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ABSTRACT

Direct numerical simulations of a turbulent channel flow developing over convergent–divergent (C–D) riblets are performed at a Reynolds
number of Reb ¼ 2800, based on the half channel height d and the bulk velocity. To gain an in-depth understanding of the origin of the drag
generated by C–D riblets, a drag decomposition method is derived from kinetic energy principle for a turbulent channel flow with wall
roughness. C–D riblets with a wavelength, K, ranging from 0:25d to 1:5d, are examined to understand the influence of secondary flow
motions on the drag. It is found that as K increases, the intensity of the secondary flow motion increases first and then decreases, peaking at
K=d ¼ 1. At K=d � 1, some heterogeneity appears in the spanwise direction for the turbulent kinetic energy (TKE) and vortical structures,
with the strongest enhancement occurring around regions of upwelling. All the riblet cases examined here exhibit an increased drag com-
pared to the smooth wall case. From the energy dissipation/production point of view, such a drag increase is dominated by the TKE produc-
tion and the viscous dissipation wake component. While the drag contribution from the TKE production shear component decreases as K
increases, the drag contribution from the wake component of both the TKE production and viscous dissipation follows the same trend as the
intensity of the secondary flow motion. From the work point of view, the drag increase in the riblet case at K=d ¼ 0:25 comes mainly from
the work of the Reynolds shear stresses, whereas at K=d � 1, the drag augmentation is dominated by the work of the dispersive stresses. At
K=d ¼ 0:5, both components play an important role in the increase in the drag, which also exhibits a peak.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080867

I. INTRODUCTION

Convergent–divergent (C–D) riblets are composed of sections of
left- and right-tilted grooves arranged in an alternating manner in the
spanwise direction (see Fig. 1). They are a type of spanwise heteroge-
neous roughness patterns, which mimic the surface structures found on
sharks’ skin1 and on the secondary flight bird feathers.2 C–D riblets have
received an increasing amount of research attention in recent years,3–7

and they have been found to be capable of mitigating flow separation.8,9

C–D riblets were first studied experimentally by Koeltzsch et al.1

in a turbulent pipe flow. They were found to cause spanwise variations
of the streamwise velocity in the circumferential direction. Nugroho
et al.10 observed time-averaged large-scale secondary flow motions
(roll modes) in the cross-stream plane over the ribleted strips, by using
hot-wire measurement in a turbulent boundary layer flow. The sec-
ondary flow motions led to a spanwise variation in the boundary layer,

with a thinner/thicker boundary layer occurring in regions of downw-
elling/upwelling. Kevin et al.5 investigated the behavior of coherent
structures using large field of view particle image velocimetry
(LF-PIV) technique in a turbulent boundary layer developing over
C–D riblets. Their results revealed that the mean large-scale roll modes
were a time-averaged artifact of the unsteady and spanwise asymmet-
ric secondary flow motions.

Quan et al.8 applied an array of ribleted strips near the leading
edge of a double ramp. They showed that the C–D riblets could miti-
gate shock-induced flow separation in a Mach 5 freestream.
Investigating an array of C–D riblets fitted on the suction surface of
diffuser blades in a linear cascade, the experimental results from Liu
et al.9 showed a reduction in up to 36.4% in the pressure loss coeffi-
cient. These researchers attributed the control effect to the momentum
mixing induced by the large-scale roll mode generated by C–D riblets.
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Most the studies of C–D riblets so far have been focused on the
characterization of the large-scale roll mode, i.e., characterizing its gen-
eral behavior and impact on the boundary layer. Consequently, much
less attention has been placed in understanding the underlying drag
generation mechanisms. Benschop et al.11 conducted a series of direct
numerical simulations (DNSs) in a turbulent channel flow over C–D
riblets at a Reynolds number of Reb ¼ 2750, based on the half channel
height and the bulk velocity. They reported that using C–D riblets led
to an increase in drag and attributed this to the enhanced momentum
exchange caused by the large scale secondary flow motions. Guo
et al.12 undertook detailed numerical simulations of a fully developed
laminar channel flow in which a section of C–D riblets was applied
upstream of a backward-facing rounded ramp at a Reynolds number
of Reb ¼ 400 based on the inlet channel height and the bulk velocity.
They found that a stronger roll mode not only led to a greater control
effect but also was accompanied by a greater pressure loss or drag.
This calls for further research in order to understand the underlying
drag generation mechanisms induced by C–D riblets, and the role of
the large scale secondary flow motions on the drag characteristics.

As a wall property, drag is commonly calculated via an integra-
tion of surface pressure and shear stress distributions. It is also known
that statistical turbulence quantities play an important role in drag
generation.13,14 Fukagata et al.15 proposed a momentum-based
method to establish an explicit relation between drag coefficient and
spatial distributions of Reynolds shear stresses for smooth-wall flows
(denoted as the FIK method). This drag decomposition method has
been applied to examine a number of flow control methods, including
opposition control,15 uniform wall blowing/suction,16 alternation of
the slip boundary condition,17 and spanwise wall oscillation.18 It pro-
vides some new insights of the physical mechanisms of drag genera-
tion in the respective flows. An alternative drag decomposition
method based on energy balance was proposed by Renard and Deck.19

They decomposed the skin friction for wall-bounded flows into the
contributions of molecular viscous dissipation, production of turbulent
kinetic energy (TKE) and spatial growth of the flow (denoted as the
RD method). They used this method to explore the influence of the
Reynolds number on mean skin friction generation. They found that
while the skin friction at high Reynolds numbers was dominated by
TKE production within the logarithmic layer, the buffer-layer dynam-
ics played a dominant role at low Reynolds numbers. Li et al.20

extended this method to analyze the effect of compressibility on drag.

The original FIK and RD methods were developed for analyzing
smooth-wall flows. Peet and Sagaut21 extended the FIK method to
allow homogeneous surfaces of any shape, where the drag is decom-
posed into bulk, asymmetric, pressure, transient, and turbulent contri-
butions. They used this method to analyze the influence of different
dynamic effects on a skin friction modification by longitudinal riblets.
Recently, Nikora et al.22 extended the FIK method to study open-
channel flows with spanwise heterogeneous roughness patterns,
whereby the drag is divided into the contributions of viscous,
Reynolds, and dispersive stresses, respectively. They found that, as the
Reynolds number increased, while the drag contribution of the viscous
stresses reduced sharply, the dispersive and Reynolds stresses contin-
ued to play a dominant role in drag generation. In their method, an
additional parameter N, which is related to roughness shape/size, wall
shear stress, and the so-called drag length scale and depth-roughness
length scale, was introduced to characterize the flow-rough-bed inter-
actions. Setting up N is not a straightforward task,22 especially because
its value depends on the roughness pattern. This motivates the need
for the derivation of a universal drag decomposition method.

