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ABSTRACT

The velocities measured by particle image velocimetry (PIV) and particle tracking velocimetry (PTV) commonly provide sparse information
on flow motions. A dense velocity field with high resolution is indispensable for data visualization and analysis. In the present work, a
physics-informed neural network (PINN) is proposed to reconstruct the dense velocity field from sparse experimental data. A PINN is a
network-based data assimilation method. Within the PINN, both the velocity and pressure are approximated by minimizing a loss function
consisting of the residuals of the data and the Navier–Stokes equations. Therefore, the PINN can not only improve the velocity resolution
but also predict the pressure field. The performance of the PINN is investigated using two-dimensional (2D) Taylor’s decaying vortices and
turbulent channel flow with and without measurement noise. For the case of 2D Taylor’s decaying vortices, the activation functions, optimi-
zation algorithms, and some parameters of the proposed method are assessed. For the case of turbulent channel flow, the ability of the PINN
to reconstruct wall-bounded turbulence is explored. Finally, the PINN is applied to reconstruct dense velocity fields from the experimental
tomographic PIV (Tomo-PIV) velocity in the three-dimensional wake flow of a hemisphere. The results indicate that the proposed PINN
has great potential for extending the capabilities of PIV/PTV.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0078143

I. INTRODUCTION

Flow measurement is essential for better understanding complex
flow physics, validating numerical computations, and proving analyti-
cal and mathematical models or theories (Scharnowski and K€ahler,
2020). Both particle image velocimetry (PIV, Adrian, 1984) and parti-
cle tracking velocimetry (PTV, Adamczyk and Rimai, 1988) are widely
used to quantitatively describe the motion of flows in the field of
experimental fluid mechanics. The greatest advantage is that PIV and
PTV can noninvasively measure the instantaneous flow field simulta-
neously at many points (Westerweel et al., 2013). The flow fields
obtained through PIV/PTV allow the turbulence properties and coher-
ent structures to be visualized and analyzed even at high Reynolds
numbers (Adrian et al., 2000; Adrian, 2005; Hutchins and Marusic,
2007; Humble et al., 2009; Ye et al., 2016; Wang et al., 2019).
Considering the complexity and three-dimensionality of flow motions,
the development of a high-fidelity three-dimensional (3D) measure-
ment technique to resolve all scales is natural and necessary.

Much effort has been devoted to achieving 3D measurements
(Gao et al., 2013; Westerweel et al., 2013; Scarano, 2013; Discetti and
Coletti, 2018; Raffel et al., 2018). The defocusing PIV introduced by
Willert and Gharib (1992) uses a three-pinhole aperture in conjunc-
tion with defocused particle imaging to code the depth of particles.
This technique is primarily limited by the low seeding rates and low
light intensity due to the small pinholes (Cierpka and K€ahler, 2012).
Holography can be used to record particle sizes and 3D positions in a
technique referred to as holographic PIV (Hinsch, 2002; Shao et al.,
2020). Unfortunately, the axial resolution is much coarser than that in
the other two directions (Gao et al., 2013). The scanning PIV proposed
by Br€ucker (1995) combines classical PIV with volume scanning using
a scanning light sheet. Although this method can be used to obtain
three-dimensional three-component (3D3C) instantaneous velocity
fields, the technological limitation of the high-speed camera allows the
study of only relatively low-speed flows. Ganapathisubramani et al.
(2005) utilized three cameras to measure the full velocity components
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in two differentially separated planes. This dual-plane PIV can obtain
the entire velocity gradient tensor only on the measured plane. The
most important milestone in experimental fluid mechanics is the
advent of tomographic PIV (Tomo-PIV, Elsinga et al., 2006). In this
approach, tracer particles are illuminated by a thick laser light sheet,
and the light scattered by these particles is recorded by multiple cam-
eras from different view angles (four cameras are usually required).
The spatial intensity distribution is reconstructed according to the geo-
metrical projection. Then, volumetric cross-correlation analysis or a
particle tracking technique is applied to obtain the displacement field
(Westerweel et al., 2013). The ghost particles, generated due to the lim-
ited number of cameras, bring a negative effect of smoothing and
reducing the particle displacement variations (Elsinga et al., 2011). To
overcome this weakness, many approaches have been proposed to
remove or weaken ghost particles (de Silva et al., 2013; Elsinga and
Tokgoz, 2014; Schanz et al., 2016; Wang et al., 2016). 3D PTV is also a
multiview technique (Maas et al., 1993; Malik et al., 1993); however,
its seeding concentration of 0.005 particles per pixel (ppp) is one order
of magnitude lower than that of Tomo-PIV. Recently, Shake-the-Box
(Schanz et al., 2016), combining the iteration triangulation method
and image matching method (Wieneke, 2013), was specifically
designed to track the particles in the temporal domain. The Shake-the-
Box method enables temporal–spatial reconstruction with a particle
image concentration as high as 0.125 ppp. Light-field PIV relies on
light-field photography to capture 3D information of tracer particles
(Shi et al., 2017, 2018). The greatest advantage of light-field PIV is that
it needs only one camera.

From the above discussion, 3D flow measurement relies heavily
on the development of hardware and requires higher costs than planar
PIV. Although the Shake-the-Box method has successfully reduced
the occurrence of ghost particles and improved the measurement reso-
lution, an emerging problem is how to accurately interpolate the
sparse measured data into a structured mesh to observe and analyze
the flow motions. With the development of technology and the
improvement of computational power, data assimilation (DA) and
machine learning (ML) may become another powerful way to improve
the spatial resolution of PIV measurements or even infer the 3D flow
field from sparse measured data (Chandramouli et al., 2019). First,
Navier–Stokes (N–S) equations can be utilized to enhance PIV or
PTV data. Sciacchitano et al. (2012) solved the unsteady incompress-
ible N–S equations to fill gappy PIV data. The vortex-in-cell method
proposed by Schneiders and Scarano (2016) solves the vorticity trans-
port equation by incorporating time-resolved volumetric PTV mea-
surements. This method can be applied to reconstruct the dense
velocity field from a sparse PTV field. By imposing physical con-
straints, FlowFit (Gesemann et al., 2016) can simultaneously recover
the velocity, acceleration, and pressure fields from a noisy PTV field
using B-splines and penalties. Based on the DA framework, the 2D2C,
2D3C, and 3D3C velocity fields are used as observational data to
improve the mean flow reconstruction (Symon et al., 2017), to denoise
and defilter PIV data (Gillissen et al., 2019), and to determine the pres-
sure fields (He et al., 2020). Second, deep neural networks (DNNs)
have been successfully applied to enhance the resolution of flow fields
in studies on fluid mechanics (Fukami et al., 2019; Zhou et al., 2019;
Deng et al., 2019; Liu et al., 2020; Kim et al., 2021; Gao et al., 2021;
Zhou et al., 2021; Zhang et al., 2021). Once a DNN is trained using
flow fields from high-fidelity simulations or experiments, it can be

