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Abstract We have proposed an “exact” strain gradient (SG) continuum model to
properly predict the dispersive characteristics of diatomic lattice metamaterials with local
and nonlocal interactions. The key enhancement is proposing a wavelength-dependent
Taylor expansion to obtain a satisfactory accuracy when the wavelength gets close to
the lattice spacing. Such a wavelength-dependent Taylor expansion is applied to the
displacement field of the diatomic lattice, resulting in a novel SG model. For various kinds
of diatomic lattices, the dispersion diagrams given by the proposed SG model always agree
well with those given by the discrete model throughout the first Brillouin zone, manifesting
the robustness of the present model. Based on this SG model, we have conducted the
following discussions. (I) Both mass and stiffness ratios affect the band gap structures of
diatomic lattice metamaterials, which is very helpful for the design of metamaterials. (II)
The increase in the SG order can enhance the model performance if the modified Taylor
expansion is adopted. Without doing so, the higher-order continuum model can suffer
from a stronger instability issue and does not necessarily have a better accuracy. The
proposed SG continuum model with the eighth-order truncation is found to be enough to
capture the dispersion behaviors all over the first Brillouin zone. (III) The effects of the
nonlocal interactions are analyzed. The nonlocal interactions reduce the workable range
of the well-known long-wave approximation, causing more local extrema in the dispersive
diagrams. The present model can serve as a satisfactory continuum theory when the
wavelength gets close to the lattice spacing, i.e., when the long-wave approximation is no
longer valid. For the convenience of band gap designs, we have also provided the design
space from which one can easily obtain the proper mass and stiffness ratios corresponding
to a requested band gap width.
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1 Introduction

During the last few decades, researchers have been exploiting various potential applications
of metamaterials[1–2]. Metamaterials refer to some composite materials that have artificially
designed structures and exhibit extraordinary physical properties that the source materials do
not have. For example, acoustic metamaterials can have negative effective mass or negative
effective modulus, leading to forbidden band gaps, negative refractive index, stealth, etc.[3–4] It
also has a wide range of applications in vibration reduction, noise isolation, acoustic control,
waveguide, and so on. Thus, the developments of acoustic metamaterials have greatly expanded
the application range of acoustic engineering. Intensive research efforts have been devoted
to the analyses of the propagation and dispersion characteristics of elastic waves in acoustic
metamaterials[5–8] with negative effective properties[9–11].

The so-called band gap of metamaterials refers to a certain frequency range in which the
wave propagation is forbidden. For metamaterials with local resonator, band gaps generate near
the resonant frequency of the internal structure, which is hardly found in materials with simple
monatomic lattice structures[12]. Plenty of metamaterials with such a characteristic have been
designed for vibration isolation and sound insulation. Many mechanics-based models have been
proposed to analyze the band gap structures of structured materials. Huang and Sun[13] studied
the band gap structure of locally resonant acoustic metamaterials, and illustrated the effects of
mass and spring parameters on band gaps. The band gaps of acoustic metamaterials with multi-
resonators were investigated by Zhou et al.[14]. Tan et al.[15] proposed a kind of dual-resonator
microstructure design to obtain the optimal effective negative mass in acoustic metamaterials.
Chen et al.[16] studied how to control band gaps in an active elastic metamaterial with negative
capacitance piezoelectric shunting. Liu and Reina[17] investigated the effect of hierarchical
microstructures on the band gap structure of periodic lattice systems with local resonators. An
et al.[18] discussed the band gaps and vibration properties of two-dimensional (2D) disordered
lattice acoustic metamaterials. The modified metamaterial system with local resonators coupled
was studied by Hu et al.[19] and Zhao et al.[20]. With the developments in three-dimensional
(3D) printing technology, acoustic metamaterials with various microstructures can be readily
made.

As a benchmark problem, the dispersion of one-dimensional (1D) periodic mass-spring sys-
tem has been investigated not only as the discrete lattice model, but also as the continuum
model with microstructures considered. Mindlin[21] proposed the strain gradient (SG) elastic
theories to account for microstructural effects, which has influenced the solid mechanics com-
munity for several decades. To date, the SG model has been successfully used to capture size
effects in mechanical properties, when the specimen size gets close to the material’s characteris-
tic length[22–24]. Parallelly, it has also been applied to dynamic problems when the wave-length
and the material’s characteristic length are on the same order of magnitude. Polyzos and
Fotiadis[25] checked two simple 1D models to explicitly confirm the effectiveness of Mindlin
type SG continua. For 1D periodic lattice, the material’s characteristic length mentioned above
is explicitly related to the atomic spacing. As a follow-up discussion, De Domenico et al.[12]

adopted a new truncating strategy for Taylor expansions of the displacement field, and found
that the continuum model works well at the long-wave extreme and suffers from an instable
issue when the wave length gets close to the atomic spacing. A proper continuum model is
helpful in efficiently capturing dispersive characteristics instead of spending too substantial
computational costs.

Continuum models have also been built for metamaterials with mass-in-mass resonators.
Huang et al.[11] proposed the multi-displacement (MD) continuum model for 1D mass-in-mass
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metamaterials. This model can accurately predict the dispersion relation in the long-wave
domain. Zhou et al.[26] extended the MD continuum modeling to 2D metamaterial plate.
Metrikine and Askes[27] built a nonlocal continuum model for the same purpose. As a more
complex option, the nonlocal gradient continuum models were proposed[28–29], which are un-
conditionally stable but fail to provide proper dispersive characteristics in the whole Brillouin
zone. Dispersions of the 1D periodic lattice to be studied here have been a benchmark problem
and attracted extensive research interest. Even though it can be easily solved by the discrete
model, a robust continuum model capable of giving correct results throughout the whole first
Brillouin zone is still lacking[12,30].