In this paper, the original RD method is extended for the first
time to a turbulent flow in a channel with wall roughness. The drag
coefficient is decomposed into physics-informed contributions from
several flow field moments without inclusion of any additional param-
eter. The flow field data used in our drag analyses are produced by
DNSs of a turbulent channel flow over C–D riblets at a Reynolds num-
ber of Reb ¼ 2800 based on the half channel height d and the bulk
velocity. C–D riblets with a wavelength of 0:25d–1:5d are investigated
in order to introduce secondary flow motions with different scales and
strengths to the flow. Two drag expressions, based on the drag decom-
position method, are derived and applied to gain an in-depth under-
standing of the origin of the drag generated by C–D riblets. One
expression is based on energy dissipation/production considerations,
whereby the drag contributions from the viscous dissipation at the
wall-normal plane-averaged and wake level as well as the turbulent
production are looked at; the other one is based on the work point of
view, whereby the drag is decomposed into contributions from the
work done by the viscous and pressure forces, the Reynolds shear
stresses and the dispersive stress, respectively. The objectives of this
study are twofold: (1) to propose a new energy-based drag decomposi-
tion method, which can be used to analyze the drag in a turbulent
channel flow developing over wall roughness and (2) to provide an

FIG. 1. (a) Computational domain with
C–D riblets mounted on the bottom and
top walls of a channel showing the sym-
metry with respect to the channel center
plane. (b) Zoom of the computational
domain to show the geometry parameters.
The layout here is for the riblet case with
K ¼ 1:5d.
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insight of the drag generation mechanism of C–D riblets by identifying
the role that the secondary flow plays in drag generation.

II. METHODOLOGY
A. C–D riblet parameters

The computational domain of the turbulent channel flow is
shown in Fig. 1(a) with the local enlarged drawing shown in Fig. 1(b).
C–D riblets are mounted to the bottom and top walls, and they are
symmetrical with respect to the channel center plane. The streamwise,
wall-normal, and spanwise directions of the coordinate system are
denoted by x1, x2, and x3, respectively, and the corresponding velocity
components are u1, u2, and u3. The computational domain size is the
same for all the cases with the streamwise length L ¼ 12d, the channel
height H ¼ 2d, and the spanwise width W ¼ 6d, where d is half of
the channel height.

C–D riblets are made of strips of left- and right-tilted grooves in
the spanwise direction. From the view of the incoming flow, the
streamwise line adjacent to the ribleted strips diverges away from the
diverging line (DL), while the lines adjacent to the strips tend to con-
verge toward each other. It is called the converging line (CL) and
shown in Fig. 1(b). The angle that the riblet passage forms with the x1-
axis is referred to as the yaw angle c. In this paper, c is set to 30� for all
the riblet cases. The spanwise width of two adjacent DL or CL is the
wavelength (K), and a parametric study of K is carried out in this
paper withK=d ¼ 0.25, 0.5, 1, and 1.5, respectively. Riblets with trape-
zoidal cross sections are used; the riblet height h, spacing s, and ridge
angle a are h ¼ d=36; s ¼ 6h and a ¼ 53�, respectively.

B. Numerical method

The in-house code ASTR23–25 is used to perform all the direct
numerical simulations. The three-dimensional unsteady Navier–Stokes
equations in a non-dimensional form are solved numerically in a

generalized coordinate system within the framework of the finite-
difference method. The spatial derivatives are approximated using
a sixth-order compact central scheme.26 The second derivatives
present in the diffusive terms are not directly calculated. The veloc-
ity components and temperature are differentiated first to express
the stress tensor and the heat flux vector at each node point. The
diffusion terms are then computed by applying a second time the
finite-difference scheme on the stress and heat flux. After all
the spatial terms are solved, an explicit time-scheme, which is the
third-order three-stage Runge–Kutta method, is used for temporal
integration.

Periodic boundary conditions are applied in the streamwise and
side directions, while on the bottom and top wall, isothermal no-slip
boundary conditions are enforced. A body force drives the flow in the
streamwise direction with a constant flow rate. The mesh is made of
hexahedral cells for the whole computational domain, and the number
of grid points in each direction is shown in Table I for each case. The
mesh topology is shown in Fig. 2(a), where the grid is plotted every
tenth grid line in each direction. The mesh distribution of the near
wall region in the longitudinal (x1 � x2) plane is further displayed in
Fig. 2(b), where the mesh is orthogonal in the vicinity of the riblet
grooves. The first grid point away from the wall is located within
xþ2 � 0:3, where xþ2 is the non-dimensional distance from the wall to
the first fluid grid point.

The bulk Reynolds number is defined as Reb ¼ Ubd=�, where Ub

is the bulk velocity and � is the kinematic viscosity of the fluid. For all
the cases Reb ¼ 2800. The friction Reynolds number Res ¼ Usd=�,
where Us is the friction velocity is set to Res ¼ 180 for the baseline
case without riblets. The Mach number based on the bulk velocity and
speed of sound at the wall is 0.2. Therefore, the present research is
restricted to a low Reynolds number and an incompressible regime.
The riblet height and spacing scaled in wall units of the baseline case
are hþ ¼ hUs=� ¼ 5 and sþ ¼ sUs=� ¼ 30, respectively.

TABLE I. Computational domain size and mesh distributions for all the DNS cases. The superscript “+” denotes the variables in wall units, calculated from the wall friction veloc-
ity of the baseline case (Us).

