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ABSTRACT
Slipstream severely affects the safety of trackside workers and equipment. With use of profile super-
imposition method and vehicle modeling method, parametrization of the whole train is carried out.
Then, a slipstream optimization study has been performed, taking components of slipstream in dif-
ferent directions at the standard heights, the drag coefficient of the whole train and the volume of
the driving cab as the design objectives. For each design objective, one unique ε-TSVR surrogate
model has been constructed. Six final Pareto sets have been obtained on the base of six groups of
different fitness functions by using multi-objective particle swarm method. Results reveal that the
volume of the driving cab keeps almost the same, compared to the original shape. The velocity com-
ponents of train-induced wind at the positions 0.2 and 1.4 m above the top of the rail, and the drag
coefficient of the train are reduced by 11.6%, 33.9%, 24.7%, 25.9% and 13.0% respectively. Sensitivity
analysis reveals that the length of the streamline, the height of the train and the width of the train
influence significantly on the aerodynamic performance, and the train with a tall and thin streamline
will benefit in reducing the slipstream and aerodynamic drag.
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1. Introduction

The flow around high-speed trains is a kind of compli-
cated three-dimensional, unsteady and highly turbulent
flow. The vortex structures in the wake of the train could
not only affect the aerodynamic performance of the trail-
ing car, but also induce strong slipstream, causing safety
problems for trackside workers and constructions. Dif-
ferent regulations have been made on the limitation of
extreme values of slipstream in different countries. In
Japan, the extreme value of the slipstream is 9m/s. In
United Kingdom, it is set to be 11.1m/s. In Germany
and France, the maximum aerodynamic load of the slip-
stream on the passengers is set to be 100N (Lee, 1999;
Liao et al., 1999). Meanwhile, obvious requirement on
the extreme value of the slipstream has also been made
in TSI. As a result, sufficient consideration should be
taken on the slipstream when designing new high-speed
trains.

Numerical approach is a fundamental way to study
fluidmechanisms.With use of steadyReynolds-Averaged
method, Mou et al. (2017) studied the influence of envi-
ronmental wind on the wind pressure on high build-
ing in the atmospheric boundary layer conditions. Gha-
landari et al. (2019) performed a study on the wing’s
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flatter characteristics by the DQM method. Farzaneh-
Gord et al. (2019) carried out a research on the flow
characteristics inside the natural gas pipeline by use of an
unsteady method. The maximum value of the slipstream
usually locates in the wake region of the train, where
two strong counter rotating vortices exist (Baker, 2010).
These two strong vortices provide the major energy into
the wake flow field. They originate from the flow sep-
aration on the trailing streamlined shape and interact
severelywith the ground, which proposes a high accuracy
demand in corresponding numerical simulation. Due to
its transient characteristics, it is crucial to adopt algo-
rithmswith high accuracy to precisely capture the correct
flow details. A comparative study on wake characteris-
tics between DES and URANS was performed by Yao
et al. (2013). With use of DES and POD methods, Muld
et al. (2012) successfully performed a thorough study on
the vortex structures in the wake zone. Similarly, Osth
et al. (2015) used LES and ROM methods to study the
characteristics of vortex structures in the wake zone. In
the meantime, Bell et al. (2014) also studied the vortex
structures bywind tunnel experiments and demonstrated
the distribution characteristics of these vortices.With use
of unsteady numerical method and genetic algorithm,
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Muñoz-Paniagua andGarcia (2019) studied the influence
of streamlined head on the side force of the trains when
two trains pass by each other in crosswind conditions.

Flow separation on the trailing streamlined shape
could determine the intensity of the trailing vortices.
Consequently, the intensity of the slipstream in the wake
region could also be affected. By optimizing the stream-
lined shape, the flow separation status could be improved
obviously, so as to weaken the slipstream in the wake
region (Bell et al., 2017). Strong transient characteristics
of the wake flow could lead to severe variation of the
slipstream with time. Although the time-averaged value
could be used to reflect the feature of slipstream, it is
unreliable to obtained the time-averaged value through
a steady numerical approach. As a result, an unsteady
numerical method is adopted to perform the aerody-
namic optimization with the slipstream as its objective
in the present study. Currently, except for the optimiza-
tion on micro pressure waves (Ku et al., 2010; Ku et al.,
2010), most aerodynamic optimization studies are based
on steady numerical simulations (Vytla et al., 2010; Yao
et al., 2014; Yao et al., 2015). Optimization based on an
unsteady approach is rather rare [8]. The influence of
the nose’s length on the wake flow was investigated by
Bell etc. (2017) by wind tunnel experiments. Hemida
and Krajnovic (2010) used the LES method to study the
effect of head length and side angle on the flow field
around the train under cross wind conditions. Yao et al.
(2013) analyzed the impact of URANS and DES (Spalart,
2009) models on the simulation accuracy of the wake
field. Wang et al. (2017) carried out a research on sim-
ulation accuracy of URANS, SAS and DES models on
the train wind. Results all reveal that the DES model
can simulate the flow structures in the wake field more
accurately. Therefore, this paper uses DES for numerical
simulation. Compared with RANS models, the compu-
tational cost of DES has increased significantly, and it is
difficult to directly use optimization algorithms to carry
out aerodynamic optimization to reduce the train wind.
To solve this problem, this paper introduces the sup-
port vector machine regression model (Peng, 2010), and
uses particle swarm optimization (Kennedy & Eberhart,
1995) and cross-validation algorithm to train the support
vector machine model. In order to obtain the optimal
solution set more quickly, the multi-objective particle
swarm optimization algorithm is introduced, and multi-
objective optimization design has been carried out with
the optimization goal of reducing the train wind ampli-
tude. Meanwhile, the relationship between the design
variables and the train wind has been obtained.

Parametric design is a major difficulty for aerody-
namic optimization design of high-speed trains. Current
studies usually focus on some limited parameters of the

streamlined shape and their relationship with the flow
field around the train (Vytla et al., 2010; Yao et al., 2014,
2015, 2016). Yao et al. (2016) developed several three-
dimensional parametric methods to perform the aerody-
namic optimization study of high-speed trains, in which
the cross section of the train is always kept constant, so
that the influence of the geometry of the train body on
aerodynamic performance of the train couldn’t be ana-
lyzed. It is obvious that cross section of the train gets
a severe influence on the flow field around train. Tak-
ing the reduction of the train wind as the optimization
objectives, more and more elaborate aspects should be
considered, including the cross section of the train, the
length of the streamlined shape, and the local design
of the streamlined shape, so as to gain insight on the
engineering design of train-wind beneficial streamlined
head. As a result, in the present paper, a new parametric
method has been proposed which takes the cross-section
of the train into consideration on the base of the previous
study (Yao et al., 2016). This new parametric study could
guarantee the parametrization of a whole train.

2. Parametrizationmethods

2.1. Parametrization on the cross-section of the
train body

Cross-section of the train body is a key factor to the
geometric shape of a train, and could directly affect the
aerodynamic performance of the train. Usually, the cross-
section could be seen as a combination of several lines
and arcs with different diameters. The key variables to
control the cross-section are the height and width of
the train. The profile superposition method is adopted
for parametrization here, as shown in Figure 1. Since
the train is design symmetrically, only half of the profile
needs to be parametrized.

TheNURBSmethod is a commonly used parametriza-
tion method. The profile is determined by the coordi-
nates and weights of several control points. The more the
control points, themore flexible the profile is.However, as
the increase of the number of design points, parametriza-
tion becomes more and more complicated. The profile
superposition method is a new parametrization method
proposed in the present paper. Two profiles are provided,
namely the baseline profile and the auxiliary profile. The
former could be governed by the Equation (1) (Yao et al.,
2016), in which, the parameter n determines the angle
of chamfer between the upper and lateral profiles and c
determines the width of the train.

yn + zn = cn; (1)
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Figure 1. Profile superposition method of the cross-section.