It is also meaningful to investigate the effects of nonlocal springs installed in lattices. Chal-
lamel et al.[31] studied the dynamic behaviors of generalized axial lattices with direct and
indirect interactions by considering extra higher-order boundary conditions. Zhang et al.[32]

discussed the vibration of the multiply connected bar-chain system with direct and indirect
interactions and emphasized the effects of long-range interactions on mechanical vibration.
Ghavanloo and Fazelzadeh[33] investigated the effect of long-range interactions on the wave
propagation in 1D acoustic metamaterials.

In this study, we attempt to construct an exact SG continuum model to predict dispersive
characteristics of diatomic lattice metamaterials with local and nonlocal interactions through-
out the first Brillouin zone. This paper is structured as follows. In Section 2, we employ a
discrete model to provide dispersive diagrams of mass-in-mass metamaterials. In Section 3,
by modifying the Taylor expansion of displacement, we propose a wavelength-dependent SG
continuum model to capture dispersion characteristics of 1D diatomic lattices. By combining
the MD model presented by Huang et al.[11], such a model is extended to mass-in-mass lattices.
In Section 4, the proposed model is validated by comparing with other continua and discrete
results. In Sections 5 and 6, the effects of stiffness ratio, mass ratio, and SG orders are respec-
tively investigated. In Section 7, the influence of nonlocal interactions on 1D diatomic lattices
is studied. The conclusions are given in Section 8.

2 Discrete model of 1D diatomic lattice metamaterials

We consider an infinitely long diatomic lattice chain of 1D acoustic metamaterials, as shown
in Fig. 1(a), where multiple particles and springs are placed periodically. The second atom
composed of mass M1 and mass M2 as well as the first atom composed of mass m1 and mass
m2 is arranged adjacently in space. We consider one- and two-neighbor interactions between
different atoms, which are represented by spring stiffnesses K1, K ′

1, and K3, K ′
3, respectively.

The stiffness coefficients of springs that connect the inner and outer mass particles of the first
atom and the second atom are respectively K ′

2 and K2. u
(j)
1 and u

(j)
2 represent the displacements

of the outer and inner mass particles in the atom located at j, respectively. In addition, we
assume that the springs here are all massless. The distance between each two neighboring
identical atoms is a.

For particles with different masses in the nth cell which is enclosed by the red dash rectangle
in Fig. 1(a), the corresponding equations of motion (EOMs) are written as[30]

M1
d2u

(2n)
1

dt2
= K ′

1(u
(2n+1)
1 − u

(2n)
1 )−K1(u

(2n)
1 − u

(2n−1)
1 ) + K2(u

(2n)
2 − u

(2n)
1 )

+ K3(u
(2n+2)
1 − u

(2n)
1 )−K3(u

(2n)
1 − u

(2n−2)
1 ), (1)

M2
d2u

(2n)
2

dt2
= −K2(u

(2n)
2 − u

(2n)
1 ), (2)
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Fig. 1 (a) 1D diatomic lattice chain with up to three-neighbor interactions and unit cells for lattices
with up to (b) one-neighbor, (c) two-neighbor, and (d) three-neighbor interactions (color
online)

m1
d2u

(2n+1)
1

dt2
= K1(u

(2n+2)
1 − u

(2n+1)
1 )−K ′

1(u
(2n+1)
1 − u

(2n)
1 ) + K ′

2(u
(2n+1)
2 − u

(2n+1)
1 )

+ K ′
3(u

(2n+3)
1 − u

(2n+1)
1 )−K ′

3(u
(2n+1)
1 − u

(2n−1)
1 ), (3)

m2
d2u

(2n+1)
2

dt2
= −K ′

2(u
(2n+1)
2 − u

(2n+1)
1 ). (4)

The solutions to the above equations are





u
(2n)
1 = A1ei(kx−ωt), u

(2n+1)
1 = B1ei(kx−ωt), u

(2n−1)
1 = B1ei(k(x−a)−ωt),

u
(2n+3)
1 = B1ei(k(x+a)−ωt), u

(2n+2)
1 = A1ei(k(x+a)−ωt), u

(2n−2)
1 = A1ei(k(x−a)−ωt),

u
(2n)
2 = A2ei(kx−ωt), u

(2n+1)
2 = B2ei(kx−ωt),

(5)

where A1, A2, B1, and B2 are the amplitudes, k is the wave number, and ω is the angular
frequency.

Substituting Eq. (5) into Eqs. (1)–(4) yields

(M1ω
2 −K ′

1 −K1 −K2 − 2K3 + 2K3 cos(ka))A1 + K2A2 + (K ′
1 + K1e−ika)B1 = 0, (6)

K2A1 + (M2ω
2 −K2)A2 = 0, (7)

(K1eika + K ′
1)A1 + (m1ω

2 −K1 −K ′
1 −K ′

2 − 2K ′
3 + 2K ′

3 cos(ka))B1 + K ′
2B2 = 0, (8)

K ′
2B1 + (m2ω

2 −K ′
2)B2 = 0. (9)

To ensure that A1, A2, B1, and B2 have non-zero solutions, the coefficient determinant
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satisfies

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

( ω

ω0

)2

− β − β0 − 1

−2γ + 2γ cos (ka)
β e−ika + β0 0

β α
( ω

ω0

)2

− β 0 0

eika + β0 0
1
α0

( ω

ω0

)2

− ββ0 − β0 − 1

−2γ0 + 2γ0 cos (ka)
ββ0

0 0 ββ0
α

α0

( ω

ω0

)2

− ββ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (10)

where the dimensionless parameters are defined as follows: α = M2
M1

= m2
m1

, β = K2
K1

= K′
2

K′
1
,

α0 = M1
m1

, β0 = K′
1

K1
, γ = K3

K1
, γ0 = K′

3
K1

, and ω2
0 = K1

M1
. Equation (10) is the dispersion equation

of the corresponding diatomic lattice chain.

