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In the context of three-dimensional oceanic internal waves, taking topographic effects into
account, a modified Benney–Luke equation is proposed for describing internal wave–wave
interactions on a sloping bottom. The derived equation is characterised by isotropy and
bi-directional propagation, which are absent in the widely used Kadomtsev–Petviashvili
equation. Indeed, these disparities are confirmed by numerical results of the diffraction
of a truncated internal solitary wave and the evolution of a partially bent solitary wave.
However, a good agreement between the numerical results of the modified Benney–Luke
equation and those of the primitive equations confirms the validity of our simplified model.
Because the stratification in a realistic ocean environment is usually continuous, in contrast
to the assumption of a sharp density discontinuity used here, to maintain the kinematical
equivalence, a layering scheme for determining the density and thickness of each layer
from a continuous stratification is proposed. In addition, the occasionally observed but
rarely examined X-shaped internal wave–wave interactions are shown to feature novel
wave patterns, where topographic effects modulate the propagation speed, amplitude and
waveform.

Key words: internal waves, solitary waves

1. Introduction

Internal waves play an important role in the Earth’s climate system because these waves
contribute to the global ocean transport and dissipation, which are vital to maintaining
oceanic flows such as the meridional overturning circulation (Wunsch & Ferrari 2004).
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In addition, these waves, especially large-amplitude internal solitary waves, usually induce
turbulence at wave breaking and strong shear currents in areas they pass through and
thus impact the marine ecosystem, offshore engineering and military applications like
submarine navigation and detection. Internal waves have been observed in numerous sites
around the world’s coastal ocean. It is generally accepted that one of the significant
generation mechanisms of these waves arises from barotropic tidal or other currents
flowing over topography in the stratified ocean. From the place of generation, internal
waves can propagate several hundred kilometres towards the continental shelf. During
these long-distance travels, various factors, including (among others) variable topography,
background currents and the Earth’s rotation, can modulate the waveform leading to
distinct wave patterns.

Theoretical analysis is one of the most important means of investigating internal solitary
waves. However, most theoretical studies are based on horizontally one-dimensional
models, such as the celebrated Korteweg–de Vries (KdV) equation and its numerous
variants, the Benjamin–Ono (BO) equation, and the Miyata–Choi–Camassa (MCC)
equation (the interested readers are referred to Helfrich & Melville (2006), Choi &
Camassa (1996, 1999), Camassa et al. (2006) for more details). These models are
reasonable, at least when the attention is focussed on a section plane that is generally
far from the boundary or insensitive to the input from the boundary. Nevertheless, this is
not appropriate for some general cases, for instance, when the interested region is too large
to ignore three-dimensional effects.

For the study of horizontally two-dimensional internal waves, the Kadomtsev–
Petviashvili (KP) equation (Kadomtsev & Petviashvili 1970), which is a generalisation of
the KdV equation featuring uni-directional wave propagation with slight inhomogeneity
in the transverse direction, has mostly been implemented (see, for example, Grimshaw
& Melville 1989; Pierini 1989; Chen & Philip 1995; Yuan et al. 2018a,b). In addition,
the KP equation, generally in a succinct form, has been extensively investigated
from a rigorous mathematical point of view (see Biondini & Pelinovsky (2008) and
references therein), which facilitates the understanding of the dynamics of weakly
nonlinear free-surface/internal waves in the long-wave approximation. While anisotropic
uni-directional models have been successful in many aspects of the water wave problems,
there are still some limitations. They cannot correctly describe the two-way propagation
of water waves, such as wave reflection/transmission at seamounts and head-on collisions
of solitary waves. Additionally, it is not suitable to use an anisotropic model to study wave
phenomena whose transverse variations are similar to those in the primary direction of
propagation. To overcome these shortcomings as well as afford a significant simplification
over the primitive equations, Yuan, Wang & Chen (2020) recently modified the classic
Benney–Luke equation that is both isotropic and bi-directional (Benney & Luke 1964) to
make it applicable to internal waves. In their paper, however, the derived equation can only
model the wave generation process and not the effects of topography on the propagation
of internal waves, which is the primary concern of the present paper.

On the ocean surface, a striking feature of two-space-dimensional nonlinear waves is the
oblique interactions of line solitons in the shallow water regime that form X, Y and more
complex wave patterns, as shown, for instance, in photos taken by Ablowitz & Baldwin
(2012) and in laboratory experiments conducted by Li, Yeh & Kodama (2011) and Yeh &
Li (2014). These distinctive wave patterns are persistent in nature and can be qualitatively
understood by solving the KP equation for interacting line solitons (Ablowitz & Baldwin
2012). By applying an inverse scattering method, Zakharov & Shabat (1974) first found
an exact N-soliton solution to the KP equation describing multiple collisions of solitons

936 A20-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.60


Interactions of internal solitary waves

with different propagation directions. Inspired by the experimental reflection patterns of
surface solitary waves with oblique incidence along a vertical wall reported by Perroud
(1957), Miles (1977a,b) originally linked the Y-shaped interaction with the KP equation
as well as with the Mach stem phenomenon in gas dynamics. Both water tank experiments
(Melville 1980) and numerical simulations (Funakoshi 1980) were conducted to validate
Miles’ theory. With the aid of more advanced instruments and techniques, Li et al. (2011)
found that the evolution of stem-wave amplification is in good agreement with the KP
theory, and the asymptotic characteristics and behaviours agree well with the theory of
Miles (1977b) in the region away from the transition between regular reflection and Mach
reflection. Based on a high-order spectral model, Tanaka (1993) illustrated that the effect
of large amplitude tends to suppress the Mach reflection, and the theoretical predictions of
Johnson (1982) exhibit better agreement than those of Miles for sufficiently small angles.
In Tanaka’s simulations, the ‘four-fold amplification’ was not observed, and this point
was underscored by a recent work of Nakayama, Kakinuma & Tsuji (2019) using a fully
nonlinear, strongly dispersive internal wave model. These research findings naturally lead
us to contemplate the oblique interactions of internal solitary waves, which have been
recorded by satellite images in Xue et al. (2014). Nonetheless, studies concentrated on this
topic are still rare, although Yuan et al. (2018a) investigated one scenario where the initial
wave was composed of two interacting internal solitons forming a V-shaped pattern.

In the current work, we focus on oblique interactions of internal solitary waves based on
an isotropic bi-directional model, namely the modified Benney–Luke (mBL) equation.
The problem is idealised as the wave propagation on the sharp density discontinuity
between immiscible fluids in a two-layer system with the ‘rigid lid’ approximation and
uneven bottom topography. In the long-wave approximation (the thickness of both layers
are small compared with the characteristic wavelength), a Benney–Luke-type equation
can be derived from the primitive equations in the Hamiltonian framework with the aid
of the Dirichlet–Neumann operators and their asymptotic expansions (see § 2). Because
a general analytical solution is difficult to obtain for the mBL equation, numerical
simulations are implemented in § 3 via a Fourier pseudo-spectral scheme together with the
method of integrating factors. In addition, a special windowing method for tackling the
boundary conditions is also introduced. Although, in theory, the mBL equation possesses
an advantage over the KP equation in some scenarios, the evidence has rarely been shown
in previous works. Thus, we illustrate in § 4 disparities between these two equations with
examples of the diffraction of a truncated solitary wave and the evolution of a partially
bent solitary wave. More importantly, in these two examples, numerical results of the
mBL equation show good agreement with direct numerical simulations of the primitive
equations, further confirming the validity of the mBL equation. Then, oblique interactions
between internal line solitary waves are thoroughly investigated by taking the X-shaped
wave pattern as the initial condition, where the topographic effects are also considered.
Finally, concluding remarks are given in § 5.

