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Direct numerical simulations (DNS) of turbulent channel flows up to Reτ ≈ 1000 are
conducted to investigate the three-dimensional (consisting of streamwise wavenumber,
spanwise wavenumber and frequency) spectrum of wall pressure fluctuations. To develop a
predictive model of the wavenumber–frequency spectrum from the wavenumber spectrum,
the time decorrelation mechanisms of wall pressure fluctuations are investigated. It
is discovered that the energy-containing part of the wavenumber–frequency spectrum
of wall pressure fluctuations can be well predicted using a similar random sweeping
model for streamwise velocity fluctuations. To refine the investigation, we further
decompose the spectrum of the total wall pressure fluctuations into the autospectra of
rapid and slow pressure fluctuations, and the cross-spectrum between them. We focus
on evaluating the assumption applied in many predictive models, that is, the magnitude
of the cross-spectrum is negligibly small. The present DNS shows that neglecting the
cross-spectrum causes a maximum error up to 4.7 dB in the subconvective region for all
Reynolds numbers under test. Our analyses indicate that the approximation of neglecting
the cross-spectrum needs to be applied carefully in the investigations of acoustics at low
Mach numbers, in which the subconvective components of wall pressure fluctuations make
important contributions to the radiated acoustic power.

Key words: turbulence simulation, turbulence modelling

1. Introduction

Wall pressure fluctuations are dominant sources of flow-generated noise in wall-bounded
turbulence (Graham 1997; Wang, Freund & Lele 2006). The sound radiated by a solid
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wall depends on the intensity and spatial–temporal variations of the pressure fluctuations.
Understanding the characteristics of the wavenumber–frequency spectrum of the wall
pressure fluctuations is crucial for developing predictive models of flow-generated noise.

Experimental measurement (Corcos 1964; Blake 1970; Willmarth 1975; Farabee &
Casarella 1991) is an important approach for acquiring data of wall pressure fluctuations.
Arguillat et al. (2005) and Salze et al. (2014) used an array of sensors to measure the spatial
correlations of wall pressure fluctuations at different frequencies, and applied Fourier
transform in space to obtain the wavenumber–frequency spectrum. The energy-containing
parts of the wavenumber–frequency spectrum, including the convective peak and acoustic
part, were identified in their experiments, while other parts with lower energy level were
unresolved.

Another approach for investigating the wall pressure fluctuations is numerical
simulation. Kim (1989) pioneered the direct numerical simulation (DNS) study of
pressure fluctuations in a turbulent channel flow at Reτ = 180, with a focus on the
root mean square (r.m.s.) profiles, one-dimensional (either wavenumber or frequency)
spectra and also probability density functions. The database established by Kim (1989)
was further analysed by Choi & Moin (1990) to investigate the wavenumber–frequency
spectrum of wall pressure fluctuations. They identified the convective characteristic of
wall pressure fluctuations, and showed that the similarity form of the spectrum proposed
in an early study of Corcos (1964) was only accurate at small length and time scales.
Chang III, Piomelli & Blake (1999) also conducted DNS of turbulent channel flow
at Reτ = 180 to study the wall pressure fluctuations. While Chang III et al. (1999)
compared the magnitude of the source terms of the wall pressure fluctuations in different
regions, Anantharamu & Mahesh (2020) systematically analysed the cross-spectral density
between the source terms at two wall-normal locations. Anantharamu & Mahesh (2020)
concluded that the dominant sources of the wall pressure fluctuations were located in the
buffer layer. Hu, Morfey & Sandham (2002) used DNS data of turbulent channel flow
at Reτ = 180 to study the wavenumber–frequency spectrum of wall pressure fluctuations
at low wavenumbers corresponding to large-scale turbulent motions. They argued that
the wavenumber–frequency spectrum of wall pressure fluctuations showed no k2-scaling
at low wavenumbers as predicted theoretically by Kraichnan (1956) and Phillips (1956),
where k refers to the norm of the wavenumber vector consisting of streamwise and
spanwise components. While the above DNS studies of pressure fluctuations are confined
to Reτ = 180, Abe, Matsuo & Kawanura (2005) conducted DNS of turbulent channel
flows up to Reτ ≈ 1000 to investigate the effect of Reynolds number on the pressure
fluctuations. Hu, Morfey & Sandham (2006) analysed DNS data of turbulent channel
flows from Reτ = 90 to 1440 to investigate the scaling of the frequency spectrum of
wall pressure fluctuations at different characteristic frequencies. Xu et al. (2020) derived
a theoretical model of the streamwise-wavenumber spectrum of pressure fluctuations in
the logarithmic layer based on Kolmogorov’s theory (Kolmogorov 1941) and Townsend’s
attached eddy hypothesis (Townsend 1976). This model shows a good agreement with
the DNS results in turbulent channel flows up to Reτ = 5200 (Lee & Moser 2015). The
above investigations of the pressure fluctuations at higher Reynolds numbers focused on
their r.m.s. profiles and one-dimensional spectra, while owing to the requirements of long
simulation times and large storage capacity, DNS investigations of the three-dimensional
wavenumber–frequency spectrum of wall pressure fluctuations are limited to Reτ = 180
(Choi & Moin 1990; Hu et al. 2002). Besides the above DNS studies, large-eddy
simulations (LES) were also conducted to investigate the wall pressure fluctuations,
in recent years. Gloerfelt & Berland (2013) performed LES of compressible turbulent
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boundary layer flow, which resolved the acoustic part of the wavenumber–frequency
spectrum of wall pressure fluctuations. Viazzo, Dejoan & Schiestel (2001) and Park
& Moin (2016) used both wall-resolved and wall-modelled LES to investigate the
wavenumber–frequency spectrum of wall pressure fluctuations in turbulent channel flows.

Besides the experimental and numerical studies, numerous models were proposed
to facilitate a fast prediction of the wavenumber–frequency spectrum of wall pressure
fluctuations. To develop a model of the wavenumber–frequency spectrum (or equivalently,
the space–time correlation in physical space), it is useful to understand the physical
mechanisms of the time decorrelation process (He, Jin & Yang 2017). In previous
studies of velocity fluctuations, it was discovered that in turbulent shear flows, the
time decorrelation was mainly caused by the convection effect of mean flow (Taylor
1938) and the sweeping effect of large-scale turbulent eddies (Kraichnan 1964; Tennekes
1975). Models for space–time correlations (He & Zhang 2006; Zhao & He 2009)
and wavenumber–frequency spectra (Wilczek & Narita 2012; Wilczek, Stevens &
Meneveau 2015) of velocity fluctuations, which took both convection and sweeping into
consideration, were proposed and tested. It was verified that the wavenumber–frequency
spectra of velocity fluctuations obtained from these models were consistent with the DNS
results in turbulent channel flows. By contrast, the time decorrelation mechanisms of wall
pressure fluctuations were rarely investigated in the literature. In isotropic turbulence, Yao
et al. (2008) showed analytically that the pressure fluctuations followed the same random
advection equations of velocity fluctuations. However, in wall-bounded shear turbulence,
time decorrelation mechanisms of wall pressure fluctuations have not been discussed in
the literature, which are investigated using the present DNS data.