used to accurately predict high-resolution fields from low-resolution
fields. Moreover, such a DNN can also be used to predict the aerody-
namic performance of tire grooves (Uddin et al., 2019) and the tire
pattern noise in the early design stage (Lee et al., 2021). These ML-
based approaches provide new avenues for processing PIV velocity
fields.

ML is a kind of data-driven method, which means that the result
is determined by the quality of the training data instead of the known
physical laws. Introducing physical laws into neural networks is neces-
sary and significant. A physics-informed neural network (PINN,
Raissi et al., 2019; Raissi et al., 2020) is a novel framework that com-
bines data-driven neural networks and physical laws. The former can
be regarded as a universal function approximator (Hornik et al., 1989)
represented by a fully connected neural network or a residual neural
network, and the latter is achieved by embedding partial differential
equations (PDEs) into the loss of the neural network using automatic
differentiation. PINNs have been utilized to learn the velocity and
pressure fields from flow visualization (Raissi et al., 2020) or solve the
incompressible N–S equations based on the velocity-pressure form
and velocity-vorticity form, ranging from laminar flows to turbulent
channel flows (Rao et al., 2020; Jin et al., 2021). Xu et al. (2021)
employed a PINN and treated the governing equations as a parameter-
ized constraint to recover the missing information of flow fields.
Arzani et al. (2021) used a PINN to obtain the near-wall hemodynam-
ics and wall shear stress from sparse velocity measurements. A PINN
can even infer the full 3D velocity and pressure fields from snapshots
of 3D temperature fields obtained by tomographic background-
oriented Schlieren (Cai et al., 2021b); this inverse problem is extremely
ill-posed because only temperature fields are given. The Python library
DeepXDE was designed by Lu et al. (2021) for solving differential
equations in the PINN framework. Although a PINN in the current
state cannot replace traditional approaches due to the limited accuracy
and long training period (Markidis, 2021), it can still be considered a
novel DA approach (Duraisamy et al., 2019; Zhang et al., 2020;
Karniadakis et al., 2021; Cai et al., 2021a) and has received increasing
research attention in the fluid mechanics field.

In the present work, we use a PINN to reconstruct dense velocity
fields from sparse PIV/PTV data. There are two most significant dif-
ferences compared with adjoint-based DA (Yang et al., 2015; Mons
et al., 2016; Lemke and Sesterhenn, 2016; Symon et al., 2017; He et al.,
2020). First, the numerical simulation solver is approximately replaced
by a network, and the accuracy of the solver is embedded in the loss
function. Second, the computational domain is the same as the mea-
surement domain rather than the full computational mesh, as in the
numerical simulation. Although the 3D velocity and pressure can be
inferred from experimental data via a PINN (Jin et al., 2021; Cai et al.,
2021a; Karniadakis et al., 2021), whether PINNs are suitable for noisy
PIV/PTV data and how the measurement error influences the PINN
precision is still not clear. The rest of the paper is organized as follows.
In Sec. II, we first introduce the PINN and the influences of activation
functions, initial conditions, optimization algorithms, and data param-
eters on the performance of the proposed method. In Sec. III, we use
direct numerical simulation (DNS) data of turbulent channel flow to
numerically assess the performance of the PINN. In Sec. IV, the pro-
posed method is applied to practical Tomo-PIV data of the 3D wake
flow of a hemisphere. Finally, we offer a discussion and conclusions on
the PINN in Sec. V.
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II. METHODOLOGY
A. PINN

A PINN can seamlessly integrate known information (boundary
conditions, initial conditions, and measured data) and physical laws
by embedding PDEs into the loss function (Karniadakis et al., 2021;
Jin et al., 2021). In the present work, we will extend the PINN to opti-
mize the field data measured by PIV or PTV.

A PINN is essentially a DNN that can be used to approximate
the solution determined by the data and PDEs; its architecture is
shown in Fig. 1. A residual neural network (He et al., 2016) is adopted
in the present work, for which the relationship between the inputs and
outputs can be expressed as

U; pð Þ ¼ FNN X; t;Hð Þ: (1)

Here, FNN represents the neural network, whose inputs are space
coordinates X ¼ ðx; y; zÞ and time t. The parameter H represents the
trainable variables. The outputs of the neural network are velocity
vector U ¼ ðu; v;wÞ and pressure p. Through this network, the rela-
tionship between input ðX; tÞ and output ðU; pÞ is constructed. We
use the parameters Nlayer and Ncell to denote the number of hidden
layers and the number of neurons in each hidden layer, respectively.
The mathematical expression of the k-th hidden layer for the residual
neural network is written as

Yk ¼ r Yk�1Wk�1 þ bk�1ð Þ þ Yk�1; (2)

where W and b are the weights and biases, respectively, and Y
represents the output of each hidden layer. The dimensionality
of the output space for each hidden layer is Ncell. The choice of
the activation function r will be discussed in detail in Sec. II B.