Case Reb Res L=d W=d K=d Nx1 Nx2 Nx3 Dxþ1 Dxþ2 Dxþ3

Baseline 2800 180 12 6 216 154 270 10 0.3–4 4
Riblet 2800 12 6 0.25,0.5,1,1.5 2160 154 560 1 0.1–4 1.9

FIG. 2. (a) Snapshot of the computational
domain with the mesh plotted every tenth
grid line in each direction. (b) Mesh distri-
bution near the bottom wall in the
(x1 � x2) plane. The mesh is for the riblet
case at K ¼ 1:5d.
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C. Averaging methodology

For the flows investigated in this paper, which are all incompress-
ible, Reynolds averaging is applied. The ith instantaneous velocity
component, ui (i¼ 1, 2, 3), is written as ui ¼ �ui þ u0i, where �ui is the
time-averaged velocity and u0i is the time-fluctuating component. The

Reynolds stress tensor is expressed as u0iu0j , and the TKE is k ¼ 1
2 u

0
iu

0
i .

(Einstein notation is applied with summation on repeated indices.)
For the turbulent flow over roughness, the intrinsic spatial aver-

age27 is conducted and denoted here by angle brackets,

hHix1ðx2; x3Þ ¼
1

wðx2; x3ÞL
ð
L
Hðx1; x2; x3Þdx1; (1a)

hHix1x3ðx2Þ ¼
1

/ðx2ÞLW
ð ð

LW
Hðx1; x2; x3Þdx1dx3; (1b)

where H represents any variable, such as the mean velocity compo-
nent �ui; h�ix1 denotes the intrinsic average in the x1 direction; h�ix1x3
indicates averaging in the (x1 � x3) plane (the subscript is omitted
hereafter for simplicity); wðx2; x3Þ is the ratio of length occupied by
the fluid to the length (L) in the x1-direction, while /ðx2Þ is the ratio
of area occupied by the fluid to the total area (LW) in the wall-parallel
plane.

Based on the time- and space-average, a triple decomposition of
the velocity is introduced,28–30

uiðx1; x2; x3; tÞ ¼ h�uiiðx2Þ þ ~�u iðx1; x2; x3Þ þ u0iðx1; x2; x3; tÞ; (2)

where ~�u iðx1; x2; x3Þ denotes the dispersive velocity component (wake
component) in the wall-parallel plane.

D. Validation of the computational method

To validate the present computational method, the profiles of the
mean velocity and Reynolds stress (normalized by the friction velocity
Us) in the baseline case without riblets are compared with the incom-
pressible DNS data of Moser et al.31 Figure 3 shows that the results
between the present DNS and reported by Moser et al.31 match very
well. A closer examination of the Reynolds stress shows that the maxi-

mum difference is observed for the u0iu0j
þ
around the peak, and the

corresponding error is less than 0.2%. It proves that the simulation
method applied in this paper is adequate.

E. Grid-independence study

To ensure that the mesh resolution is sufficient for the flow
field analysis, a grid-independence study is performed for the
riblet case of K=d ¼ 0:5. Three cases with coarse/medium/fine
meshes are used with their mesh topology shown in Fig. 2. The
mesh size and grid point number shown in Fig. 2 and Table I
are given for the fine-mesh case. The grid size in the wall-
normal direction is the same for the three cases, while in the
other two directions, the grid size of the medium- and fine-
meshes is twice and four times as that of the coarse-mesh case,
respectively.

Figure 4 shows the profiles of the streamwise velocity as well
as the turbulent kinetic energy k and Reynolds stress �u01u02 in the
riblet case at K=d ¼ 0:5 with different mesh densities. As the mesh
resolution increases, the profiles for the three different simulations
tend to fall on top of each other, and the results for the medium-
mesh and fine-mesh cases are very close to each other. The con-
tours of the mean streamwise velocity with in-plane velocity vec-
tors in the cross-stream plane of the lower half part of channel
flow are displayed in Fig. 5. Here and hereafter, only one wave-
length in the spanwise direction is drawn for clarity. Figure 5
shows that no distinguishable differences can be seen in the results
between the medium- and fine-mesh cases. Therefore, the fine-
mesh case’s resolution is considered as being sufficient for all the
simulations and is used to produce the results presented in the fol-
lowing flow analysis.

III. DRAG DECOMPOSITION IN A FULLY DEVELOPED
FLOW IN A CHANNELWITHWALL ROUGHNESS

In this section, the drag decomposition for a streamwise-periodic
incompressible turbulent flow in a channel with periodic wall rough-
ness is derived, based on the kinetic energy equation, under the follow-
ing working conditions:

(A) constant flow rate in the streamwise direction,
(B) no-slip velocity at the wall,
(C) periodic roughness with respect to streamwise and side planes,
(D) symmetric roughness with respect to side planes.

As a result, the following relation is satisfied,

FIG. 3. Profiles of (a) the mean velocity
and (b) Reynolds stress (normalized by Us)
in the baseline case at Reb ¼ 2800 (Res
¼ 180). �uþ1 ¼ �u1=Us; xþ2 ¼ x2Us=�;

u0i u
0
j
þ ¼ u0i u

0
j =U

2
s .
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@h�uii
@x1

¼ 0;
@h�uii
@x3

¼ 0; h�u2i ¼ 0;

h�u3i ¼ 0;
@h�uii
@xi

¼ 0;
@~�u i

@xi
¼ 0;

(3)

where the continuity equation @�ui
@xi

¼ 0 is applied; h�u2iðx2Þ ¼ 0 is
obtained by integrating the continuity equation across the fluid
domain below x2 with the aid of the Gauss’s Theorem.

The time-averaged momentum equation is expressed as

@�ui

@t
þ �uj

@�ui

@xj
¼ 1

q
di1�f 1 �

1
q
@�p
@xi

þ �
@

@xj

@�ui

@xj

 !
� @u0iu0j

@xj
; (4)

where q and p are the density and pressure of the flow, respectively; �f 1
denotes the uniform body force that drives the flow in the streamwise
direction. For the present streamwise- and spanwise-periodic fully
developed channel flows, @�ui

@t is zero. Multiplying this equation by �ui and
rearranging some terms, the integral form of the transport equation for
the mean kinetic energy per mass unit K � �ui�ui=2 is expressed as

ð
Vf

@

@xj
�ujK þ �uj�p

q
þ �uiu0iu0j � �

@K
@xj

" #
dV

¼
ð
Vf

� �
@�ui

@xj

@�ui

@xj
þ u0iu0j

@�ui

@xj
þ �u1

q
�f 1dV ; (5)

where Vf is the volume of the fluid domain and the following equation
has been applied:

�ui
@

@xj

@�ui

@xj

 !
¼ @

@xj
�ui
@�ui

@xj

 !
� @�ui

@xj

@�ui

@xj
¼ @

@xj

@K
@xj

 !
� @�ui

@xj

@�ui

@xj
:

(6)
Using the assumption presented above and with the aid of the

Gauss’s Theorem, the left-hand side of Eq. (5) becomesð
Vf

@

@xj
�ujK þ �uj�p

q
þ �uiu0iu0j � �

@K
@xj

" #
dV

¼
þ
Sf

�ujK þ �uj�p

q
þ �uiu0iu0j � �

@K
@xj

" #
njdS ¼ 0 ; (7)

where Sf denotes the surface enclosing the fluid domain and ~n
¼ ðn1; n2; n3Þ is the outward-pointing unit normal at each point of
the boundary surface. From the physics point of view, Eq. (7) indicates
that convection and diffusion of the mean kinetic energy have no
influence on its overall integral if the flow assumptions set in this work
are considered.