The auxiliary profile is designed tomodify the straight
line in the cross-section, and could be governed by poly-
nomial equations, circle equations, trigonometric func-
tions or the combination of the former three kinds. Cir-
cle equation is adopted in the present paper, which is
designed as (2)

y2 + z2 = r2; (2)

The bigger the radius r is, the smaller the curvature of
the arc becomes, consequently, the smaller the curvature
of the cross-section after superposition is. The final width
of the train, w, is controlled by c and r.

2.2. Parametrization on the streamlined shape

The streamlined shape of high-speed trains is consisted
of complicated three-dimensional free surfaces. When
performing parametrization of the streamlined shape,
a large number of design variables are required (Yao
et al., 2016). In the present paper, the vehicle modeling
function (VMF) method is adopted to parametrize the
streamlined shape, the details of which could be referred
to in literature (Yao et al., 2014, 2015), and will not be
mentioned in detail here.

Some key variables that control the deformation of
the streamlined shape include the length of the stream-
line, the cross-section profile, the longitudinal profile,
the horizontal profile, and the drainage. The governing
equation of the profiles of longitudinal section and hor-
izontal section (Yao et al., 2016) could be expressed as
below:

z(x) =
(
x − x1
x2 − x1

)A1(
1 − x − x1

x2 − x1

)A2

ak

×
(
1 − x − x1

x2 − x1

)ab
+ g(x); (3)

In which, g(x) = 2(z2 − z1)(x − x1/x2 − x1)− (z2 − z1)
(x − x1/x2 − x1)2, controls the curvature and height at
the ends of the curves. x1and x2 are the x coordinates
of the starting point and ending point respectively, while
z1and z2 are the z coordinates of starting point and end-
ing point.

For different streamlined shapes, the curvature at the
connection part between the streamline and the train
body usually should be consistent. As a result, the vari-
able which controls the deformation of the trailing part
of the profile, A2, is set to be constant, while the other
three variables, A1, ak and ab are chosen to be the
design variables that control the deformation of the
profile.

The parametrization of the drainage and the window
on the driving cab could be referred to in literature (Yao
et al., 2016). The key design variables are Dh which con-
trols the depth of the drainage and Wh that controls the
height of the window. Consequently, these two variables
are also chosen to be design variables. In total, 12 design
variables are under consideration in the present study, as
shown in Table 1.

Based on the above parametrizationmethods, Figure 2
shows three different kinds of streamlined shapes. It
could be observed that the three streamlined shapes
are obviously distinct from each other. NOSE1 is
broad and flat, NOSE2 is tall and thin, while NOSE3
is fusiform. All the streamlined shapes are smooth
and no bumps could be found, indicating that the
parametrization methods designed in the present paper
could be used to generate reasonable geometric shapes
with different topologies and meet the optimization
requirement.

Table 1. Design variables.

Design variables Controlling area Design variables Controlling area

L Streamline length A11, ak1, ab1 Longitudinal profile of the streamline
H Height of the cross-section A21, ak2, ab2 Horizontal profile of the streamline
c Baseline width of the cross-section Dh Depth of the drainage
r Superimposition width of the cross-section Wh Height of the cab window
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Figure 2. Different kinds of streamlined shapes.

3. Numerical methodologies

3.1. Computational algorithms, conditions and
domain

As a kind of RANS/LES hybrid method, DES (Spalart,
2009) benefits in solving flow with high Reynolds num-
ber and large separations. In numerical simulations of
flow around ground vehicles where large flow separa-
tion exists, DES owns higher accuracy in prediction of
aerodynamic drag and flow separations. Since prominent
transient characteristics exist in flow around high-speed
trains, it is more reasonable to use DES to obtain more
accurate flow structures as long as the computational
cost is affordable (Yao et al., 2013). According to the use
of different turbulence models, two different DES meth-
ods could be divided, which are the DES method based
on SA turbulence model, and the DES method based
on k-w or SST k-w turbulence model. However, these
two kinds of DES methods both face the MSD prob-
lem and grid-induced separation problem.Consequently,
Menter revised the dissipation rate ω in SST k-w model
into:

ω̃ = ωφ (4)

φ = max
(

lt
CDES�

F, 1
)

(5)

where, lt = (
√
k/β∗ω), � is the maximal value between

the centers of computational cell and adjacent cells. F =
1 − F2, where F2 takes the form as:

F2 = tanh

⎛
⎝(max

(
2
√
k

β∗ωd
,
500v
d2ω

))2
⎞
⎠ (6)

When φ = 1, the RANS model is selected while LES
model is chosen when φ > 1.

CDES = CDES,k - ωF1 + CDES,k - ε(1 − F1) (7)

In which,CDES,k - ω andCDES,k - ε are set to be 0.78 and
0.61 respectively.

F1 = tanh

×
⎛
⎝[min

(
max

( √
k

0.09ωd
,
500v
d2ω

)
,

2k
d2CDkω

)]4⎞⎠
(8)

In which, d is the distance between the first cell and
the wall, while v is the kinetic viscosity coefficient.

CDkω = max
(
1
ω

∇k · ∇ω, 10−20
)

(9)

There is a relative movement between the train and
ground. When performing the numerical simulations,
the train is usually kept stationary, while the incoming
air is flowing with a speed same to the running speed of
the train but with opposite direction. The ground is set
as the moving wall, with the same speed of the incom-
ing flow (Guo et al., 2016). In the present paper, the same
methodology is adopted for the simulation of flow field
around the train.

The computational model is a 1:1 scaled simplified
model with three carriages. The geometry of the leading
and trailing car is the same, while the inter-connection
parts between the carriages, the bogies, and the pan-
tographs are all neglected, as shown in Figure 3.

The turbulence model used with DDES is the SST k-
w two-equation model. The temporal terms for all of
the DDES simulations are discretized by using a second-
order implicit scheme. The diffusive and sub-grid fluxes
are discretized with a second-order central difference
scheme. The convective term was discretized using a
second-order upwind scheme.

Figure 3. Computational model.
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Figure 4. Computational domain.

Figure 4 shows the computational domain, where the
x axis is the running direction of the flow, z axis is the
height direction of the train, and y axis could be deter-
mined by the right-hand rule. Taking the length of the
whole train L as the characteristic length, the distance
between the inlet boundary and the leading nose is L, and
that between the trailing nose and the outlet boundary
is 2L. The width and height of the domain are both L.
The velocity inlet and pressure outlet boundaries are uti-
lized for the inlet and outlet boundaries respectively. The
incoming velocity is set to be 350 km/h. For the ground,
due to its relativemovement with the train, amoving wall
condition with the speed of the incoming flow is pre-
scribed. The rest far field boundaries are all set to be slip
wall.

3.2. Numerical validation

To validate the prediction accuracy of the numerical algo-
rithms, a wind tunnel experiment has been carried out
on a simplified train model. The wind tunnel is a low
speed open wind tunnel with a 8m× 6m cross section
inMianyang, Sichuan Province. The turbulence intensity
of the incoming flow is 0.2%. The installation of the train

model and the test section of the wind tunnel are shown
in Figure 5. The train model is fixed with the subgrade
by the force-measuring balances, which are mounted on
the geometry center of each carriage. They are place on a
turntable, which could be used to adjust the angle of the
train model and the incoming flow.

As Figure 6 shows, the train model is a quite sim-
plified model. It only consists of a leading streamline,
a trailing streamlined and a small part of train body.
The inter-connection part, bogies and pantographs are
not included in this model. The scaled ratio of this train
model is 1:8. The total length of this model is 4m, and its
height andwidth are 0.4375 and 0.4225m respectively. To
validate the prediction accuracy of DDES model in large
flow separation conditions, the yaw angle of the model is
set to be 30°. In the wind tunnel test, aerodynamic loads
are measured by force-measuring balances mounted on
the geometry center of each carriage, while surface pres-
sure is tested by the pressure probes on the train surface.
The velocity of the incoming flow is 45m/s. Taking the
height of the model as the reference length, the Reynolds
number is 1.28× 106.

