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The interactions between large arrays of wall-mounted flexible plates and oncoming
laminar boundary-layer flows are studied numerically by using the immersed boundary
method. The influences of bending rigidity, mass ratio and gap distance between adjacent
plates on the dynamic behaviors are explored. With the variation of control parameters, five
distinct dynamic modes, namely, static reconfiguration, sectional waving, regular waving,
upright oscillation and cavity oscillation, are identified. The frequency lock-in phenomenon
and various types of flow instability associated with different dynamic modes are
discussed. The findings of this study indicate that the coherent motions of the arrays
are governed by a coupled mechanism in which the frequency of flow instability is locked
onto the structural natural frequency.
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1 INTRODUCTION

The motion of wall-mounted flexible structures in fluid flow is a phenomenon that is
commonly observed in nature. Some well-known examples include: tree and wheat
swaying in the wind, reed and seaweed waving in the current, cilia beating in the
bronchial tube. These systems are inherently mulitphysics and involve fluid-structure
interaction (FSI). The study of this subject is not only important to scientific progress but
also inspires engineering innovations in a variety of disciplines such as flow control, flow
sensing, energy harvesting and heat transfer enhancement.

Theoretical, experimental and numerical approaches have been used to investigate simplified
models to gain a better understanding of the flow physics behind such phenomenon. The models
often used in the studies included: 1D plates (filaments) exposed to a 2D transverse flow, 2D plates
(or cylindrical beams) exposed to a 3D transverse flow. Please note that the words for describing the
slender structures were sometimes interchangeable in the literature, e.g., beam, flap, filament, plate,
membrane, panel, flag, etc.

In some theoretical studies, the fluid load on the structure was estimated by reduced-order
models. Luhar and Nepf [1] considered the effect of flow-induced static reconfiguration on the
scaling law between drag and velocity in a model blade. In the work by Leclercq and de Langre [2], it
was found that a flexible beam can always enjoy drag reduction when subjected to a steady transverse
flow, either in static reconfiguration or in fluttering. The effects of oscillatory transverse flow [3] or
non-uniform transverse flow and non-uniform material property [4, 5] on the reconfiguration of the
beam were also explored in other works.
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Jin and coauthors [6–9] conducted a series of experiments to
explore the FSI behaviors of flexible wall-mounted plates
subjected to turbulent transverse flow in the Reynolds number
range of 104–105. In Jin et al. [6], it was reported that under
certain circumstances, the frequencies for the oscillating
structures and wake fluctuations can by significantly
decoupled. In Jin et al. [7], the influences of tip shape on the
dynamics of the plate and near wake turbulence were
investigated. In Jin et al. [8], the existence of three distinctive
modes of tip oscillations were reported in wall-mounted flexible
plates under various inclined flows. In Jin et al. [9], the coupled
dynamics of two flexible plates in tandem arrangement was
explored. It was found that the upstream plate always
oscillated at its natural frequency, while oscillation of the
downstream one was significantly influenced by the vortices
shed from the upstream structure.

On the numerical side, simulations have been conducted to
explore the FSI behaviors of vertically clamped 1D filaments [10,
11] and 2D flexible plates (flags) [12] subjected to laminar
oncoming flows. Zhang et al. [10] systematically studied the
kinematic states and frequency lock-in mechanisms in the
interactions of single- and dual-filament systems with a
laminar boundary-layer flow. Three dynamic modes, namely,
lodging, static reconfiguration and regular VIV, were identified in
the single-filament system. In additional to the three modes
aforementioned, a distinctive mode termed “cavity oscillation”
was also observed in the dual-filament system. In a similar study
by Wang et al. [11], the interactions of single-, dual- and triple-
filament systems with an oncoming Poiseuille flow were studied.
The influences of bending rigidity and gap distance on the
dynamic modes and vortical structures were revealed. Chen
et al. [12] extended the work by Wang et al. [11] by
conducting three-dimensional simulations to study the FSI of
a single flag and dual flags in a Poiseuille flow.

If large numbers of wall-mounted flexible structures are
organized into an array, the interactions with fluid flow can
give rise to coherent waving motions. This type of collective
motions is widely observed in canopies of terrestrial or aquatic
plants. Such phenomenon is known as honami for terrestrial
plants, and monami for aquatic plants [13, 14]. It is generally
accepted that the mixing layer instability [15–17] is one primary
cause of the coherent waving motion. However, it was also argued
in some studies that the elastic properties of the flexible structures
may also play an essential role in the development of coherent
waving motion [18–20]. It should be noted that in the works
above, the canopy was modeled as a flexible porous layer and the
fluid flow around individual plants was not fully resolved. In a
recent study by Wong et al. [21], the canopy was modeled as a
collection of homogeneous elastic beams. The steady
configuration of the canopy under a unidirectional flow was
predicted by coupling the beam equations with the Navier-
Stokes equations. A linear stability analysis was then
conducted to identify the dominant factors that determined
the onset of instability. O’Conner and Revell [22] performed
FSI simulations on a large array of slender structures placed in a
steady open-channel flow. In their work, a lattice Boltzmann-
immersed boundary method was used and the flow around

individual structures was fully resolved. Their findings
indicated that the coherent waving motion was triggered by a
coupled instability, in which the fluid oscillation frequency was
locked onto the structural natural frequency. More recently, the
dynamic response of a shallow submerged vegetation canopy in
an open-channel flow at the Reynolds number of 100 was studied
numerically by Fang et al. [23]. The vortical structures in the
developed mixing layer were investigated in detail, and the lock-
in between frequency of mixing layer instability and natural
frequency was also observed.