Once the network is created, the partial derivatives @=@X and
@=@t can be computed based on the chain rule, which has been imple-
mented by automatic differentiation in TensorFlow or PyTorch.
Taking TensorFlow 2.1 as an example, the first-order derivative ux is
estimated using the function tf :GradientTapeðÞ:gradientðu; xÞ.
Higher-order derivatives can be estimated by calling this function

multiple times. Therefore, the residuals of the N–S equations can be
expressed by the network as

e1 ¼ ut þ uux þ vuy þ wuz þ px � 1
Re

uxx þ uyy þ wzzð Þ;

e2 ¼ vt þ uvx þ vvy þ wvz þ py � 1
Re

vxx þ vyy þ vzzð Þ;

e3 ¼ wt þ uwx þ vwy þ wwz þ pz � 1
Re

wxx þ wyy þ wzzð Þ;
e4 ¼ ux þ vy þ wz:

(3)

Here, Re represents the Reynolds number, and e1; e2; e3; and e4 are the
residuals of the N–S equations. To make the network satisfy the gov-
erning equations, the loss function in the PINN is defined as follows:

L ¼ Ldata þ aLeqns; (4)

where a is a weighting coefficient and Ldata and Leqns are computed
as

Ldata ¼
XNdata

j¼1

jUdata Xj; tj
� �

� Upred Xj; tj
� �

j2;

Leqns ¼
X4

i¼1

XNeqns

j¼1

jei Xj; tj
� �

j2:
(5)

Here, Ldata represents the loss between the measured data Udata and
the predicted dataUpred andLeqns denote the total residual of the N–S
equations. The parameters Ndata and Neqns denote the numbers of
measured data and equation points. The equation points are randomly
selected and uniformly distributed in the computational domain. Note
that the residuals of the N–S equations at the measured points are also
estimated. Once the loss function is defined, the variables H are opti-
mized by minimizing the loss function, as shown in Fig. 1. The value
of a will be discussed in Sec. II C when considering measurement
noise. The PINN program is coded based on the open-source ML plat-
form TensorFlow v2.1.0 within Python and has been shared on
https://github.com/hpwang87/PINN-TF2.1. We also referred to other

FIG. 1. Architecture of a PINN. The inputs are space coordinates X ¼ ðx; y; zÞ and time t, and the outputs are velocity U ¼ ðu; v;wÞ, and pressure p. The physical laws are
represented by incompressible N–S equations and expressed using automatic differentiation operators. In the present work, we only considered the data measured by PIV/PTV.
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open-source PINN libraries written by Raissi et al (2019) and Lu et al.
(2021). The weights and biases of the network are initialized using the
default Glorot uniform initializer and zeros, respectively. Unless other-
wise specified, the network is trained and tested on a workstation
equipped with an Intel Xeon W2245 3.90GHz CPU and a single
NVIDIA Quadro RTX 5000 GPU with 16 GB. The training variables
are updated using the adaptive moment estimation (Adam) optimizer
with an initial learning rate of 1� 10–3. The learning rate decays expo-
nentially in a staircase manner. After 10 000 epochs with 10 steps per
epoch in training, the loss converges to a very low value, and then, the
network can be used to predict the velocity and pressure once the
input ðX; tÞ is given. Note that the pressure is solved without any
known information. Before using the PINN to tackle experimental
data, we will first explore the influences of activation functions, initial
conditions, optimization algorithms, and data parameters on the per-
formance of the proposed method.

B. Activation functions, initial conditions,
and optimization algorithms

Here, we consider 2D Taylor’s decaying vortices to check the
influence of activation functions, initial conditions, and optimization
algorithms on the PINN. An exact 2D solution to the N–S equations
given by Taylor (1923) is as follows (Kim and Moin, 1985; Ethier and
Steinman, 1994):

u x; y; tð Þ ¼ �cos xð Þsin yð Þe�2t ;

v x; y; tð Þ ¼ sin xð Þcos yð Þe�2t ;

p x; y; tð Þ ¼ �0:25 cos 2xð Þ þ cos 2yð Þ
� �

e�4t :

(6)

The computation is carried out in the domain of 0 � x; y � 2p,
and 0 � t � 2. The Reynolds number Re is equal to 1. As shown in
Fig. 2, ten thousand equation points (Neqns¼ 1� 104) are randomly
distributed in the space-time domain as red dots. The blue dots repre-
sent the data points where the velocity has been given by Eq. (6), these
data points are also randomly selected in the space-time domain. The
training dataset consists of the equation points and data points. Note
that the data loss is estimated at data points, while the residuals of the
N–S equations are computed at both the equation points and data
points.

The activation function plays a major role in the success of data
approximation with neural networks. Without activation functions,
the network is only a linear transformation. Currently, the widely used
activation functions include the rectified linear unit (ReLU), leaky
ReLU, tanh, sigmoid, swish, and adaptive swish functions
(Ramachandran et al., 2017; Markidis, 2021). The adaptive swish func-
tion is expressed by

r xð Þ ¼ x
1þ e�ax

; (7)

where a ¼ nb, b is a trainable parameter, and n is a scale factor.
According to Jagtap et al. (2020), without the scale factor n, the adap-
tive parameter a will present a slow convergence toward the optimal
value due to the small learning rate. A larger n � 1 can accelerate the
convergence procedure to find an optimal a. Therefore, the scale factor
n is set to 10, and the initial value of b is set to 0.1 (Jagtap et al., 2020).
Figure 3 presents the training loss (a) and the validation loss (b) of dif-
ferent activation functions for the case of Neqns¼ 10000, Ndata¼ 2048,
Ncell¼ 64, and Nlayer¼ 7. Ten percent of the input is reserved to be
used as the validation data. For each activation function, the PINN is
trained for 10 000 epochs. As seen in this figure, the performance of
adaptive swish is the best among all the activation functions. The solu-
tions with ReLU and leaky ReLU do not converge to the exact solu-
tions because of the discontinuity of these functions (Raissi et al.,
2020; Markidis, 2021). The sigmoid function also performs poorly
because it is more appropriate for probability prediction. We also pre-
sent the final training loss, final validation loss, and total training time
for the different activation functions in Table I. Among all the activa-
tion functions, adaptive swish has the smallest difference between the
training loss and the validation loss. However, the computation time
with adaptive swish is approximately 3–4 times as long as that with
ReLU. In the present work, we choose adaptive swish with a scale fac-
tor of n¼ 10 as the activation function of the PINN.