2. Derivation

2.1. Model set-up
Consider a three-dimensional incompressible and inviscid fluid system composed of two
immiscible and homogeneous layers on top of each other. We denote by ρ± the density
in each layer, where the superscripts ‘+’ and ‘−’ refer to fluid properties associated with
the upper and lower fluid layers, respectively. Two fluids are separated by a sharp interface
z = η(x, y, t), where x and y are horizontal coordinates, and the z-axis points upwards
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Figure 1. (a) Coordinate system and schematic of a two-fluid system characterized by densities ρ±,
thicknesses h± and bottom topography b(x, y). (b) A continuous stratification with the density ρ0(z) (solid
blue line), buoyancy frequency N(z) (dash-dotted red line), normalised mode Φ (dashed cyan line) and its
kinematically equivalent two-layer division obtained by implementing the layering scheme proposed in § 4.1
to the continuous stratification. The densities ρ± and depths h± for the two-layer system are chosen rationally,
namely via matching the primary parameters of the KP equation derived based on the density-discontinuity
system with those of the KP equation associated with the known continuous stratification (see details in § 4.1).

with z = 0 the undisturbed interface. The upper layer is bounded above by a rigid lid
at z = h+, and the lower layer is bounded below by a variable bottom z = −h− + b(x, y)
where b(x, y) is a prescribed function (see figure 1 for the coordinate system and layering).
The system is in a stable density configuration, i.e. ρ+ < ρ−, and, given the length scale
of internal oceanic waves, the effect of the interfacial tension can be neglected. The flow in
each layer is supposed to be irrotational so that velocity potentials φ± can be introduced,
satisfying the Laplace equation in respective domains, namely

�φ− + φ−
zz = 0 for −h− + b(x, y) < z < η(x, y, t),

�φ+ + φ+
zz = 0 for η(x, y, t) < z < h+,

}
(2.1)

where Δ is the horizontal Laplace operator. At the interface z = η(x, y, t), the nonlinear
kinematic and dynamic boundary conditions read

ηt = φ−
z − ∇φ− · ∇η = φ+

z − ∇φ+ · ∇η (2.2)

and

ρ−
[
φ−

t + 1
2

∣∣∇φ−∣∣2 + 1
2

(
φ−

z
)2 + gη

]
= ρ+

[
φ+

t + 1
2

∣∣∇φ+∣∣2 + 1
2

(
φ+

z
)2 + gη

]
,

(2.3)

where ∇ and ∇· are the horizontal gradient and divergent operators, respectively, and g is
the acceleration owing to gravity. The kinematic boundary condition (2.2) implies that the
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normal velocity is continuous across the interface(
φ−

x , φ
−
y , φ

−
z

)
· n =

(
φ+

x , φ
+
y , φ

+
z

)
· n, (2.4)

where n = (−ηx,−ηy, 1)
/√

1 + |∇η|2 is the unit normal vector on the interface pointing
upwards. Finally, the impermeability boundary conditions,

φ+
z = 0 at z = h+,

φ−
z − ∇b · ∇φ− = 0 at z = −h− + b(x, y),

}
(2.5)

complete the whole system.

2.2. Hamiltonian and truncation
It is well known that the two-layer interfacial wave problem has a Hamiltonian structure
(Benjamin & Bridges 1997), and the Hamiltonian functional is the total energy:

H [
φ±, η

] = 1
2

∫
R2

∫ η

−h−+b

[∣∣∇φ−∣∣2 + (
φ−

z
)2] dz dx dy

+ R
2

∫
R2

∫ h+

η

[∣∣∇φ+∣∣2 + (
φ+

z
)2] dz dx dy + 1 − R

2

∫
R2

gη2 dx dy, (2.6)

where R = ρ+/ρ− is the ratio of the upper to lower density. The most important term
in the Hamiltonian formulation is the Dirichlet–Neumann operator which maps the
Dirichlet boundary condition to normal derivatives by solving the Laplace equation. If
we denote by ξ±(x, y, t) = φ±(x, y, η(x, y, t), t) the velocity potentials at the interface,
then the Dirichlet–Neumann operators, G±, which are associated with kinematic boundary
conditions, can be defined as

ηt = G−(η, h−, b)ξ− =
(
φ−

x , φ
−
y , φ

−
z

)
· n
√

1 + |∇η|2, (2.7)

ηt = −G+(η, h+)ξ+ = −
(
φ+

x , φ
+
y , φ

+
z

)
· (−n)

√
1 + |∇η|2. (2.8)

Introducing a new variable ξ = ξ− − Rξ+, it follows from (2.7)–(2.8) that

ξ+ = − (G+ + RG−)−1 G−ξ, ξ− = (
G+ + RG−)−1 G+ξ, (2.9a,b)

where we suppress the dependence of G± on η, h± and b for simplicity of notations. Using
the divergence theorem and (2.9a,b), one can rewrite the Hamiltonian (2.6) in terms of ξ
and η as

H [ξ, η] = 1
2

∫
R2
ξG− (G+ + RG−)−1 G+ξ dx dy + 1 − R

2

∫
R2

gη2 dx dy. (2.10)

It was first proved by Benjamin & Bridges (1997) that η and ξ constitute a pair of
canonically conjugate variables, namely

ηt = δH
δξ
, ξt = −δH

δη
. (2.11a,b)

It is well known that for the case of a flat bottom, if the C1-norm of η is smaller than
a certain constant, then G± are analytic functions of η (see, for example Craig, Schanz
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& Sulem 1997). It directly follows that G± can be naturally written in the form of
convergent Taylor series expansions G± = ∑∞

n=0 G±
n with the recursion formulae G±

n
being homogeneous of order n in η. While for an uneven bottom, the expansion was
extended by Craig et al. (2005) and Guyenne & Nicholls (2008), who showed that it was
in the form of a double series in b(x, y) and η(x, y, t). We list below the first several terms
of the Taylor series, which are sufficient for our derivation, and the interested readers are
referred to the aforementioned references for the complete recursive formulae. For the
lower half-plane, the first three terms of the Taylor series are given by

G−
0 = |D| tanh

(
h−|D|)+ sech

(
h−|D|) ∞∑

j=1

|D|Lj(h−, b),

G−
1 = −G−

0 ηG−
0 − ∇ · η∇,

G−
2 = 1

2�η
2G−

0 + 1
2 G−

0 η
2Δ+ G−

0 ηG−
0 ηG−

0 ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.12)

where D = −i∇ and the pseudo-differential operator |D|Lj(h−, b) for j = 1, 2 can be
expressed as

|D|L1 = −D · b sech
(
h−|D|)D,

|D|L2 = D · b tanh
(
h−|D|) |D|−1DD · b sech

(
h−|D|)D.

}
(2.13)

For the upper layer, the first three terms in the Taylor series are given by

G+
0 = |D| tanh

(
h+|D|) ,

G+
1 = G+

0 ηG+
0 + ∇ · η∇,

G+
2 = 1

2�η
2G+

0 + 1
2 G+

0 η
2Δ+ G+

0 ηG+
0 ηG+

0 .

⎫⎪⎪⎬⎪⎪⎭ (2.14)

The key point for deriving reduced model equations is to expand the pseudo-differential
operator closely related to the kinetic energy in the Hamiltonian (2.10) in terms of some
small parameters. In the subsequent analyses, we derive weakly nonlinear models in a
classical long-wave scaling regime, namely the Boussinesq scaling. Suppose h− and h+
are of the same order. In that case, the long-wave regime is characterised by a/h± and
h±/λ, two parameters measuring nonlinearity and dispersion, respectively, where a is
a typical wave amplitude and λ is a characteristic wavelength. The Boussinesq scaling
enforces a balance between nonlinearity and dispersion by specifying a/h± = O(ε2) and
h±/λ = O(ε), where ε is taken to be a small parameter. To continue the derivation, we
introduce new independent and dependent variables:

x̃ = εx, ỹ = εy, t̃ = εt, ξ̃ = ξ

ε
, η̃ = η

ε2 , b̃ = b
ε2 . (2.15a–f )

A straightforward calculation yields

G− = −ε2h−Δ̃− ε4 (h
−)3

3
Δ̃2 + ε4∇̃ · b̃∇̃ − ε4∇̃ · η̃∇̃ + O

(
ε6
)
, (2.16)

G+ = −ε2h+Δ̃− ε4 (h
+)3

3
Δ̃2 + ε4∇̃ · η̃∇̃ + O

(
ε6
)
, (2.17)
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where ∇̃ = (∂x̃, ∂ỹ) and Δ̃ = ∇̃ · ∇̃. It then follows that

G− (G+ + RG−)−1 G+

= ε2 h−h+

h+ + Rh− Δ̃− ε4

(
h−h+)2 (h− + Rh+)

3
(
h+ + Rh−)2 Δ̃2

+ ε4 R
(
h−)2 − (

h+)2(
h+ + Rh−)2 ∇̃ · η̃∇̃ + ε4

(
h+)2(

h+ + Rh−)2 ∇̃ · b̃∇̃ + O
(
ε6
)
. (2.18)