Despite of the fruitful insights gained in the previous works,
the coupled dynamics and FSI behaviors of multiple wall-
mounted flexible structures are far from being fully
understood. For instance, in a preliminary investigation of our
group, it was found that the dynamic behaviors of the structures
in different portions of the array may differ significantly.
Furthermore, the dynamic interactions of the flexible
structures in the array may be greatly influenced by the gap
distance between adjacent structures. The phenomena above and
associated physical mechanisms have never been thoroughly
explored in the previous works.

In the present study, numerical simulations are performed to
systematically investigate the interactions of large arrays of
flexible 1D plates (filaments) with a 2D laminar boundary-
layer flow. Several distinct modes for characterizing the
dynamic behaviors of the system are identified. The influences
of bending rigidity, mass ratio and gap distance on the dynamic
behaviors are also explored. The frequency lock-in phenomenon
and various types of flow instability involved are discussed. The
physical mechanisms associated with different dynamic modes
are elucidated.

The rest of the paper is organized as follows. The
computational model is described in section 2. The numerical
methods and computational configurations are introduced in
section 3. The results and discussion are presented in section 4.
Finally, the conclusions are drawn in section 5.

2 COMPUTATIONAL MODEL

In the present study, we consider FSI of a large array of multiple
flexible plates with an oncoming laminar boundary-layer flow.
The schematic diagram of the computational model is shown in
Figure 1A. An array of wall-mounted flexible plates is vertically
clamped on the bottom wall. The number of plates in the array is
n. The plates are of length L and are equally spaced by a distance
of D. The inclination angle θ is defined as the angle between the
chord line and the horizontal axis. A uniform velocity of U∞ is
prescribed at the left entrance, and a laminar boundary layer is
developed along the bottomwall.D1 denotes the distance between
the entrance and the first plate. In the present study, D1 is set
to 8L.

The incompressible Navier-Stokes equations which govern the
fluid flow can be written in a dimensionless form as

zu
zt

+ u · ∇( ) u � −∇p + 1
Re

∇2 u + f , (1a)
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∇ · u � 0, (1b)
where u is the velocity of the fluid flow, p is the pressure, and f is
the Eulerian force which represents the effect of immersed objects
on the fluid. The Reynolds number Re is defined as U∞L/], where
] is the kinematic viscosity of the fluid.

The dynamic equations which govern the motions of the
flexible plates can be written in a dimensionless form as

β
z2X
zt2

− z

zs
ζ
zX
zs

( ) + z2

z2s
γ
z2X
zs2

( ) � −F + Fc, (2a)
zX
zs

· zX
zs

� 1, (2b)

where X = X (s, t) is the position vector of the Lagrangian points (s
is the Lagrangian coordinate along the arc length). F is the
Lagrangian force which represents the interaction between the
structure and the flow. Fc is an artificial short-range repulsive
force which is added to avoid the collisions between adjacent
plates (and between the plates and the wall). The repulsive force
can be formulated by using the discrete delta function as [10,
11, 24].

Fc s, t( ) � c1 ·∑
k

∫L

0
δh X s, t( ) − Xk′ s′, t( )( ) X − Xk′

X − Xk′
∣∣∣∣ ∣∣∣∣ ds′ + c2

· δh X s, t( ) − Xp s, t( )( )j, (3)
where δh represents the discrete Delta function. In the present
work, the three-point discrete Delta function [25] is used.
Xk′(s′, t) denotes the position vector of the Lagrangian points
on one adjacent plate. Here k is the index of the adjacent plate and
s′ is the arc length along the plate.∑

k
denotes the summation over

adjacent plates. Xp is the projection of X on the wall. j is the unit
normal vector on the wall. The first term on the right-hand side of
Eq. (3) denotes the repulsive force between adjacent plates, while
the second term represents the repulsive force between the plate

tip and the wall. c1 and c2 represent the adjustable constants. The
values of the two constants are chosen such that the minimal
repulsive force is exerted to prevent the plates from penetrating
into each other or penetrating into the wall. It is found that c1 =
1.0 and c2 = 1.0 can yield satisfactory results by ensuring that the
smallest plate-plate distance and tip-wall distance are never less
than one grid width. It should be noted that the smallest plate-
plate distance and tip-wall distance are not sensitive to the values
of c1 and c2. The dynamic behaviors of the plates are almost not
affected by the magnitude of Fc (at least for certain ranges of c1
and c2 with c1 ≥ 1.0 and c2 ≥ 1.0).

β, ζ, γ represent the mass ratio, the dimensionless tension
coefficient and the dimensionless bending rigidity, respectively.
The definitions of the three dimensionless quantities are:

β � ρsδ

ρfL
, ζ � T

ρfU
2
∞L

, γ � B

ρfU
2
∞L

3
, (4)

where ρs and ρf are the densities of the structure and the fluid,
respectively. δ is the thickness of the plate. T and B represent the
dimensional tension coefficient and bending rigidity, respectively.
The inhomogeneous tension coefficient ζ in Eq.(2a) introduces
geometric nonlinearity to the structural model. It also acts as the
Lagrange multiplier that enforces the inextensibility condition
[Eq.(2b)].