Since the volume force is constant across the whole domain,ð
Vf

�u1
�f 1dV ¼ �f 1

ð
Vf

�u1dV ¼ �f 1Vf Ub: (8)

FIG. 5. Contours of the streamwise veloc-
ity superimposed with in-plane velocity
vectors in cross-stream planes for the rib-
let case at K=d ¼ 0:5 using the (a)
coarse mesh, (b) medium mesh, and (c)
fine mesh, respectively.

FIG. 4. Profiles of (a) the mean velocity
and (b) turbulent kinetic energy k and
Reynolds stress �u01u

0
2 in the riblet case

of K=d ¼ 0:5 with three different mesh
densities.
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As a result, Eq. (5) is expressed as

1
q
�f 1Vf Ub ¼

ð
Vf

�
@�ui

@xj

@�ui

@xj
dV þ

ð
Vf

� u0iu0j
@�ui

@xj
dV : (9)

Equation (9) is a power equation and can be interpreted as the
energy balance of the mean motion. The term on the left-hand side
represents the rate of work done by the body force in the fluid domain.
It is balanced by two parts on the right-hand side: one directly dissi-
pated by the mean flow and the other one converted into turbulent
kinetic energy production, which is ultimately converted into internal
energy via turbulent dissipation.

Integrating the x1-momentum equation in Eq. (4) across the fluid
domain and applying a similar method as displayed above with the aid
of the Gauss’s Theorem, leads to the following force balance in the x1-
direction for the present streamwise-periodic flow:

�f 1Vf ¼ Fwall ¼ CD0:5qU
2
bA; (10)

where CD denotes the drag coefficient; A ¼ 2LW is the reference area;
and Fwall represents the total drag force acting on the top and bottom
wall, which can be obtained via wall surface integration of pressure
and shear stress. By combining Eqs. (9) and (10), the drag coefficient
CD in a turbulent channel flow can be expressed as

CD ¼ 1
U3
b LW

ð
Vf

�
@�ui

@xj

@�ui

@xj
dV þ 1

U3
b LW

ð
Vf

ð�u0iu0j Þ
@�ui

@xj
dV : (11)

For wall roughness that are symmetrical with respect to the chan-
nel center plane (e.g., C–D riblets), the drag coefficient in Eq. (11) can
be calculated using the lower half part of the channel flow. By applying
the wall-parallel plane average defined in Eq. (1b), Eq. (11) reads

CD ¼ 2
U3
b

ðd
0
�

�
@�ui

@xj

@�ui

@xj

�
dx2 þ 2

U3
b

ðd
0

�
� u0iu0j

@�ui

@xj

�
dx2 : (12)

Equation (12) provides an alternative way to calculate the drag
coefficient. In comparison with the conventional methods, which rely
on wall surface integration of the tangential and normal forces, the
present method provides more detailed information about the location
and physical parameters of the energy losses. It is expected to lead to a
new understanding of the drag characteristics by extracting more
information from the flow field.

For the fully developed flow in a channel with smooth wall, the
drag coefficient becomes

CD ¼ 2
U3
b

ðd
0
�

@�u1

@x2

� �2

dx2 þ 2
U3
b

ðd
0
ð�u01u02Þ

@�u1

@x2
dx2 : (13)

IV. RESULTS AND DISCUSSION

In this section, the influence of the C–D riblets on the mean
velocity field and turbulent structures is examined first. Then, the drag
characteristics are analyzed from two perspectives, using the proposed
drag decomposition method.

A. Flow characteristics

The contours of the mean streamwise velocity with in-plane
velocity vectors in the cross-stream plane of the lower half part of the

channel flow are displayed in Fig. 6. Contours of the streamwise veloc-
ity in the baseline case are also provided in Fig. 6(e) for comparison.
All contours presented in this paper are shown with streamwise aver-
aging, defined in Eq. (1a). For all the riblet cases, secondary flow
motions characterized by rotating vortices are observed, with an
downward/upward motion achieved around the DL/CL. This is con-
sistent with the stereoscopic particle image velocimetry experiments of
Kevin et al.3 and Xu et al.,32 carried out in the turbulent boundary
layer flow developing over C–D riblets.

The spanwise velocity near the riblet valleys induced by the
yawed grooves acts as the driving force for the rotating vortices in the
cross-stream plane. To satisfy mass conservation, a downward and
upward motion occurs near the DL and CL, respectively. For the riblet
case at K/d ¼ 0:25, there is not enough spanwise space to enable the
development of the spanwise velocity between the longitudinal planes
over the DL and CL [see Fig. 8(a)], where the spanwise velocity is zero
because of the geometric symmetry. Consequently, the intensity of the
secondary roll mode is relatively weak, and confined in the near wall
region, its vortex center being located below x2=d ¼ 0:05. As the
wavelength increases, there is a growing space for the spanwise velocity
[see Fig. 8(a)] to increase and the roll motion to develop. The size and
intensity of the secondary roll motion tend to increase, and the vortex
center moves gradually further away from the wall. The upward
motion around the CL takes the low-momentum fluid away from the
wall, leading to the low velocity region nearby. In contrast, the down-
ward motion transports the high-speed fluid toward the wall and con-
tributes to the increase in the velocity. As a result, a variation of the
streamwise velocity in the spanwise direction is observed with increas-
ing/decreasing velocity observed around the DL/CL, respectively.