The commercial CFD software STAR-CCM+ is uti-
lized for mesh generation and numerical simulation.
The hybrid Cartesian/prism grids are adopted and 18
layers of prism grids are generated with an increasing
ratio of 1.1 and a total length of 30mm, which keeps
the value of y+ of the first layer near the train surface
around 30∼50. The mesh is locally densified to cap-
ture the flow details around the train. The minimum
size of cells in the densified zone is 10mm. The total
amount of grids is 31.84 million. The spatial and surface
distributions of mesh in different regions are shown in
Figure 7.

To facilitate the following analysis, if no further expla-
nation is given, the dimensionless form will be used for

Figure 5. The train model and the side view of the wind tunnel: (a) Train model; (b) Side view of the wind tunnel.

Figure 6. Baseline train model for wind tunnel test.
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Figure 7. Spatial and surface distributions of mesh in different regions.

the aerodynamic loads of the train, which are listed as
follows:

pressure coefficient,

Cp = P/0.5ρV2 (10)

drag coefficient,

Cd = Fd/0.5ρV2S (11)

lateral force coefficient,

Cs = Fs/0.5ρV2S (12)

lift coefficient,

Cl = Fl/0.5ρV2S (13)

In which, P is the relative pressure, ρ is the density of
the incoming flow, which takes the value of 1.225 kg/m3,
V is the velocity of incoming flow and S is the maximum
area of the cross section of the train model.

In wind tunnel test, the surface pressure and aero-
dynamic loads of the train model are obtained through
steadymeasurement. As a result, the time-averaged value
is considered when performing numerical simulations.
Figure 8 shows the comparison of pressure coefficients
in the longitudinal and cross-sectional profiles between
experimental and numerical results. It could be seen

Table 2. Comparison of aerodynamic loads between experimen-
tal and numerical simulations.

Cd Cs Cl

Wind Tunnel −0.250 3.277 3.895
DDES −0.254 3.219 4.057
Error 1.57% 1.80% 3.99%

that numerical results agree well with the experimen-
tal results, indicating that the numerical algorithms used
in the present paper could precisely predict the flow
information on the surface of the train.

Table 2 shows the comparison of time-averaged aero-
dynamic loads inwind tunnel test andDDES simulations.
It could be seen that the errors of Cd and Cs are 1.57%
and 1.8%, respectively. The error of Cl is a little larger,
which is 3.99%. Results reveal that the numerical algo-
rithms andmesh configuration in the present study could
obtain the turbulent structures in large flow separation
conditions and could be used for simulation of flow field
around high-speed trains.

4. Influence of the shape simplification on
slipstream

4.1. Simplification of the trainmodel

It is commonly found in reality that high-speed trains
operate with 8 or 16 carriages. The key components that

Figure 8. Comparison of pressure coefficients between experimental and numerical results: (a) Longitudinal profile; (b) Cross-sectional
profile.
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affect the flow around the trains include the geometric
shape of the train, the bogies, the inter-connection parts
and pantographs. Guo et al. (2016) performed a thorough
study on the slipstream of high-speed trains with differ-
ent carriages, and found that the number of carriages, the
structures underneath the train and the inter-connection
parts played an important role on the slipstream. It would
be a more reasonable way to take the train model with all
the carriages into consideration to study the slipstream.
However, due to the complexity of the geometric shape
of trains, the computational cost would be unaffordable
when usingDDES to study the slipstreamproblem. In the
present paper, the train model with three carriages will
be considered, to greatly reduce the computational cost.
Compared to other components, the bogies own more
complicated shape and affect greatly on the flow around
the train, especially the flow underneath the train body
(Gao et al., 2019; Wang et al., 2018a, 2018b). As a result,
the influence of bogies on the slipstream is mainly dis-
cussed in this section, to determine a better way for the
simplification of bogies.

Figure 9 shows the three ways to simplify the train
model, which are the completely simplification model,
the model considering the bogies on the trailing car only,
and themodel taking all the bogies into consideration. To
facilitate the following discussion, these three models are
named SP1, SP2 and SP3 respectively.

4.2. Characteristics of the slipstream

Figure 10 shows contour of x component of velocity, Vx,
at different heights for the three simplification models.

It could be seen that Vx distributes symmetrically at the
lateral sides of the train. Negative velocity exists around
the leading and trailing nose, indicating that the induced
wind flows oppositely with the running train. The peak
value of the slipstream at the leading nose is slightly
higher, while the induced wind around the trailing nose
joins the wake flow along the horizonal profile of the
train surface. At the same x coordinate, Vx with the
height of 0.2m (Vx−0.2) is obviously larger than that
with the height of 1.4m (Vx−1.4). Focusing on the slip-
stream at the same height, maximum slipstream occurs
at the height of 0.2m. As the flow goes away from the
trailing nose, the slipstream tends to propagate much
wider (in y direction). However, at the height of 1.4m,
just as Figure 12(b) shows, the slipstream tends to be
weaker and weaker in the wake region. The slipstream
tends to be much narrower when going away from the
trailing nose, indicating that trigonal distribution of Vx
exists at the cross-section in the wake region. This type
of distribution could also be seen as a proof to the ratio-
nality of the requirement of slipstream in TSI 1302–2014
(TSI, 1302, 2014), which is, the limitation value of Vx
at the height of 0.2m is higher than that at the height
of 1.4m.

The bogies underneath the leading car could affect the
flow around the train directly. Influence of the bogies
underneath the middle car could be found at the height
of 0.2m, while could be neglected at the height of 1.4m.
By contrast, the influence of the bogies under the trail-
ing car should must be paid enough attention to for both
heights. By taking a closer look, it could be found that
the wake region is greatly disturbed by the bogies under

Figure 9. Three ways to simplify the train model: (a) SP1; (b) SP2; (c) SP3.
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Figure 10. Contour of Vx at different heights: (a) H= 0.2m; (b)H= 1.4m.

the trailing car while their influence on the leading and
middle car is relatively smaller.

Figure 11 shows the distribution of Vx at different
heights for the three simplification models. Similar dis-
tribution could be observed at different heights. Peak
Vx occurs at the leading and trailing nose, while the
slipstream near the middle carriage is relatively smaller.
However, for the distribution in the wake region, remark-
able difference could be found at different heights. Vx−0.2
is obviously larger than Vx−1.4 in the wake region. Vx−1.4
is closely related to the simplification way. For SP1 Vx−1.4
in the wake region is smaller than that around the leading

and trailing nose. While for SP2 and SP3, the maximum
value of Vx−1.4 in the wake region is very close to that
around the leading and trailing nose. For the slipstream
around the middle car at the height of 0.2m, Vx−0.2
increases gradually for SP3 while it keeps almost con-
stant for SP1 and SP2. Considering the distribution of
slipstream in the wake region at different heights, SP2
and SP3 are very close to each other. When performing
shape optimization in the present paper, the influence on
the maximum value of the slipstream should be mainly
considered. As a result, if taking Vx as the optimization
objective, SP2 will be the best simplification model.

Figure 11. Distribution of Vx at different heights: (a) H= 0.2m; (b)H= 1.4m.
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Similarly, the influence of the three models on Vy at
different heights is also under investigation, as shown in
Figure 12. Due to the symmetry design of high-speed
trains, Vy distributes anti- symmetrically on the lateral
sides. Meanwhile, Vy at the leading and trailing nose
is also anti-asymmetrically distributed at the same side.
Compared to the wake region, Vy around the leading and
trailing nose is obviously larger. Furthermore, the area
influenced by Vy at the height of 0.2m is larger than that

at the height of 1.4m. It can be seen that the bogies have
weak influence on the distribution of Vy, but only affect
the adjacent zone.