3 NUMERICAL METHODS AND
CONFIGURATIONS

3.1 Flow and Structure Solvers
The incompressible Navier-Stokes equations Eqs (1a, 1b) are
solved by using direct-forcing immersed boundary method based
on the discrete stream-function formulation [26, 27]. In this
approach, the discrete stream-function is treated as the primary
unknown, while the continuity equation is exactly satisfied and

FIGURE 1 | (A) A Schematic diagram of the computational model. (B) A schematic diagram of the computational domain and the multi-block Cartesian mesh.
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the need for solving a pressure Poisson equation is eliminated
[28]. The finite difference method is used for the spatial
discretization of Eqs (2a, 2b) a three-time-level scheme is used
for the temporal advancement. The inhomogeneous tension
coefficient ζ can be determined by solving a linear boundary
value problem, in which the governing equation for ζ is derived by
rearranging Eqs (2a, 2b) [24]. A loosely coupled scheme, in which
the fluid equations and the structural equations are advanced
sequentially, is used for the FSI simulation of the present work.
The massage passing interface (MPI) protocol is used for the
parallelization of the FSI code [29]. This code has been extensively
validated in previous studies, such as self-propulsion of fish-like
elastic filaments [30, 31] and FSI of single and dual wall-mounted
flexible filaments [10].

3.2 Numerical Configuration
The computational domain is of rectangular shape with the
dimensions of [0, 108L] × [0, 6L]. A multi-block Cartesian
mesh with hanging nodes is employed in the simulations
(Figure 1B). In the vicinity of the structures, the finest grids
with the width of 0.01 L are deployed in a subdomain of [6L,
100L] × [0, 2L] to capture the small wake structures. In the
regions that are far away from the plates, the grid width ranges
from 0.02L to 0.08L to reduce the total number of grid points. For
the flexible structures, each plate is represented by 101 Lagrangian
points with uniform spacing of 0.01 L. In addition, the
dimensionless time steps used in the simulations are chosen
such that the maximum Courant-Friedrichs-Lewy (CFL)
number based on U∞ and the finest grid width never exceeds 0.1.

The boundary and initial conditions for the fluid flow and the
wall-mounted flexible plates are as follows. For the fluid flow,
non-slip condition is imposed on the bottom boundary. Free-slip
condition (with zero normal velocity and zero normal gradient of
tangential velocity) is imposed on the top boundary. A uniform
velocity is prescribed on the left boundary. The outflow condition
with constant pressure is imposed on the right boundary. On the
surface of the structures, non-slip boundary condition is enforced
by using the direct-forcing immersed boundary technique. For
the wall-mounted flexible plates, the boundary conditions at the
free ends are:

z2X
zs2

� 0, 0( )T, z3X
zs3

� 0, 0( )T. (5)
The boundary conditions at the fixed ends are:

X � x0, 0( )T, zX
zs

� 0, 1( )T. (6)

The initial fluid velocity is set to U∞ and all structures are
vertically orientated initially (θ = 90°) and have zero velocity.

To ensure that the mesh resolution is sufficient for resolving
the laminar boundary layer and small flow structures, mesh-
sensitivity tests are systematically conducted in our previous work
on FSI of single and dual wall-mounted flexible filaments in a
laminar boundary layer [10]. Based on the experience gained in
our previous work, the mesh resolution used in the present study
is sufficient for obtaining accurate and mesh-independent results.

4 RESULTS AND DISCUSSION

4.1 Control Parameters and Metrics of
Dynamic Behaviors
The four dimensionless control parameters in the present study
are: Reynolds number (Re), dimensionless bending rigidity (γ),
mass ratio (β), and dimensionless gap distance (d = D/L). The
ranges of the four control parameters used in the simulations are
summarized in Table 1. As a result, the dimensionless
momentum thickness of the boundary layer at the position of
the first plate is around 0.1. These values of control parameters
are largely comparable with those used in some previous works
[10, 11, 22, 23]. Here the Reynolds number is chosen to be 400,
which is much smaller than that in real vegetation flow (O (105)
or even higher). Such Reynolds number is close to the minimum
value for generating waving instability (which is around 100
based on the study of O’Connor and Revell [22]). At such
Reynolds number, the computational cost is not prohibitive,
while the simulations are still relevant to the real vegetation
canopy. The key metrics for quantifying the dynamic behaviors of
wall-mounted plates are the mean inclination angle (�θ) and the
amplitude of angular oscillation (θA). These two quantities are
defined as:

�θ � 1
Δt∫t0+Δt

t0

θ t( )dt, (7a)
θA � θmax t( ) − θmin t( ), t0 ≤ t≤ t0 + Δt. (7b)

Here the lower limit in Eq. (7a) is chosen such that the periodicity
of angular oscillation is fully established and the influence of
initial condition becomes negligible (t0 is set to 200 in the present
work). The time interval Δt is chosen to be long enough such that
the low-frequency waving motion can be captured (here Δt = 200
is considered to be sufficient). θmax and θmin in Eq.(7b) represent
the maximum and minimum of the instantaneous inclination
angle in t ∈ [t0, t0 + Δt], respectively.

In the present study, the number of plates in the array is set to
90. This number is sufficiently large such that the FSI behavior of
the array remains largely unchanged if more plates are added. To
test the influence of plate number on the FSI behavior, the
distributions of mean inclination angle and oscillating
amplitude along three arrays with 60, 90 and 120 plates are
compared in Figure 2. As that shown in the figure, adding more
plates to the array only affects �θ and θA in plates near the rear end
of the original array. From Figure 2B, it is also seen that if the
plate number is increased from 60 to 90, the growth rate (slope) of
θA (with respect to the plate index) in the rear portion decreases
drastically. However, if the plate number is increased from 90 to

TABLE 1 | Values of control parameters used in the simulations.

Parameters Values

Reynolds number (Re) 400
Dimensionless bending rigidity (γ) 10–4−10
Density ratio (β) 10–2−10
Dimensionless gap distance (d) 0.1–1.0
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120, the growth rate (slope) of θA in the rear portion almost
remains unchanged. In view of the convergence behavior in the
growth rate of θA observed in arrays with 90 and 120 plates, the
number of plates is set to 90 in the simulations.