Figure 7 presents the contours of the mean streamwise vorticity
X1 along with in-plane velocity vectors in the cross-stream plane. For
each riblet case, large secondary flows characterized by a pair of
wavelength-scale counter-rotating vortices are observed above the rib-
let crests. For the riblet case at K/d ¼ 0:25, the region with high mag-
nitude of X1 is confined below x2=d ¼ 0:15, while at K=d ¼ 1:0 and
1.5, the region is up to x2=d ¼ 0:3, owing to the increased spanwise
space to enable X1 to develop between DL and CL. Figure 8(a) shows
that the magnitude of �u3 (average in the wall-normal plane from
x3=K ¼ 0 to x3=K ¼ 0:5) reaches its maximum around x2=d ¼ 0:02,
where the sign of @�u3

@x2
changes. @�u3

@x2
is the main contributor of X1, and

the induced sign of X1 below the riblet crests is opposite to that above
the riblet crests.

The strength of the secondary flows generated by the C–D riblets
is quantified by integrating jX1j and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2
2 þ �u2

3

p
across the fluid

domain, namely,

C1 ¼ 1
Vf

ð
Vf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2
2 þ �u2

3

q
=Ub dV ; (14a)

C2 ¼ 1
Vf

ð
Vf

jX1jd=Ub dV : (14b)

Figure 8(b) shows that both C1 and C2 increase initially with K
to a maximum and then decrease, peaking at K=d ¼ 1. This finding is
consistent with that in ridge- and strip-type spanwise heterogeneous
roughness patterns observed by Vanderwel et al.,33 Chung et al.,34 and
Wang et al.35 In their studies, they found that the large-scale roll
motion is most pronounced when the spanwise wavelength equals
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approximately to the characteristic length scale (e.g., boundary layer
thickness in boundary layer flows). Note that the roll motion induced
by these two roughness patterns belongs to the secondary flow of
Prandtl’s second kind, produced by turbulence heterogeneity.36 In

contrast, the roll motion induced by the C–D riblets comes from the
yawed grooves that drive the near-wall fluid deviating away from the
streamwise direction, belonging to the secondary flow of Prandtl’s first
kind (also known as geometry-driven secondary flow). For each kind

FIG. 6. Contours of streamwise velocity
superimposed with in-plane velocity vec-
tors in cross-stream planes for riblet cases
with (a) K=d ¼ 0:25, (b) K=d ¼ 0:5, (c)
K=d ¼ 1, and (d) K=d ¼ 1:5, and (e)
baseline case. The dashed line denotes
the vertical position of the riblet crest.

FIG. 7. Contours of streamwise vorticity
superimposed with in-plane velocity vec-
tors in cross-stream planes for riblet cases
with (a) K=d ¼ 0:25, (b) K=d ¼ 0:5, (c)
K=d ¼ 1, and (d) K=d ¼ 1:5, and (e)
baseline case. The dashed line denotes
the vertical position of the riblet crest.
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of roughness patterns, the evolution of the intensity of the roll motion
follows the same variation trend as the spanwise wavelength.

The mean velocity gradient @h�u1i
@x2

is shown in Fig. 8(c). Compared
with the baseline case, the main difference for @h�u1i

@x2
for the riblet cases

appears around the riblet crest where @h�u1i
@x2

peaks and shows an
increase.

B. Turbulent structures

The influence of the C–D riblets on the instantaneous turbulent
structures is examined, using the kci-criterion.

37 Figure 9 displays the
instantaneous iso-surfaces of swirling strength kci, colored by the posi-
tive (red color) and negative (blue color) streamwise vorticity x1 for
the different cases. In comparison with the baseline case, a significantly
increased number of vortical structures is observed in all the riblets
cases, despite the small riblet height with hþ ¼ 5, the vortex amplifica-
tion decreasing as the wavelength increases. For the riblet case at
K=d ¼ 0:25, the instantaneous structures with positive and negative
vorticity seem to randomly distribute across the channel. In contrast,
at K=d ¼ 1:5, some heterogeneity is observed for the turbulent struc-
tures in the spanwise direction, these structures being concentrated
around the upwelling region. This can be attributed to the accumula-
tion of the near-wall turbulence-rich fluid and its upward motion.
Similar results have been found in flows with large-scale roll mode
induced by ridge-type spanwise heterogeneous surface pattern,28 active
wall actuation,25 and C–D riblets with spanwise-varied riblet height.11

The strong instantaneous vortical structures contribute to the
increase in turbulent kinetic energy k. As a result, for the riblet cases at
K=d ¼ 0:25 and K=d ¼ 0:5, k exhibits a substantial increase across
the whole span, as observed by comparing Figs. 9(b) and 9(c) and 10
(b) and 10(c). As the wavelength increases to K=d ¼ 1:5, the enhance-
ment of k occurs mainly around the converging region with a reduc-
tion in a narrow vertical region near the diverging line. Such a
spanwise heterogeneity of k is due to the downwelling and upwelling
generated by the large-scale secondary flow. This is different from the
flow over homogeneous roughness where no large-scale secondary
flow is produced and where the heterogeneity is only present in the
vicinity of the rough wall.38

C. Drag analysis using the drag decomposition
method

In this section, the drag characteristics are analyzed based on the
proposed drag decomposition method given in Eq. (12), where the drag
coefficient CD is decomposed into CD;v and CD;k, resulting from the
time-averaged viscous dissipation and turbulent production. CD and its
two components are shown in Fig. 11(a) for all the cases. The difference
observed in the drag coefficient between the results using Eq. (12), and
the conventional method via the wall surface integration of the pressure
and shear stress is also presented. A comparison shows an error of less
than 1%. Compared to the baseline case, CD, CD;v , and CD;k for the riblet
cases are significantly higher, and CD peaks at K=d ¼ 0:5. As the wave-
length increases, while CD;v follows the same variation trend as C with
the peak atK=d ¼ 1; CD;k shows a decreasing trend.