Figure 13 shows the distribution of Vy at different
heights for the three simplification models. The abso-
lute value of Vy at the leading and trailing nose is almost
the same at the same height. Compared to Vy−0.2, Vy−1.4
keeps the same tendency as well as the magnitude. The
bogies show little effect on Vy around the train model.

Figure 12. Contour of Vy at different heights: (a) H= 0.2m; (b)H= 1.4m.

Figure 13. Distribution of Vy at different heights: (a) H= 0.2m; (b)H= 1.4m.
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Table 3. Maximum values of the slipstream for different simplifi-
cation models.

Height Simplification models Vx(m/s) Vy(m/s)

0.2m SP1 7.9 9.8
SP2 10.2 9.8
SP3 10.3 10.2

1.4m SP1 4.2 9.0
SP2 4.2 9.0
SP3 4.4 9.3

As seen in Figure 15, Vy−0.2 only increases in the wake
region. However, the increment is rather smaller than the
value around the leading and trailing nose.

Table 3 shows the maximum values of the slipstream
for different simplification models. At different heights,
the maximum value of Vy keeps very close. However, Vx
drops rapidly when the probe gets higher. At the height
of 0.2m, the values of the slipstream for SP2 and SP3
are very close while the value for SP1 is quite smaller. At
the height of 1.4m, the value of Vy is about twice com-
pared to that of Vx. At the meantime, the value of SP3
is a little greater than that of SP1 and SP2. Comparing
all the numerical results and taking the computational
cost and accuracy into consideration, SP2 could be cho-
sen as the basic simplification model when performing
the slipstream optimization.

5. Surrogate model

5.1. Samplingmethod

In this paper, the parameters such as the size require-
ments of the equipment and structure space in the
streamlined area of the Chinese high-speed trains, the
vehicle limit requirements, and the length value of the
350 km/h high-speed train head are used as space con-
straints. Taking the current size of these variables as the
baseline, the design space could be determined as Table
4. In order to facilitate analysis, the average value of the
design space for each design variable is exactly the value
of the baseline. The Latin Hypercube method based on
the max-min principle is adopted to obtain the initial
sampling points in the design space. 50 sampling points
are generated, in which 46 points are chosen as initial
training points while the rest 4 points are taken as test

Table 4. Design space.

Design
variables

Design
space

Design
variables

Design
space

Design
variables

Design
space

L [10.0,15.0] A11 [0.2,1.0] ab1 [0.5,2.0]
H [3.2,3.8] A21 [0.2,0.5] ab2 [1.0,2.0]
c [3.2,3.6] ak1 [0.5,1.5] Dh [−20.0,0.0]
r [4.0,8.0] ak2 [0.5,1.5] Wh [0.0,25.0]

points. Since multiple points are added during the con-
struction of surrogate models, the final number of train-
ing points is greater than 46, which will be illustrated in
the following sections.

Figure 14 shows the streamlined shapes of 6 randomly
selected points and their cross-sectional profiles, longitu-
dinal profiles and horizontal profiles. It could be seen that
all the six streamlines own smooth surfaces and distinct
clearly from each other. With use of the parametrization
methods proposed in the present paper, different types of
streamlines could be obtained. The generated streamline
could be broad andwide, could be tall and thin, and could
also be fusiform.Within the given design space, all kinds
of streamlined shapes could be obtained, indicating that
the design space used in the present paper is reasonable
enough for shape optimization.

5.2. Design objectives

Several design objectives should be considered in practi-
cal engineering such as the slipstream, aerodynamic drag,
aerodynamic lift, pressure waves, micro pressure waves
and aerodynamic noise. In the meantime, some geomet-
ric constraints such as the volume of the driving cab
which could also affect the assembling space should be
taken into consideration as well. In the present paper,
the influence of geometric shape of high-speed trains
on slipstream is mainly studied. To ensure the optimiza-
tion results useful for engineering application and obtain
the relationships between design variables and slipstream
that meet the requirement of aerodynamic performance
and geometric constraints, the design objectives are the
variables related to the slipstream, the aerodynamic drag
of the whole train, Cd, is taken as the constraint related
to aerodynamic performance while the volume of the
driving cab, Vol, is taken as the geometric constraint.

The magnitude of slipstream is closely related to the
position of the probes. When taking the slipstream as
the optimization objective, due to the wide scattering of
themagnitude of the slipstream at different positions, the
optimization could not be performed if the slipstream of
all places is taken into consideration. To ensure the rea-
sonability of the optimization objectives, the engineering
standard is fully considered, and the velocity components
of the slipstream at standard heights are chosen to be the
design objectives.

The sampling points in the design space could give
a glimpse on the variation of geometric shapes of high-
speed trains, and the slipstream of the sampling points
could also exhibit its relationship with the geometric
shapes. As a result, reasonable design objectives could be
determined by analyzing the slipstream of the sampling
points. Figure 15 shows themaximum value of Vx andVy
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Figure 14. Streamlined shapes of 6 randomly selected points and their cross-sectional profiles, longitudinal profiles and horizontal
profiles.

Figure 15. Maximum value of Vx and Vy at two standard heights for all the training samples: (a) Vx−0.2; (b) Vy−0.2; (c) Vx−1.4;(d) Vy−1.4.

at two standard heights. It could be observed that Vx−0.2
is obviously larger than the others. The distribution of
Vx−1.4 is very close to that of Vy at two standard heights.
According to TSI 1302–2014 (TSI, 1302, 2014), the max-
imum values at the standard heights are regulated, which
means the maximum value of the slipstream is a main
threat to trackside buildings and workers. Considering
the width of the train affects directly the slipstream at
the height of 1.4m and Vy−1.4 is greater than Vx−1.4, the
maximum value of Vx−0.2 and Vy−1.4 are chosen as the
design objectives.

5.3. ε-TSVRmodel

Based on the structural riskminimization principle, Sup-
port Vector Machine (SVM) algorithm (Peng, 2010),
benefits greatly from its ability in generalization and
solving nonlinear and high-dimensional problems. SVM
algorithm can be divided into two kinds: classification
algorithm and regression algorithm, in which, SVM
regression algorithm (Support Vector Regression, SVR)
has been used widely in engineering (Yao et al., 2016).
SVR could also be divided into several kinds, and the
ε-TSVR(ε-twin support vector regression, ε-TSVR) pro-
posed by Shao et al. (2013) has been adopted in the

present paper. Compared to standard SVR algorithm and
TSVR algorithm, ε-TSVR owns higher prediction accu-
racy and less training time. With use of this algorithm,
Yao et al. (2016) performed aerodynamic shape optimiza-
tion of high-speed trains and validated its practicability.
For nonlinear regression problem, the original problem
of ε-TSVR could be expressed as (14) and (15):

min
u1,b1,ξ

1
2
c3(uT1u1 + b21) + 1

2
ξTξ∗ + c1eTξ ,

s.t. Y − (K(A,AT)u1 + eb1 ≥ −ε1e − ξ , ξ ≥ 0,

Y − (K(A,AT)u1 + eb1 = ξ∗
(14)

min
u2,b2,η

1
2
c4(uT2 u2 + b22) + 1

2
ηTη∗ + c2eTη,

s.t. (K(A,AT)u1 + eb1) − Y ≥ −ε2e − η, η ≥ 0,

(K(A,AT)u2 + eb2) − Y = η∗
(15)

In which, c1, c2, c3, c4, ε1 and ε2 are variables bigger
than zero. u1and u2 are vectors.b1 and b2 are coefficients.
ξ , ξ∗, η and η∗ are relaxation vectors.K(A,AT) is the ker-
nel function, and the Gaussian function is chosen as the
kernel function in the present paper, just as (16) shows,
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in which σ is the width factor.