4.2 Influences of Bending Rigidity and Mass
Ratio on the Dynamic Behaviors
In this section, the influences of dimensionless bending rigidity
and mass ratio on the dynamic behaviors of the arrays are
systematically investigated. First, the influence of

dimensionless bending rigidity is explored. To this end, γ is
allowed to vary in a wide range as that listed in Table 1, while
the rest of control parameters are kept fixed (β = 1.0, Re = 400, d =
0.5). With the variation of bending rigidity, several distinct
dynamic modes of the array can be identified. The patterns of
motion in the plates and wake structures for some selected cases
corresponding to different dynamic modes are displayed in
Figure 3.

At an extremely low rigidity (γ = 10–3), the static
reconfiguration mode is observed (Figure 3A). All plates bend
significantly backward and form an ‘end-to-end’ chain which is

FIGURE 2 | The distributions of mean inclination angle and amplitude of angular oscillation along the array for three arrays with different plate numbers. (A)Mean
inclination angle, (B) amplitude of angular oscillation. The fixed control parameters are: γ = 0.02, β = 1.0, Re = 400 and d = 0.5.

FIGURE 3 | The patterns of motion and wake structures for some selected cases at various bending rigidities. (A) γ = 0.001 (static reconfiguration mode at
extremely low rigidity, with a zoom-in view near the front), (B) γ = 0.01 (sectional waving mode with quasi-periodic oscillations), (C) γ = 0.02 (sectional waving mode with
periodic oscillations), (D) γ = 0.2 (regular waving mode with periodic oscillations), (E) γ = 0.5 (upright oscillation mode), (F) γ = 104 (static reconfiguration mode at
extremely high rigidity). The fixed control parameters are: β = 1.0, Re = 400 and d = 0.5.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8819665

Zhang et al. FSI of Multiple Flexible Plates

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 4 | The distributions of mean inclination angle along the array (left column), the distributions of dominant frequency (fd) along the array (middle column), and
the time histories of inclination angles of the 5th and 75th plates (right column) for four selected cases. (A) γ = 0.01 (sectional waving mode with quasi-periodic
oscillations), (B) γ = 0.02 (sectional wavingmode with periodic oscillations), (C) γ = 0.2 (regular wavingmode), (D) γ = 0.5 (upright oscillation mode). In the left column, the
magnitude of oscillation amplitude is symbolized by the heights of cyan bars. The fixed control parameters are the same as those for Figure 3.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8819666

Zhang et al. FSI of Multiple Flexible Plates

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


parallel to the wall. It should be noted that due to the existence of
short-range repulsive forces, there is no direct contact (or
collision) between adjacent plates. The angular oscillations of
the plates are negligible and a long stable shear layer remains
attached to the free ends.

With the increase of bending rigidity, three different dynamic
modes with flow-induced oscillations emerge in turn. The
sectional waving mode is observed at γ = 0.01 and γ = 0.02
(Figure 3B and Figure 3C). In the front portion of the array,
vortices shed periodically from the free ends of some plates. This
vortex shedding phenomenon resembles that in flow over a thin
vertical plate. In the middle portion, due to the merging of
vortices, the flow is stabilized and a shear layer on top of the
plates appears. In the rear portion, due to the instability of the
shear layer, vortices of much larger scale are produced on top of
the array. Since the flow structures that drive the oscillations have
much larger length scales than those in the front portion, the
plates in this portion oscillate at a much lower frequency than
those in the front portion. If we compare the two cases shown in
Figure 3B and Figure 3C, more irregularities in the motions of
the plates and the wake structures are found in the former one
(especially in the front and rear portions of the array).

At γ = 0.2, the regular waving mode is exhibited (Figure 3D).
In this mode, the oscillations of the plates in the front portion are
completely suppressed, and a long stable shear layer is developed
along the top of the array. Again, in the rear portion, large-scale
vortical structures appear on top of the free ends due to instability
of the shear layer. In the sectional and regular oscillation modes,
the coherent waving motions induced by the large-scale vortical
structures look very similar to that observed in the canopies of
terrestrial and aquatic plants [15]. At γ = 0.5, the upright
oscillation mode is exhibited (Figure 3E). In this mode, the
long stable shear layer is not observed. Periodic vortex-
shedding is triggered near the free ends of the fifth plate
where the pinch-off of a short shear layer occurs. This
phenomenon shares some similarities with that observed in
flow over a rectangular cylinder with flat top. Since the
strength of shed vortices attenuates very rapidly along the
array, the oscillations in the rear portion become rather weak.

At an extremely high rigidity (γ = 104), the static
reconfiguration mode emerges again and the plates in the
array stay upright (Figure 3F). A long stable shear layer
remains attached to the free ends along the entire array and
oscillations are completely suppressed.

To quantitatively characterize the behaviors of arrays with
flow-induced oscillations, we show the distributions of mean
inclination angle, envelope of angular oscillation, and dominant
oscillating frequency for some cases in Figure 4. The time series
of θ for two selected plates, i = 5 and i = 75 which represent the
front and rear portions of the array, are also shown in the figure.

Figure 4A and Figure 4B show two cases (γ = 0.01 and γ =
0.02) of the sectional wavingmode, respectively. Some similarities
are shared by these two cases. In the front portion, the plates
oscillate at a higher frequency but the amplitudes are rather small.
In the rear portion, the plates oscillate at a lower frequency but
with much larger amplitudes. The difference between these two
cases lies in the time series of instantaneous inclination angles. In

Figure 4A, quasi-periodicity is clearly visualized in the time
series, while in Figure 4B, periodicity is exhibited in the time
series. This can be further confirmed by comparing the
normalized power spectra and phase diagrams spanned by θ
and _θ (Figure 5). For the case of γ = 0.01, besides the dominant
frequency, a lot of small peaks are also seen in the power spectra.
The sectional waving mode with quasi-periodic oscillations can
be regarded as a transitional state between the static
reconfiguration mode and the sectional waving mode with
periodic oscillations.