The DNS database is also useful for validating models. The existing models of wall
pressure fluctuations can be categorized into two classes, namely the semiempirical
models and those based on the Poisson equation of pressure fluctuations (Slama,
Leblond & Sagaut 2018). In semiempirical models (e.g. Corcos 1964; Chase 1980,
1987; Smol’yakov 2006; Frendi & Zhang 2020), data fitting is usually used to directly
construct the wavenumber–frequency spectrum of wall pressure fluctuations. Various
semiempirical models predict similar spectral magnitudes around the convective peak, but
show discrepancies at wavenumber–frequency combinations located in the subconvective
region (which refers to the region in the wavenumber–frequency space with lower
streamwise wavenumber than the convective peak). Detailed comparisons of different
semiempirical models can be found in the review articles of Graham (1997) and Hwang,
Bonness & Hambric (2009).

Different from the semiempirical models, the models based on the Poisson equation of
the pressure fluctuations (e.g. Panton & Linebarger 1974; Peltier & Hambric 2007; Slama
et al. 2018; Grasso et al. 2019) do not predict the wavenumber–frequency spectrum of wall
pressure fluctuations directly. Instead, the wall pressure fluctuations are expressed as the
solution of the following Poisson equation:

1
ρ

∇2p = −2
∂ui

∂xj

∂Uj

∂xi
− ∂2

∂xi∂xj
(uiuj − 〈uiuj〉), (1.1)

where p denotes the pressure fluctuations, ρ is the fluid density, ui and Ui (i = 1, 2, 3)
represent the velocity fluctuations and mean velocity, respectively, and a pair of angular
brackets denotes averaging over time and the streamwise–spanwise plane. In (1.1), the
right-hand side consists of a linear term and a quadratic term with respect to the velocity
fluctuations ui, which are called the rapid and slow source terms, respectively (Kim 1989).
Because (1.1) is linear about the pressure fluctuations, the total pressure fluctuations can
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be decomposed into rapid and slow components, corresponding to the rapid and slow
source terms, respectively. Thus, the wavenumber–frequency spectrum of the total wall
pressure fluctuations can be decomposed into three components as the autospectra of rapid
(AS-rapid) and slow (AS-slow) components, respectively, and the cross-spectrum between
them (CS-RS). It is commonly assumed in the models based on the Poisson equation
of pressure fluctuations that velocity fluctuations are Gaussian variables satisfying joint
normal distributions (Peltier & Hambric 2007; Slama et al. 2018; Grasso et al. 2019).
Because CS-RS is a cubic function of velocity fluctuations, it is neglected in these models,
since odd-order moments of Gaussian variables are equal to zero, theoretically. In some
semiempirical models, such as the Chase model (Chase 1980, 1987), this assumption
is also applied. However, this assumption has not been confirmed by any numerical or
experimental data.

In the present study, we conduct DNS of turbulent channel flows at four Reynolds
numbers ranging from Reτ = 179 to 998 to investigate the characteristics of the
wavenumber–frequency spectrum of wall pressure fluctuations. The objectives of
the present study include the following. (1) To establish DNS database of the
wavenumber–frequency spectrum of wall pressure fluctuations up to Reτ ≈ 1000. (2)
To investigate the time decorrelation mechanisms of wall pressure fluctuations. (3) To
validate the assumption that CS-RS is negligibly small in comparison with AR-Rapid
and AR-Slow. The remainder of this paper is organized as follows. Numerical details
and the method to compute the wavenumber–frequency spectrum are described in
§ 2. The characteristics of the wavenumber–frequency spectrum of the total wall
pressure fluctuations are analysed in § 3. The decorrelation mechanisms of wall pressure
fluctuations are discussed in § 4. The decomposition of the wavenumber–frequency
spectrum of wall pressure fluctuations is further investigated in § 5, followed by the
conclusions in § 6.

2. Simulation parameters and numerical methods

Table 1 summarizes the key parameters of DNS. We have conducted DNS at four
Reynolds numbers, Reτ = uτh/ν = 179, 333, 551 and 998, where uτ = √

τw/ρ represents
the wall-friction velocity, h denotes one-half the channel height and ν is the kinematic
viscosity. Here, τw is the mean wall shear stress, computed as

τw = τw,low + τw,up

2
= 1

2

(
μ

dU
dy

∣∣∣∣
y=−h

− μ
dU
dy

∣∣∣∣
y=h

)
, (2.1)

where τw,low and τw,up are the mean wall stresses at the lower wall y = −h and upper
wall y = h, respectively, and μ = ρν is the dynamic viscosity. The corresponding
Reynolds numbers based on the bulk mean velocity Ub are Reb = Ubh/ν = 2800,
5700, 10 150 and 20 000, respectively. As mentioned in § 1, existing DNS results of
the wavenumber–frequency spectrum of the wall pressure fluctuation are limited to
a low Reynolds number, Reτ = 180, in the literature (Choi & Moin 1990; Hu et al.
2002). In the present study, we conduct DNS at higher Reynolds numbers to further
investigate the Reynolds number effects. The computational domain size is set to
Lx × Ly × Lz = 4πh × 2h × 2πh in all cases. Hereinafter, the streamwise, wall-normal
and spanwise directions are denoted using x, y and z, respectively. The number of
grid points Nx × Ny × Nz is chosen to match the grid resolution of Hoyas & Jiménez
(2006). Specifically, in the streamwise and spanwise directions, the grid resolution is
set to Δx+ ≈ 11 and Δz+ ≈ 5.5, respectively. In this paper, the superscript ‘+’ denotes
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Cases Reb Reτ Lx × Ly × Lz Nx × Ny × Nz Δx+ Δy+ Δ+
z T+

s

CH180 2800 179 4πh × 2h × 2πh 192 × 129 × 192 11.7 0.054 ∼ 4.39 5.9 0.57
CH330 5700 333 4πh × 2h × 2πh 384 × 193 × 384 11.1 0.046 ∼ 5.56 5.6 0.39
CH550 10150 551 4πh × 2h × 2πh 576 × 257 × 576 12.0 0.041 ∼ 6.75 6.0 0.30
CH1000 20000 998 4πh × 2h × 2πh 1152 × 385 × 1152 10.9 0.034 ∼ 8.18 5.5 0.60