Substituting (2.18) into (2.10), taking the variational derivatives as given in (2.11a,b), and
retaining terms valid up to O(ε2), one obtains

η̃t̃ = − h−h+

h+ + Rh− Δ̃ξ̃ − ε2

(
h−h+)2 (h− + Rh+)

3
(
h+ + Rh−)2 Δ̃2ξ̃

+ ε2 R
(
h−)2 − (

h+)2(
h+ + Rh−)2 ∇̃ · η̃∇̃ξ̃ + ε2

(
h+)2(

h+ + Rh−)2 ∇̃ · b̃∇̃ξ̃ , (2.19)

ξ̃t̃ = −(1 − R)gη̃ + ε2 R
(
h−)2 − (

h+)2
2
(
h+ + Rh−)2 ∣∣∣∇̃ξ̃ ∣∣∣2 , (2.20)

a Boussinesq-type system for interfacial waves propagating on a variable topography. We
next recast the system (2.19)–(2.20) to a single evolution equation describing bi-directional
waves. Differentiating (2.20) with respect to the rescaled time t̃ yields

ξ̃t̃t̃ = −(1 − R)gη̃t̃ + ε2 R
(
h−)2 − (

h+)2
2
(
h+ + Rh−)2

(∣∣∣∇̃ξ̃ ∣∣∣2)
t̃
. (2.21)

Substituting (2.19) into (2.21), eliminating η̃ by using the relation ξ̃t̃ = −(1 − R)gη̃ +
O(ε2) and retaining terms valid up to O(ε2), one arrives at

ξ̃t̃t̃ − c2Δ̃ξ̃ = ε2 (1 − R)g
(
h−h+)2 (h− + Rh+)

3
(
h+ + Rh−)2 Δ̃2ξ̃ − ε2 (1 − R)g

(
h+)2(

h+ + Rh−)2 ∇̃ · b̃∇̃ξ̃

+ ε2 R
(
h−)2 − (

h+)2(
h+ + Rh−)2

[(∣∣∣∇̃ξ̃ ∣∣∣2)
t̃
+ ξ̃t̃Δ̃ξ̃

]
, (2.22)

where the leading-order wave speed c is given by

c2 = (1 − R)gh−h+

h+ + Rh− . (2.23)

As pointed out by Milewski & Tabak (1999), (2.22) is linearly ill-posed for short waves,
and a regularisation is required, which can be achieved by replacing the linear dispersive
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term Δ̃2ξ̃ with �̃ξ̃t̃t̃/c
2. Finally, returning to the original variables, (2.22) becomes

ξtt − c2�ξ − α�ξtt + β∇ · b∇ξ + γ
[(

|∇ξ |2
)

t
+ ξt�ξ

]
= 0, (2.24)

where

α = h−h+ (h− + Rh+)
3
(
h+ + Rh−) , β = (1 − R)g

(
h+)2(

h+ + Rh−)2 , γ =
(
h+)2 − R

(
h−)2(

h+ + Rh−)2 . (2.25a–c)

Equation (2.24) modifies the classic Benney–Luke equation to account for nonlinear
internal waves propagating over variable bottom topography. Note that the modified
Benney–Luke (mBL) equation embodies the characters of isotropy and bi-directional
propagation, which are absent in the KP equation. However, in contrast to the
Boussinesq-type equations, (2.24) admits an analytic solution for internal line solitary
waves in the absence of topography, which can be explicitly expressed as

ξt = A(k) sech2(k · r − vkt), ξ = − A
vk

tanh(k · r − vkt), (2.26a,b)

where r = (x, y) is a vector in any direction on the horizontal plane, and k = (kx, ky) is the

corresponding wavenumber vector with the magnitude of k =
√

k2
x + k2

y . The amplitude
A(k) and nonlinear wave speed v(k) take the forms

A(k) = −4αv2k2

γ
, v2 = c2

1 − 4αk2 . (2.27a,b)

2.3. Degeneration to the KP equation
For the inhomogeneous case, where variation in the y-direction is much slower than in the
x-direction, the mBL equation (2.24) can be reduced to the well-known KP equation. We
introduce new variables

X = x̃ − ct̃, T = ε2 t̃, Y = εỹ, (2.28a–c)

to focus upon the right-moving evolution and weak transverse variation. Letting
Υ (X, Y, T) = ξ̃(x̃, ỹ, t̃), substituting

∂t̃ = −c∂X + ε2∂T , ∂x̃ = ∂X, ∂ỹ = ε∂Y (2.29a–c)

into (2.22) and retaining the leading order terms, one obtains

ΥXT + c
2
ΥYY − (1 − R)g

(
h+)2

2c
(
h+ + Rh−)2 (bΥX)X − 3

2
R
(
h−)2 − (

h+)2(
h+ + Rh−)2 ΥXΥXX

+ (1 − R)g
(
h−h+)2 (h− + Rh+)

6c
(
h+ + Rh−)2 ΥXXXX = 0. (2.30)

Upon noticing ΥX = (g(1 − R)/c)η̃ + O(ε2), we get the KP equation in the original
variables:

[ηt + cηx + ϕηηx + ϑηxxx − ζ(bη)x]x + c
2
ηyy = 0, (2.31)
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Figure 2. The initial X-shaped pattern, which is composed of two line solitons with amplitudes η̄1,2 and
inclination angles ±Ψ , is shown in the upper right corner. The η̄1 − Ψ plane (for η̄2 fixed) can be divided
into four regions according to evolution patterns of the KP equation which are shown in panels (a)–(d).
The boundaries between different regions are given by

√
2η̄1 + √

2η̄2 = 2 tanΨ (blue dashed line),
√

2η̄1 −√
2η̄2 = 2 tanΨ (green dash–dotted line) and

√
2η̄2 − √

2η̄1 = 2 tanΨ (orange dotted line). A similar figure
plotted with other parameters can be found in Kao & Kodama (2012).

where

ϕ =
3(1 − R)g

[(
h+)2 − R

(
h−)2]

2c
(
h+ + Rh−)2 , (2.32)

ϑ = (1 − R)g
(
h−h+)2 (h− + Rh+)

6c
(
h+ + Rh−)2 , (2.33)

ζ = (1 − R)g
(
h+)2

2c
(
h+ + Rh−)2 . (2.34)

The KP equation (2.31), in the absence of topography (i.e. b = 0), admits a line soliton

η = η0 sech2 [Γ (x + y tanΨ −� t)
]
, (2.35)

where Ψ is the angle between the direction of soliton propagation and the y-axis (see the
upper right diagram in figure 2), and the other parameters are given as

Γ =
√
ϕη0

12ϑ
, � = c

(
1 + tan2 Ψ

2

)
+ ϕη0

3
, tanΨ = ky

kx
. (2.36a–c)
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3. Numerical method and boundary treatment

To study the evolution of internal solitary waves, in general, we have to solve the mBL
equation numerically. Owing to the finiteness of the computational domain, the boundary
condition needs special treatment in some cases to avoid radiated waves from re-entering
the domain. For this purpose, a windowing method proposed by Schlatter, Adams &
Kleiser (2005) will be used in the subsequent numerical experiments. Its core idea is
to divide the solution domain into the interior and the boundary-layer regions in the
transverse direction (orthogonal to wave propagation) using a smooth function with
compact support, termed the window function. Because analytic solutions to the problem
under investigation are usually used in the boundary layers, numerical errors inevitably
emanate from junction regions and propagate inwards. However, as these tiny errors
propagate with finite speed, little contamination affects the active portion of the wave
phenomenon being studied if the domain is large enough considering our relatively short
computation time.