To determine the weights and biases of the network, an optimiza-
tion process is applied to minimize the loss function. The Adam opti-
mizer is a stochastic gradient descent method based on adaptive
estimation of the first moment (the mean) and second moment (the
uncentered variance) (Kingma and Ba, 2014) and has been widely
used in deep learning. However, a large number of iterations are
needed to converge to an exact solution. Therefore, a more efficient

FIG. 2. (a) Distribution of the equation points (red dots) and the data points (blue dots) in the space-time domain for the case of 2D Taylor’s decaying vortices. (b) Streamwise
velocity of the analytical solution at t¼ 0.5. (c) Pressure of the analytical solution at t¼ 0.5.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 017116 (2022); doi: 10.1063/5.0078143 34, 017116-4

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0078143/16629223/017116_1_online.pdf

https://scitation.org/journal/phf


optimizer, limited memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) (Liu and Nocedal, 1989), which considers the Hessian matrix,
is used to optimize the variables after Adam optimization (Raissi et al.,
2019; Markidis, 2021; Jin et al., 2021). The Adam optimizer is used
first to avoid local minima. Figure 4 shows the training error for the
adaptive swish function with the Adam optimizer (before 5000

epochs) followed by the L-BFGS-B optimizer, which is implemented
by a wrapper named autograd-minimize (https://pypi.org/project/
autograd-minimize/). After the first 5000 epochs, the loss with the
Adam optimizer is reduced to 1� 10–5, while the L-BFGS-B optimizer
can reduce the loss from 1� 10–5 to 5� 10–7. The performance of the
L-BFGS-B optimizer is obviously much better than that of the Adam
optimizer. However, we note that there are two limitations for the L-
BFGS-B optimizer. First, it cannot be used at the beginning of the
training because it may converge to a local minimum (Markidis,
2021). Second, it is only practical for small-scale ML applications since
the L-BFGS-B optimizer is a full batch approach (Bollapragada et al.,
2018). Therefore, most of the cases in the present work still use the
Adam optimizer. Additionally, we also investigate the influence of the
initial conditions of the network on training. The upper and lower
boundaries of the blue shaded region shown in Fig. 4 indicate the max-
imum and minimum of the loss from ten independent runs with inde-
pendent initial variables. Different initial values have a negligible effect
on the training loss.

C. On the parameters Ndata, Ncell, and a

In this section, we mainly consider the influence of Ndata, Ncell,
and a on the prediction accuracy with and without random noise. The
streamwise u-component and pressure predicted by the PINN with
different Ndata are presented in Fig. 5, and noise is not taken into
account. One advantage of the PINN is that it can output pressure
without providing any information. The pressure is optimized by min-
imizing the residuals of the N–S equations. The number of neurons in
each layer and the number of layers are set to Ncell¼ 64 and Nlayer¼ 7
for all cases, and the number of data points varies from 32 to 256 from
left to right. Compared with the exact solution presented in Fig. 2, two

FIG. 3. Training loss (a) and validation
loss (b) for different activation functions;
only the Adam optimizer with an initial
learning rate of 1� 10–3 is used. 10% of
the input is reserved to be used as valida-
tion data.

TABLE I. Comparison of training loss, validation loss, and computation time for different activation functions with 10 000 training epochs.

ReLU Leaky ReLU Tanh Sigmoid Swish Adapt swish

Final training loss 2.1� 10–2 2.1� 10–2 1.2� 10–5 2.1� 10–3 3.6� 10–6 1.8� 10–6

Final validation loss 6.5� 10–3 6.5� 10–3 2.3� 10–5 7.9� 10–4 5.6� 10–6 2.0� 10–6

Total training time (s) 3181 3123 4741 4373 10 503 11 851

FIG. 4. Training loss for the adaptive swish function. The Adam optimizer is used
before 5000 epochs (the dashed black line), followed by the L-BFGS-B optimizer to
fine-tune the network. The upper and lower boundaries of the shaded region indi-
cate the maximum and minimum of the loss from ten independent runs with inde-
pendent initial variables.
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remarks can be offered. First, the predicted velocity fields show better
agreement with the exact velocity distribution than the pressure. This
implies that the velocity more easily converges than the pressure due
to the velocity constraint in the PINN. The error can be propagated
and amplified from velocity to pressure (de Kat and van Oudheusden,
2012; Pan et al., 2016). Second, increasing Ndata can significantly
reduce the error in the predicted field. To quantitatively estimate the
error caused by the PINN, the relative two-norm (L2) error of u is
defined as

eu ¼
jjue � upjj2

jjuejj2
: (8)

Here, ue and up are the exact velocity and the predicted velocity,
respectively. Figure 6 shows the relative L2 errors as a function of Ndata

and Ncell, and noise is not considered. In general, the error deceases

with increasing Ndata and Ncell. For the velocity, the error converges to
less than 1% when Ndata is larger than 1000, while for the pressure, the
error converges to approximately 10%. Increasing the scale of the net-
work (represented by Ncell) can also reduce the prediction error; how-
ever, this works only when the PINN is fed sufficient data.

The influence of measurement noise on the performance of the
PINN is also evaluated. Gaussian random noise with a standard devia-
tion proportional to the velocity fluctuation is added to the training
data. Figure 7 displays the relative error in the velocity (a) and pressure
(b) as a function of noise level and weighting coefficient a. The noise
level varies from 0 to 20% with an interval of 2.5%, and a varies from
1 to 80 with an interval of 10. The number of data points and the
number of neurons in each layer are Ndata¼ 8192 and Ncell¼ 64 in
this test case. The measurement noise indeed deteriorates the perfor-
mance of the PINN, as both the velocity and pressure relative errors

FIG. 5. Streamwise u-component (a)–(d) and pressure (e)–(h) predicted by the PINN with Ndata¼ 32 (a) and (e), 64 (b) and (f), 128 (c) and (g), and 256 (d) and (h). Ncell and
Nlayer are equal to 64 and 7 for all cases, and the time instant t¼ 0.5. Noise is not taken into account.