exp
(

− 1
2σ 2 ||x − xi||2

)
(16)

For the m-dimensional problem with n training sam-
ples, the corresponding A is an m×n matrix where Ai is
the i-th training sample,Y = (y1, y2, . . . , ym) is the corre-
sponding response value and e is the unit vector. By con-
structing Lagrangian function, the dual problem of (14)
and (15) could be obtained with use of the Karush-Kuhn-
Tucker complementary condition, just as (17) and (18)
show. The detailed deduction process could be referred
to in literature (Yao et al., 2016).

max
α

− 1
2
αTH(HTH + c3I)−1HTαT − (eTε1 +YT)α

+ YTH(HTH + c3I)−1HTα

s.t. 0 ≤ α ≤ c1e.
(17)

max
γ

− 1
2
γ TH(HTH + c4I)−1HTγ T − (YT − eTε2)γ

− YTH(HTH + c4I)−1HTγ

s.t. 0 ≤ γ ≤ c2e.
(18)

where,

H = [K(A,AT)e] (19)

v1 = (HTH + c3I)−1HT(Y − α) (20)

v2 = (HTH + c4I)−1HT(Y + γ ) (21)

where v1 = [uT1 b1]
T , v2 = [uT2 b2]

T . The values of u1, u2,
b1 and b2 could be obtained by solving (11) and (12).
Then the prediction value of ε-TSVR could be obtained
by (22)

f (x) = 1
2
(f1(x) + f2(x))

= 1
2
(uT1 + uT2 )K(A, x) + 1

2
(b1 + b2) (22)

When training samples are determined, the free coef-
ficients c1, c2, c3, c4, ε1, ε2 and σ in ε-TSVR model
could affect efficiently on the generalization ability of
the model. However, there is no theoretical basis to
strictly calculate these coefficients till now. In the present
paper, these coefficients are determined by cross vali-
dation method and PSO algorithm. On the condition
that the prediction accuracy of the ε-TSVR model isn’t
reduced, to simplify this problem and improve the train-
ing efficiency of the ε-TSVR model, we assume c1 = c2
and c3 = c4. c3 and c4 have the same effect in the dual

expressions, so are c1 and c2. It won’t reduce the predic-
tion accuracy of the model to make c3 equals c4 and c1
equals c2. On the contrary, the number of free coefficients
is reduced. As a result, there are five free coefficients
needed to be determined in total. For a set of given free
coefficients, the quadratic programing problem (17) and
(18) needs to be solved twice. In order to improve the
training efficiency, the overrelaxation iteration technique
has been introduced by Shao et al. (2013), which is also
adopted in the present paper.

The construction process of ε-TSVR model is also
the determination process of free coefficients. For a sin-
gle ε-TSVR model, the determination of the five free
coefficients could be performed by the following steps:

(1) For the given training set, divide the training sam-
ples into l groups randomly. Make sure the number
of training samples in each group is the same, which
is 2 in the present study.

(2) Determine the initial coefficients in PSO algorithm,
such as the population and the iteration steps. The
number of particles and iteration steps are crucial
to the optimization efficiency, which should not be
too big or too small. The population in PSO in the
present study is 35 and the number of iteration steps
is 300.

(3) Sequentially select each group as the test samples,
and use the other training samples to construct a
sub SVR model. Then obtain the prediction error
%RMSEi of the test samples. The fitness in PSO
algorithm takes the form as (23)

fit = 1
l

l∑
i=1

%RMSEi (23)

where l is the number of groups, and %RMSEi is the
i-th prediction error of the test samples, which could
be expressed as (24):

%RMSE = 100

√√√√ 1
ns

ns∑
i=1

(yi − y(p)
i )

2
/
1
ns

ns∑
i=1

yi

(24)
where yi is the real value, y

(p)
i is value predicted by

SVR and ns is the number of test samples.
(4) Obtain the optimal values of free coefficients after

iterations. When using SVR model, take the average
value of each sub SVR model as the final prediction
value.

The ε-TSVR models should be built for each design
objectives and constraints. There are two design objec-
tives and two constraints, so that four ε-TSVR mod-
els should be constructed. The initial samples for each
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ε-TSVR are the same. Since the relationships between
design variables and design objectives or constraints in
the design space are different, the variations of the design
objectives or constraints are quite different from each
other. As a result, the prediction accuracy of ε-TSVR
models varies from each other on the base of same ini-
tial samples. In the present paper, the final ε-TSVRmodel
should assure the averaged prediction error no bigger
than 5% and the maximum prediction error no bigger
than 10%.

Figure 16 shows the construction process for ε-TSVR
models. If the prediction accuracy doesn’t meet the
requirement, additional sample points should be added
to the training set. There are two steps to add these
points:

(1) For a single-objective ε-TSVR model, add the test
samples into the training set to restart the construc-
tion process if the prediction accuracy doesn’t meet
the requirement. Further test samples are selected
randomly among the samples in the design space.
Repeat the process until the prediction accuracy
meets the requirement. In the present paper, the
number of test points is 4.

(2) The Pareto set could be obtained after the final
ε-TSVR model set have been constructed. Several
points from the Pareto set are taken as test samples.

If the prediction accuracy doesn’t meet the require-
ment, these points are added into the initial training
set to rebuild the ε-TSVR models. Otherwise, the
Pareto set will work as the final optimization results.
6 points from the Pareto set are taken from the
Pareto set.

During the adding points process, only the ε-TSVR
model which doesn’t meet the accuracy requirement
needs to add more points to the training set. For those
ε-TSVR models that meet the accuracy requirement,
there’s no need to add points. As a result, the number of
final training points differs from each other when all the
ε-TSVR models is precise enough.

Table 5 gives the prediction errors of the ε-TSVRmod-
els on the base of initial training points. The values of the
slipstream and aerodynamic drag obtained from DDES
method are taken as the exact values. The exact value of
the volume of the driving cab could be obtained by geo-
metric integration. It could be observed that the ε-TSVR
model of Vx−0.2 own the biggest prediction error, while
the error of the ε-TSVR model of Vol is the smallest. All
the four ε-TSVRmodels meet the accuracy requirement.
As a result, there’s no need to addmore points for the first
step.

As for adding points in the second step, we need to
obtain the Pareto set with use of the ε-TSVR model set

Figure 16. Construction process for ε-TSVR models.

Table 5. Prediction errors of the ε-TSVR models on the base of initial training points.

Test samples Vx−0.2 Vy−1.4 Cd Vol

Evaluation Methods DDES ε-TSVR DDES ε-TSVR DDES ε-TSVR REAL ε-TSVR

T1 9.35 9.64 6.91 6.77 0.220 0.217 0.0323 0.0324
T2 10.04 9.86 7.67 7.80 0.229 0.232 0.0311 0.0312
T3 9.51 10.02 7.73 7.75 0.225 0.227 0.0337 0.0336
T4 9.97 9.64 8.80 8.50 0.241 0.239 0.0234 0.0236

Average Error 3.59% 2.30% 1.11% 0.44%
Maximum Error 5.36% 3.45% 1.36% 0.85%
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andmulti-objective PSO. This process will be introduced
in detail in section 6.2.

6. Results and discussions

6.1. Multi-objective particle swarm optimization
method

The PSO algorithm was proposed in 1995 by Kennedy
and Eberhart (1995). This algorithm is simple in princi-
ple, easy to implement and has strong global optimiza-
tion ability. Moore and Chapman (1999) used the PSO
algorithm in 1999 for the first time to solve the multi-
objective problem. Afterwards, several kinds of multi-
objective PSO algorithm has been proposed. Based on
the non-inferior classification idea, Li (2003) developed
the NSPSO method by introducing the concept of niche
technology and crowding distance into the original PSO
algorithm. Results revealed that NSPSO owned stronger
optimization ability than NSGA-II. The external file was
introduced into the NSPSO method by Yao et al. (2015,
2016). The niche count and crowding distance technique
are also used to judge the performance of the particles in
the external file. The particle with the best performance
is chosen to be the global best particle. Consequently, a
new MPSO method was proposed. This method is also
adopted in the present paper. Some coefficients used in
MPSO are listed as follows: the number of the popula-
tion is 200 and the number of iteration steps is 10000.
The acceleration factor is 2. The inertia factor gradually
varies from 1.2–0.4 during the iteration. The maximum
flying speed is 0.3.