We choose x as the direction of wave propagation and split the unknown ξ in (2.24) into
two components:

ξ = ψ1 + ψ2 with ψ1 = Wξ, ψ2 = (1 − W)ξ. (3.1)

The window function W( y) is nearly one over some interval (say [−Ly + ε, Ly − ε] for a
small ε) and rapidly decays to zero near two boundaries y = ±Ly. Specifically, W( y) can
be defined as

W( y) = exp
(

−a
∣∣∣∣ y
Ly

∣∣∣∣n) , (3.2)

where n = 95 and a = (1.02)n ln 10 are chosen in all computations. It is clear that ψ1
and ψ2 represent the respective contributions of the interior and boundary-layer regions.
Substituting (3.1) into (2.24) yields

ψ1tt − c2�ψ1 − α�ψ1tt + γ
[(

|∇ψ1|2
)

t
+ ψ1t�ψ1

]
+ β∇ · b∇ψ1 = G1 + G2, (3.3)

where

G1 = γ [−2∇ψ1 · ∇ψ2t − 2∇ψ2 · ∇ψ1t − ψ1t�ψ2 − ψ2t�ψ1] ,

G2 = −ψ2tt + c2�ψ2 + α�ψ2tt − γ
[(

|∇ψ2|2
)

t
+ ψ2t�ψ2

]
− β∇ · b∇ψ2.

⎫⎬⎭ (3.4)

In practice, the solution near the boundary is assumed to be a line solitary wave ξ0 with the
explicit expression (2.26a,b). Hence, ψ2 = (1 − W)ξ0 simplifies the computation of G2.
Thus, we can enforce doubly periodic boundary conditions forψ1, owing to its exponential
decay in all spatial directions, and the pseudo-spectral method is applicable.

We next sketch the numerical scheme for time-dependent simulations of the mBL
equation. Following Milewski & Tabak (1999), (3.3) can be rewritten as

(1 − α�)ψ1tt − c2�ψ1 = N (ψ1,2, ∂tψ1,2,∇ψ1,2, b), (3.5)

where N includes all the nonlinear terms. Rearranging the operator 1 − αΔ and
introducing

θ =
(
∂

∂t
+ iL

)
ψ1, L2 = −c2Δ

1 − αΔ
, (3.6a,b)
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Interactions of internal solitary waves

(3.5) can be simplified to a complex first-order equation,(
∂

∂t
− iL

)
θ = 1

1 − αΔ
N (ψ1,2, ∂tψ1,2,∇ψ1,2, b). (3.7)

Taking the Fourier transform of the above equation in the spatial variables yields(
∂

∂t
− iL̂(k)

)
θ̂ (k, t) = F [N (ψ1,2, ∂tψ1,2,∇ψ1,2, b)

]
(k, t)

F [1 − αΔ](k)
, (3.8)

where both ·̂ and F stand for the Fourier transform and L̂(k) is the Fourier symbol of the
linear operator L. The time-evolution equation (3.8) can be numerically advanced using
the method of integrating factors coupled with the fourth-order Runge–Kutta scheme for
time-stepping. Using the fact that ψ1 is real, ψ1 and ∂tψ1 can be recovered from

ψ̂1(k, t) = θ̂ (k, t)− θ̂∗(−k, t)

i
[
L̂(−k)+ L̂(k)

] , (3.9)

∂tψ̂1(k, t) = θ̂ (k, t)+ θ̂∗(−k, t)
2

, (3.10)

where the asterisk indicates complex conjugation. It should be pointed out that ψ̂1(0, t)
cannot be recovered from (3.9) because L̂(0) = 0, but instead, it should be updated
numerically by integrating (3.10) at k = 0. Finally, when internal solitary waves are chosen
as initial conditions, the solution ξ given in (2.26a,b) is not a periodic function; therefore,
modification is required. We replace ξ with

ξ = − A
vk

tanh(k · r − vkt)+ P · r, (3.11)

where P is a constant vector chosen to keep ξ periodic. In the following numerical
simulations, dimensional variables are used to mimic the realistic oceanic environment.
We pick 75 m as the spatial step in both x- and y-directions and 5 s as the temporal step in
all computations.

4. Results

4.1. Truncated and partially bent solitary waves
In the ocean, one interesting scenario is the evolution of an internal solitary wave passing
through a strait or diffracting off the end of a topographic feature; see those, for instance,
in the Strait of Gibraltar (Vlasenko et al. 2009). We investigate this problem in the mBL
equation and the KP equation, and the results are shown in panels (b) and (e) of figure 3,
respectively. We take as initial data the solitary waves in the form of (2.26a,b) and (2.35)
with amplitude of −20 m truncated at the ends with a fast cutoff (see figure 3a). In
addition, the actual computational domain in the y-direction is twice as large as shown
in the figure to allow for periodicity. A qualitative disparity can be found between these
two models where a circular pattern emanates from the end of the truncated nonlinear
wave in the mBL equation, compared with a bent dispersive wave in the KP equation. As
shown in figure 3( f ), the interface fluctuations at section lines y = 0 and 12.5 km also
display differences. We claim that this comparison shows the advantage of the isotropic
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Figure 3. (a) Initial internal solitary wave of amplitude −20 m. (b) Snapshot of the wave pattern
at t = 7500 s in the mBL equation with a flat bottom. (c) Snapshot of the wave pattern at t =
7500 s in the mBL equation in the presence of y-dependent topography b( y) shown on the far right.
(d) Temperature profile in the MITgcm model at t = 7500 s. (e) Snapshot of the wave pattern at t =
7500 s in the KP equation with a flat bottom. ( f ) Interface fluctuations along section lines y = 0
(bottom) and y = 12.5 km (top) at t = 7500 s.

bidirectional model. To put this assertion on a firmer footing and further verify the validity
of the mBL equation, we conduct a numerical simulation with the same set-up based on the
Massachusetts Institute of Technology general circulation model (MITgcm), which solves
the fully nonlinear and non-hydrostatic primitive equations (see Marshall et al. (1997) for
an overview of the MITgcm).

In the realistic situation, the ocean stratification is continuous; however, the mBL
equation derived here is based on the two-layer simplification, which causes difficulty
when it is intended to be invoked for the oceanic environment. We propose a layering
scheme to establish a connection between continuous and discontinuous vertical density
stratifications to circumvent this issue. Note that the KP equation (2.31) has an extension
for a continuous stratification (see Yuan et al. (2018b) and the references therein), where,
in the absence of topographic effects, the significant parameters are given as

Iϕ = 3
∫ h+

−h−
ρ0c2Φ3

z dz, (4.1)

Iϑ =
∫ h+

−h−
ρ0c2Φ2 dz, (4.2)

I = 2
∫ h+

−h−
ρ0cΦ2

z dz, (4.3)
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Interactions of internal solitary waves

where ρ0(z) is the continuous density profile, and the mode Φ and linear phase speed c
are obtained by solving the modal problem(

ρ0c2Φz

)
z
+ ρ0N2Φ = 0, for − h− < z < h+, (4.4)

Φ = 0, at z = −h− and h+, (4.5)

where N is the buoyancy frequency defined as N2 = −(g/ρ0)(dρ0/dz). In practice, to
construct a two-layer fluid system based on a given realistic continuous stratification, the
thicknesses h± and densities ρ± can be numerically determined by keeping the main
parameters c, ϕ, ϑ given in (2.23), (2.32), (2.33) as close as those in the continuous
medium (4.1)–(4.5), by virtue of the least squares method. This scheme is able to
achieve the kinematic equivalence (approximately) between two-layered and continuous
stratifications.

In the MITgcm simulation, the water depth is assumed to be 300 m. The continuous
density distribution is shown in figure 1, calculated from the monthly averaged
background temperature and salinity profiles (data from the World Ocean Atlas 2013).
The kinematically equivalent layering yields h+ = 83 m, h− = 217 m and R = ρ+/ρ− =
0.9983, which are the parameters used in the following computations of the mBL equation
and the KP equation. An important issue here is the preparation of the initial solitary wave
in the MITgcm. As the solutions to the mBL equation (2.26a,b) and the KP equation (2.35)
do not completely satisfy the primitive equations, an adjustment run is needed. We first
insert the line soliton and the corresponding velocity field obtained from solving the mBL
equation into the MITgcm and then run the model in the x–z plane. We let the program
evolve until it reaches a steady state, taken as the initial solitary wave for the MITgcm.
Despite quantitative differences, the result of the MITgcm model shows a similar circular
refraction pattern as that in the mBL equation (figure 3d versus figure 3b), which confirms
the validity of the mBL equation and indicates the failure of the KP equation in some
cases. We note that a very recent study by Ryskamp et al. (2021) based on the KP equation
shows a similar pattern (figure 5 in their paper) as our figure 3(e). Thus it is of great
interest to revisit their problem based on an isotropic bi-directional model, for instance,
the Benney–Luke equation.