FIG. 6. Charts of the relative L2 errors of
the streamwise u-component (a) and pres-
sure (b) vs Ndata and Ncell. Nlayer is fixed to
7, and training is conducted for 10 000
epochs in all cases. The error at each
point is obtained by averaging three inde-
pendent runs. No noise is added to the
training data.
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increase with the increasing noise level. At a specific noise level,
increasing a, which implies that the constraint imposed by the N–S
equations is enhanced, does not improve the accuracy of the PINN.
Jin et al. (2021) proposed a dynamic weight strategy to estimate a in
an N–S flow net, where a PINN is employed as a computational fluid
dynamics solver to solve N–S equations. In their work, the dynamic
weight strategy performs well since the boundary and initial condi-
tions are accurate without error. However, for velocity reconstruction
using experimental data, the optimal a is selected as 1, as shown in
Fig. 7.

Figure 8 shows the relative error in the velocity (a) and pressure
(b) as a function of Ndata and Ncell for a¼ 1. Noise of 10% of the veloc-
ity fluctuation is added to the training data. When considering mea-
surement noise, the characteristics of the PINN, as shown in Fig. 8, are
still essentially similar to those in Fig. 6. On the one hand, increasing
Ncell, the scale of the network, has little influence on the velocity accu-
racy; however, it can significantly improve the performance of the
pressure prediction when Ndata is larger than 104. The velocity error is
much lower than the pressure error since the loss of data is imposed
on the velocity. It is difficult to further reduce the velocity error by
increasing the scale of the network because the loss of data (containing
noise) is much larger than the residuals of the equations. On the other
hand, increasing the amount of data is still an effective way to suppress
the negative effect brought by measurement noise. In addition, the

relative error in pressure is almost one order of magnitude higher than
that in velocity.

III. NUMERICAL ASSESSMENTS ON WALL-BOUNDED
TURBULENCE
A. Data description

A DNS dataset of turbulent channel flow at Res ¼ 550 is used to
numerically assess the performance of the PINN for wall-bounded tur-
bulence since it is inhomogeneous and anisotropic. We want to know
whether the PINN can accurately reconstruct the turbulence when
given measured data. The streamwise, spanwise, and wall-normal
lengths of the measurement volume are Lx ¼ d; Lz ¼ d, and
Ly ¼ 0:2d, respectively, and the wall-normal region starts from 0. The
parameter d denotes the thickness of the boundary layer. Three hun-
dred instantaneous flow fields with time interval Dtþ ¼ 0.3 are used to
generate the dataset. Dtþ, which is ten times the simulation time step,
is normalized by the skin friction velocity and the inner length scale.
Figure 9 displays an instantaneous flow field with complex vortical
structures in the cropped volume. These vortices are identified by the
Q-criterion, where Q denotes the vortex identification criterion esti-
mated as the second invariant of the velocity gradient tensor. This
DNS dataset is used to mimic experimental data.

The data structures for the measured velocities obtained by PIV
and PTV are different. On the one hand, the cross-correlation method

FIG. 7. Contour maps of the relative L2
error for velocity (a) and pressure (b) as a
function of noise level and weight coeffi-
cient a. The number of neurons in each
layer is 64, and the data number is set to
8192. The intervals of the noise level and
weight coefficient are 2.5% and 10,
respectively. The error at each point is
obtained by averaging three independent
runs.

FIG. 8. Charts of the relative L2 errors of
the streamwise u-component (a) and pres-
sure (b) vs Ndata and Ncell. Nlayer is fixed to
7, and training is conducted for 10 000
epochs in all cases. The error at each
point is obtained by averaging three inde-
pendent runs. Gaussian random noise of
10% of the velocity fluctuation is added to
the velocity.
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of PIV results in a regular velocity field with a rectangular or square
grid. In particular, PIV is incapable of resolving the near-wall velocity
due to the large interrogation window and the high-velocity gradient.
On the other hand, the PTV data points are randomly and uniformly
distributed in the whole measured volume. Therefore, three kinds of
data points, denoted by S1; S2; and S3, are considered as follows.

S1 The first kind of data point, which is shown in Fig. 10(a), is
generated to simulate the regular PIV velocity field. The spacing
step is set to 15 wall units in all three directions, and there are no
data in the region of yþ < 15. This configuration is extracted from
the real experimental setup by Schr€oder et al. (2011). The size of
the data points in one volume is 35� 35�6. The velocity at these
points is equal to the DNS result without considering measure-
ment noise.
S2 The second kind of data point, which is shown in Fig. 10(b), is
generated to simulate the random velocity field obtained by PTV.
The number of data points is equal to that in PIV. The velocity at
these points is equal to the DNS result without considering mea-
surement noise.
S3 The third kind of data point, which is shown in Fig. 10(c), is
generated in the same way as S1 except that the measurement
noise is considered. The velocity is contaminated by adding spa-
tially correlated Gaussian random noise to the velocity fluctuation
(Azijli and Dwight, 2015; Wang et al., 2018) to simulate the error
caused by the cross-correlation in PIV. The standard deviation of
the Gaussian noise is set to 5% of the local magnitude of each
velocity component, and then, the velocity field is smoothed by
adopting Gaussian filtering with a 3 � 3 kernel.