Particularly, letting K3 = K ′
3 = 0 in Eq. (10) leads to the dispersion relation for the diatomic

lattice chain only with local interactions. From Fig. 2(a), we find that there are four wave
branches in such a diatomic lattice simply with one-neighbor interactions: the fourth, third,
optical, and acoustic branches, suggesting a substantial difference from the single-atom counter-
part. Furthermore, three band gaps appearing in the dispersive diagram allow a more flexible
design of acoustic diatomic lattices.
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Fig. 2 Dispersion curves of chains with up to (a) one-, (b) two-, and (c) three-neighbor interactions,
obtained by the discrete and/or present continuum models. Parameter settings are presented
in the context (color online)

For each wave branch, it is interesting to discuss the relative motions of particles in a periodic
cell. When K3 = K ′

3 = 0, Eqs. (6)–(9) are significantly simplified and serve as those for the
lattice with only one-neighbor interactions. For such a case, the amplitude ratios of particle
vibrations can be determined as

B1

A1
= −(β0 + e−ika)−1

(( ω

ω0

)2

− β − β0 − 1 +
β2

β − α
(

ω
ω0

)2

)
, (11)

B1

A1
= − eika + β0(

1
α0

(
ω
ω0

)2 − ββ0 − β0 − 1
)

+ (ββ0)2
(
ββ0 − α

α0

(
ω
ω0

)2)−1 , (12)
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A2

A1
=

β

β − α
(

ω
ω0

)2 , (13)

B2

A1
= − (β0 + eika)

ββ0
+

1
ββ0(β0 + e−ika)

( 1
α0

( ω

ω0

)2

− ββ0 − β0 − 1
)

×
(( ω

ω0

)2

− β − β0 − 1 +
β2

β − α
(

ω
ω0

)2

)
, (14)

where the two expressions for B1
A1

, i.e., Eqs. (11) and (12), can be proven to be identical. Thus,
we only employ Eq. (11) for the following discussion.

We take the case with α = 4, β = 2, α0 = 2, and β0 = 0.5 to demonstrate relative motions
of particles. Based on Eqs. (11), (13), and (14), we plot the vibration amplitude ratios in Fig. 3.
Figure 3(a) gives the result for the acoustic branch in Fig. 2(a). At the extreme of ka

2π → 0,
all amplitude ratios get close to 1, indicating that for an infinite wavelength, all particles in a
unit cell move together like a rigid unit. Throughout the first Brillouin zone, A2

A1
> 0 suggests

that particles M2 and M1 always keep the same vibration direction. While particles m1 and
m2 can move in the direction opposite to M1 when the reduced wave number falls in some
range around 0.5. In Figs. 3(b)–3(d), the most surprising feature may be that the amplitude
ratios do not get close to 1 even when the wave number tends to zero. Furthermore, ratios
can possess considerable negative values over most of the first Brillouin zone. Keeping in mind
that a negative vibration amplitude ratio means opposite motions of two related particles, the
continuity of displacement field in each periodic cell is naturally violated. This fact explains
why the MD method employed in Section 3 is necessary for diatomic lattices.
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The above formulation reduces to that of the diatomic lattice without internal particle by
letting M2 = m2 = 0,K2 = K ′

2 = 0,K1 = K ′
1, and K3 = K ′

3 = 0. Now, Eqs. (6)–(9) give

B1

A1
=





(M1 −m1)−
(
(m1 + M1)2 − 4M1m1 sin2

(
ka
2

)) 1
2

−m1(1 + e−ika)
for acoustic mode,

(M1 −m1) +
(
(m1 + M1)2 − 4M1m1 sin2

(
ka
2

)) 1
2

−m1(1 + e−ika)
for optic mode.

(15)

When setting the mass ratio M1
m1

= 2, we obtain the dispersion and amplitude ratio diagrams
in Fig. 4, which totally agree with those presented by Born and Huang[34]. Additionally, when
ka
2π = 0.5, both the denominator and numerator in Eq. (15) tend to zero; but according to the
L’Hospital’s rule, we confirm that ka

2π = 0.5 is not a singular point of B1
A1

.
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3 Robust SG continuum model with a wavelength-dependent Taylor ex-
pansion

We develop the exact SG continuum model by taking the diatomic chain only with one-
neighbor interactions shown in Fig. 1(a) as an example. A detailed discussion on the SG con-
tinuum model with nonlocal interactions is provided in Section 7. The chosen unit cell contains
two whole atoms, two one-neighbor springs, and two internal springs, as enclosed by the dash
line rectangle in Fig. 1(b). In comparison with existing studies[30,33,35], we focus on a modified
Taylor expansion of displacement to obtain the wavelength-dependent SG continuum model.