Table 1. Key parameters of DNS, including the Reynolds numbers Reb and Reτ , computational domain size
Lx × Ly × Lz, number of grid points Nx × Ny × Nz, grid resolution Δx+ × Δy+ × Δz+ and the time separation
T+

s of data storage.

variables non-dimensionalized using the wall units ν/uτ and uτ as characteristic length
and velocity scales, respectively. The wall-normal grids are located on the Chebyshev
collocation points, and the number of wall-normal grid points is similar to Hoyas &
Jiménez (2006). The smallest spatial scales are comparable to the local Kolmogorov
scales, and owing to the high accuracy of the pseudospectral method used for conducting
the DNS, the numerical dissipation is negligible (Hoyas & Jiménez 2006). The flow is
driven by a streamwise pressure gradient, which is adjusted to sustain the bulk mean
velocity to a constant. Periodic boundary conditions are applied in the streamwise and
spanwise directions, while no-slip and no-penetration conditions are prescribed at the
solid walls. As pointed out by Choi & Moin (1990), the use of the periodic boundary
condition in the wall-parallel directions can induce a numerical artefact called the artificial
acoustic. However, as is discussed in both Choi & Moin (1990) and the present study
(§ 3.2), the influence of the artificial acoustic is confined at a few smallest wavenumbers,
corresponding to large length scales. Increasing the computational domain can reduce the
influence of the artificial acoustic. The wavenumber–frequency spectrum of wall pressure
fluctuations around the convection line considered in § 4 is merely influenced by the
artificial acoustic, while in § 5, we mainly focus on the maximum error that occurs out
of the wavenumbers and frequencies influenced by the artificial acoustic. In this regard,
the present computational domain size of Lx = 4πh is sufficient for the problems under
investigation. The continuity and momentum equations for incompressible flows are solved
using an in-house pseudospectral-method code. Velocity and pressure are expanded into
Fourier series in the streamwise and spanwise directions, and into Chebyshev polynomials
in the wall-normal direction. The nonlinear terms are calculated in physical space, and
the 3/2 rule is used to remove the aliasing errors (Patterson & Orszag 1971; Kim, Moin
& Moser 1987). The third-order time splitting method of Karniadakis, Israeli & Orszag
(1991) is used for time advancement. The computational time step is chosen to satisfy
the Courant–Friedrichs–Lewy condition, which is Δt+ = 0.057, 0.039, 0.030, 0.040 for
Reτ = 179, 333, 551, 998, respectively. The DNS code has been tested systematically in
previous studies (Deng & Xu 2012; Deng, Huang & Xu 2016). Figure 1 compares the
profiles of the mean velocity and Reynolds stresses 〈uu〉+, 〈vv〉+, 〈ww〉+, 〈uv〉+ of cases
CH180 and CH1000 with the DNS results of Hoyas & Jiménez (2006) and Lee & Moser
(2015). It is seen that the present results are in good agreement with the results in the
literature.

Once the turbulence is fully developed to a statistically stationary state, the
instantaneous flow fields are stored with a time separation of T+

s , ranging from 0.35 to
0.60 at different Reynolds numbers (see table 1). Since Ts determines the largest resolved
frequency, it should satisfy Ts ≤ Δx/Ubc in order to resolve the energy-containing
convection line, where Ubc is the bulk convection velocity (defined later in § 5.3).
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Figure 1. Profiles of (a) mean velocity at Reτ = 179, (b) mean velocity at Reτ = 998, (c) Reynolds stresses at
Reτ = 179 and (d) Reynolds stresses at Reτ = 998. The solid lines represent the results of the present DNS. The
symbols in (a,c) denote the DNS results of Hoyas & Jiménez (2006) at Reτ = 180, while those in (b,d) denote
the DNS results of Lee & Moser (2015) at Reτ = 1000. The dash–dotted lines in (a,b) represent the linear law
U+ = y+ and the dashed line in (b) represents the logarithmic law U+ = log y+/κ + B, where κ = 0.384 and
B = 4.27 are constants (Lee & Moser 2015).

The above criterion is satisfied in all test cases. The wavenumber–frequency spectrum
of wall pressure fluctuations is then calculated using the method described by Choi &
Moin (1990). The time series of wall pressure fluctuations p(x, z, t) are divided into
M intervals with 50 % overlapping between two neighbouring intervals. Each interval
contains Nt = 512 successive snapshots. A Fourier transform is then performed over the
wall pressure fluctuation in each time interval in the streamwise and spanwise directions
and in time to obtain the Fourier modes as

p̂(kx, kz;ω) = 1

LxLz

√
T
∫ T

0 w(t)2 dt

×
∫ T

0
dt
∫ Lx

0
dx
∫ Lz

0
dz · w(t)p(x, z; t)exp(−i(xkx + zkz − ωt)), (2.2)

where T = Nt · Ts is the time duration of each interval and w(t) is a standard Hanning
window. Since all the DNS data are calculated on discrete grids, practically the discrete
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Fourier transform is used to compute p̂(kx, kz;ω) as

p̂(kx, kz;ω) =
√

8/3
NxNzNt

Nx−1∑
l=0

Nz−1∑
m=0

Nt−1∑
n=0

w
(

nT
Nt

)
p
(

lLx

Nx
,

mLz

Nz
,

nT
Nt

)

× exp(−i(lLxkx/Nx + mLzkz/Nz − nTω/Nt)), (2.3)

where a coefficient
√

8/3 is included to keep the r.m.s. value of p unchanged after
applying the window function w(t). The wavenumber–frequency spectrum of wall pressure
fluctuations is then calculated as

φpp(kx, kz, ω) = p̂(kx, kz, ω)p̂
∗
(kx, kz, ω)

ΔkxΔkzΔω
, (2.4)

where Δkx = 2π/Lx and Δkz = 2π/Lz represent the streamwise- and spanwise-
wavenumber resolution, respectively, and Δω = 2π/T is the frequency resolution. The
overbar denotes time averaging over all of the M intervals. In this paper, the results for
M = 38 are presented. To be specific, 5120 fields are stored for each case. These fields are
then divided into 19 windows of 512 fields with 50 % overlap, and averaging over two walls
doubles the number of samples M to 38. The corresponding total time duration is 16.3,
6.0, 2.8 and 3.1 eddy turnover time (h/uτ ) for Reτ = 179, 333, 551 and 998, respectively.
Because the windows are not randomly chosen, it is desired that the time duration of the
data set for time averaging is sufficiently long. To verify this, we have conducted a data
convergence analysis by changing the number of averaging samples M. The results are
provided in the Appendix (A). It is seen that reducing the value of M from 38 to 19 does
not cause any qualitative change in the main conclusions of this paper.