Figure 4C shows one case of the regular waving mode (γ =
0.2). It is seen that the oscillations in the front portion are
completely suppressed and periodic oscillations are observed
in the rear portion. One case of the upright oscillation mode
(γ = 0.5) is shown in Figure 4D. It is seen that the oscillating
amplitude decreases steeply in the middle and rear portions. All
plates in the array oscillate at almost the same frequency.

To further illustrate the characteristics of traveling wave
propagation, the contours of inclination angles in the two-
dimensional parametric space of plate index and time are
shown in Figure 6. The selected cases are the same as those
shown in Figure 4. In this figure, the oblique light (or dark)
stripes represent the streamwise propagation of traveling waving
along the array. The slope of the stripes signifies the speed of
traveling, while the width of the light (or dark) stripes signifies
oscillating frequency of the plates. In Figure 6A and Figure 6B,
two different oscillating frequencies in the front and rear portions
can be clearly seen. This is the prominent feature of the sectional
waving mode. In Figure 6A, the attachment of slim branches on
the stripes signifies quasi-periodicity in the oscillations of the rear
portion. The black scribbles in the front portion signifies the effect
of randomly activated repulsive force. In Figure 6C, the
disappearance of oblique stripes in the front portion signifies
the suppression of oscillations. The stripes with a uniform width
in the rear portion signifies one single oscillating frequency. This
is the prominent feature of the regular waving mode. In
Figure 6D, stripes with a uniform width cover the entire
region except a very narrow vertical band on the left margin.
This indicates that almost all plates in the array (except very few
at the front) oscillate at one single frequency. This is the
prominent feature of the upright oscillation mode.

To determine the precise range of bending rigidity
corresponding to each dynamics mode aforementioned, we
examine the variations of �θ and θA with γ in the 5th and 75th
plates (as shown in Figure 7). In this figure, the range of 10–4 < γ
< 3 × 10–3 corresponds to the static reconfiguration mode. All
plates fall over with a mean inclination angle of 15° and the
oscillating amplitude is close to zero (< 1°). The mean inclination
angle is much larger than that in the lodging mode of single-plate
system reported in Zhang et al. [10], where �θ is approximately 0°.
The larger inclination angle observed here is caused by the mutual
repulsive force between adjacent plates. This force prevents the
free ends of adjacent plates from approaching each other (and
approaching the wall). The range of 3 × 10–3 < γ < 0.09
corresponds to the sectional waving mode. The mean
inclination angles of the two plates first increase sharply with
increasing bending rigidity and then saturate (or slightly
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decrease). The huge “jumps” in these curves indicate the
occurrence of a rapid transition in the motions of the plates.
For example, near γ = 0.005, with increasing bending rigidity, the
plates change from a nearly stationary state with large static
deformation to a state with high-amplitude oscillation and nearly
upright posture. It is also observed that the oscillating amplitude
of the front plate is always much larger than that of the rear one
(except in a narrow range of 3 × 10–3 < γ < 5 × 10–3). The range of
0.09 < γ < 0.5 corresponds to the regular waving mode. The mean
inclination angles of the two plates are approximately 90°, which
signifies a nearly upright posture. Oscillation is only observed in
the rear plate, while oscillation in the front plate is completely
suppressed. The range of 0.5 < γ < 1.0 corresponds to the upright
oscillation mode. Both plates keep the upright posture (�θ ≈ 90°)
and oscillate with a very small amplitude. The range of γ > 1.0
corresponds to the reappearance of the static reconfiguration
mode. Now both plates behave like a rigid structure and the
oscillations are completely suppressed.

Beside the effect of bending rigidity, the effect of mass ratio on
the dynamic behaviors of the array is also studied. Here the mass
ratio β is allowed to vary in the range of 0.01–10, while the rest of
the control parameters are kept unchanged (γ = 0.04, Re = 400
and d = 0.5). The variations of �θ and θA with β in the 5th and 75th
plates are shown in Figure 8. From this figure, the regular waving
mode and sectional waving mode can be identified in the ranges
of 0.01 < β < 0.3 and 0.3 < β < 10, respectively. Thus, the
transition from the regular waving mode to the sectional waving
mode occurs when the mass ratio exceeds a threshold value of 0.3.
From Figure 7, it is observed that such transition may also occur
when the bending rigidity is below a threshold value. This implies

that the increase of mass ratio and decrease of bending rigidity
may influence the dynamics behavior similarly. An in-depth
discussion on this issue will be provided in section 4.4.

4.3 Influences of Gap Distance on the
Dynamic Behaviors
For arrays with multiple wall-mounted flexible plates, the gap
distance between adjacent plates also plays an important role in
determining the dynamic behaviors. Here the dimensionless gap
distance d is allowed to vary in the range of 0.1–1.0 (due to the
limitation on size of the computational domain), and γ is allowed
to vary in the range of 0.01–1.0. The fixed control parameters are:
β = 1.0 and Re = 400. A map for the classification of dynamic
modes in the two-dimensional parametric space of (γ, d) is shown
in Figure 9. In this figure, five distinct modes, namely, static
reconfiguration, sectional waving, regular waving, upright
oscillation and cavity oscillation, can be identified.