For the four-mass particles of the unit cell in Fig. 1(b), the displacement fields u1(x, t),
u

(i)
1 (x, t), u2(x, t), and u

(i)
2 (x, t) are continuous counterparts of discrete atomic displacements

of M1, M2, m1, and m2, respectively. There are

u
(2n)
1 = u1(x, t), u

(2n)
2 = u

(i)
1 (x, t), u

(2n+1)
1 = u2(x, t), u

(2n+1)
2 = u

(i)
2 (x, t), (16)

where the superscript “(i)” means “internal mass”, i.e., m2 and M2.
Then, the displacements of the (2n±2)th and (2n−1)th mass particles can be expressed as

u
(2n±2)
1 = u1(x± a, t), u

(2n−1)
1 = u2(x− a, t). (17)
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To enhance the accuracy of SG continuum models, we update the Taylor expansion of
displacements corresponding to the nearest and second nearest mass points. Therefore, Eq. (17)
can be rewritten as





u1(x± a, t) = u1(x± dI, t) = u1 +
∞∑

p=1

(±1)p dp
I

p!
∂pu1

∂xp
,

u2(x± a, t) = u2(x± dI, t) = u2 +
∞∑

p=1

(±1)p dp
I

p!
∂pu2

∂xp
,

(18)

where the value of dI is related to the wavelength and not necessarily equal to atomic spacing
a. u′1, u′′1 , u′′′1 , · · · , u

(n)
1 are respectively the first-, second-, third-, · · · , nth-order derivative of

the u1 field, and the same notation rule applies to u2. For 1D problems, u′1 = ∂u1
∂x can be taken

as the normal strain, and thus u′′1 and u′′′1 correspond to the first- and second-order derivatives
of strain, or equivalently SGs. When the wavelength λ is much larger than the microstructure
spacing a, we adopt dI = a, as most continuum theories have been done under the so-called
long-wave approximation. Nevertheless, our present aim is to study the first Brillouin zone,
and the wavelength can get close to the microstructural size. Keeping in mind the periodicity
of wave motion, the displacement at the position x± λ is equal to that at x, i.e.,

u1(x± λ, t) = u1(x, t), u2(x± λ, t) = u2(x, t). (19)

From Fig. 5, if we attempt to obtain the displacement at the position x ± a by the Taylor
expansion with respect to x, to guarantee the accuracy, we need to judge which one is the
nearest to x±a between x and x±λ, and then set dI as the distance from the nearest to x±a.
Due to the periodicity of motion, displacements at positions of x + lλ (l = 0,±1,±2,±3, · · · )
are equal to that at x. The Taylor expansion should be carried out according to the nearest
location among all x + lλ.

Based on the above considerations of motion periodicity, we get

dI =
{

a− λ when λ ∈ (a, 2a),
a when λ ∈ (2a,∞). (20)

u1(x,t)

u1(x,t)

a
u2(x,t)
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(4)
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λ

λ

λ

λ

2λ

λ

λ

λ

(a) (b)

Fig. 5 Wavelength-dependent values of dI and dII for lattices with interactions of up to (a) one-
neighbor and two-neighbor: (1) a 6 λ 6 2a and (2) λ > 2a; (b) three-neighbor: (1) a 6 λ 6
4a/3, (2) 4a/3 < λ 6 2a, (3) 2a < λ 6 4a, and (4) λ > 4a (color online)
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For the selected unit cell 1 in Fig. 1(b), the potential energy density and kinetic energy
density are, respectively,

W =
1

2Aa
(K1(u

(2n+2)
1 − u

(2n+1)
1 )2 + K ′

1(u
(2n+1)
1 − u

(2n)
1 )2

+ K2(u
(2n)
2 − u

(2n)
1 )2 + K ′

2(u
(2n+1)
2 − u

(2n+1)
1 )2), (21)

T =
1

2Aa
(M1(u̇

(2n)
1 )2 + M2(u̇

(2n)
2 )2 + m1(u̇

(2n+1)
1 )2 + m2(u̇

(2n+1)
2 )2), (22)

where Aa is regarded as the volume of the unit cell containing four complete mass particles,
which does not depend on the choice of springs. The same is true in the following discussion.

Inserting Eqs. (16)–(18) into Eqs. (21) and (22) and truncating the achieved expressions after
d8
I lead to

W =
1

2Aa

(
K1

(
u1 +

8∑
p=1

dp
I

p!
∂pu1

∂xp
− u2

)2

+ K ′
1(u2 − u1)2

+ K2(u
(i)
1 − u1)2 + K ′

2(u
(i)
2 − u2)2

)
, (23)

T =
1

2Aa
(M1u̇

2
1 + M2(u̇

(i)
1 )2 + m1u̇

2
2 + m2(u̇

(i)
2 )2). (24)

By applying the Hamilton variation principle, i.e.,

δ

∫ t2

t1

∫

V

(T −W )dV dt = 0, (25)

we can get the following EOMs:

M1ü1 + (K1 + K ′
1 + K2)u1 −K2u

(i)
1 − (K1 + K ′

1)u2 + K1

8∑
p=1

(−1)p+1 dp
I

p!
∂pu2

∂xp
= 0, (26)

M2ü
(i)
1 + K2(u

(i)
1 − u1) = 0, (27)

m1ü2 − (K1 + K ′
1)u1 + (K1 + K ′

1 + K ′
2)u2 −K ′

2u
(i)
2 −K1

8∑
p=1

dp
I

p!
∂pu1

∂xp
= 0, (28)

m2ü
(i)
2 + K ′

2(u
(i)
2 − u2) = 0. (29)

Keeping in mind that u1(x, t), u
(i)
1 (x, t), u2(x, t), and u

(i)
2 (x, t) are continuous displacements,

Eqs. (26)–(29) provide their evolutions in terms of x and t. In this sense, it can be taken as a
continuum model for the studied diatomic lattice, just as done by Mindlin[21], de Domenico et
al.[12], and Polyzos and Fotiadis[25].