The mean-square wall pressure fluctuation can be calculated as the summation of the
discrete three-dimensional wavenumber–frequency spectrum over all spatial and temporal
scales as

p2 =
Nx/2−1∑

l=−Nx/2

Nz/2−1∑
m=−Nz/2

Nt/2−1∑
n=−Nt/2

φpp(lΔkx,mΔkz, nΔω)ΔkxΔkzΔω. (2.5)

Similarly, the reduced-dimension spectra are calculated by integrating the three-
dimensional wavenumber–frequency spectrum given by (2.4). For example, the
one-dimensional streamwise-wavenumber spectrum φpp(kx) is the integration of
φpp(kx, kz, ω) over the spanwise wavenumber kz and frequency ω.

3. The wavenumber–frequency spectrum of the total wall pressure fluctuations

The wavenumber–frequency spectrum of wall pressure fluctuations is a key input of
predictive models of turbulent-generated noise. In the literature, DNS investigations of the
wavenumber–frequency spectrum of wall pressure fluctuations are limited to Reτ = 180.
In this section, we analyse the DNS results of the wavenumber–frequency spectrum of the
total wall pressure fluctuations up to Reτ = 998.

3.1. One-dimensional spectra
We start our results analyses with the one-dimensional spectra. We note that the
one-dimensional spectra of the wall pressure fluctuation have been previously studied
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Figure 2. One-dimensional spectra of wall pressure fluctuations at Reτ = 179, 333, 551 and 998 with
respect to (a) streamwise-wavenumber, (b) spanwise-wavenumber and (c) frequency. All spectra are
non-dimensionalized using wall units. The results of Choi & Moin (1990) at Reτ = 180 are shown for
comparison.

(Abe et al. 2005; Anantharamu & Mahesh 2020). The purpose of presenting the results of
the one-dimensional spectra is to provide a further validation of our DNS data.

Figure 2 compares the one-dimensional streamwise-wavenumber spectrum, spanwise-
wavenumber spectrum and frequency spectrum of the wall pressure fluctuation at various
Reynolds numbers. The spectra are non-dimensionalized using the wall units. To validate
our results, the one-dimensional spectra of wall pressure fluctuations at Reτ = 180
calculated by Choi & Moin (1990) are superposed. The present results for case CH180 are
in good agreement with the results of Choi & Moin (1990). All of the one-dimensional
spectra at different Reynolds numbers are close to each other at high wavenumbers
and high frequencies, indicating that the spectra are scaled by the wall units (Farabee
& Casarella 1991; Hu et al. 2006; Hwang et al. 2009). At small wavenumbers or
frequencies, the magnitudes of all one-dimensional spectra increase monotonically with
the Reynolds number, an observation that agrees with the DNS results of Abe et al. (2005).
Figures 2(a) and 2(c) show that as the streamwise wavenumber kx or frequencyω increases,
the magnitude of the corresponding one-dimensional spectrum first increases, and then
decreases. However, as depicted in figure 2(b), the magnitude of the one-dimensional
spanwise-wavenumber spectrum φpp(kz) decreases monotonically as kz increases.

3.2. Two-dimensional spectra
In this subsection, we analyse the two-dimensional spectra. To keep the paper concise,
we focus on the results at Reτ = 998. Figures 3(a) and 3(b) show the contours of the
two-dimensional kx–ω and kx–kz spectra of the wall pressure fluctuation φpp, respectively.
For comparison, the contours of the kx–ω and kx–kz spectra of the streamwise velocity
fluctuation φuu at y+ = 15 are plotted in figures 3(c) and 3(d), respectively. We note that
the kx–ω spectra are symmetric about (kx, ω) = (0, 0) and the kx–kz spectra are symmetric
about both kx = 0 and kz = 0. Therefore, only spectra at kx ≥ 0 are plotted in figure 3. As
shown in figures 3(a) and 3(c), large magnitudes of φpp(kx, ω) and φuu(kx, ω) occur around
their convection lines ω/kx = Ubc, demarcated using the dash–dotted lines. Here, the bulk
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Figure 3. Isopleths of two-dimensional spectra of wall pressure fluctuations at y+ = 0 and streamwise velocity
fluctuations at y+ = 15. (a) The kx–ω spectrum of wall pressure fluctuations φpp(kx, ω); (b) kx–kz spectrum of
wall pressure fluctuations φpp(kx, kz); (c) kx–ω spectrum of streamwise velocity fluctuations φuu(kx, ω); and
(d) kx–kz spectrum of streamwise velocity fluctuations φuu(kx, kz). The Reynolds number is Reτ = 998.

convection velocity Ubc is defined as (del Álamo & Jiménez 2009)

Ubc =
∫ ∫

kxωφ(kx, ω) dω dkx∫ ∫
k2

xφ(kx, ω) dω dkx
, (3.1)

where φ(kx, ω) represents the kx–ω spectrum of either wall pressure fluctuations or
velocity fluctuations. The values of the bulk convection velocity for wall pressure
fluctuations (u+

bc = 11.6) and streamwise velocity fluctuations at y+ = 15 (u+
bc = 10.7) are

close to each other, indicating that the convection property of wall pressure fluctuations is
similar to the velocity fluctuations in the buffer layer. This is consistent with the conclusion
of Anantharamu & Mahesh (2020) that the velocity gradients in the buffer layer are the
dominant sources of wall pressure fluctuations.