In order to study the influence of design variables
on the slipstream, aerodynamic drag and volume of the
driving cab (which is represented by the volume of the
streamline), two design objectives are defined while the
other two and the length of the streamline work as con-
straint objectives. The drag coefficient of the whole train
(0.231) and volume of driving cab for the original model
(0.0278) are taken as the constraints. 90% of the val-
ues of Vx−0.2 (10.36) and Vx−1.4 (7.94) of the original
model are taken as the limit of the constraints. Six groups
of fitness functions are defined to get six Pareto set Pi,
i=1,2, . . . ,6.

The fitness functions for P1, P2, P3 and P4 take the
form as:

f1 = f1 + φ1 (25)

f2 = f2 + φ2 (26)

For P1, φ1 and φ2 are 0.
For P2, φ1 and φ2 take the form as:

φ1 = 2|min(0, 0.231 − f3)|0.1 + 2|min(0, f4 − 0.0278)|0.1
(27)

φ2 = 2|min(0, 0.231 − f3)|0.1 + 2|min(0, f4 − 0.0278)|0.1
(28)

For P3, φ1 and φ2 are 0 and the design variable L is set
to be 12.5m.

For P4, φ1 and φ2 take the form as:

φ1 = 2|min(0, 0.231 − f3)|0.1

+ 2|min(0, f4 − 0.0278)|0.1 (29)

φ2 = 2|min(0, 0.231 − f3)|0.1

+ 2|min(0, f4 − 0.0278)|0.1 (30)

The design variable L is set as 12.5m.
The fitness functions of P5 and P6 take the form as:

f3 = f3 + φ3 (31)

f4 = f4 + φ4 (32)

For P5, φ1 and φ2 are 0.
For P6, φ1 and φ2 take the form as:

φ3 = 2|min(0, 9.32 − f1)|2 + 2|min(0, 7.15 − f2)|2
(33)

φ4 = 2|min(0, 9.32 − f1)|2 − 2|min(0, 7.15 − f2)|2
(34)

In which, f1 is the maximum value of Vx−0.2, f2 is the
maximum value of Vy−1.4, f3 is the aerodynamic drag of
the whole train, and f4 is the volume of the driving cab.

6.2. Pareto set

The prediction accuracy of the ε-TSVR models deter-
mines the final optimization results. Based on the ε-
TSVR models built in section 5.3, six Pareto sets could
be obtained, as shown in Figure 15. One test point P0i
(i=1,2, . . . ,6) from each Pareto set is taken to per-
form numerical analysis, and the numerical results are
given in Table 6. It could be seen that the averaged
and maximum error for Vx−0.2 are 9.61% and 13.31%
respectively, which don’t meet the accuracy require-
ment. Meanwhile, the averaged and maximum error for
Vy−1.4 are 7.85% and 15.89% respectively, which don’t
meet the accuracy requirement either. As a result, all
these six points are added to the training set of Vx−0.2
and Vy−1.4 to rebuild the corresponding ε-TSVR model.
Based on the rebuilt ε-TSVR models, six new Pareto sets
are obtained. Repeating the validation process, one test
point P1i (i=1,2, . . . ,6) from each Pareto set is taken to
perform DDES analysis, and the results are also shown
in Table 6. It could be seen that the averaged and maxi-
mum error of each design objective all meet the accuracy
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Table 6. Comparison of the test samples in the Pareto set.

Test samples Vx−0.2 Vy−1.4 Cd Vol

Adding point times Evaluation ways DDES ε-TSVR DDES ε-TSVR DDES ε-TSVR REAL ε-TSVR

0 P01 9.65 8.51 5.71 5.29 0.199 0.194 0.0268 0.0271
P02 9.75 8.76 5.62 5.18 0.199 0.196 0.0273 0.0278
P03 9.94 8.62 6.47 6.14 0.206 0.203 0.0220 0.0214
P04 9.46 9.01 7.41 7.36 0.226 0.228 0.0277 0.0278
P05 9.27 9.53 6.84 6.80 0.213 0.210 0.0322 0.0327
P06 9.42 8.53 6.39 5.38 0.199 0.193 0.0270 0.0273

Average Error 9.61% 7.85% 3.28% 1.52%
Maximum Error 13.31% 15.89% 2.86% 2.81%

1 P11 9.16 8.73 5.88 5.79 0.201 0.198 0.0281 0.0287
P12 9.61 9.33 5.68 5.47 0.200 0.197 0.0274 0.0280
P13 9.54 9.86 6.49 6.50 0.208 0.210 0.0231 0.0231
P14 9.06 8.54 7.49 7.51 0.226 0.228 0.0280 0.0279
P15 9.88 10.44 8.42 8.24 0.234 0.234 0.0397 0.0377
P16 9.06 8.47 6.66 6.74 0.216 0.212 0.0331 0.0323

Average Error 4.96% 1.82% 1.85% 3.16%
Maximum Error 6.51% 3.70% 1.24% 5.04%

Figure 17. Distribution of six Pareto sets: (a) P1; (b) P2; (c) P3; (d) P4; (e) P5; (f ) P6.

requirement for the second round. As a result, the new
six Pareto sets are exactly the final Pareto set, as shown in
Figure 17.

Due to the accuracy difference of ε-TSVRmodels, the
distribution of Pareto set varies dramatically before and
after adding points except for P5, as shown in Figure 17.
Before adding points, the prediction accuracy of ε-TSVR
models around the optimal solution region is relatively
poor, resulting in unreasonable optimal points gather-
ing in a limited region. After adding points, the distri-
bution of Pareto set spreads wider. The ε-TSVR mod-
els corresponding to P5 keep unchanged since only two
times of optimization have been carried out before and
after adding points. As seen in Figure 17(e), the results

of two optimizations coincide basically, indicating that
the optimization algorithm owns high accuracy and the
optimization results are very robust.

As indicated by the distribution of P1, P2, P3 and
P4, different fitness functions could lead to totally dif-
ferent Pareto set. The distribution of P1 is very similar
to that of P3, but the distribution of Vy−1.4 is much
wider, indicating that the constraint of L influences
greatly on Vy−1.4. The influence of φ1and φ2 on f1 and
f2 is very little. However, after adding the constraints of
φ3 and φ4, the distribution of P6 gets narrower com-
pared to P5. The minimum optimal values of f3 and f4
get increased, while the maximum optimal values get
decreased.
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Due to the influence of ground effect, the flow near
the ground is more easily to be disturbed by the varia-
tion of streamlined shape, and Vx−0.2 exhibits stronger
nonlinear relationship with the design variables. Con-
sequently, the construction of corresponding ε-TSVR
model is more difficult. Overall, the prediction error of
Vx−0.2 is much bigger than that of the other three objec-
tives, just as Table 6 shows. After adding points for the
first time, the accuracy of the ε-TSVR model of Vx−0.2
improves greatly. The averaged error is near 5% while
the maximum error is quite lower than 10%. Meanwhile,
the averaged and maximum error of Vy−1.4 are both
greatly reduced too, indicating that adding points around
the optimal solution region could effectively improve the
prediction accuracy. The ε-TSVR models corresponding
to Cd and Vol don’t need to add points since the ini-
tial models have already met the accuracy requirement.
As a result, before and after adding points, essentially,
two times of optimization have been performed for these
two models. Since the averaged and maximum error
of these two ε-TSVR models both meet the accuracy
requirement, no more detailed accuracy validation will
be performed in the present paper.