The solutions to the above equations are

{
u1 = C1 exp(i(kx− ωt)), u

(i)
1 = C2 exp(i(kx− ωt)),

u2 = D1 exp(i(kx− ωt)), u
(i)
2 = D2 exp(i(kx− ωt)).

(30)

Substituting Eq. (30) into Eqs. (26)–(29) yields the dispersive equations of the new SG con-
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tinuum model

M1ω
2C1 − (K1 + K ′

1 + K2)C1 + K2C2 + (K1 + K ′
1)D1 −K1D1

8∑
p=1

(−1)p+1 (ikdI)p

p!
= 0, (31)

K2C1 + (M2ω
2 −K2)C2 = 0, (32)

m1ω
2D1 + (K1 + K ′

1)C1 − (K1 + K ′
1 + K ′

2)D1 + K ′
2D2 + K1C1

8∑
p=1

(ikdI)p

p!
= 0, (33)

K ′
2D1 + (m2ω

2 −K ′
2)D2 = 0. (34)

Adopting the dimensionless parameters mentioned and considering the existence of nontrivial
solutions in Eqs. (31)–(34) yield

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

( ω

ω0

)2

− β − β0 − 1 β β0 + 1− η1 0

β α
( ω

ω0

)2

− β 0 0

1 + β0 + η2 0
1
α0

( ω

ω0

)2

− ββ0 − β0 − 1 ββ0

0 0 ββ0
α

α0

( ω

ω0

)2

− ββ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (35)

where η1 =
8∑

p=1
(−1)p+1 (ikdI)

p

p! , and η2 =
8∑

p=1

(ikdI)
p

p! .

Vibration amplitude ratios can be given in the form of

D1

C1
= −(β0 + 1− η+

1 )−1
(( ω

ω0

)2

− β − β0 − 1 +
β2

β − α
(

ω
ω0

)2

)
, (36)

C2

C1
=

β

β − α
(

ω
ω0

)2 , (37)

D2

C1
= −β0 + 1 + η+

2

ββ0
+

1
ββ0(β0 + 1− η+

1 )

( 1
α0

( ω

ω0

)2

− ββ0 − β0 − 1
)

·
(( ω

ω0

)2

− β − β0 − 1 +
β2

β − α
(

ω
ω0

)2

)
, (38)

where η+
1 =

10∑
p=1

(−1)p+1 (ikdI)
p

p! , and η+
2 =

10∑
p=1

(ikdI)
p

p! . Interestingly, Eqs. (11)–(14) are the same

as their continuum counterparts, i.e., Eqs. (36)–(38).

4 Validation of the present model

The SG model developed above is validated and used to study the effects of various factors
in diatomic lattices. In brief, all results given by the present continuum model agree well with
those given by the discrete model.

Compared with models in the literature, the present model is expected to achieve a higher
predicting accuracy, solely due to the adjustment of the Taylor expansion of displacement. For
the demonstrating purpose, we set α = 4, β = 2, α0 = 2, and β0 = 0.5. Figure 6 shows the
results provided by the MD method and the theory presented by Huang et al.[11] as well as the
present model. The sixth-order and tenth-order truncations of the SG continuum model given
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by Zhou et al.[30] are called ZWLT6 and ZWLT10, respectively. The following trends can be
found.

(I) Both the discrete model and continua can produce four dispersive branches; when the
reduced wave number gets close to zero, or equivalently at the long-wave limit, all continua
agree with the discrete model, which is deemed to be exact in this study. Throughout the first
Brillouin zone, these models predict three band gaps, while different continua possess different
accuracies.

(II) The MD model can capture the dispersion characteristics of the discrete model only in
the partial wavenumber range. When ka

2π < 0.25, the three dispersive branches from bottom
to top coincide reasonably well with the discrete results. However, with the increase in the
wavenumber, there is an obvious deviation between them. Particularly, the fourth branch given
by MD suggests an extraordinary instability having not been observed.

(III) ZWLT6 and ZWLT10 given by Zhou et al.[30] mainly manifest the role of SG orders.
On one hand, with a higher SG order, the ZWLT SG model has a broader workable range
out of the first Brillouin zone. On the other hand, the model with a higher order suffers from
a more severe instability. That is, once the wavenumber exceeds the above workable range,
the dispersion curves deviate abruptly away from the discrete counterparts. An unacceptable
fact caused is the failure in predicting band gaps. For example, both ZWLT6 and ZWLT10
predict a band gap width between the optic and third branches which is far narrower than the
discrete counterpart and gets close to zero. Polyzos and Fotiadis[25] and De Domenico et al.[12]

also realized this instability issue of SG continua. Finally, at certain wavenumber values, the
acoustic branches of ZWLT6 and ZWLT10 intersect the coordinate axis, which means that they
have predicted an imaginary frequency since then. The same phenomenon also appears when
predicting the dispersion relationship of 1D monoatomic chains[12,27].