Another important observation from figure 3(a) is that as kx approaches zero, the
isopleths gradually contract towards (kx, ω) = (0, 0), especially at the energy-containing
scales (see the two innermost isopleths of φpp(kx, ω) = 10−4 and 10−5). This contracting
feature is not observed from the isopleths of φuu(kx, ω), which are approximately parallel
to the convection line at low streamwise wavenumbers. Similar contracting isopleths
also appear in the kx–kz spectrum of wall pressure fluctuations φpp(kx, kz) as shown
in figure 3(b), but are absent for φuu(kx, kz) in figure 3(d). This contracting behaviour
suggests that as kx increases from zero, the spectrum of wall pressure fluctuations first
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Figure 4. Three-dimensional wavenumber–frequency spectrum of wall pressure fluctuations at specific
wavenumbers and frequencies: (a) kz = 0 and (b) kx = 0. The five lines in (a,b) correspond to five frequencies
ωh/uτ = 123, 245, 409, 573 and 716. The arrow points to the increasing direction of the frequency. The
convective peaks are marked using filled circles in (a). The Reynolds number is Reτ = 998.

increases in a small range before it decreases. Such a non-monotonic behaviour is
consistent with the one-dimensional spectrum φpp(kx) plotted in figure 2(a). Later in § 5.3,
we will further show that this contracting behaviour is correlated to the rapid pressure
fluctuations.

3.3. The three-dimensional spectrum
In this section, we continue to analyse the three-dimensional spectrum φpp(kx, kz, ω)
of wall pressure fluctuations at Reτ = 998. The variation of φpp(kx, kz, ω) with respect
to kx corresponding to kz = 0 and five frequencies ωh/uτ = 123, 245, 409, 573 and
716 is plotted in figure 4(a), while figure 4(b) shows the variation of φpp(kx, kz, ω) as
a function of kz for kx = 0 and the same five frequencies. Convective peaks (denoted
by the filled circles) can be identified in all of the five lines in figure 4(a). As the
frequency ω increases, the location of the convective peak moves to a higher streamwise
wavenumber. Focusing on each profile, as the streamwise wavenumber kx decreases from
the convective wavenumber to zero, the value of the φpp(kx, kz, ω) first decreases, and
then increases slightly at low streamwise wavenumbers, forming a weak local maximum
at the lowest resolved streamwise wavenumber. This local maximum is identified as an
artificial acoustic mode by Choi & Moin (1990), which is a numerical artefact induced
by the periodic boundary condition imposed in the streamwise direction. It is seen from
figure 4(a) that for ωh/uτ = 123, the artificial acoustic mode only appears at the lowest
resolved streamwise wavenumber kxh = 0.5. The range of the streamwise wavenumber
influenced by the artificial acoustic mode becomes larger as the frequency increases, but
is still confined in a small neighbouring region around the lowest resolved streamwise
wavenumber. Similarly, artificial acoustic modes also occur in the spanwise direction but
are confined to small spanwise wavenumbers as shown in figure 4(b).

Figures 5(a) and 5(b) show the contours of φpp(kx, kz, ω) corresponding toωh/uτ = 245
and 716, respectively. Convective peaks can be identified for both frequencies (denoted by
the cross symbols in figure 5), and the spectral value decays as the wavenumber moves
away from the convective peaks. The isopleths are closed, ellipse-like curves, except for
a small region near (kx, kz) = (0, 0). Owing to the artificial acoustic modes, the value of
φpp(kx, kz, ω) obtained from DNS does not decay to zero at (kx, kz) = (0, 0). To facilitate
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Figure 5. Contours of the three-dimensional wavenumber–frequency spectrum of wall pressure fluctuations
φpp(kx, kz, ω) in the kx–kz plane for specific frequencies (a) ωh/uτ = 245 and (b) ωh/uτ = 716. Panel (c)
shows a zoom-in view of the dash–dotted box region around (kx, kz) = (0, 0) in (a). The convective peaks are
marked by the cross-symbols. In (c), the black dashed box denotes the area in which the isopleths form a valley,
and the acoustic peak is located in the red circle. Note that in (a,b), the isopleth level ranges from 10−13 to 10−6,
while in (c), it ranges from 10−11 to 10−5. The Reynolds number is Reτ = 998.

a clearer observation near (kx, kz) = (0, 0), figure 5(c) displays a zoom-in view of the
dash–dotted box in figure 5(a). It is seen that the artificial acoustic modes only influence a
small region around (kx, kz) = (0, 0) (marked by the red circle in figure 5c). Outside this
circle, the isopleths form a ‘valley’ between (kx, kz) = (0, 0) and the convective peak. This
observation shows the tendency that the magnitude of φpp(k, ω) decays as the spanwise
wavenumber approaches kz = 0 in the kx–kz plane, which is in agreement with figure 4(b).

4. Time decorrelation mechanisms of wall pressure fluctuations

In previous studies of velocity fluctuations, the investigation of the time decorrelation
mechanisms is found to be useful for developing predictive models of wavenumber–
frequency (kx–ω) spectra (Wilczek & Narita 2012; Wilczek et al. 2015; He et al. 2017).
However, the time decorrelation mechanisms of wall pressure fluctuations are rarely
discussed in the literature. In this section, we examine if the frequency variation of the
kx–ω spectrum of wall pressure fluctuations follows the same functional form as that of
velocity fluctuations.

As shown in figure 3(a), similar to the velocity fluctuations, the energy-containing
region in the kx–ω spectrum of wall pressure fluctuations is located around the convection
line. This means that the convection by the mean flow is one of the main time decorrelation
mechanisms of wall pressure fluctuations. On the other hand, the wavenumber–frequency
spectrum is not concentrated exactly upon the convection line as predicted by Taylor’s
hypothesis (Taylor 1938). Instead, the energy-containing part distributes around the
convection line, forming a finite bandwidth due to the Doppler broadening effect (Wu
et al. 2017; Wu & He 2020). For velocity fluctuations, the Doppler broadening is caused
by the large-scale sweeping effect (Kraichnan 1964; Tennekes 1975). To facilitate the
investigation of the time decorrelation mechanisms of wall pressure fluctuations, we briefly
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review the linear random sweeping model of the wavenumber–frequency spectrum of
streamwise velocity fluctuations proposed by Wilczek et al. (2015).

