstrophy, which is globally a quasi constant and only decays 
slowly due to viscosity [1,14]. For isotropic flows with reflection 
symmetry Sω should be around zero. However, if we track the 
evolution of Sω in different case, we can find that the plateaus 
and sudden changes correspond to different dynamics of vortices 
respectively. From the examples in Fig. 15, it is clear that the 
plateaus usually correspond to a quasi stable system of several 
large-scale vortices, while the sudden changes usually correspond 
to the procedure of vortex merging.

This phenomenon can be explained by expressing ω in spectral 
space. We can write

ω(�x) =
∑
�k∈K

ei�k·�xa(�k)eiφ(�k), (8)

where a is the amplitude and φ is the phase. K is the set of 
discrete wavevectors, which is related to the type of periodic con-
dition and mesh resolution [20]. Derivations lead to
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Fig. 13. Vorticity snapshots with bounded regime. (a) Hexagonal case No. 6, t = 0; (b) Hexagonal case No. 6, t = 2.57 × 106; (c) Cartesian case No. 16, t = 0; (d) Cartesian 
case No. 16, t = 2.57 × 106.

Fig. 14. Distance among three vortices with bounded regime. (a) Hexagonal case No. 6. (b) Cartesian case No. 16.
ω3(�x) =
∑
�k,�p,�q

ei(�k+�p+�q)·�xa(�k)a(�p)a(�q)ei(φ(�k)+φ(�p)+φ(�q))

=
∑

�m
ei �m·�x ∑

�p,�q
a( �m − �p − �q)a(�p)a(�q)ei(φ( �m−�p−�q)+φ(�p)+φ(�q)).

(9)

The ensemble average corresponds to the �m = �0 mode, i.e.,
9

〈
ω3(�x)

〉
=

∑
�p,�q

a(−�p − �q)a(�p)a(�q)ei(φ(−�p−�q)+φ(�p)+φ(�q)). (10)

Redefining �k = �p + �q, and using the conjugation symmetry condi-
tion a(�k) = a(−�k), φ(�k) = −φ(−�k), we write〈
ω3(�x)

〉
=

∑
� � �

a(�k)a(�p)a(�q) cos(φ(�p) + φ(�q) − φ(�k)). (11)
k=p+q
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Fig. 15. Evolution of the skewness of vorticity with bounded regime. (a) Cartesian case No. 1; (b) Cartesian case No. 3; (c) Cartesian case No. 78.
Note that the pair of (�k, �p, �q) and (−�k, −�p, −�q) does not cancel 
each other. Approximately considering constant enstrophy, Eq. (11)
is proportional to Sω . Clearly, the value of Sω is related to the 
interactions of triad wavevectors. As shown in Fig. 14(a), in proce-
dure of vortex merging, the distances among vortices will rapidly 
change, indicating that Fourier component of new wavevectors 
arises. As a result, new triad interactions will generate, and from 
Eq. (11) Sω should rapidly change. For comparison, a quasi stable 
system of several large-scale vortices corresponds to quasi stable 
triad interactions, therefore Sω is accordingly quasi constant.

4. Conclusions

Most of existing studies on two-dimensional flows focus on 
the stage in which energies are contained at all scales, indicat-
ing the inter-scale transfer of energy and enstrophy. Few studies 
have focused on the late dynamics of large-scale vortices in peri-
odic two-dimensional flows, which is investigated in the present 
contribution by using DNS results. Main conclusions are listed as 
follows.

1. The theories of point vortices can be also approximately em-
ployed for both quadrate and hexagonal periodic conditions. 
Specifically, freezing the vortex strengths and using point-
vortex theories leads to less than 10% error of distance in an 
time interval of magnitude of 105. Conversely, our cases also 
support the theoretical solutions of point vortices with nu-
merical facts. However, in real flows the dynamics can switch 
among different motions, which differs from the theory of 
point vortices. This is a result of the following effects: i) the 
size of vortices is not a point; ii) in real flows γ �= 0 and is not 
constant.

2. As a special case of the wandering motions, the weakest vor-
tex can migrate among different periods, with the other two 
vortices co-rotating. This phenomenon can be analogical to the 
physics of current flow.

3. The procedure that several vortices merge to one vortex, can 
be captured by tracking the sudden changes of the skewness of 
vorticity, since new wavevectors arise; by contrast, a quasi sta-
ble system of several large-scale vortices usually corresponds 
to quasi constant skewness of vorticity.
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