In this paper, the modification to the classic Benney–Luke equation is the inclusion
of topographic effects. The transverse variation of the topography modulates the wave
pattern to some extent, as shown by the comparison between figure 3(b) and figure 3(c).
As shown in figure 3( f ), the interface fluctuations (denoted as η) at section lines y = 0 and
12.5 km imply that the existence of topography leads to an increase in wave amplitude and
a decrease in wave speed. Nonetheless, the scales (2.15a–f ) used in the derivation indicate
that the height of topography is of the same order as the wave amplitude. Thus a significant
topography should be used with precaution in numerical computations.

Next, we check the evolution of a partially bent solitary wave, composed of a truncated
solitary wave of amplitude η0 = −30 m as the middle stem, abruptly extended by two
outgoing oblique solitary waves of amplitude η0 = −10 m and bent angles ±20◦ (see
figure 4a). Again, the result illustrates a significant disparity between the KP equation and
the mBL equation (figure 4b–c versus figure 4d–e), which further manifests the feature of
the isotropic model. The discontinuities at the conjunction regions eventually evolve into
two circular diffraction patterns in the mBL equation rather than arched trailing waves in
the KP equation. The transverse variation of the topography b( y) modifies the waveform,
increases its amplitude and slows the propagation speed, akin to figure 3.
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Figure 4. (a) Initial internal solitary waves with amplitudes η0 = −30 m for the middle stem and η0 = −10 m
for oblique branches of bent angles ±20◦. (b,c) Snapshots of the wave pattern in the KP equation with a flat
bottom at t = 5400 and 10 800 s, respectively. (d,e) Snapshots of the wave pattern in the mBL equation with a
flat bottom at t = 5400 and 10 800 s, respectively. ( f,g) Snapshots of the wave pattern at t = 5400 and 10 800 s,
respectively, in the mBL equation in the presence of y-dependent topography b( y) shown on the far right. (h,i)
Interface fluctuations at t = 10 800 s along section lines y = 0 and y = 12.5 km, respectively.

4.2. X-shaped wave–wave interactions
The oblique internal wave–wave interactions exhibit three-dimensional characteristics and
likely give rise to peculiar wave patterns, as revealed by numerous observations in the
ocean, primarily via satellite images (see, for example Hsu, Liu & Liu 2000; Xue et al.
2014). On this topic, the pioneering work of Miles (1977a,b) classifies the interaction
as either ‘strong’ or ‘weak’ depending on the inclination angle between two solitons
and theoretically describes ‘Mach reflection’ as the resonant interaction. In recent years,
a series of progress was made by Chakravarty & Kodama (2008, 2009, 2013), who
proposed a method to construct multi-soliton solutions to the KP equation. These solutions
manifest themselves as an arbitrary number of line solitons in the far field and a novel
wave pattern owing to the wave interaction in the near field. Based on their method, the
interaction patterns observed in reality can be easily reproduced in theory (if applicable)
via counting the number of solitons in the far field and measuring the amplitude and
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Interactions of internal solitary waves

slope of each soliton. Using their results and the variable-coefficient KP equation, Yuan
et al. (2018a) investigated the topographic effects on the so-called V-shaped internal
wave–wave interactions, which abound in oceans. In addition to the V-shaped interactions,
the X-shaped internal wave–wave interactions (see the upper right corner of figure 2) are
also very likely to occur in oceans, albeit few studies have specifically focussed on this
type of interaction.

We first briefly introduce the work of Chakravarty & Kodama (2008, 2009, 2013). Note
that the KP equation (2.31) can be transformed to the canonical form

(4η̄t̄ + 6η̄η̄x̄ + η̄x̄x̄x̄)x̄ + 3η̄ȳȳ = 0, (4.6)

where new variables with overline are defined as

t =
(√

27ϑ
2c3

)
t̄, x − ct =

(√
6ϑ
c

)
x̄, y =

(√
6ϑ
c

)
ȳ, η =

(
c
ϕ

)
η̄. (4.7a–d)

The soliton solution to (4.6) in the Wronskian form is represented by

η̄ = 2(ln τ)x̄x̄, (4.8)

where τ(x̄, ȳ, t̄) = Wr( f1, f2, . . . , fN), and Wr denotes the Wronskian of the functions fn,
which can be expressed as a sum of exponential functions, for n = 1, 2, . . . ,N,

fn =
M∑

m=1

anm exp (Θm) with Θm = σmx̄ + σ 2
mȳ − σ 3

mt̄. (4.9)

Obviously, the soliton solution depends on M (> N) real parameters, ordered as σ1 < σ2 <
· · · < σM , and constants anm forming an N × M coefficient matrix A with rank(A) = N.
Suppose we denote by χ(j1, j2, . . . , jN) the N × N minor of A obtained from columns
1 � j1 < · · · < jN � M, then to ensure a non-singular solution (4.8), all the N × N minors
of A should be non-negative, i.e. χ(j1, j2, . . . , jN) � 0. It was proved by Chakravarty &
Kodama (2009) that as ȳ → ∞, there exist N line solitons, while as ȳ → −∞, there
are M − N line solitons. For example, for M = 2 and N = 1, one line soliton exists as
either ȳ → −∞ or ȳ → ∞, and the N × M matrix A = (1, a), where a > 0 is a constant
determining the location of the wave. Subsequently, τ(x̄, ȳ, t̄) can be defined as

τ = exp(Θ1)+ a exp(Θ2), (4.10)

and substituting (4.10) into the solution (4.8) yields

η̄ = k̄2

2
sech2

(
k̄x̄ + l̄ȳ − ωt̄ + ln a

2

)
, (4.11)

where

k̄ = σ2 − σ1, l̄ = σ 2
2 − σ 2

1 , ω = σ 3
2 − σ 3

1 = k̄4 + 3l̄2

4k̄
. (4.12a–c)

Equation (4.11) can be further rewritten in terms of physical variables as

η̄ = η̄0 sech2 [Γ̄ (x̄ + ȳ tanΨ − �̄ t̄ + x̄0)
]
, (4.13)

where

η̄0 = k̄2

2
, Γ̄ =

√
η̄0

2
, �̄ = 1

2
η̄0 + 3

4
tan2 Ψ, x̄0 = ln a√

2η̄0
, (4.14a–d)

and Ψ is the inclination angle of the line soliton measured counterclockwise with respect
to the y-axis. Upon noticing that the spatial scaling factors are the same, the angle Ψ is

936 A20-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.60


C. Yuan and Z. Wang

unchanged under the transformation (4.7a–d), which can be expressed as

tanΨ = l̄
k̄

= σ1 + σ2. (4.15)

In practice, one can easily obtain η̄0 and Ψ from the field observation together with
the transformation (4.7a–d), and then σ1 and σ2 can be recovered by solving η̄0 =
(σ2 − σ1)

2/2 and (4.15). Eventually, a soliton solution to the KP equation is constructed.
The initial X-shaped wave can be prepared by intersecting two line solitons whose

inclination angles with respect to the transverse y-direction are ±Ψ (see the right
upper corner of figure 2). The amplitudes of two solitons, denoted by η1 and η2, do
not necessarily have to be the same. Based on the aforementioned theory of the KP
equation, the evolution of the initial X-shaped wave can be categorised into four types,
corresponding to four different regions in the first quadrant of the η1 − Ψ plane (for a
fixed η2), as shown in figure 2. No analytic solutions were found to exist on the boundaries
between different regions (i.e. the broken lines).

For case (a), we choose η1 = η2 = −15 m, which can be transformed to η̄1 = η̄2 = 0.17
based on the scaling (4.7a–d), and the boundary separating case (a) from other cases
is depicted as

√
2η̄1 + √

2η̄2 = 2 tanΨ0 that gives the critical angle Ψ0 ≈ 30◦. Here we
choose Ψ = 33◦ > Ψ0. Snapshots of the wave pattern at different times are shown in
figure 5, where the most remarkable features are the phase shift in the interaction zone
(see a zoom-in in figure 6) and the trailing waves arising from the self-adjustment process.
When the results are scrutinised, the discrepancy in wave amplitude between the KP
equation and the mBL equation is conspicuous, and the latter is rendered with a slightly
smaller amplitude (see figure 5h–i or figure 6d). It is shown in figure 5(h) that the variation
of bottom topography in the direction of internal wave propagation augments the wave
amplitude in the interaction zone, and no obviously disparate trailing waves are generated.