Considering an arbitrary variable ψ (which is the streamwise velocity fluctuations u
in Wilczek et al. (2015)), in a turbulent channel flow, it is advected in the wall-parallel
directions by both mean velocity U = (U, 0) and large-scale sweeping velocity v =
(vx, vz). The sweeping velocity is assumed to be a constant in space and time with a
Gaussian ensemble (Kraichnan 1964; Yao et al. 2008; He et al. 2017). The spatial Fourier
mode of ψ follows a random advection equation:

∂

∂t
ψ̂(k, t)+ i(U + v) · kψ̂(k, t) = 0. (4.1)

The wavenumber–frequency spectrum of ψ can be subsequently derived from the solution
of (4.1) as (Wilczek et al. 2015)

φψψ(k, ω) = φψψ(k) · 1√
2π(

〈
v2

x
〉
k2

x + 〈
v2

z
〉
k2

z )

exp

[
− (ω − kxU)2

2(
〈
v2

x
〉
k2

x + 〈
v2

z
〉
k2

z )

]
. (4.2)

In (4.2), the wavenumber–frequency spectrum is estimated using the multiplication
between the wavenumber spectrum φψψ(k) and a Gaussian function of the frequency.
The numerical results in Wilczek et al. (2015) showed that (4.2) accurately predicts the
wavenumber–frequency spectrum of velocity fluctuations φuu in turbulent channel flows,
especially at the energy-containing kx–ω combinations along the convection line. This
indicates that sweeping is also a main physical mechanism for the time decorrelation of
velocity fluctuations in wall-bounded turbulence. In the rest of this section, we examine if
the wavenumber–frequency spectrum of wall pressure fluctuations φpp(kx, kz, ω) follows
the same functional form as φuu(kx, kz, ω).

Figure 6(a) compares the isopleths of φpp(kx, ω) obtained from DNS and (4.2). Here
the convection velocity U in (4.2) is chosen as the bulk convection velocity U+ = 11.6.
Wilczek et al. (2015) found that the r.m.s. sweeping velocities of the spectrum of
streamwise velocity fluctuations can be well approximated by the local r.m.s. velocities.
Because the velocity sources in the buffer layer contribute most to wall pressure
fluctuations (Anantharamu & Mahesh 2020), we choose the r.m.s. velocities at y+ = 15 as
the r.m.s. sweeping velocities in model (4.2). As such, all the three velocities in this model
are chosen as quantities with physical meanings related to wall pressure fluctuations, and
no parameter needs to be adjusted in the following comparison. The model (4.2) is in
good agreement with the DNS result in the energy-containing spatial–temporal scales.
Specifically, the isopleths of 10−4 and 10−5 obtained from the model are almost coincident
with the DNS result. The contracting feature at low streamwise wavenumbers is also
well captured by the model. As is shown in § 5.3, the contracting feature is induced by
the scaling of the rapid pressure at low streamwise wavenumbers. Because this scaling
behaviour is a spatial property embedded in the wavenumber spectrum φpp(k) as a model
input, it is also satisfied by the model of the wavenumber–frequency spectrum φpp(k, ω)
given by (4.2). Figure 6(b) further shows three slices of φpp(kx, ω) at kxh = 20, 70 and 150.
For the two lower wavenumbers kxh = 20 and 70, the frequency distributions of φpp(kx, ω)
obtained from the model are close to the DNS results around the convective peaks. For the
higher wavenumber kxh = 150, the convection peak predicted by the model shifts to a
higher frequency in comparison with the DNS result. This indicates that the convection
velocity is scale dependent, which is further investigated in § 5.3. We have tested that, if a
scale-dependent convection velocity U(kx) is used in model (4.2), then the peak locations
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Figure 6. The wavenumber–frequency spectrum of wall pressure fluctuations φpp(kx, ω) obtained from DNS
and from model (4.2). (a) Contours in the kx–ω plane. (b) Variation of φpp(kx, ω) with respect to the
dimensionless frequency ωh/uτ for specific streamwise wavenumbers kxh = 20, 70 and 150. In (a,b), the solid
and dashed lines represents DNS and model results, respectively. The Reynolds number is Reτ = 998.

predicted by the model also match the DNS results at high wavenumbers. Since the present
model mainly focuses on the energy-containing scales, we choose a constant convection
velocity in the model to keep it simple. Furthermore, the model spectrum decreases faster
than the DNS result at low and high wavenumbers away from the convective peak. This is
because the model assumes a Gaussian decay at all frequencies, while the DNS spectrum
indeed shows an approximately exponential decay at high frequencies.

To further show the capability of (4.2) in the prediction of the energy-containing
part of wavenumber–frequency spectrum of wall pressure fluctuations, we define the
following indicator function I as the ratio between the spectra obtained from the model and
DNS:

I = φpp,model(k, ω)
φpp,DNS(k, ω)

. (4.3)

If the wavenumber–frequency spectrum of wall pressure fluctuations follows the functional
form of (4.2), then the value of I should be equal to unity. Figures 7(a) and 7(b) depict
the variation of I with respect to the frequency ω for kz = 0 and kx = 0, respectively. It is
observed that plateaus with I = 1 exist in the energy-containing scales in both figures 7(a)
and 7(b). This indicates that the wavenumber–frequency spectrum of wall pressure
fluctuations follows the random sweeping model (4.2) at energy-containing scales. Similar
to the velocity fluctuations, the Doppler broadening effect on the wavenumber–frequency
spectrum of wall pressure fluctuations is also induced by the large-scale random sweeping.
Noticing that the wall pressure fluctuations can be expressed as an integration of the
source terms weighted by the Green’s function (Kim 1989), the time decorrelation
properties of wall pressure fluctuations can be regarded as the weighted average properties
of the velocity source terms. Thus, it is reasonable that the wavenumber–frequency
spectrum of wall pressure fluctuations has the similar functional form as velocity
fluctuations.
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Figure 7. Variation of the indicator function I for the spectrum of wall pressure fluctuations obtained from
the random sweeping model with respect to the dimensionless frequency ωh/uτ for specific wavenumbers:
(a) kz = 0 and kx = 100, 120, 140, 160, 180 and 200; (b) kx = 0 and kz = 100, 120, 140, 160, 180 and 200.
The arrow points to the increasing direction of the streamwise or spanwise wavenumber. The horizontal dashed
lines denote I = 1. The Reynolds number is Reτ = 998.