In order to better understand the mechanism of drag augmenta-
tion induced by C–D riblets, a further decomposition of the drag coef-
ficient is performed, based on the triple decomposition of the velocity
given in Eq. (2). Substituting Eq. (2) into Eq. (12) gives

CD¼ 2
U3
b

ðd
0
/�

@h�u1i
@x2

@h�u1i
@x2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

hvai

dx2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CD;va

þ 2
U3
b

ðd
0
/�

�
@~�u i

@xj

@~�u i

@xj

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
hvdi

dx2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CD;vd

þ 2
U3
b

ðd
0
/2�

@h�u1i
@x2

�
@~�u 1

@x2

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

hvii

dx2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CD;vi

þ 2
U3
b

ðd
0
/h�u01u02i

@h�u1i
@x2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

hPksi

dx2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CD;ks

þ 2
U3
b

ðd
0
/

�
�u0iu0j

@~�u i

@xj

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
hPkwi

dx2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CD;kw

; (15)

where CD;v is decomposed into CD;va; CD;vd , and CD;vi, denoting the
contribution from the viscous dissipation at the wall-normal

FIG. 8. (a) Profile of the wall-normal plane-averaged (within half wavelength from x3=K ¼ 0 to x3=K ¼ 0:5) spanwise velocity. (b) Variations of C1 and C2 with an increasing
riblet wavelength. (c) Profile of the wall-normal plane-averaged mean velocity gradient @h�u1i@x2

. The vertical dashed line denotes the position of riblet crest.
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plane-averaged (hvai) and wake level (hvdi) as well as their interaction
(hvii), respectively; CD;k splits into CD;ks and CD;kw, arising from the
shear component Pks and wake component Pkw of the TKE produc-
tion, respectively. Since the energy generated by the TKE production is
ultimately transformed into heat via turbulent dissipation, Eq. (12) can
be regarded as the relation between the drag coefficient and the energy
dissipation.

The components of CD;v for all the cases are presented in
Fig. 11(b). For the baseline case, CD;vd and CD;vi are expected to be
zero. In comparison with the baseline case, CD;vd makes the domi-
nant contribution to the drag increment for all the riblet cases,
while CD;va and CD;vi have much less influence. It is worth noticing
that CD;va follows the same variation as C’s as a function of K.

The contours of the wake component of the viscous dissipation
[vd, defined in Eq. (15)] in the cross-stream plane are presented in
Fig. 12. For the riblet cases, the intensity of vd is significantly increased
in the vicinity of the riblet grooves with the peak obtained around the
riblet crests. This indicates that a significantly increased dissipation of
the mean kinetic energy into heat occurs nearby. The increased vd is
mainly observed near the DL, resulting from the high shear stress
caused by the downwelling. As the wavelength increases from K=d
¼ 0:25 to K=d ¼ 1, the intensity of the downwelling around DL (see
Fig. 6) and the resultant vd tend to increase (see Fig. 12). Figure 12(f)
presents the vertical profiles of vd with its magnitude averaged in the
wall-normal plane. As K varies, the intensity of vd [see Fig. 12(f)] and
the resultant CD;vd [see Fig. 11(b)] for the riblet cases follow the same

FIG. 9. Iso-surfaces of the swirling
strength kci for (a) the baseline case with
kcid=Ub ¼ 4, and riblet cases with
kcid=Ub ¼ 8 at (b) K=d ¼ 0:25, (c)
K=d ¼ 0:5, (d) K=d ¼ 1, and (e)
K=d ¼ 1:5 for the lower half channel.
Only the results for the half width of the
computational domain in the spanwise
direction are presented for simplicity. The
iso-surfaces are colored by the instanta-
neous streamwise vorticity x1; the red/
blue colors indicate the positive/negative
values of x1.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 025115 (2022); doi: 10.1063/5.0080867 34, 025115-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


variation trend with that of C, peaking atK=d ¼ 1. With a closer exam-
ination of the region with high vd in Fig. 12, it is found that as K
increases, the region becomes narrower in the spanwise direction. This
can be explained from Fig. 6. For the riblet cases at K=d ¼ 0:25 and
K=d ¼ 0:5, a downward motion around the riblet crests is observed
from x3=K ¼ 0 (DL) to x3=K ¼ 0:25 (middle of DL and CL). In con-
trast, at K=d ¼ 1:5, the downward motion around the riblet crests only
occurs from the DL to x3=K ¼ 0:1. Consequently, with the increase in

K, the non-negligible regions with high vd caused by the downwelling
become narrower around the DL in the spanwise direction.

The components of CD;k for all the cases are presented in Fig.
11(c). In comparison with the baseline case, both CD;ks and CD;kw

for the riblet cases are significantly increased. CD;ks results from the
shear production of TKE, Pks, caused by the Reynolds shear stress
�u01u02 . Figure 13 displays the contours of �u01u02 in cross-stream
planes for all cases. For the riblet cases at K=d ¼ 0:25 and

FIG. 10. Contours of turbulence kinetic
energy k in cross-stream planes for (a)
baseline case and riblet cases with (b)
K=d ¼ 0:25, (c) K=d ¼ 0:5, (d)
K=d ¼ 1, and (e) K=d ¼ 1:5. The
dashed line denotes the vertical position
of riblet crest.

FIG. 11. (a) The drag coefficient CD and its decomposition terms defined in Eq. (12). Further decomposition of (b) CD;v and (c) CD;k defined in Eq. (15). Each term is normal-
ized by CD;0, the drag coefficient of the baseline case.
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FIG. 12. Contours of viscous dissipation at the wake level vd in cross-stream planes for (a) baseline case and riblet cases at (b) K=d ¼ 0:25, (c) K=d ¼ 0:5, (d) K=d ¼ 1,
and (e) K=d ¼ 1:5. (f) Profile of wall-normal plane-averaged viscous dissipation that is related to the dispersive velocity. The dashed line denotes the vertical position of the
riblet crest.

FIG. 13. Contours of Reynolds shear
stress �u01u

0
2 in cross-stream planes for

(a) baseline case and riblet cases with (b)
K=d ¼ 0:25, (c) K=d ¼ 0:5, (d)
K=d ¼ 1, and (e) K=d ¼ 1:5. The
dashed line denotes the vertical position
of the riblet crest.
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K=d ¼ 0:5, the intensity of �u01u02 is significantly increased across
the span in comparison with the baseline case. This is in agreement
with the large number of turbulent structures (see Fig. 9). As a
result, the intensity of �u01u02 and the resultant Pks is significantly
increased, as seen in Fig. 14. In comparison, Pks at K=d ¼ 0:25 is
much larger than that at K=d ¼ 0:5 below x2=d ¼ 0:2, owing to
the larger �u01u02 at x2=d < 0:1 [see Fig. 14(a)] and larger shear
stress at 0:1 < x2=d < 0:2 [see Fig. 8(c)]. Above x2=d ¼ 0:2, Pks at
K=d ¼ 0:5 is slightly larger, resulting from the larger �u01u02 [see
Fig. 14(a)].