At a small gap distance (d = 0.1), the static reconfiguration is
exhibited. At intermediate gap distances (0.2 ≤ d ≤ 0.6), the
dynamic mode transits from sectional waving to regular waving
and then to upright oscillation, with the increase of bending
rigidity. This trend has already been revealed in section 4.2. At
large gap distances (d = 0.8 and d = 1.0), with increasing bending
rigidity, four dynamic modes, namely, sectional waving, regular
waving, upright oscillation and cavity oscillation emerge in turn.

The patterns of motion in the plates and wake structures for
some selected cases of Figure 9 are shown in Figure 10. One case
of the static configuration mode is displayed in Figure 10A. The
array has a high packing density and the plates behave like a single

FIGURE 5 | The phase diagrams and normalized power spectra of the angular oscillations of the 5th and 75th plates for two cases of the sectional wavingmode. (A)
γ = 0.01, i = 5 (quasi-periodic oscillation), (B) γ = 0.01, i = 75 (quasi-periodic oscillation), (C) γ = 0.02, i = 5 (periodic oscillation), (D) γ = 0.02, i = 75 (periodic oscillation).
The fixed control parameters are the same as those in Figure 3.
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FIGURE 6 | Contours of inclination angles in the space of plate index and time for some selected cases. (A) γ = 0.01 (sectional waving mode with quasi-periodic
oscillations), (B) γ = 0.02 (sectional waving mode with periodic oscillations), (C) γ = 0.2 (regular waving mode), (D) γ = 0.5 (upright oscillation mode). Other control
parameters are the same as those in Figure 3.

FIGURE 7 | Mean inclination angle and amplitude of angular oscillation of the 5th and 75th plates as a function of dimensionless bending rigidity. (A) mean
inclination angles, (B) amplitudes of angular oscillation. The fixed control parameters are the same as those in Figure 3. The diamonds, circles, squares and triangles
represent the static reconfiguration mode, sectional waving mode (I), regular waving mode (II) and upright oscillation mode (III), respectively. The hollow and solid circles
denote the sectional waving mode with quasi-periodic and periodic oscillations, respectively.
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unit when interacting with the flow. The static deformations of
the downstream plates are smaller than those in the front due to
the shielding effect. This is in consistent with the results reported
in Wang et al. [11]. A shear layer is stably attached on the top of
the array. The instability of the shear layer can only be seen in the
far wake downstream.

One case of the regular waving mode is displayed in
Figure 10B. Please note that the wake structure in the rear
portion of the array (i > 30) become more complicated in
comparison with the one displayed in Figure 3D. Some
differences between the two cases are also exhibited in the
oscillations of plates in the rear portion. Figure 11 shows the
time series of the instantaneous inclination angle of the 75th
plate, together with the normalized power spectrum and the

contours of inclination angle in the space of index and time. From
Figure 11, quasi-periodicity is clearly seen in the oscillation of the
75th plate. The complexity in the oscillations of the rear portion is
introduced by the coexistent of Kelvin-Helmholtz (K-H)
instability and instability associated with open-cavity flow. The
latter type of instability only sets in when the gap distance
becomes relatively large.

One case of the cavity oscillation mode is displayed in
Figure 10C. This dynamic mode only appears in sparsely
packed arrays and is not observed in arrays with relatively
small gap distance (such as the ones discussed in section 4.2).
The mean inclination angles of the plates in the cavity
oscillation mode are close to 90°, which is similar to those
in the upright oscillation mode. However, some marked
differences between these two dynamic modes are also
observed. First, it is seen that in the cavity oscillation mode,
the length scales of the vortices are close to d (Figure 10C),
whereas the length scales of the vortices are much larger than d
in the upright oscillation mode (Figure 3E). Second, the
distributions of oscillating amplitudes along the array are
also very different in the two modes (Figure 12). From
Figure 12, it is seen that the cavity oscillation mode has a
much narrower spread of index for the oscillating plates, in
comparison with the upright oscillation mode. Moreover, the
peak oscillating amplitude in the cavity oscillation mode is also
much larger. For the cavity oscillation mode, a peak amplitude
of 19° is achieved in the 3rd plate, whereas for the upright
oscillation mode, the peak amplitude of 9° is achieved in the
18th plate.

4.4 Frequency Selection Mechanisms of
Different Dynamic Modes
In this section, the underlying physical mechanisms of each
dynamic mode are discussed. In the study of flow-induced
oscillations in single- and dual-plate systems, the oscillating
frequencies were found to be locked onto the first or second

FIGURE 8 | Mean inclination angles and amplitudes of angular oscillation of the 5th and 75th plates as a function of mass ratio. (A) Mean inclination angles, (B)
amplitudes of angular oscillation. Fixed control parameters are: γ = 0.04, Re = 400, and d = 0.5. The squares, solid circles and hollow circles represent the regular waving
mode, sectional waving mode with periodic oscillations, and sectional waving mode with quasi-periodic oscillations, respectively.

FIGURE 9 | A map for the classification of dynamic modes in the space
of (γ, d). The diamonds, circles, squares, triangles, and crosses denote the
static reconfiguration mode, sectional waving mode, regular waving mode,
upright oscillation mode, and cavity oscillation mode, respectively. The
solid and hollow symbols represent periodic and quasi-periodic oscillations,
respectively. The symbols in boxes represent the selected cases for which the
wake structures will be displayed in Figure 10.
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natural frequency [10]. First, we examine whether this frequency
selection phenomenon also exists in arrays composed of large
numbers of flexible plates.