5. Decomposition of the wavenumber–frequency spectrum of wall pressure
fluctuations

5.1. Mathematical description of the decomposition
According to (1.1), the pressure fluctuations can be decomposed into two components as

p = pr + ps. (5.1)

The rapid pressure fluctuations pr and slow pressure fluctuations ps are governed by the
following Poisson equations:

∇2pr = fr = −2ρ
∂ui

∂xj

∂Uj

∂xi
,

∇2ps = fs = −ρ ∂2

∂xi∂xj
(uiuj − uiuj),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.2)

respectively, where fr and fs denote the corresponding source terms. Because the
magnitude of the Stokes pressure induced by the inhomogeneous boundary condition
becomes increasingly small as the Reynolds number increases (Gerolymos, Sénéchal &
Vallet 2013), we adopt the homogeneous Neumann boundary conditions ∂pr/∂y|y=±h =
∂ps/∂y|y=±h = 0 for both rapid and slow pressure fluctuations following Anantharamu
& Mahesh (2020). Performing a Fourier transform over (5.2) results in the following
Helmholtz equations:

∂2p̂r(k, ω; y)
∂y2 − k2p̂r(k, ω; y) = f̂ r(k, ω; y), ∂ p̂r/∂y|y=±h = 0,

∂2p̂s(k, ω; y)
∂y2 − k2p̂s(k, ω; y) = f̂ s(k, ω; y), ∂ p̂s/∂y|y=±h = 0,

⎫⎪⎪⎬
⎪⎪⎭ (5.3)

where p̂r, p̂s, f̂r and f̂s denote the Fourier modes of pr, ps, fr and fs, respectively. The
solution of (5.3) can be expressed as an integration of the source term f̂r weighted by a
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Green’s function as (Kim 1989)

p̂r(k, ω; y) =
∫ h

−h
G( y, y′, k)f̂ r(k, ω; y′) dy′,

p̂s(k, ω; y) =
∫ h

−h
G( y, y′, k)f̂ s(k, ω; y′) dy′,

⎫⎪⎪⎬
⎪⎪⎭ (5.4)

where the Green’s function G( y, y′, k) is given as

G( y, y′, k) =

⎧⎪⎪⎨
⎪⎪⎩

cosh(k( y′ − h)) cosh(k( y + h))
2k sinh(kh) cosh(kh)

, y ≤ y′,

cosh(k( y′ + h)) cosh(k( y − h))
2k sinh(kh) cosh(kh)

, y > y′,
(5.5)

for k /= 0, while for k = 0 the Green’s function is

G( y, y′, k) =

⎧⎪⎨
⎪⎩

1
2
( y − y′), y ≤ y′,

1
2
( y′ − y), y > y′.

(5.6)

In this paper, we focus on the wall pressure fluctuations, and as such the wall-normal
coordinate is fixed to y = ±h without specific declarations.

From (5.1) and (5.3), it is known that the Fourier modes of wall pressure fluctuations
can be also decomposed into rapid and slow components as

p̂(k, ω) = p̂r(k, ω)+ p̂s(k, ω). (5.7)

Substituting (5.7) into (2.4) yields the following decomposition of the wavenumber–
frequency spectrum of wall pressure fluctuations:

φpp(k, ω) = φrr(k, ω)+ φss(k, ω)+ 2φrs(k, ω)

= p̂r(k, ω)p̂∗
r (k, ω)

ΔkxΔkzΔω︸ ︷︷ ︸
AS−Rapid

+ p̂s(k, ω)p̂∗
s (k, ω)

ΔkxΔkzΔω︸ ︷︷ ︸
AS−Slow

+ 2
Re
(

p̂r(k, ω)p̂∗
s (k, ω)

)
ΔkxΔkzΔω︸ ︷︷ ︸

CS-RS

, (5.8)

where φrr(k, ω), φss(k, ω) and φrs(k, ω) represent AS-rapid, AS-slow and CS-RS,
respectively, and Re(·) denotes the real part of a complex number.

In the early research of wall pressure fluctuations, Kraichnan (1956) proposed a
hypothesis that the rapid component of wall pressure fluctuations dominates over the
slow component. This hypothesis is supported by the analytical studies of Hodgson (1962)
and Chase (1980), and the experiments of Johansson, Her & Haritonidis (1987). Various
predictive models of the spectrum of wall pressure fluctuations are proposed based on
Kraichnan’s hypothesis (see for example Kraichnan 1956; Panton & Linebarger 1974; Lee,
Blake & Farabee 2005; Lysak 2006; Ahn, Graham & Rizzi 2010). In these models, the
wavenumber–frequency spectrum of wall pressure fluctuations φpp(k, ω) is approximated
as the AS-rapid φrr(k, ω). The DNS results of Kim (1989) and Chang III et al. (1999) show
that the slow component of wall pressure fluctuations has the same order of magnitude
as the rapid component. Therefore, it is more accurate to account for both AS-rapid and
AS-slow to predict the spectrum of wall pressure fluctuations (see for example Chase 1980,
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1987; Peltier & Hambric 2007; Slama et al. 2018; Grasso et al. 2019). In these models,
the spectrum of the total wall pressure fluctuations is assumed to be the summation of
AS-rapid and AS-slow, while CS-RS is neglected as a consequence of the joint-normal
distribution assumption of the velocity fluctuations.

In this section, we use the DNS data to examine the influence of CS-RS on the spectrum
of the total wall pressure fluctuations. To conduct quantitative analyses, there are two
indicators evaluating the error induced by neglecting CS-RS. The first indicator is the
ratio between CS-RS and the spectrum of the total wall pressure fluctuations, viz.

R = 2φrs(k, ω)
φpp(k, ω)

= φpp(k, ω)− (φrr(k, ω)+ φss(k, ω))
φpp(k, ω)

× 100 %. (5.9)

When φrr(k, ω)+ φss(k, ω) is used to approximate the ‘exact value’ of φpp(k, ω) as is
adopted in many models, the ratio R also represents the relative error induced by neglecting
φrs. It can be proved using the Cauchy–Schwarz inequality that the value of R ranges from
−∞ to 50 %. The second indicator is the decibel-scaled error in φpp caused by neglecting
φrs, defined as

E = 10 × log10
φrr(k, ω)+ φss(k, ω)

φpp(k, ω)
= 10 × log10(1 − R). (5.10)

Since the spectrum of wall pressure fluctuations is conventionally presented in a decibel
scale, we mainly use E as the indicator in this paper. It is worth noting that the magnitudes
of R and E are asymmetric for positive and negative values of φrs. To be specific, if
φrs ≥ 0, then 0 % ≤ R ≤ 50 % holds, and the corresponding decibel-scaled error E is no
smaller than −3.0 dB. However, if φrs < 0, the relative error R can reach −∞ and the
corresponding decibel-scaled error E approaches +∞. This suggests that if the value of
φrs is negative and its magnitude is comparable to φrr + φss, the wavenumber–frequency
spectrum of wall pressure fluctuations can be significantly overestimated.

In the following content of this section, the characteristics of AS-rapid, AS-slow and
CS-RS are discussed, and the errors in the spectra of the total wall pressure fluctuations
caused by neglecting CS-RS are analysed. In §§ 5.2–5.4, the results of one-dimensional,
two-dimensional and three-dimensional spectra at Reτ = 998 are presented. The effects of
Reynolds number are examined in § 5.5.