In solution (4.8), two branches of the initial X-shaped wave are described by two sets of
parameters for case (a), (σ1, σ2) = (−0.61,−0.04) and (σ3, σ4) = (0.04, 0.61). Because
η̄1 = η̄2, the phase shifts (denoted by δ̄x in the transformed plane (4.7a–d)) for the upper
and lower branches turn out to be the same, which can be predicted by

δ̄x = Θ12

σ2 − σ1
, Θ12 = − lnΔ0, 0 < Δ0 = (σ3 − σ2)(σ4 − σ1)

(σ4 − σ2)(σ3 − σ1)
< 1, (4.16a–c)

leading to δx = 366 m in the original variables. However, the numerical results are
δx = 326 m for the KP equation, δx = 413 m for the mBL equation and δx = 439 m for
the mBL equation with the topography b(x) (see figure 6), and plausibly all of them can
be considered as good approximations. Note that the phase shift is independent of time.
Similarly, this theoretical result also predicts the wave amplitude in the interaction zone,
namely

η̄max = η̄1 + η̄2 + 2
1 − √

Δ0

1 + √
Δ0

√
η̄1η̄2, (4.17)

which gives ηmax = −41 m after being converted to the original variables. It is shown in
figure 6(d) that the numerical result of the KP equation asymptotically approaches the
theoretical prediction. However, the numerical solution to the mBL equation is still a bit
off the theoretical value after 6 h of evolution.

Next, we investigate case (b) by illuminating a quantitative example of the schematic
in figure 2(b). Here we choose the amplitudes η1 = η2 = −15 m and inclination angle
Ψ = 25◦. As time evolves, a separation commences from the interaction zone resulting
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Figure 5. (a) Initial X-shaped wave with amplitudes η1 = η2 = −15 m and inclination angle Ψ = 33◦.
(b,c) Snapshots of the wave pattern in the KP equation with a flat bottom at t = 1.5 × 104 and 3.0 × 104 s,
respectively. (d,e) Snapshots of the wave pattern in the mBL equation with a flat bottom at t = 1.5 × 104 and
3.0 × 104 s, respectively. ( f,g) Snapshots of the wave patterns at t = 1.5 × 104 and 3.0 × 104 s, respectively,
in the mBL equation with x-dependent topography b(x) shown on the extreme right. (h,i) Interface fluctuations
at t = 3.0 × 104 s along section lines y = 0 and y = 5 km, respectively. For the results of the mBL equation
with topography, the actual computational domain in the x-direction is twice that shown in the figure to allow
for periodicity.

in an opening isosceles trapezium (figures 7 and 8). Note that the equivalence of the
leg lengths arises from the initial setting η1 = η2. Considering numerical errors, we do
not detect perceptible differences in waveform between the KP equation and the mBL
equation, though there is a slight discrepancy in wave amplitude. As in case (a), it is clear
that the shoaling can augment the wave amplitude; see the comparisons in figure 7(h–i).

In the framework of the KP equation, the theoretical descriptions of case (b) are much
more complicated than those of case (a), whose behaviours within the interaction zone
depend only on several parameters determined by the initial waves. It is not difficult to
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Figure 6. (a–c) Close-ups of the interaction zone of figure 5 at t = 3.0 × 104 s. The phase shifts (denoted
by δx) for the KP equation, the mBL equation and the mBL equation with topography b(x) are respectively
highlighted. (d) Time series of the wave amplitude at the intersection point computed with different models,
together with the asymptotic prediction (blue dashed line).

see that N = 2 and M = 4 for case (b), and therefore the coefficient matrix A can be
represented as

A =
(

1 0 −a −b
0 1 c d

)
, (4.18)

where a, b, c, d > 0 are free parameters determining the locations of solitons, their phase
shifts and the onset of the trapezium pattern. The minors of A satisfy χ(j1, j2) � 0
to ensure the existence of non-singular solutions and particularly, bc − ad > 0. In this
situation, the initial two branches can be delineated by the pairs (σ1, σ3) and (σ2, σ4), as
illustrated in figure 8(a). These parameters can be easily calculated from the amplitudes
and inclination angles of the given initial data. Actually, using (4.11) and (4.15), one
obtains (σ1, σ2, σ3, σ4) = (−0.52,−0.06, 0.06, 0.52) for this example. The phase shift
of the upper right branch (x̄ > 0 and ȳ � 0) is represented by

Θ+
13 = ln

σ4 − σ1

σ4 − σ3
− ln

�

b
, (4.19)
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Figure 7. (a) Initial X-shaped pattern with amplitudes η1 = η2 = −15 m and inclination angle Ψ = 25◦.
(b,c) Snapshots of the wave pattern in the KP equation with a flat bottom at t = 9 × 103 and 1.8 × 104 s,
respectively. (d,e) Snapshots of the wave pattern in the mBL equation with a flat bottom at t = 9 × 103 and
1.8 × 104 s, respectively. ( f,g) Snapshots of the wave pattern at t = 9 × 103 and 1.8 × 104 s, respectively, in
the mBL equation with x-dependent topography b(x) shown under panel (g). (h,i) Interface fluctuations at
t = 1.8 × 104 s along section lines y = 0 and y = 5 km, respectively. For the results of the mBL equation with
topography, the actual computational domain in the x-direction is twice that shown in the figure to allow for
periodicity.

where � = χ(3, 4) = bc − ad, while for the lower left branch (x̄ < 0 and ȳ 	 0),

Θ−
13 = ln

σ2 − σ1

σ3 − σ2
− ln c. (4.20)
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and the mBL equation with topography b(x). (d,e) Time series of Ls and Ld computed with different models
along with the theoretically predicted values.

Similarly, the phase shifts for the upper left branch (x̄ < 0 and ȳ � 0) and lower right
branch (x̄ > 0 and ȳ 	 0) read

Θ+
24 = ln

σ3 − σ2

σ4 − σ3
− ln

�

c
, Θ−

24 = ln
σ2 − σ1

σ4 − σ1
− ln b, (4.21a,b)

respectively. Thus, in theory, the phase shifts of the two branches are Θ13 = Θ+
13 −Θ−

13
and Θ24 = Θ+

24 −Θ−
24, which depend not only on σj but also on the free parameters

a, b, c, d. Nonetheless, the phase shift along the ȳ-direction is conserved because

Θ+
13 +Θ−

24 = Θ+
24 +Θ−

13 = ln
σ2 − σ1

σ4 − σ3
− ln �. (4.22)

In contrast to the phase shift depending on free parameters, we can determine the length
of the stem L̄s, the asymptotic amplitude of the stem η̄max and the width of the opening
trapezium L̄d, using the properties of initial waves (see figure 8). Here the upper right
branch is described by (σ1, σ3) and the stem by (σ1, σ4). Therefore, the ridges of these
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Interactions of internal solitary waves

two parts are given byΘ1 = Θ3 andΘ1 = Θ4, respectively. Recalling the definition ofΘj
given in (4.9), one obtains

x̄ + (σ3 + σ1)ȳ =
(
σ 2

1 + σ1σ3 + σ 2
3

)
t̄, (4.23)

x̄ =
(
σ 2

1 + σ1σ4 + σ 2
4

)
t̄, (4.24)

upon noting that σ1 + σ4 = 0 and σ2 + σ3 = 0. The wave pattern is symmetric about
the x-axis given η1 = η2, and thus the length of the stem L̄s = 2ȳ, where ȳ indicates the
location of the intersection point. A simple manipulation of (4.23)–(4.24) yields

L̄s = 2σ3 t̄. (4.25)

In the long-time evolution, the amplitude of the stem approaches the asymptotic value
given by

η̄max = 1
2(σ4 − σ1)

2. (4.26)

The width of the opening trapezium, L̄d, depends on the phase speed discrepancy between
the stem and the other parallel side delineated by (σ2, σ3), which takes the form

L̄d =
(
σ 2

4 − σ 2
3

)
t̄. (4.27)

It is clear that both the predicted L̄s and L̄d are linear functions of time, and comparisons
between the theoretical predictions and numerical simulations of different models are
illustrated in figure 8(d–e). These comparisons are generally in good agreement, although
slight differences, partly attributed to insufficient evolution time, are inevitable. This is
shown, for example, by the gap between the amplitude of the stem η ≈ −44 m (figure 7h)
at the termination time of the computation t = 1.8 × 104 s and the predicted asymptotic
value ηmax = −49 m.