B. Flow field prediction from sparse 3D3C data

The dense velocity field can be obtained by mathematically inter-
polating the sparse data. Therefore, the proposed PINN approach is
also compared with linear interpolation and natural neighbor interpo-
lation. The latter involves taking a weighted average over natural

neighbors of a point (Ledoux and Gold, 2005). This method has
advantages over linear interpolation and is provided by the griddata
function in SciPy and MATLAB. Figure 10 shows the vortical struc-
tures identified using the Q-criterion for different methods at the same
time instant as the DNS result given in Fig. 9. The vortical structures
are colored based on the streamwise velocity u. From top to bottom,
the velocity is reconstructed into a DNS mesh using linear interpola-
tion, natural interpolation, and the proposed PINN approach. From
left to right, the figures show the corresponding reconstructions from
different data points denoted by S1, S2, and S3. For the PINN method,
the parameters are summarized in Table II; this configuration yields a
total of 1 266 919 trainable variables. From the visual comparison, the
coherent structures for S1 and S2 are similar to each other due to the
same number of data points, and the flow field interpolated by the nat-
ural method is much smoother than that from the linear interpolation.
For S3, the vortical structures are inevitably reduced due to the spa-
tially correlated noise introduced by the PIV algorithm. Therefore, the
threshold of the Q-criterion is reduced from 6 (for S1 and S2) to 3 (for
S3). The fields reconstructed by the PINN are closer to the DNS result
(Fig. 9) and smoother than the linear interpolation and the natural
interpolation based on a visual comparison. More vortical structures
are resolved by the PINN, although the PINN still cannot fully recover
all the vortical structures. At the x – z plane of yþ ¼ 5:5, the PINN
fields clearly capture the low- and high-speed streaks in the volume.

We also plot the time series of streamwise velocity u, as shown in
Fig. 11. The velocity is extracted at the center of the streamwise–span-
wise plane, and the wall-normal position y+ is 50 and 8 for the top and
bottom panels. Note that there are no data in the region of yþ � 15
for the simulated PIV data denoted by S1 and S3. Both the results
from S1 and S2 show good agreement with the reference data series.
When considering the measurement noise, the reconstructed velocities
present a large deviation from the DNS data, especially at y+¼ 8.
Another important feature is that small scales are lost by the PINN.
This may be caused by two reasons. One is that the scale of the present
PINN is not sufficient to resolve the small scales in turbulence. The
other is that the loss of the present PINN needs to further converge to
a lower level.

In addition to inspecting the results by visual comparison of the
vortical structures and time series, the velocity statistics obtained by
the PINN with different kinds of data points (S1; S2; and S3) are also
compared with the DNS profiles, as shown in Fig. 12. The statistics are
obtained using all 300 snapshots and averaged along with the stream-
wise and spanwise directions. Without considering the noise, the
mean streamwise velocity U and the streamwise velocity fluctuation
hu0 i are consistent with the DNS profiles, while the velocity fluctua-
tions hv0 i and hw0 i underestimate the DNS profiles. The velocity com-
ponent of u presents a good approximation compared to v and w. This
is because the streamwise velocity is much larger in magnitude than
the spanwise and wall-normal velocities in wall-bounded turbulence.
When considering the spatially correlated noise (S3), the statistical
profiles obtained by the PINN present larger deviations from the DNS.
The mean streamwise velocity is overestimated by the PINN at
yþ � 15, and the velocity fluctuations are still underestimated. The
PINN with S2 performs slightly better than that with S1, which means
that the PTV data are more suitable for the PINN.

Based on the numerical assessments of wall-bounded turbulence,
we would like to offer two remarks on the performance of the PINN.

FIG. 9. Instantaneous flow field in the DNS dataset. The isosurfaces colored by the
streamwise velocity u represent vortical structures identified by the Q-criterion with
Q¼ 6. The contour map of the streamwise velocity is also presented in the x – z
plane at y¼ 0.01 (yþ ¼ 5:5).
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First, the capacity of the PINN to reconstruct complex flows such as
turbulence is of great significance. However, large scales can be more
easily recovered than small scales for the PINN. Second, how to reduce
the measurement error and increase the data resolution must be

considered. High-quality data such as PTV data can improve the per-
formance of the PINN. Overall, when applying the PINN to tackle
complex flows, a network of an appropriate scale and high-quality
data should be considered.

FIG. 10. Instantaneous flow field reconstructed by different methods; the time instant is the same as the DNS result shown in Fig. 9. The isosurfaces colored by the stream-
wise velocity u represent vortical structures identified by the Q-criterion. The contour map of the streamwise velocity is also presented in the x – z plane at y¼ 0.01
(yþ ¼ 5:5). From top to bottom, the results of linear interpolation (d)–(f), natural interpolation (g)–(i) and the PINN (j)–(l). From left to right, the results for S1 (d), (g), and (j),
S2 (e), (h), and (k) and S3 (f), (i), and (l). The value of Q for S3 (Q¼ 3) is lower than that for S1 and S2 (Q¼ 6) since the velocity for S3 is filtered by a Gaussian kernel.
Schematic diagrams of the distribution of the data points for S1, S2, and S3 are displayed in figures (a)–(c), respectively.
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IV. EXPERIMENTAL ASSESSMENTS ON THE 3DWAKE
FLOWOF A HEMISPHERE

In this section, the PINN is applied to improve the quality of
experimental data of the 3D wake flow of a hemisphere measured by
adopting Tomo-PIV. The experimental setup is shown in Fig. 13,
which was described in the doctoral thesis by Wang (2017) and the
paper by Wang et al. (2018) in detail. A short and brief description of
the experimental setup will be provided in this section. This experi-
ment was carried out in a water tunnel at Beihang University, China.
A hemisphere with a diameter D¼ 20mm was mounted on a flat
plexiglass plate, and this plate was vertically posited in the test section
of the water tunnel. The distance between the leading edge of the
plate and the hemisphere was 700mm. The freestream velocity U1 in
the present case is approximately 145mm/s. Therefore, the Reynolds
number based on the hemisphere diameter ReD ¼ U1D=� is approxi-
mately 2750 at a temperature of 18�C, where � is the kinematic viscos-
ity of water. The thickness of the boundary layer at the location of the
hemisphere is approximately 11.65mm, which was measured by pla-
nar PIV. Note that the base flow without the hemisphere is a laminar
boundary layer. The x direction is defined as the freestream velocity
direction, and the z direction is defined as the wall-normal direction.
A time-resolved Tomo-PIV system was utilized to record and analyze
particle images. The Tomo-PIV parameters are summarized in Table III.
A high-frequency double-pulse laser with a wavelength of 532nm
was used to illuminate hollow glass beads with diameters ranging
from 5 to 20lm, and the energy of the laser was set to 30 mJ/pulse.
The minimum response frequency of the tracers is approximately
45 kHz. According to a spectral analysis (not shown in this paper),

TABLE II. Summary of the parameters of the PINN for wall-bounded turbulence.