The natural frequencies of the flexible plates in the present
study are estimated by those for a cantilever Euler-Bernoulli beam
[10]. The dimensionless i-th order natural frequency of the
cantilever Euler-Bernoulli beam is given by

fni* �
~fni* L
U∞

� k2i
2π

��
γ

β

√
, with cos ki coshki + 1 � 0. (8)

Here ~fni* represents the dimensional natural frequency of the i-th
order. The coefficients ki for the first and second natural
frequencies are: k1 = 1.875 and k2 = 4.694. When the
cantilever beam is immersed in the fluid, the natural
frequencies are modulated by the effect of added mass. The
modulated i-th order (dimensionless) natural frequency is
given by

fni � k2i
2π

����������
γ

β + Cm · π/4
√

, (9)

where the added mass coefficient Cm is set to 1.0 according to the
empirical expression provided by Luhar et al. [32]. In addition,
the natural frequencies of flexible plates immersed in the fluid can
also be modulated by other effects [10], such as damping due to
drag, prestress due to static deformation [33], and nonlinear

FIGURE 10 | The patterns of motion and wake structures for some selected cases in Figure 9. (A) γ = 0.02, d = 0.1 (static reconfiguration mode), (B) γ = 0.2, d =
1.0 (regular waving mode with quasi-periodic oscillations), (C) γ = 1.0, d = 1.0 (cavity oscillation mode). Only the first 50 plates are displayed in (B) and (C).

FIGURE 11 | (A) Time history of inclination angle, (B) normalized power spectrum of angular oscillation, and (C) contours of inclination angle in space of plate index
and time, for the 75th plate in the regular waving mode corresponding to Figure 10B.

FIGURE 12 | Distributions of oscillating amplitudes along the array for
the upright oscillation mode and the cavity oscillation mode. The case of
upright oscillation mode corresponds the one shown in Figure 3E, and the
case of cavity oscillation mode corresponds the one shown in
Figure 10C.
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effect due to large-amplitude oscillation. Since the influences of
these nonlinear effects on natural frequencies are hard to
quantify, fni is still used in the present work.

The 5th and 75th plates are regarded as representatives for the
oscillations of the front and rear portions. The dominant
frequencies of the two plates are plotted as a function of
dimensionless bending rigidity and mass ratio in Figure 13A
and Figure 13B, respectively. The first and second natural
frequencies as a function of bending rigidity and mass ratio
are also plotted in the figures for comparison. It is seen that
the oscillating frequencies of the plates are always locked
onto the first- or second-order natural frequency in all
dynamics modes. For the sectional waving mode (regime
I), the plates of the front portion oscillate at the second-
order natural frequency, while the ones of the rear portion
oscillate at the first-order natural frequency. For the regular
waving mode (regime II), the plates of the rear portion

oscillate at the first-order natural frequency (plates of the
front portion remain stationary). For the upright oscillation
mode (regime III), all plates oscillate at the first-order natural
frequency. The superimposed shapes of the 5th and 75th
plates throughout one oscillation cycle for different dynamic
modes are shown in Figure 14. The orders of oscillation
mode demonstrated in these shapes provides an additional
evidence for the existence of frequency lock-in phenomenon.
From Figure 13, it is also seen that increasing bending
rigidity may influence the dynamics behaviors similarly as
decreasing mass ratio (in terms of the transition from regime
I to regime II). This can be explained by the fact that both the
increase of bending rigidity or the decrease of mass ratio will
result in higher natural frequencies of the plates.

Next, a discussion on the flow instabilities which drive the
oscillations of the plates is provided. Basically, three types of flow
instabilities, namely, Kelvin-Helmholtz (K-H) instability, shear-

FIGURE 13 |Dominant oscillating frequencies of the 5th and the 75th plates as a function of (A) dimensionless bending rigidity, and (B)mass ratio. The fixed control
parameters are: Re = 400, d = 0.5, β = 1.0 for (A), and Re = 400, d = 0.5, γ = 0.04 for (B). The diamonds, circles, squares and triangles represent the static
reconfiguration, sectional waving, regular waving and upright oscillation mode, respectively. The hollow and solid circles denote the sectional waving modes with quasi-
periodic and periodic oscillations, respectively. The first and second natural frequencies are represented by a dash-dotted line and a dash-double-dotted line,
respectively. The estimated frequency of mixing layer instability is represented by a horizontal dotted line.

FIGURE 14 | The superimposed shapes of the 5th or the 75th plates throughout one oscillation cycle in different dynamic modes. (A) 5th plate of the sectional
waving mode (γ = 0.02), (B) 75th plate of the sectional waving mode (γ = 0.02), (C) 75th plate of the regular waving mode (γ = 0.2). (D) 75th plate of the upright oscillation
mode (γ = 0.5).
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layer related vortex shedding, and instability in open-cavity flow,
are involved in the system studied here. The FSI mechanisms
associated with them will be addressed separately as follows.

In some previous works on vegetative flows, the K-H
instability of mixing layer was considered to be the dominant
mechanism for generating the coherent waving motions [15, 16].
In this study, it is also observed that the coherent waving motions
in the sectional waving and regular waving modes are always
accompanied by large-scale vortices developed on top of the array
behind a stable or nearly stable mixing (shear) layer. The K-H
instability is a classic problem in fluid mechanics. The frequency
of K-H instability can be estimated using the following empirical
expression [15]:

fML � Stn
U1 + U2

2Θ( ), (10)

where Stn and Θ denote the natural Strouhal number and the
momentum thickness of the mixing layer, respectively. U1 and U2

represent the low-stream and high-stream velocities associated
with the mixing layer, respectively [22]. In the configuration of
the present work, we take U1 = 0 and U2 = U∞. Based on
experimental data available, the value of Stn ≈ 0.032 is
considered to yield satisfactory results in predictions [34]. The
momentum thickness Θ can be estimated by [22].