For riblet cases at K=d ¼ 1 and K=d ¼ 1:5, some heterogeneity
is observed in the spanwise direction, for �u01u02 . This is caused by the
downwelling/upwelling induced by the large-scale secondary flow
motion, which size and intensity is much larger than that at K=d
¼ 0:25 and K=d ¼ 0:5. Around the DL, �u01u02 decreases slightly
below x2=d < 0:4, while near the CL �u01u02 is significantly increased,
resulting from the accumulation of near-wall turbulence-rich fluid and
upward motion, which is consistent with the instantaneous turbulent
structures observed (see Fig. 9). It can be seen from Fig. 14 that�u01u02
and the resultant Pks at K=d ¼ 1 are slightly larger than that at
K=d ¼ 1:5, except for the region around x2=d ¼ 0:1, owing to the

increased �u01u02 near x3=K ¼ 0:15 caused by the local upward
motion (see Fig. 6). For the riblet cases, Pks and the resultant CD;ks

show a decreasing trend as the wavelength increases.
CD;kw results from the wake component of TKE (Pkw), and for

the baseline case, its value is zero. For all the riblet cases, Pkw is
positive and is a non-negligible contribution to the total TKE pro-
duction, its intensity being comparable to that of Pks, as seen in
Fig. 15(a). In the near wall region at x2=d < 0:02, the riblet case
with the smallest wavelength tends to induce the largest intensity
of Pkw. Along the wall-normal direction, Pkw at K=d ¼ 0:25 and
0.5 tends to decrease rapidly and becomes zero at x2=d > 0:3. In
contrast, Pkw at K=d ¼ 1 and 1.5 is non-negligible across the chan-
nel. It is consistent with the size of the large-scale roll mode
(see Fig. 6). This differs significantly from that observed for
homogeneous roughness pattern39,40 where Pkw is confined in the
near wall region around the roughness crests, its intensity
being much smaller than Pks. This can be attributed to the induced
large-scale secondary flow that has an influence on the entire
flow field. Figure 11(c) shows that the drag component CD;kw

arising from Pkw follows the same variation trend as that of C
when K varies, making a significant contribution to the total drag
increase.

FIG. 14. Profile of wall-normal plane-
averaged (a) Reynolds shear stress
h�u01u

0
2 i and (b) shear production of

TKE, Pks, for the baseline case and riblet
cases. Each term is normalized by U3

b=d.

FIG. 15. Profile of the wall-normal plane-
averaged (a) Pkw and (b) its component
Pkw;13 ¼ �u01u

0
3@~�u 1=@x3 for the base-

line case and riblet cases. Each term is
normalized by U3

b=d.
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Pkw ¼ �u0iu0j
@~�u i
@xj

is the sum of nine components, which are the
products of the Reynolds stresses�u0iu0j and the corresponding disper-

sive velocity gradients @~�u i
@xj
. Pkw;13 denotes one component of Pkw caused

by �u01u03
@~�u 1
@x3

. It can be seen from Fig. 15(b) that Pkw;13 is the domi-
nant term of Pkw in the outer region, resulting from the spanwise gra-
dient of the streamwise velocity induced by the large-scale secondary
flow. As a result, the intensity of Pkw in the outer region follows the
same variation trend as C when the wavelength varies. This is also the
reason why at K=d ¼ 0:25, Pkw reduces to zero when x2=d > 0:1. At
x2=d > 0:3; Pkw;13 for the riblet case with K=d ¼ 1:5 is slightly larger
than that at K=d ¼ 1. This is attributed to the larger size of the roll
mode, which has a more profound influence in the far field region (see
Fig. 6).

In summary, the C–D riblets lead to a significant drag increase,
the maximum drag being observed at K=d ¼ 0:5. From the proposed
drag decomposition method, it is found that the drag increase is domi-
nated by the shear and wake components of the TKE production as
well as the wake component of the viscous dissipation. While the drag
contribution from the shear component of the TKE production shows
a decreasing trend as the wavelength increases, the drag increase
caused by the wake component of both the TKE production and vis-
cous dissipation follows the same variation trend as the intensity of the
secondary flow.

D. An alternative expression for the drag
decomposition from the work point of view

Within the framework of the double averaging defined in Eq. (2),
the total kinetic energy averaged in the wall-parallel plane can be
divided into three components:

1
2
huiuii ¼ 1

2
huiihuii þ 1

2
h~�u i~�u ii þ 1

2
hu0iu0ii; (16)

where the second term of the right-hand side is the wake kinetic
energy (WKE).39–41 Multiplying Eq. (4) by ~�u i and rearranging some
terms, the transport equation for the WKE per unit mass ~K � ~�u i~�u i=2
reads

@

@xj
~K�uj þ

�uj�p

q
þ ~�u iu0iu0j

� 	
¼ �~�u i�uj

@h�uii
@xj

þ h�uii
q

@�p
@xi

þ �~�u i
@2�ui

@xj@xj
þ u0iu0j

@~�ui

@xj
: (17)

Integrating Eq. (17) across the fluid domain with the aid of the
Gauss’s Theorem, the following energy balance equation can be
obtained:

ð2d
0
/ h�~�u 1~�u 2i @h�u1i

@x2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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þ
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�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
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þ h�u1i
q

�
@�p
@x1

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

hPwpi

2
664
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@xjxj

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

hDwi

��

�
@~�u i

@xj

@~�ui

@xj

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�hvdi

3
775dx2 ¼ 0; (18)

where Eq. (3) is applied; the terms from left to right are the shear pro-
duction Pws, wake production �Pkw, work by the pressure Pwp, and
the viscous diffusion Dw and dissipation �vd at the wake level,
respectively.

Pkw appears in the production term of both the TKE and WKE
but with opposite signs, as seen in Eqs. (15) and (18). Pkw represents
the net transfer between the TKE andWKE, resulting from their inter-
actions.40,41 Figure 15 shows that Pkw is positive for all the riblet cases.
As a result, a part of the energy achieved by shear production and
pressure work of WKE is dissipated into internal energy by viscous
diffusion/dissipation at the wake level; the other part is converted into
TKE via Pkw, which is ultimately transformed into heat via turbulent
dissipation.