Neqns Ndata Ncell Nlayer Trainable params

5� 106 2:2� 106 300 15 1 266 919

FIG. 11. Time series of streamwise velocity u reconstructed by the PINN with data
points of S1, S2, and S3. The velocity is sampled at the center position of the wall-
parallel plane, and the wall-normal location y+ is 50 and 8.

FIG. 12. Statistical profiles obtained by
the PINN with different kinds of data
points. (a) Mean streamwise velocity U,
(b) streamwise velocity fluctuation hu0 i,
(c) wall-normal velocity fluctuation hv 0 i,
and (d) spanwise velocity fluctuation hw 0 i.
The black dashed lines indicate the loca-
tion of y+¼ 15.
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the characteristic frequency of the wake is �10Hz. The Stokes num-
ber is 2.2� 10–4, which indicates that the tracer particles can fully fol-
low the main flow motion. The motion of the tracers was recorded by
four Photron high-speed CMOS cameras (Fastcam SA2) with a reso-
lution of 2048� 1024 pixels at a frequency of 250Hz. The cameras
were laterally placed to form a “�” shape, and the maximum view
angle between two cameras was approximately 45�. The 3D particle
distribution was reconstructed using the intensity-enhanced multipli-
cative algebraic reconstruction technique (MART, Wang et al., 2016).
Keane and Adrian (1992) showed that for 8 particle image pairs, the
valid detection probability in PIV measurements exceeds 95%.
Considering the measurement noise, therefore, a final interrogation
volume size of 48� 48� 48 voxels at 75% overlap was used to esti-
mate the displacement. This size yields approximately 17 particles in
the interrogation volume based on the particle concentration of
0.05 ppp. The particle image size and the histogram of the estimated

displacement were also checked. We are certain that no peak locking
is observed. The velocity fields were validated using a normalized
median test and smoothed using a Gaussian filter. The vector spacing
was 0.768mm¼ 0.0384D along with all three directions.

The volume with a size of 4:5D� 2:0D� 1:0D was tackled by
the PINN, as shown in Fig. 13(b); this computational domain is
slightly smaller than the reconstruction volume size. Notably, the
hemisphere is included in the computational domain. This implies
that the no-slip boundary condition is considered in the PINN.
Table IV lists the parameters of the PINN for Tomo-PIV. This config-
uration yields a total of 923 411 trainable variables. The weight coeffi-
cient a was set to 1. Ten million Tomo-PIV data points, five million
boundary conditions, and twelve million equation points were ran-
domly extracted from 500 sequential snapshots. These data were used
to train the network for 10 000 epochs. The batch size and the iteration
steps per epoch were set to 5000 and 10, respectively. After training,
the network can be used to predict the velocity at any location within
the volume. In the present case, the wall-normal location of the pre-
dicted velocity starts from 0, and the vector spacing is set to half that
of the original Tomo-PIV data. This implies that the resolution is
improved by a factor of 2 in all directions.

Figure 14 shows the comparison between the original Tomo-PIV
data (top), the PINN results (middle) and the DNS results (bottom) at
two time instants. The Q¼ 0.2 isosurfaces are colored based on the
streamwise velocity. The semitransparent isosurfaces indicate a
streamwise velocity of u=U1¼0.5. The velocity and coordinates are
normalized by the freestream velocity U1 and the hemisphere diame-
ter D, and the time is normalized by t� ¼ D=U1. DNS was carried
out to simulate the experimental situation. The computational domain
size was large, with dimensions of Lx � Ly � Lz ¼ 120D� 40D
�35D, where approximately one hundred million nodes were
employed to resolve the flow motion. The points were closely concen-
trated near the wall. An in-house computational fluid dynamics solver
(Liu et al., 2018; Liu, 2020; Liu et al., 2021) was used to compute the
velocity and pressure. For the raw experimental data, the flow struc-
tures are contaminated by strong measurement noise, and only the

FIG. 13. (a) Experimental setup for apply-
ing Tomo-PIV to the 3D wake flow of a
hemisphere. A mirror is arranged ahead
of the laser to illustrate the shadow region
behind the hemisphere. (b) Dimensions of
the computational domain, which is
smaller than the measurement region.

TABLE III. Summary of the flow parameters and Tomo-PIV parameters.

Flow
parameters

Freestream velocity U1 145mm/s

Hemisphere diameter D 20mm
Water temperature T 18 �C
Reynolds number ReD 2750

Tomo-PIV
parameters

Laser energy 30 mJ/pulse

Laser thickness 20mm
Laser wavelength 532 nm

Number of cameras 4
Image size 2048� 1024 pixels

Digital resolution 16 pixels/mm
Particle diameter 5–20 lm

Particle concentration �0.05 ppp
Acquisition frequency 250Hz

Reconstruction algorithm Intensity-enhanced
MART (Wang et al., 2016)

Reconstruction volume size 110� 46� 20mm3

Interrogation volume size 48� 48� 48 voxels
Interrogation volume overlap 75%

Vector spacing 0.768mm¼ 0.0384D

TABLE IV. Summary of the parameters of the PINN for Tomo-PIV.