Θ � ∫∞

−∞
1
4
− U y( ) − 1

2 U1 + U2( )
U2 − U1

[ ]2⎧⎨⎩ ⎫⎬⎭dy, (11)

where U (y) denotes the averaged streamwise velocity profile. In
the present work, the averaged velocity profile of flow past an
array with rigid plates (taking flexible plates with extremely high
rigidity as an approximation) is used to estimate the frequency of
mixing layer instability. The velocity profile at i = 30 is chosen
here since the stable shear layer is fully developed at this position
and the influence of entrance effect becomes negligible at this
position (the location is denoted by a dashed line in Figure 3F).
The frequency of K-H instability estimated by using Eq. 10 is
approximately 0.16, which is close to the prediction made by
O’Conner et al. [22]. Since the plates within the range of mixing-
layer development stay almost upright in the regular waving
mode, the effect of plate deformation on the averaged velocity
profile is negligible. Thus, this estimated frequency is a good
approximate for an array composed of plates with moderate
bending rigidities.

From Figure 13, it is seen that in the regular waving mode,
oscillating frequency of the rear plate is very close to the estimated
frequency of K-H instability. This finding suggests that the
development of coherent waving motion at the rear portion is
governed by a coupled mechanism of elastic property of the
structure and instability of the mixing layer. In the sectional wave
mode, the oscillating frequency of the rear plate is lower than the
estimated frequency of K-H instability. The discrepancy in
frequency can be explained by the fact that a long stable
mixing layer has not been fully developed on the top of the
array (see Figure 3B and Figure 3C).

The oscillations in the front portion of the sectional waving
mode and oscillations in the upright oscillation mode are driven

by another type of shear layer instability related to vortex-
shedding excitation. Although such excitation source shares
some similarities with the K-H instability aforementioned. The
difference between them is also evident. Here the vortex shedding
is triggered by the pinch-off of a very short shear layer (see
Figure 3B, Figure 3C and Figure 3E). As a result, the
dimensionless frequency (Strouhal number) of vortex shedding
cannot can be predicted by using the empirical formula for K-H
instability (i.e., Eq. (10)). This vortex-shedding phenomenon also
resembles that observed in flows over a bluff body [35] (such as a
thin vertical plate or a flat-top rectangle). However, the two types
of vortex shedding phenomena differ in two aspects. First, two
shear layers are involved in flows over a bluff body, while only one
shear layer is involved here. Second, the presence of multiple
plates near the shear layer in the current study creates a boundary
with more complex geometry. Due to the existence of marked
differences, the dimensionless frequencies (Strouhal numbers) in
some cases of these two dynamics modes may deviate
significantly from those of the vortex shedding over
commonly seen bluff bodies (such as circular and square
cylinders).

The oscillation in the cavity oscillation mode is driven by
instability associated with the open-cavity flow. The open-cavity
flow is another classic problem in fluid mechanics. The
dimensionless oscillating frequency in open-cavity flows can
be estimated empirically by using the Rossiter’s formula [10, 36]:

fc � n − α

1/κ +M
· 1
d
, (12)

whereM is the Mach number (M = 0 for incompressible flow). n
is the order of Rossiter mode (n = 1, 2, . . . ) and only n = 1 is
considered in the present study. To fit the experimental data on
open-cavity flows, the empirical constants κ and α are set to 0.57
and 0.25 [36], respectively.

In the cavity oscillation mode, the oscillating frequency of the
plates is also found to be locked onto the first natural
frequency. For the case shown in Figure 10C, the first
natural frequency of the plates is around 0.419, while the
estimated oscillating frequency of open-cavity flow is 0.428.
Theoretically, as the gap distance increases further, high-
order Rossiter modes may also emerge in a specific parameter
range, when the frequencies of high-order Rossiter modes are
close to the first natural frequency. The high-order modes are
never observed in the present study due to the limited
parameter range considered here.

5 CONCLUSION

In this paper, the interactions of a large array of wall-mounted
flexible plates with an oncoming laminar boundary-layer flow are
investigated systematically by numerical simulations. The
influences of some control parameters, such as bending
rigidity, mass ratio and gap distance (between adjacent plates),
on the dynamic behaviors of the arrays are explored. With the
variation of control parameters, five distinct modes, namely,
static reconfiguration, sectional waving, regular waving,
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upright oscillation and cavity oscillation are identified. The
pattern of motion in the plates and wake structure for each
dynamic mode are demonstrated.

The frequency lock-in and underlying physical mechanism
associated with different dynamics modes are elucidated. It is
found that the frequency selection is governed by a coupling
mechanism of elastic property and flow instability. In the
sectional waving mode, the oscillating frequency in the front
portion of the array is locked onto the second-order natural
frequency. In other dynamics modes, the oscillating frequency of
the plates is always locked onto the first-order natural frequency.
Three types of flow instabilities that drive the oscillations of the
plates are identified. The K-H instability is found to be the
excitation source for the rear portion of the array in the
sectional waving mode and regular waving mode. In the
upright oscillation mode and front portion of the sectional
waving mode, the shear layer instability related to vortex
shedding is found to be the excitation source. The instability
associated with open-cavity flow is found to be the excitation
source in the cavity oscillation mode.

There are several avenues for further research. First, the
dynamic interactions of wall-mounted flexible plates in an
oscillatory flow should be investigated to evaluate the
universality of the frequency lock-in mechanism addressed
here. Second, how the motion of the plates and flow structure
are affected by gravity and buoyancy needs further study. Third,
drag reduction and energy absorption associated with different

dynamic modes warrant further investigation. Last, three-
dimensional simulations should be conducted to explore the
3D effects (such as reduced blockage and lateral flow) on the
dynamic interactions among flexible structures.
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