(IV) Considering the periodicity of the displacement function, we modify the Taylor expan-
sion, note the relationship between dI and wavelength λ, and propose the present model. The
figure demonstrates that the present model can successfully capture the dispersion relation of
the original discrete model in the entire first Brillouin zone

(
ka
2π ∈ (0, 1)

)
, and the limitation

of long wave approximation is eliminated. This illustrates that our method is effective. It is
worth noting that we have not emphasized the order too much. We only keep the result to the
eighth power of dI, and we will further explain the effect of order in the following section.
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Fig. 6 Comparison of the present model with other continuum models, i.e., MD, ZWLT6, and
ZWLT10 as well as the discrete model (color online)

Even though both the discrete model and the above SG model can give correct dispersion
diagrams, developing continuum models is still necessary. After all, not all lattices can be con-
sidered to be infinite, and strictly obey the periodic boundary conditions. When we face a finite
lattice composed of an extremely large number of masses with boundary conditions particularly
prescribed, the discrete model quickly becomes too time-consuming, and the continuum model
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becomes a better option.

5 Effects of mass ratio
(

M2
M1

= m2
m1

)
and stiffness ratio

(
K2
K1

= K′
2

K′
1

)
: 1D

diatomic chain with local interactions as an example

As already shown above, there are three band gaps in the dispersion diagram of the 1D
diatomic lattice. We study how the band gap behavior is modulated by changing the mass
ratio α = M2

M1
= m2

m1
and the spring constant ratio β = K2

K1
= K′

2
K′

1
, as shown in Figs. 7 and 8,

respectively. Furthermore, variations of both the band gap widths and the lower band bounds
are presented in Fig. 9. For all examples, the SG order is set as eight, the reason for which will
be explained in the next section.

Figure 7 reveals the effect of mass ratio on dispersion. With the increase in the mass ratio,
the four branches tend to be positioned at a lower frequency. Relatively, the influence of mass
ratio on the fourth branch is the weakest. And the curve of acoustic branch becomes smoother.
When the values of M2

M1
and m2

m1
increase from 1 to 4, the band gap range changes greatly; while

for those increase from 8 to 12, the band gap range changes slightly. From Figs. 7(a)–7(d), the
band gap between the optical branch and the acoustic branch becomes narrower, while that
between other branches changes slightly.
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Fig. 7 Dispersion curves of the present and discrete models when M2
M1

= m2
m1

is set as (a) 1, (b) 4, (c)

8, and (d) 12, respectively. For all cases, K2
K1

=
K′2
K′1

= 2, M1
m1

= 2, and
K′1
K1

= 0.5 (color online)

Figure 8 demonstrates the effect of stiffness ratio. Increasing stiffness ratio lifts all branches
towards the high frequency zone. The band gap between the third and fourth branches is
narrowed, while the other two are broadened. The third (upper convex) and fourth (down
concave) branches become flatter.
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Fig. 8 Dispersion curves of the discrete and present SG models when K2
K1

=
K′2
K′1

is set as (a) 1, (b) 3,

(c) 5, and (d) 7. For all cases, M2
M1

= m2
m1

= 4, M1
m1

= 2, and
K′1
K1

= 0.5 (color online)

When designing band gap metamaterials, the frequency level and gap width are two key
parameters. As a preparation, we define the lower bound and width of each band gap in
Table 1. For example, for the band gap between the acoustic and optical branches, the lower
bound is defined as the maximum acoustic frequency ωmax

ac normalized by ω0; while its band
width is equal to the difference between the optic minimum ωmin

op and the acoustic maximum
ωmax

ac normalized by ω0 if there does exist a gap. For this purpose, we have provided Fig. 9,
that is, changes of width and starting frequencies of band gaps with mass and stiffness ratios
are presented. The following trends can be concluded.

(i) Figures 9(a), 9(b), and 9(c) describe the effects of mass and stiffness ratios on the lower
bounds of frequency. For a fixed α, three lower bounds increase with the increase in β. For
a fixed β, it decreases with the increase in α. Consequently, when the mass ratio is smaller
and the stiffness ratio is larger, the larger lower bound frequency can be obtained. Among the
three, the third lower bound changes most abruptly in the studied parameter space, as shown
in Fig. 9(c). Based on these diagrams, requested lower bounds can be achieved by selecting
optimal α and β.

(ii) Figures 9(d), 9(e), and 9(f) depict the variation of every band gap width as the function
of α and β. The first and second band widths increase and the third one decreases as β
increases. For certain ranges of α and β, three band widths tend to become zero, suggesting
the disappearance of the gaps. However, under the same conditions, the change to the third
band gap is opposite, which means that the width of the third band gap tends to be a larger
value. Relatively, the second band width has the widest adjustable range and has a maximum
more than 4.
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Table 1 The lower bound and width of each band gap

Term 1st band gap 2nd band gap 3rd band gap

Lower bound
(

ω
ω0

)max

oc

(
ω
ω0

)max

op

(
ω
ω0

)max

3

Width max
((

ω
ω0

)min

op
− (

ω
ω0

)max

oc
, 0

)
max

((
ω
ω0

)min

3
− (

ω
ω0

)max

op
, 0

)
max

((
ω
ω0

)min

4
− (

ω
ω0

)max

3
, 0

)

0.168 0

0.272 8

0.377 5

0.482 2

0.587 0

0.691 8

0.796 5

0.901 3

1.006 0

0.175 0

0.393 1

0.611 3

0.829 4

1.047 5

1.265 6

1.483 8

1.701 9

1.920 0

1.180 0

1.845 0

2.510 0

3.175 0

3.840 0

4.505 0

5.170 0

5.835 0

6.500 0
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1
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7

(d)

0.008 0

0.086 8

0.165 5

0.244 3

0.323 0
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0.638 0
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1.792 5
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Fig. 9 Variations of lower bounds and band widths of band gaps with mass and spring ratios, i.e.,

α = M2
M1

= m2
m1

and β = K2
K1

=
K′2
K′1

: (a) and (d) the first band gap; (b) and (e) the second band

gap; (c) and (f) the third band gap (color online)

Thus, frequency levels and widths of band gaps can be programmed by adjusting mass and
stiffness ratios. For example, a lattice with a lower M2

M1
= m2

m1
and a higher K2

K1
= K′

2
K′

1
possesses

higher frequency band gaps. It serves as a guide to construct lattices to prevent the propagation
of waves with specific frequencies.