From the physical point of view, case (c) and case (d) are of the same dynamical and
kinematical properties by a simple reversal of the y-axis; thus, we confine ourselves to case
(c). Here we choose wave amplitudes η1 = −5 m (denoted by (σ2, σ3)) and η2 = −15 m
(denoted by (σ1, σ4)), together with the inclination angle Ψ = 5◦ which is smaller than the
critical angle Ψ0 = atan(

√
η̄2/2 − √

η̄1/2) ≈ 7◦. It is calculated that (σ1, σ2, σ3, σ4) =
(−0.25,−0.21, 0.12, 0.33) based on the transformation (4.7a–d). By lettingΘ1 = Θ4 and
Θ2 = Θ3, one obtains

x̄ + (σ1 + σ4)ȳ = (σ 2
1 + σ1σ4 + σ 2

4 )t̄,

x̄ + (σ2 + σ3)ȳ = (σ 2
2 + σ2σ3 + σ 2

3 )t̄,

}
(4.28)

and thus the location of the intersection point can be expressed as

L̄x = 7(σ1 + σ4)
2 + (σ3 − σ2)

2 − 8σ1σ4

8
t̄ = η̄1 + η̄2 + 3 tan2 Ψ

4
t̄, (4.29)

L̄y = (σ 2
1 + σ1σ4 + σ 2

4 )− (σ 2
2 + σ2σ3 + σ 2

3 )

(σ1 + σ4)− (σ2 + σ3)
t̄ = η̄2 − η̄1

4 tanΨ
t̄. (4.30)

The intersection point moves in the positive y-direction owing to η2 > η1 (see figure 9).
The numerical results of Ly for model equations are illustrated in figure 10, which show

936 A20-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.60


C. Yuan and Z. Wang

(a) (h) (i)

(b)
(d)

(c) (e) (g)

0

5

–5

–10

–15

0

–5

–10

–15

–20
–12

–10

–8

–6

–4

–2

0

42.5 45.0 47.5 50.0 52.5 42 44 46 48 50 52 54

10

20

25

15

0

5

–5

–10

–15

10

20

25

15

0

5

–5

–10

–15

10

20

25

15

0

5

–5

–10

–15

10

20

25

15

0

5

–5

–10

–15

10

20

25

15

0

5

–5

–10

–15

10

20

25

15

0

5

–5

–10

–15

10

20

25

15

( f )

x (km)

y 
(k

m
)

y 
(k

m
)

y 
(k

m
)

b 
(m

)

KP

mBL-Topo

mBL

–20

–10

0

η (m)

η
 (

m
)

0 10 20 30 40 50

x (km)
0 10 20 30 40 50

x (km)
0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

50
0

Figure 9. (a) Initial X-shaped pattern with amplitudes η1 = −5 m, η2 = −15 m and inclination angleΨ = 5◦.
(b,c) Snapshots of the wave pattern in the KP equation with a flat bottom at t = 2.4 × 104 and 4.8 × 104 s,
respectively. (d,e) Snapshots of the wave pattern in the mBL equation with a flat bottom at t = 2.4 × 104 and
4.8 × 104 s, respectively. ( f,g) Snapshots of the wave pattern at t = 2.4 × 104 and 4.8 × 104 s, respectively,
in the mBL equation with x-dependent topography b(x) shown under panel (g). (h,i) Interface fluctuations at
t = 4.8 × 104 s along section lines y = 0 and y = 16 km, respectively. For the results of the mBL equation with
topography b(x), the actual computational domain in the x-direction is twice that shown in the figure to allow
for periodicity.

good agreement with the theoretical prediction. The phase shifts for the two branches are

δxij = −1 + lnΔ0

σj − σi
, Δ0 = (σ4 − σ2)(σ3 − σ1)

(σ4 − σ3)(σ2 − σ1)
, (4.31a,b)
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Figure 10. (a–c) Close-ups of the interaction zone of figure 9 at time t = 4.8 × 104 s. The phase shifts δx14
and δx23 of the two branches and the location of the intersection point in the y-direction Ly are highlighted for
the KP equation, the mBL equation and the mBL equation with topography b(x), respectively. (d) Time series
of Ly computed with different models together with the theoretically predicted values.

where the subscript (i, j) is either (1, 4) or (2, 3), representing the branches of the initial
X-shaped wave. As shown in figure 10, the phase shifts of the branch characterised by
(σ1, σ4) are δx14 = 1.1 km, 0.9 km and 1.0 km for the KP equation, the mBL equation
and the mBL equation with topography, respectively, in comparison with δx14 = 1.0 km
predicted by (4.31a,b). Similarly, the numerical results δx23 = 1.3 km, 1.4 km, 1.4 km
for the three models are close to the theoretical prediction δx23 = 1.7 km for the branch
(σ2, σ3).

4.3. Truncated X-shaped wave–wave interactions
Because the cases mentioned above focus on the central parts of wave interaction
zones, which are of great interest for some scenarios, we apply a windowing method in
computations. As a consequence, the propagation of waves in the y-direction is limited.
Nevertheless, the realistic ocean should be considered open for internal waves, although
the along-crest width can be several hundred kilometres long. Thus, it is informative to
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Figure 11. An NOAA-20 VIIRS satellite image taken on 16 May 2020, with the left-bottom corner located at
20.1228◦N, 115.6389◦E and the right-top at 21.61◦N, 117.133◦E.

investigate the cases in which waves can propagate freely in all horizontal directions. To
illustrate this circumstance, we show in figure 11 a radar image photographed in the South
China Sea. The subsequent computations display evolutions of initial X-shaped internal
waves in an open sea.

The set-ups are the same as those in the previous three cases except that an
envelope locally confined in the y-direction is imposed on the initial X-shaped waves.
Figures 12–15 demonstrate the time evolutions of these truncated patterns. We note an
important consequence immediately that the coherent wave–wave interaction patterns (see
figures 5–10) are disrupted owing to dispersive effects. After the initial launch, two front
edges of the truncated wave begin to collapse and spread in the y-direction at the cost
of decreasing the wave amplitude from the periphery to centre gradually. Meanwhile, the
y-components of the propagation velocities of the two initial waves are opposite. As a
result, the intersection zone moves towards the front edges of the pattern, which finally
manifests as a leading wave connected by two arched trailing branches. Another significant
feature is the post-interaction waves, especially the trailing waves of opposite polarity
(waves of positive displacement with red colour in figures 12–15), whose emergence can
be explained by mass conservation (Yuan et al. 2018b).

As waves can propagate freely in all horizontal directions, the discrepancies between
the KP and mBL equations are evident. One of the most striking differences is the
opening degree of trailing waves. It can be seen from panels (b–g) of figures 12,
13 and 15 that waves branch at wider angles in the KP equation, attributing to its
anisotropic nature. Moreover, wave amplitudes given by the two equations are significantly
different, even a difference of double, as shown in figure 13(h). To put the validity
of the mBL equation on a firmer footing, again, we conduct a comparison with
the MITgcm model, as illustrated in figure 14, which verifies the use of the mBL
equation as a better approximation to the full Euler equations for some cases of
practical relevance. These results showcase, to a considerable extent, the advantage of
the isotropic property of the mBL equation. Note that the topographic effects play a
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Figure 12. (a) Initial truncated X-shaped pattern with amplitudes η1 = η2 = −15 m and inclination angle
Ψ = 33◦; same as those in figure 5. (b,c) Snapshots of the wave pattern in the KP equation with a flat bottom
at t = 4.5 × 104 and 9.0 × 104 s, respectively. (d,e) Snapshots of the wave pattern in the mBL equation with a
flat bottom at t = 4.5 × 104 and 9.0 × 104 s, respectively. ( f,g) Snapshots of the wave pattern at t = 4.5 × 104

and 9.0 × 104 s, respectively, in the mBL equation with x-dependent topography b(x) shown under panel (g).
(h,i) Interface fluctuations at t = 9.0 × 104 s along section lines y = 0 and y = 40 km, respectively. For the
results of the mBL equation with topography b(x), the actual computational domain in the x-direction is twice
that shown in the figure to allow for periodicity.