Taking P1i (i=1,2, . . . ,6) in Table 6 as the optimal
shapes, the design variables corresponding to each sam-
ple point are shown in Table 7. It could be seen that
the variable L always takes the maximum value in the
design space. Limited by the constraints, L takes the value
of 12.5m for P13 and P14, indicating that long stream-
line could aid in reducing the values of design objectives.
Except for P15, the values of c and ab2 of the other designs
take the minimum value in the design space, while the
value of ak2 takes the maximum value. These specific
values could lead to the reduction of the width of the
train, indicating that smaller width of the train could
lead to smaller aerodynamic drag and weaker slipstream.
The values of other design variables vary greatly from

each other, indicating the geometric shapes of the optimal
designs distinct obviously from each other.

Figure 18 shows the streamlined shapes correspond-
ing to the above sample points. It could be observed that
the streamlined shapes all own deeper drainage along
the lateral sides except P15. This kind of design could
induce the incoming flow passing along the drainage and
decrease the propagation in transverse direction. P15 is
obtained considering Cd and Vol only, indicating that
the design of drainage has little effect on Cd. Moreover,
the shallower the drainage is, the bigger Vol is. From the
topologic view, P11 and P12 belong to fusiform stream-
lines, while P13, P14, P15 and P16 are tall and thin, indicat-
ing that the relationships between Vol and Vx−0.2, Vy−1.4
and Cd are negative related. The bigger Vol is, the harder
to reduce Vx−0.2, Vy−1.4 and Cd. If the constraint of Vol
is much stricter, a better way to reduce Vx−0.2, Vy−1.4
and Cd is to increase the projection area of longitudi-
nal section and reduce the projection area of horizontal
section.

The values of design objectives corresponding to each
design point are shown in Table 8. Compared to the ini-
tial shape, the values of design objectives are all reduced
in a certain extent. For P11, Vol is very close to that of
the initial shape. However, Vx−0.2, Vx−1.4, Vy−0.2, Vy−1.4
and Cd are reduced by 11.6%, 33.9%, 24.7%, 25.9% and
13.0% respectively. Similarly, focusing on P12, it could be

Table 8. Values of design objectives corresponding to each
design point.

Design point Vx−0.2 Vx−1.4 Vy−0.2 Vy−1.4 Cd Vol

Initial shape 10.36 4.40 8.47 7.94 0.231 0.0278
P11 9.16 2.91 6.38 5.88 0.201 0.0281
P12 9.61 2.83 6.22 5.68 0.200 0.0274
P13 9.54 3.17 7.09 6.49 0.208 0.0231
P14 9.06 3.78 7.94 7.49 0.226 0.0280
P15 9.88 4.11 8.89 8.42 0.234 0.0397
P16 9.06 3.35 7.11 6.66 0.216 0.0331

Table 7. Design variables corresponding to each sample point.

Design points L H c r A11 ak1 ab1 A21 ak2 ab2 Dh Wh

P11 15.0 3.200 3.200 6.275 0.523 0.627 1.325 0.388 1.500 1.000 −20.000 16.035
P12 15.0 3.200 3.200 7.479 0.668 0.968 0.929 0.304 1.500 1.000 −17.516 2.204
P13 12.5 3.200 3.200 7.558 0.200 0.749 1.012 0.379 1.500 1.000 −20.000 7.500
P14 12.5 3.800 3.200 6.177 0.200 0.653 1.726 0.423 1.500 1.000 −18.393 15.563
P15 15.0 3.800 3.351 4.000 0.200 0.910 1.379 0.483 0.556 1.814 −7.643 24.373
P16 15.0 3.649 3.200 5.497 0.200 0.500 2.000 0.500 1.500 1.000 −20.000 25.000

Figure 18. Streamlined shapes corresponding to the above sample points.
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found that Vol is a little smaller than that of the initial
shape. Most of the other objectives are reduced promi-
nently except that Vx−0.2 has been increased by 4.9%. The
length of the streamline of P14 is 12.5m, and Vol of P14
is also very close to that of the initial shape. As for the
other objectives, Vx−0.2, Vy−0.2 and Vy−1.4 are reduced
by 12.5%, 6.3% and 5.7% respectively. It could be deduced
that if the length of the streamline and the volume of
the driving cab have already been determined, the slip-
stream could be reduced greatly by shortening the width
and increasing the height of the train body. It also gets
little influence on the aerodynamic drag. Comparing the
objectives of P15 and P16 with the initial shape, we could
find that the slipstream and drag of the train could be
greatly reduced together with increasing the volume of
the driving cab by controlling the length of the stream-
line. In China, there is a high demand for double-deck
high-speed trains, whose height of the train body is obvi-
ously higher than ordinary trains. Following the study in
this section, it could be recommended that the stream-
lined shape of double-deck train could be designed to be
narrower and taller.

P11 is chosen as the final optimal shape to be compared
with the initial shape. Figure 19 shows the contours of
Vx and Vy at different heights before and after optimiza-
tion. At the height of 0.2m, the high velocity region near
the leading nose is greatly reduced after optimization.

Moreover, the high velocity region in the wake tends to
gather in the center line of the train. This kind of flow
distribution could greatly reduce the value of Vx and Vy
in the region near the leading nose and in the wake. At
the height of 1.4m, due to the increase of the length of
the streamline and the decrease of the width of the train,
the regions where Vy varies severely around the leading
and trailing nose get lengthened in the streamwise direc-
tion and shrunk in transverse direction. Meanwhile, the
maximum value of Vy gets reduced, which could help to
reduce the local slipstream. Because of the weakening of
flow separation in the wake region after optimization, Vy
gets reduced obviously in the wake region. As a result, the
deformation of the streamline shape could not only influ-
ence the slipstream around the train body, but also affect
the slipstream in thewake far away from the trailing nose.

Figure 20 shows the iso-surface of Q at t = 2s before
and after optimization. Complicated vortex structures
could be seen separated from the trailing nose. Two sets
of anti-symmetrical vortex structures detach from lat-
eral sides of the trailing nose. As propagating downward,
the vortex cores grow bigger and bigger. Although the
intensity of the vortex structures tends to decrease, the
influenced region in length and width directions grows
larger. Compared to the initial shape, the length of the
streamline increases, and the width of the train grows
smaller. Consequently, the variation ratio of the cross

Figure 19. Contours of Vx and Vy at different heights before and after optimization: (a) Vx; (b) Vy.

Figure 20. Iso-surface of Q at t= 2s before and after optimization (t= 2s, Q= 5, shaded by pressure).
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section of the streamline tends to be more complanate,
which could lead to weak separation in the wake region.
The anti-symmetrical vortex structures get closer to the
center of the train (y = 0). In the wake region far away
from the trailing nose, the intensity of the vortex struc-
tures drops greatly, resulting in weaker influence in the
lateral sides of the train. Such change of flow structures
after optimization could aid in reducing the slipstream
in the wake region.

Figure 21 shows the time-averaged value of Vx at dif-
ferent heights before and after optimization. The absolute
values of Vx around the leading and trailing nose get
reduced obviously at the heights of 0.2 and 1.4m. The
distribution of Vx in the wake region tends to be more
complanate after optimization, and the peak value of Vx
also gets decreased. At the height of 0.2m, the peak value
of Vx is much more far away from the trailing nose after
optimization. At the height of 1.4m, the peak value of Vx
is much smaller than that around the train body, indi-
cating that the change of streamlined shape could greatly
affect the wake flow. Results also reveal that the most
reduction region of the slipstream at different heights
could be affected by the topology of streamlined shape.