6 Influence of orders of SG continua: 1D diatomic lattices with local in-
teractions as an example

Even though it is widely recognized that higher-order SG continua possess a higher accuracy,
it is necessary to confirm whether unexpected issues may arise due to inclusions of higher SG
terms, and determine up to which order of SG we can sufficiently capture satisfactory dispersion
properties. To this end, we pick ZWLT series of continua to make a comparison. Because the
only difference between ZWLT and the present model lies in whether to adopt the wavelength-
dependent Taylor expansion, such a comparison is suitable to validate the proposed continuum.
Four continua are examined, namely, fifth-, sixth-, eighth-, and tenth-order ones. Performances
of continua are analyzed as follows.

(I) ZWLT continua show a strong dependence on SG orders. The increase in the SG order
has two effects. On one hand, the workable range of continuum is extended by a higher order
truncation. For example, the dispersion curves of the sixth-order continuum agree well with
the discrete counterparts about in the range of the range of (0, 0.5); while those of the tenth-
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order do roughly in the range of (0, 0.7). On the other hand, with increasing SG orders, the
continuum dispersion becomes more and more instable in the remining range of the first Bril-
louin zone. Here, the term “instability” means that the dispersive curves abruptly deviate from
its discrete counterparts and can “penetrate” the band gaps predicted by the discrete model.
Notably, such a kind of instability suggests that the corresponding continua fail to correctly
predict band gap structures.

(II) When the wavelength of dependent Taylor expansion is employed, the continuum per-
formance can be greatly enhanced. With increasing SG orders, the accuracy increases quickly
with no instability issue. The fifth- and sixth-order continua already agree well with the dis-
crete model except in a small range around ka

2π = 0.5. Such a continuum-discrete disparity can
be explained as follows. According to Eq. (20), the maximum of dI noted as dmax

I is a. When
ka
2π = 0.5 or equivalently λ = 2a, three positions x, x + a, and x + λ are equally spaced. Thus,
calculating the displacement at x + dmax

I by Taylor expansion with reference to x or x + λ has
an equal accuracy. Now the expansion accuracy is the lowest, since the distance between x + a
and the reference position is the maximum among all wavelengths. Nevertheless, it is easy to
overcome by increasing SG orders. When the order is increased to 8, the deviation can be elim-
inated, and the results of the present and discrete models are in much better agreement over
the whole first Brillouin zone. Therefore, the eighth-order SG continuum is mainly adopted.
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the tenth-order truncation (color online)
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7 Lattices with various nonlocal interactions

In the above lattices studied, we have focused on behaviors of lattices with only one-neighbor
interactions. In this section, we further investigate the SG model for lattices with both local and
nonlocal interactions. Lattices with up to two- and three-neighbor interactions are analyzed to
show the ability of the present model in dealing with nonlocal problems.

According to the derivation in Section 2, we obtain the dispersion equation of the discrete
model with up to two-neighbor interactions, i.e., Eq. (10). To establish the equivalent SG
continuum model, we select the unit cell 2 shown in Fig. 1(c). The periodic cell includes the
whole atom located at 2n, two half atoms located at 2n−1 and 2n+1, respectively, two internal
springs, two one-neighbor springs, two half two-neighbor springs, and one two-neighbor spring.

Once the kinetic and potential energy densities are figured out respectively, the EOMs of
the corresponding SG continuum can be obtained by following the procedure in Section 3. By
inserting Eq. (30) into these EOMs, we write the corresponding dispersion equation as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

( ω

ω0

)2

−β − β0 − 1 + γη3 β β0 + 1− η1 0

β α
( ω

ω0

)2

− β 0 0

1 + β0 + η2 0
1
α0

( ω

ω0

)2

−ββ0 − β0 − 1 + γ0η3 ββ0

0 0 ββ0
α

α0

( ω

ω0

)2

−ββ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=0, (39)

where η3 = (ikdI)2+ (ikdI)
4

12 + (ikdI)
6

360 + (ikdI)
8

20160 . Here, the value of dI in η1, η2, and η3 is determined
by Eq. (20).

The nonlocal interactions strongly affect dispersive characteristics and band gap distribu-
tions. Setting parameters α = 4, β = 2, α0 = 2, β0 = 0.5, γ = 2, and γ0 = 1, we obtain the
corresponding dispersion curves in Fig. 2(b). Dispersion curves of the present continuum model
are still perfectly coincident with those of the corresponding discrete model. This indicates that
the proposed model can effectively capture the dispersion behavior of periodic structures with
nonlocal interactions when the wavelength-dependent Taylor expansion is adopted. Now curves
become very different compared with the lattice simply with local interactions in Section 2.
The fourth curve is no longer concave but convex, and the third curve is more convex, leading
to the disappearance of the band gap between the third and fourth branches. Besides, the gap
between the acoustic and optical branches also vanishes.