more significant role in modulating the characteristics of wave evolution, not only the
waveform but also the wave amplitude and propagation speed (see panels (h) and (i)
of figures 12, 13, 15), compared with the previous three cases. To further examine the
effect of bottom gradients, we illustrate two typical cases in figure 16 where truncated
X-shaped waves propagate over the shoaling topography superposed by submarine canyon
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Figure 13. (a) Initial truncated X-shaped pattern with amplitudes η1 = η2 = −15 m and inclination angle
Ψ = 25◦; same as those in figure 7. (b,c) Snapshots of the wave pattern in the KP equation with a flat bottom at
t = 4.5 × 104 and 9.0 × 104 s, respectively. (d,e) Snapshots of the wave pattern in the mBL equation with a flat
bottom at t = 4.5 × 104 and 9.0 × 104 s, respectively. ( f,g) Snapshots of the wave pattern at t = 4.5 × 104 and
9.0 × 104 s, respectively, in the mBL equation with x-dependent topography b(x) shown under panel (g). (h,i)
Interface fluctuations at t = 9.0 × 104 s along section lines y = 0 and y = 40 km, respectively. For the results
of the mBL equation with topography b(x), the actual computational domain in the x-direction is twice that
shown in the figure to allow for periodicity.

and plateau. Examples are motivated by the realistic ocean topography, such as the
Hudson Canyon. It is clear that the canyon (plateau) slightly accelerates (slows) the wave
propagation on the shoaling topography, engendering a distortion along the crest where
small-amplitude waves emanate from, thereby reshaping wave patterns and altering wave
amplitudes.

936 A20-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.60


Interactions of internal solitary waves

(a)

(c)

(b)

(d)

20

15

16

17

–40

–20

(°C)

0

–60

–80

–20

–10

0

–30

–40

–50

40

80

60

20

–40

–20

0

–60

–80

–20

–10

0

–30

–40

–50

40

80

60

x (km) x (km)

KP

mBL

MITgcm

η
 (

m
)

14012010080 160 150 160 170 180 190 200

14012010080 160 150 160 170 180 190 200

y 
(k

m
)

Figure 14. (a,b) Horizontal views of the temperature profile in the MITgcm simulation at t = 4.5 × 104s and
t = 9.0 × 104 s, respectively. Note that the initial waves are the same as those in figure 13(a). (c,d) Comparisons
of the interface fluctuation at t = 4.5 × 104 s and t = 9.0 × 104 s, respectively, along the section line y = 0.

5. Concluding remarks

In this paper, the mBL equation has been derived for internal waves in a two-fluid system
with the rigid-lid approximation and variable bottom topography. The model features the
isotropic and bi-directional nature and can be numerically implemented to study oblique
internal wave–wave interactions, as well as the topographic effects on wave propagation.
It is well known that the KP equation is the most widely used model in the context of
horizontally two-dimensional internal waves, and indeed, it has a large range of validity
inherited from its parent, the KdV equation. Nonetheless, we argue that in some general
scenarios, the mBL equation presents more accurate results than the KP equation, which
is attributed to the characteristics of isotropy and bi-directional propagation held by
the former model. These characters can be easily understood from the linear dispersion
relation. For a monochromatic wave with the wavenumber k = (kx, ky) and frequency ω,
in the absence of bottom topography, the dispersion relations for the KP equation (2.31)
and the mBL equation (2.24) read

ω = −ϑk3
x + ckx + c

2

k2
y

kx
, ω2 = c2|k|2

1 + α|k|2 , (5.1a,b)

respectively. It is clear that for the mBL equation, the wave frequency depends entirely on
the modulus of the wavenumber vector, and the dispersion relation is hence isotropic, in
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Figure 15. (a) Initial truncated X-shaped pattern with amplitudes η1 = −5 m, η2 = −15 m and inclination
angle Ψ = 5◦; same as those in figure 9. (b,c) Snapshots of the wave pattern in the KP equation with a flat
bottom at t = 4.5 × 104 and 9.0 × 104 s, respectively. (d,e) Snapshots of the wave pattern in the mBL equation
with a flat bottom at t = 4.5 × 104 and 9.0 × 104 s, respectively. ( f,g) Snapshots of the wave pattern at t =
4.5 × 104 and 9.0 × 104 s, respectively, in the mBL equation with x-dependent topography b(x) shown under
panel (g). (h,i) Interface fluctuations at t = 9.0 × 104 s along section lines y = 0 and y = 40 km, respectively.
For the results of the mBL equation with topography b(x), the actual computational domain in the x-direction
is twice that shown in the figure to allow for periodicity.

contrast to the KP equation. However, the corresponding group velocities are given by

∇ω =
(

−
(

3ϑk2
x + c

2

k2
y

k2
x

)
+ c,

cky

kx

)
for the KP equation,

∇ω =
(

ckx

|k| (1 + α|k|2)3/2 , cky

|k| (1 + α|k|2)3/2
)

for the mBL equation.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.2)
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It follows that long waves in the KP equation always propagate towards the positive
x-direction considering ky 	 kx 	 1; however, there is no preferred direction of
propagation for the mBL equation.

The advantage of the mBL equation over the KP equation is confirmed by the results
of the MITgcm model, which solves the full Navier–Stokes equations and has been
extensively used to simulate internal waves in a realistic oceanic environment; see
Vlasenko, Guo & Stashchuk (2012) amongst many others. The fact that the stratification in
the ocean is continuous inspires us to propose a layering scheme to allow the mBL equation
derived in the two-layer fluid to model internal waves in a continuous stratification,
at least in the sense of kinematical equivalence. This is achieved by matching the
primary parameters of the KP equation derived from the mBL equation with those of
the KP equation related to a continuous stratification. Note that this layering scheme
is of practical interest. However, we should caution that any attempt to approximate
a continuous stratification by two-layer configuration raises concern about the possible
energy transfer among internal gravity modes, which is absent in the two-layer system with
the rigid-lid approximation. Moreover, a vortex sheet between successive layers incurred
by the layering scheme is inevitable, and thus an evaluation on the influence of this
deceptive vortex needs to be conducted.

Although oblique internal wave–wave interactions frequently occur in oceans, few
studies were focused on this topic. In the present paper, following the previous work on
V-shaped internal solitons (Yuan et al. 2018a), another type of oblique soliton interaction,
the evolution of an initial X-shaped pattern, has been thoroughly investigated. Unlike the
diffraction of a truncated solitary wave and the evolution of a partially bent solitary wave,
the oblique interactions of X-shaped internal waves show a similarity between the mBL
equation and the KP equation, and no perceptible disparities emerge except for slight
differences in amplitude. It is striking that the KP equation does an excellent job of
describing the dynamics, which may be attributed to the particularity of the problem under
study, limiting the free propagation of waves in the y-direction. In reality, the evolution
can be classified into three regimes by the amplitudes and inclination angles of the two
branches, where peculiar patterns have been presented, for instance, phase shifts and
generation of the trapezium. However, when waves are allowed to propagate freely in
the y-direction, which simulates internal waves in the open ocean, the aforementioned
peculiar wave patterns are thoroughly disrupted. Instead, a leading wave is followed by
two curved trailing branches between which there exist wave trains of opposite polarity.
Moreover, in these scenarios, the discrepancies between the KP equation and the mBL
equation are conspicuous, and the topographic effects become significant in modulating
the wave evolution.

In this paper, we modify the classic Benney–Luke equation by including topographic
effects. In the derivation, the topography is assumed to be of the same order as the wave
amplitude. Hinging on this premise, we point out that the shoaling topography and the
topography with transverse variations can decrease the wave speed, augment the wave
amplitude and modulate the waveform. Nonetheless, a large amount of observational
data imply that large topography can modulate wave propagation to a large extent. This
scenario is excluded from the present paper owing to the smallness assumption on bottom
topography in the mBL equation. The effects of large topography on internal wave
propagation are of great interest and merit further exploration. In addition, Shimizu &
Nakayama (2017) studied the effects of the Earth’s rotation and undersea topography on
oblique interactions between internal solitary waves in the Andaman Sea. They found
that the Earth’s rotation has little impact on oblique wave–wave interactions. Considering
the low latitude (∼9◦N) they investigated, their work inspires us to explore further the
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influence of the Earth’s rotation at high latitudes, say the South China Sea (∼22◦N), one
of the hot-spot regions for studying internal waves, or even the Weddell Sea (∼75◦S), as
shown by Robertson (2001).
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