Neqns Ndata Ncell Nlayer Trainable params

1:2� 107 1� 107 256 15 923 411
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primary hairpin vortices shedding from the hemisphere can be clearly
identified. After being processed by the PINN, the quality of the flow
fields is improved to the level of the numerical simulation, although
the small-scale vortical structures in the DNS data are not

reconstructed by the PINN. The standing vortex (also called horseshoe
vortex) around the hemisphere is distinctly reconstructed by the
PINN, while it is missing in the raw Tomo-PIV data. The hairpin vor-
tices also present a perfect arch shape instead of coarse and broken

FIG. 14. Instantaneous flow fields of the raw Tomo-PIV data (a) and (b), PINN results (c) and (d), and DNS results (e) and (f). For Tomo-PIV and the PINN, the time instants
of the left plane (a, c) and right plane (b) and (d) are 2:90t� and 3:48t�, respectively. The time instants of DNS are different from those of Tomo-PIV and the PINN, and the
time interval between (f) and (e) is 0:5t�. The isosurfaces colored by the streamwise velocity u represent vortical structures identified by the Q-criterion with Q¼ 0.2. The semi-
transparent isosurfaces indicate a streamwise velocity of u=U1 ¼ 0.5.
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vortices, as shown in Figs. 14(a) and 14(b). The primary hairpin vorti-
ces behind the hemisphere are created by the 3D separation of the
flow over the hemisphere, while the formation of the secondary hair-
pin vortices aside from the hemisphere is closely related to the horse-
shoe vortex. The dynamics of vortex formation were described by
Acarlar and Smith (1987) and Cao and Tamura (2020). We also plot
the probability density functions (PDFs) of the divergence for the
original Tomo-PIV data and the fields reconstructed by the PINN in
Fig. 15. The maximum PDF of the PINN is almost two orders of mag-
nitude higher than that of the raw data.

In addition to the ability of the PINN to interpolate sparse data
into a structured mesh with a high resolution, another advantage of
the PINN is that it can automatically solve for the pressure fields with-
out being provided with any information about the pressure. Figure 16
presents the contours of pressure at the slice of y¼ 0. The green iso-
surfaces represent vortical structures of Q¼ 1. In a vortex, the centrif-
ugal force is balanced by the pressure force (Jeong and Hussain, 1995);
therefore, the low-pressure region should be consistent with the vortex
core, as shown in Fig. 16. Additionally, a high-pressure region exists
before the hemisphere since the flow is stopped by the hemisphere,
and a low-pressure region appears behind the hemisphere due to flow
separation. We also computed the pressure from the raw Tomo-PIV
data by using the Poisson equation (not shown in this paper), and the
pressure is totally deteriorated by the high-level measurement noise,
which should be suppressed by a spatial–temporal filter (Wang et al.,
2018; He et al., 2020). From visual inspection of the results, we can
conclude that the velocity field reconstructed by the PINN has a great
improvement over the original Tomo-PIV data, and the PINN has the
ability to reconstruct the pressure field.

V. CONCLUSIONS

As a novel DA method, the PINN can reconstruct a dense veloc-
ity field from sparse experimental data with the constraint of N–S
equations. Within the PINN, the computational fluid dynamics solver
is replaced by a network, and the loss consisting of the residual of data

Ldata and the residual of the equationsLeqns is minimized by an opti-
mizer. In the present work, the performance of the PINN is investi-
gated using 2D Taylor’s decaying vortices, turbulent channel flow, and
an experiment on the 3D wake flow of a hemisphere to address the
question of whether the PINN is suitable for noisy PIV/PTV data. The
relevant discussions and conclusions are summarized as follows.

First, the basic properties of the proposed approach are explored
using 2D Taylor’s decaying vortices with and without noise. The
PINN uses a network to approximate or fit the complex flow fields;
therefore, the activation function plays a critical role in the nonlinear
approximation. The adaptive swish function is adopted since it has
outstanding performance. To minimize the loss function, two optimiz-
ers, Adam and BFGS, are investigated. The BFGS optimizer is not
adopted in the present work since it is only practical for small-scale
ML applications, although it converges faster than Adam. We also
consider the influences of the number of data pointsNdata, the number
of neurons in each layer Ncell and weight coefficient a on the perfor-
mance of the PINN. In general, increasing Ndata and Ncell can improve
the accuracy of the prediction by the PINN. With noisy data, the opti-
mal a is 1 according to our test. Only when the noise level is very high,
it is valid to suppress the noise by increasing a.

Second, the velocity field of wall turbulence is reconstructed by
the present method. Wall turbulence is used in this case because the
PINN has difficulty reconstructing inhomogeneous and anisotropic
fields. Three kinds of data points are generated to simulate experimen-
tal data, including the regular velocity for PIV, random velocity for
PTV, and regular velocity with spatially correlated Gaussian random
noise. The ability of the proposed approach to reconstruct complex
flows such as turbulence is of great significance, although large scales
are much easier to reconstruct than small scales. We also found that
the spatially correlated noise introduced by the cross-correlation algo-
rithm in PIV can result in a large deviation for the PINN results.
Therefore, PTV data with high quality and resolution are more suit-
able for the PINN.

FIG. 15. PDFs of the divergence for the original Tomo-PIV data and the fields
reconstructed by the PINN.

FIG. 16. Contour maps of pressure estimated by the PINN at the slice of y¼ 0.
The time instants of the top plane and bottom plane are 2:90t� and 3:48t�, respec-
tively. The green isosurfaces represent vortical structures identified by the Q-crite-
rion with Q¼ 1.
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Third, one great advantage is that the PINN can provide pressure
fields. Numerical assessment on 2D Taylor’s decaying vortices shows
that the error in pressure is approximately one order of magnitude
larger than that in velocity. In this case, the relative streamwise velocity
L2 error can be reduced to less than 1% by the PINN, and the corre-
sponding pressure error is approximately 10%. How to further
improve the pressure accuracy for the PINN is worth much deeper
research. The experimental Tomo-PIV velocity in the 3D wake flow of
a hemisphere is optimized by the PINN. The primary hairpin vortices,
secondary hairpin vortices, and standing vortices can be clearly identi-
fied after being processed by the PINN. The pressure around the hemi-
sphere is simultaneously obtained and is qualitatively correct. With
this approach, the force on an object can be estimated.

Dense velocity reconstruction from PIV/PTV data can be imple-
mented by using the PINN. One of the most important limitations of
the PINN is that the loss function converges slowly, especially for a
large-scale network. Further accelerating the training process and
improving the accuracy of the PINN are critical for practical
applications.
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