Substituting Eq. (18) into Eq. (15) gives the expression for the
drag coefficient based on work as

CD ¼ 2
U3
b

ðd
0
�/�h�u1i

�
@2�u1

@xj@xj

�
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þ 2
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q

�
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�
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;

(19)

where the four components denote the drag contribution from the
work by the wall-normal plane-averaged viscous force, pressure,
Reynolds shear stress, and dispersive stress, respectively. The following
expression is applied:ðd
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(20)

The contributions of each component of the total drag coeffi-
cient, defined in Eq. (19), are presented in Fig. 16. In comparison with
the baseline case, each component for the C–D riblet cases is larger
than that of the baseline case. From Eq. (20), CD;vf can be subdivided
into three components, the former two terms being related to CD;va

and CD;vi defined in Eq. (15). Comparing CD;va in Fig. 11 and CD;vf in
Fig. 16 shows that CD;va is the main part of CD;vf . They also show the
same evolution when the wavelength varies. CD;wp is related to the
work by the pressure Pwp, and for the baseline case, CD;wp is zero. For
all the riblet cases, Pwp contributes to the increase in the total drag, and
the resultant drag increase is similar for each case.
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Figure 16 shows that the drag increase for the riblet cases is dom-
inated by CD;ks and CD;ws. CD;ks comes from the shear production of
the TKE and has been analyzed in Sec. IV D. CD;ws comes from the
shear production of the WKE (Pws) caused by the dispersive stress
�~�u 1~�u 2. For the baseline case, �~�u 1~�u 2 and the resultant CD;ws are zero.
Figure 17 shows the contours of the dispersive stress �~�u 1~�u 2 in the
cross-stream plane. For the riblet case at K=d ¼ 0:25;�~�u 1~�u 2 is only
noticeable in the near wall region. With the wavelength increase, the
region with non-negligible dispersive stress increases in size, resulting
from the increased size and intensity of the large-scale roll mode (see
Fig. 6). At K=d ¼ 1:5, the region with high �~�u 1~�u 2 extends to 40% of
the half channel height d despite the small riblet height equal to
h ¼ 2:8%d. It is also worth noticing that the intensity of �~�u 1~�u 2 is
comparable to that of the Reynolds shear stress �u01u02 , as seen in Figs.

14(a) and 18(a). The profile of �~�u 1~�u 2 and Pws over the C–D riblets is
clearly different from that over homogeneous roughness patterns where
�~�u 1~�u 2 and Pws are only noticeable in the vicinity of the rough
wall.39,40,42,43

For the riblet cases, the same trend in the variation of the inten-
sity of C and�~�u 1~�u 2 is expected since �~�u 1~�u 2 is directly related to the
downward and upward motions caused by the large-scale secondary
flow [see Figs. 8(b) and 18(a)]. As a result, the intensify of Pws [see Fig.
18(b)] and the resultant CD;ws follow the same trend with that of C as
the wavelength varies.

In summary, a relation between the drag coefficient and the work
is derived, where CD comes from the contribution of the wall-normal
plane-averaged viscous force, pressure, Reynolds shear stress, and dis-
persive stress, respectively. For the riblet case and a small wavelength
(K=d ¼ 0:25), the dominant factor for drag augmentation comes
from the increased Reynolds shear stress, whereas in the case of a large
wavelength (K=d ¼ 1 and 1.5), the drag increase is predominantly
caused by the induced dispersive stress. At K=d ¼ 0:5, both compo-
nents play an important role in the drag increase, and the resultant CD

exhibits a peak.

V. CONCLUSIONS

In this paper, a drag decomposition method is theoretically
derived for flows subject to wall roughness. To illustrate this, the case
of a turbulent channel flow at Reb ¼ 2800, based on the half channel
height and the bulk velocity, is investigated using direct numerical
simulations. The drag coefficient is decomposed into physics-
informed contributions from several flow field statistical moments.
Flows over C–D riblets with a wavelength of 0:25d–1:5d are investi-
gated to understand the relationship between the scales/strength of the
secondary flow motions and the drag.

It is found that in comparison with the baseline case, the turbu-
lent kinetic energy and the vortical structures for the riblet cases are
greatly increased across the span, especially when K=d � 0:5. For a
small wavelength (K=d ¼ 0:25), there is not enough spanwise space to

FIG. 17. Contours of dispersive stress
h�~�u 1~�u 2i in cross-stream planes for (a)
baseline case and riblet cases with
(b) K=d ¼ 0:25, (c) K=d ¼ 0:5, (d)
K=d ¼ 1:0, and (e) K=d ¼ 1:5. The
dashed line denotes the vertical position
of riblet crest.

FIG. 16. The drag coefficient CD and its decomposition terms defined in Eq. (19).
Each term is normalized by CD;0, the drag coefficient of the baseline case.
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enable the development of the near-wall spanwise velocity, and the
resultant intensity of the secondary roll mode is weak. As the wave-
length increases, the intensity of the secondary flow motion increases
first and then decreases, peaking at K=d ¼ 1. When K=d � 1, some
spanwise heterogeneity is observed in the turbulent kinetic energy and
the vortical structures, with the strongest enhancement occurring
around regions of upwelling.

From the energy dissipation/production point of view, the drag is
decomposed into contributions from the viscous dissipation and tur-
bulent production. By using a triple velocity decomposition technique,
the former can be subdivided into viscous dissipation at the wall-
normal plane-averaged and wake level as well as their interaction. The
turbulent production term includes shear and wake components. In
all the riblet cases, the drag increase is dominated by the shear and
wake components of the turbulent kinetic energy production as well as
the wake component of the viscous dissipation. While the drag contri-
bution from the shear component of the turbulent kinetic energy pro-
duction shows a decreasing trend as the wavelength increases, the drag
increase caused by the wake component of both the turbulent kinetic
energy production and viscous dissipation follows the same variation
trend with the intensity of the secondary flow.

From the work point of view, the drag comes from the work of the
wall-normal plane-averaged viscous forces, pressure forces, Reynolds
shear stress, and dispersive stress, respectively. For a small wavelength
of K=d ¼ 0:25, for instance, the dominant factor for the drag augmen-
tation results from the increased Reynolds shear stresses, whereas at
large wavelengths (K=d ¼ 1 and 1.5), the drag increase is dominated by
the dispersive stresses. At K=d ¼ 0:5, both components play an impor-
tant role in the drag increase, and the resultant CD exhibits a peak.
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