Figure 22 shows the time-averaged value of Vy at dif-
ferent heights before and after optimization. It could be
seen that the distribution profiles of Vy keep similar
before and after optimization. Vy is very close to zero

around the middle carriage and in the wake region. The
obvious difference is the maximum value. The peak val-
ues of Vy around the leading and trailing car decrease
dramatically after optimization. At the height of 0.2m,
Vy also get reduced in the wake region, indicating that
the change of streamlined shape could influence both the
deformation region and the near ground region in the
wake.

6.3. Sensitivity analysis

During the engineering design of high-speed trains, the
relationship of key design variables with the objectives
could offer directly the design insight. Based on the ε-
TSVR models, the relationships of 12 design variables
and objectives are obtained. The design space of each
design variable is normalized into [0, 1] to facilitate the
following analysis, as shown in Figure 23. It could be seen
that compared to the other three objectives, the relation-
ships between design variables and Vx−0.2 exhibit strong
nonlinear relationships. However, due to the relatively
large range of the y coordinate, this kind of nonlinear
relationship could not be directly seen. Taking H and
wh as examples, the relationships with are depicted in
Figure 23(a). As c increases, the value of Vx−0.2 increases
too. The design variables, A21 and ak2, are the two vari-
ables that control the horizontal profile of the streamline.

Figure 21. Time-averaged Vx at different heights before and after optimization: (a) H= 0.2m; (b) H= 1.4m.

Figure 22. Time-averaged Vy at different heights before and after optimization: (a) H= 0.2m; (b) H= 1.4m.
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Figure 23. Relationships of 12 design variables and objectives: (a) Vx−0.2;(b) Vy−1.4; (c) Cd; (d) Vol.

When they grow bigger, the value of Vx−0.2 becomes
smaller, indicating that the streamline which is tall and
thin could benefit in reducing the value of Vx−0.2. Mean-
while, the variable H has little influence on Vx−0.2. The
variable L is the key factor that influences Vy−1.4, Cd
and Vol. The bigger L is, the smaller Vy−1.4 and Cd are.
Bigger Vol indicates that the streamline is very longer,
which could help to improve the aerodynamic perfor-
mance. However, from the engineering view, although
long streamline could lead to larger driving cab, the pas-
sengers’ carriage could be shortened, and finally the num-
ber of passengers in the first carriage could be decreased.
The variable H is the second important factor that affects
Vy−1.4, Cd and Vol. As H grows bigger, the values of
Vy−1.4, Cd and Vol also grow larger, indicating higher
train body could lead to bad aerodynamic performance.
As a result, consideration should be taken synthetically
between the influence of height of the train body on aero-
dynamic performance and the volume of the driving cab.
The influence of other design variables on objectives is
different and gets different relationships, the quantitative
results are shown in Table 9.

In order to better understand the influence of design
variables on the objectives, the finite difference method
is adopted to perform the sensitivity analysis on each
design variable. Positive result indicates that the design
variables are positively related to the objectives and vice
versa. The bigger the absolute value of the analysis result
is, the greater the contribution of design variables is.

Table 9. Values of sensitivity analysis of the design variables on
design objectives.

Design variables Vx−0.2 Vy−1.4 Cd Vol

L −0.2387 −2.2363 −0.0267 0.0116
H 0.1183 0.9537 0.0170 0.0042
c 0.7439 0.6416 0.0146 0.0022
r −0.1110 −0.4398 −0.0042 −0.0015
A11 0.2739 0.0198 −0.0035 −0.0011
ak1 0.2453 −0.1171 −0.0013 −0.0002
ab1 −0.1034 0.2154 0.0036 0.0009
A21 −0.4838 0.0003 −0.0080 −0.0010
ak2 −0.9976 −0.9644 −0.0057 −0.0014
ab2 0.5817 0.7053 0.0110 0.0021
Dh 0.5113 0.2762 0.0005 0.0004
Wh −0.0477 0.1578 −0.0002 0.0003

Table 9 shows the values of sensitivity analysis of the
design variables on design objectives. It could be found
that except for the width of the train body, the longitu-
dinal and horizontal profiles of the streamline have the
greatest influence on Vx−0.2. The depth of the drainage
has greater influence on Vx−0.2 compared to the other
objectives. The length of the streamline affects greatly on
Vy−1.4, Cd and Vol while has little influence on Vx−0.2.
The variable ak2 controls the curvature of the middle
part of the horizontal profile. It is negatively related to
the slipstream and aerodynamic drag. The variables that
affect the design objectives in the same way could be
called isotropic variables. When designing the aerody-
namic shape of high-speed trains, it is a better way to
optimize on the most important objectives. By varying
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the isotropic variables, the other objectives could be opti-
mized at the same time. Such variables also include L, H,
c, r, ab2 and Dh. For the variables that affect the design
objectives in the opposite ways, they could be called
anisotropic variables. The value of anisotropic variables
should be well considered to match the different design
objectives.

7. Conclusions

The slipstream induced by high-speed trains affects the
safety of trackside structures and workers severely, which
is a key factor during the aerodynamic design of high-
speed trains. Based on the DDES method, ε-TSVRmod-
els and multi-objective PSO method, multi-objective
aerodynamic optimization with certain constraints has
been performed, and the influence of aerodynamic shape
on the slipstream has been investigated. The main con-
clusions are as follows:

(1) The profile superposition method has been devel-
oped to parameterize the cross-section of the train
body, and the VMF method has been adopted to
parameterize the streamlined shape of the train. 12
variables are designed to control the deformation
of the train. As a result, the parametrization of the
whole train has been accomplished.

(2) Based on the wind tunnel test data, the computa-
tional accuracy of the stationary method and mov-
ing mesh method with use of DDES method has
been validated. On the base of stationary method,
the influence of bogies on the slipstream has been
analyzed. Results reveal that the trailing bogies have
the greatest influence on the slipstream in the wake
region.

(3) The velocity of the slipstream at standard places, the
aerodynamic drag of the whole train model and the
volume of the driving cab are taken as design objec-
tives. Four ε-TSVR models are constructed for each
design objective. Based on different constraints and
fitness functions, 6 different Pareto sets are obtained
with use of the multi-objective PSO method. 6 sam-
ples are chosen from each Pareto set and one of the
samples is chosen as the final optimal shape. Com-
pared to the initial shape, the volume of the driv-
ing cab keeps almost the same after optimization.
However, Vx−0.2, Vx−1.4, Vy−0.2, Vy−1.4 and Cd are
reduced by 11.6%, 33.9%, 24.7%, 25.9% and 13.0%
respectively.

(4) If the volume of the driving cab is constrained, the
streamlines which are tall and thin will benefit in
reducing the slipstream and aerodynamic drag. The
length of the streamline has the greatest influence

on aerodynamic performance, while the height and
width of the train body are also very important fac-
tors. The depth of the drainage owns greater influ-
ence on Vx−0.2 compared to its influence on Vy−1.4,
Cd and Vol.

Confined by local experimental conditions and some
safety issues, it is very hard to acquire the real vehicle test
data about train wind in China. However, it is also amore
reliable approach to test the train wind by moving model
experiments. The focus of current study is to use opti-
mization methods to reduce the train wind. In order to
assure the reliability of the optimization result, the wind
tunnel experimental data is utilized to validate the accu-
racy of numerical algorithms on the condition that no
direct real vehicle test data is available.However, this kind
of validation has certain limitations, because the surface
pressure of the car body and the aerodynamic force of
the train cannot directly show the unsteady flow char-
acteristics around the train. In addition, limited by the
test conditions, the optimized shape hasn’t been validated
by the wind tunnel test or moving model test. Therefore,
on the basis of the current work, it is necessary to carry
out model test or real vehicle test for the train wind. On
the one hand, more reliable test data could be provided
for the validation of numerical simulations. On the other
hand, the optimization effect of this paper could be ver-
ified, and further the reliability of current optimization
methods.
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