The existence of nonlocal interactions provides a new approach for designing desired
band gaps. Figure 11 shows the effects of two-neighbor interactions on the band gap width
and lower bound of each band gap. The lower bounds of the first and second band gaps vary
mildly. The lower bound of the third band gap changes significantly and forms a maximum
point with the increase in γ and γ0. From Fig. 11(d), within a wide range of γ and γ0, the first
band gap tends to have a zero width, suggesting its disappearance. The maximum value of the
first band gap width is far less than 1, while the values of the second band gap width are always
close to 1. When γ > 1, the third gap width remains zero no matter how γ0 changes. When
γ < 1, the band gap becomes wider with decreasing γ. In brief, the nonlocal interactions play
an important role in band gap structures of metamaterials.

To further explore the influence of nonlocal interactions, lattices with up to three-neighbor
interactions are discussed. Following the derivation procedure in Section 2, we can get the
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Fig. 11 Variations of lower bounds and band widths of band gaps with spring ratios, i.e., γ = K3
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dispersion equation of the discrete model,
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

( ω

ω0

)2

− β − β0 − 1

−2γ + 2γ cos(ka)− 2θ
β β0 + e−ika + θeika + θe−i2ka 0

β α
( ω

ω0

)2

− β 0 0

eika + β0 + θei2ka + θe−ika 0
1
α0

( ω

ω0

)2

− ββ0 − β0 − 1

−2γ0 + 2γ0 cos(ka)− 2θ
ββ0

0 0 ββ0
α

α0

( ω

ω0

)2

− ββ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=0, (40)

where θ = K4
K1

, and K4 is the stiffness coefficient of the third nearest neighbor spring.
We select the unit cell 3 as shown in Fig. 1(d) to establish the SG continuum model by

adopting the same procedure in Section 3. The corresponding dispersion relation can be finally
expressed analytically. Notably, according to Fig. 5(b), the wavelength-dependent rule now
becomes

when λ ∈
(
a,

4a

3

]
, dI = a− λ, dII = 2(a− λ), (41)

when λ ∈
(4a

3
, 2a

]
, dI = a− λ, dII = 2a− λ, (42)

when λ ∈ (2a, 4a], dI = a, dII = 2a− λ, (43)
when λ ∈ (4a,+∞), dI = a, dII = 2a. (44)

Inclusion of three-neighbor interactions makes the workable range of the long wave approx-
imation narrow and makes the dispersion diagrams complex by causing more local stationary
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values. Setting parameters α = 4, β = 2, α0 = 2, β0 = 0.5, γ = 2, γ0 = 1, and θ = 2,
we can get the dispersion curves in Fig. 2(c). In the first Brillouin zone, the values of dI and
dII are determined in a wavelength-dependent way, resulting in perfect agreement between the
dispersion diagrams of the discrete and continuum models. The nonlocal interactions have
greater effects on the third and fourth branches than the acoustic and optical ones. The third
and fourth branches tend to be flattened[36]. Furthermore, band gap structures vary obviously
compared with the case without nonlocal interactions. The continuum model is believed to
have the capability of dealing with lattices with 1D periodic lattices with arbitrary nonlocal
interactions.

8 Conclusions

With the Taylor expansion series of displacement modified, an exact SG model has been
established for diatomic lattice metamaterials. The dispersion diagrams of continua coincide
with those of discrete models in the first Brillouin zone. The wavelength-dependent Taylor
expansion is adopted according to the periodicity of wave motion. To the best of our knowl-
edge, the present continuum model is the first to successfully capture dispersive characteristics
throughout the whole first Brillouin zone in various periodic lattices.

Some fundamental topics related to the present model have been studied, that is, the in-
fluence of different parameter ratios, appropriate truncation of SG orders, and local/nonlocal
interactions. (I) The band gap can be designed by adjusting the parameters, and at this
moment, the SG continuum model can still effectively predict the band gap characteristics
and dispersion behavior of diatomic lattice metamaterials. The produced dispersion curves
are essentially in agreement with those of the discrete model when the wavelength is close to
the material scale. (II) The discussion also demonstrates that, by modifying the wavelength-
dependent Taylor expansion, the prediction ability of the continuum model is enhanced, and
by adopting higher-order terms, the accuracy of results is improved. Obviously, the addition of
higher SG orders cannot improve in essence the capability for continua to capture dispersion
relation, as the ZWLT models. In this work, it can be found that an eighth-order continuum is
able to provide satisfactory results. (III) With the enhancement of nonlocal interactions, the
practical range of long-wave approximation is narrowed, and the model becomes more complex.
The suitable unit cell selection should also be considered, and thus the proposed continuum
model can still approximate the mechanical behavior of metamaterials, presenting the consis-
tent prediction. The results show that the shape of dispersion curves and band gap width are
affected by nonlocal interactions.

In this study, we have focused on the dispersive characteristic of continua which is one
key standard to judge the effectiveness of a continuum model. The assumption of infinite lat-
tices spares us from discussing various kinds of boundary conditions which can be conveniently
presented from the Hamilton formulations like Eq. (25). With a higher order included, the pro-
posed SG model will be more accurate, while more complex boundary conditions arise. Thus,
a balance between accuracy and complexity is important.

Although the 1D case is discussed here, the proposed methodology is also helpful in inves-
tigating features of wave propagations in plane and bulk media with periodic microstructures.
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