5.2. Decomposition of one-dimensional spectra
Figure 8 compares the magnitudes of one-dimensional AS-rapid, AS-slow and CS-RS.
Note that φrs can be negative valued, such that its absolute value |φrs| is used to represent
its magnitude in figure 8. To validate our results, the spectra of Abe et al. (2005) for
AS-rapid and AS-slow with respect to the streamwise wavenumber kx are superposed in
figure 8(a). It is seen that the present results agree with Abe et al. (2005).

For the kx- and ω-spectra (see figures 8a and 8c, respectively), the magnitudes of
φrr and φss are comparable throughout the entire resolved range of kx and ω, except
that the magnitude of φss is slightly larger than that of φrr at small kx or ω. For the
kz-spectra, φrr is larger than φss at small wavenumbers for kzh < 10, but becomes smaller
than φss at large wavenumbers for kzh > 100. These observations are consistent with the
results of Kim (1989) and Chang III et al. (1999) at Reτ = 180. The magnitudes of φrr
and φss are much larger than those of |φrs| at low wavenumbers (kxh < 50, kzh < 50)
and low frequencies (ωh/uτ < 500), indicating that neglecting CS-RS causes little error
in the one-dimensional spectra of the wall pressure fluctuation at these wavenumbers
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Figure 8. One-dimensional AS-rapid (red solid lines), AS-slow (blue dashed lines) and the absolute value of
CS-RS (green dash–dotted lines) with respect to the (a) streamwise wavenumber kx, (b) spanwise wavenumber
kz and (c) frequency ω. The Reynolds number is Reτ = 998. The AS-rapid (red diamonds) and AS-slow (blue
diamonds) with respect to the streamwise wavenumber kx of Abe et al. (2005) are superposed in panel (a) for
comparison.
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Figure 9. Decibel-scaled errors in the one-dimensional (a) kx-, (b) kz- and (c) ω-spectra of the wall pressure
fluctuation caused by neglecting CS-RS.

and frequencies. As the wavenumber or frequency increases, the magnitudes of |φrs|,
φrr and φss become comparable at high wavenumbers (kxh > 100, kzh > 200) or high
frequencies (ωh/uτ > 1000).

Figure 9 shows the decibel-scaled errors in the one-dimensional spectra of the total wall
pressure fluctuations caused by neglecting CS-RS. At small wavenumbers or frequencies,
E is positive valued, and smaller than 1.0 dB. As the wavenumber or frequency increases,
the value of E decreases and crosses the dashed line denoting E = 0 at kxh ≈ 3.5, kzh ≈
5.0 and ωh/uτ ≈ 80. As the wavenumber or frequency continues to increase, the value of
E further decreases to its minimum and then increases slightly at very high wavenumbers
or frequencies. The minimum values of E for the kx-, kz- and ω-spectra are approximately
−2.1, −1.1 and −1.8 dB, respectively, suggesting that the assumption of neglecting CS-RS
is acceptable for the one-dimensional spectra of wall pressure fluctuations.

5.3. Decomposition of the two-dimensional spectrum
In this subsection, we continue to investigate the decomposition of the two-dimensional
spectrum of wall pressure fluctuations. To keep the paper concise, we follow Slama et al.
(2018) to focus on the kx–ω spectrum, since the energy-containing convective peak, which
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Figure 10. Contours of two-dimensional kx–ω spectra of the (a) rapid and (b) slow components of the wall
pressure fluctuation. Six equal-ratio isopleths from 1 × 10−5 to 1 × 10−10 are shown by the dashed lines. The
convection lines kx = ω/Uc are demarcated using the dash–dotted lines. The Reynolds number is Reτ = 998.

is important for the cabin noise generation of a high-speed subsonic civil aircraft (Graham
1997), can be identified from the kx–ω spectrum.

The isopleths of two-dimensional AS-rapid and AS-slow in the kx–ω plane are shown
in figures 10(a) and 10(b), respectively. The difference between φrr and φss mainly lies
in the low-wavenumber region. As shown in figure 10(a), the isopleths of φrr contract to
(kx, ω) = (0, 0) as kx approaches zero. This property of φrr can be explained using the
Helmholtz equation (5.3) of the Fourier modes of the rapid pressure fluctuations.

The source term of the rapid pressure fluctuations in the wavenumber–frequency space,
i.e. f̂ r(k, ω; y′) in (5.4), can be written as

f̂r(k, ω; y) = 1

(2π)3

∫
dx
∫

dz
∫

dt ·
(

−2
dU
dy
∂v

∂x

)
exp[−i(kxx + kzz − ωt)]

= − 2ikx

(2π)3
dU( y)

dy
v̂(k, ω; y), (5.11)

from which it is understood that f̂ r(kx = 0, kz, ω; y) = 0. Furthermore, (5.5) and (5.6)
show that the Green’s function approaches a non-zero finite value as kx → 0, and,
therefore, p̂r(kx = 0, kz, ω; y) = 0 holds. Integrating φrr(kx, kz, ω) over the spanwise
wavenumber kz yields the same constraint for the two-dimensional spectrum φrr(kx, ω).
This constraint also leads to the contracting behaviour of the isopleths of φpp around
kx = 0 as shown in figure 3. In contrast, the source term of the slow pressure fluctuations
does not have such a constraint at kx = 0. Consequently, the isopleths of AS-slow do not
show a contracting feature around kx = 0 (figure 10b).

Both φrr and φss show a convective property. Specifically, the large spectral values
are concentrated around the convection lines demarcated by the dash–dotted lines. The
slopes of the convection lines are identical to the bulk convection velocity, which
can be determined using (3.1). The values of the bulk convection velocity for φrr
and φss are 11.5uτ and 11.7uτ , respectively, close to the bulk convection velocity of
the total wall pressure fluctuations, i.e. 11.6uτ as shown in figure 3(a). Figure 11
further compares the wavenumber-dependent convection velocities of the rapid, slow
and total wall pressure fluctuations. Here, the wavenumber-dependent convection velocity
of an arbitrary variable is defined using its wavenumber–frequency spectrum φ(kx, ω)
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Figure 11. Wavenumber-dependent convection velocities of the rapid, slow and total wall pressure
fluctuations. The Reynolds number is Reτ = 998.

as (del Álamo & Jiménez 2009)

Uc(kx) =
∫
ωφ(kx, ω) dω

kx
∫
φ(kx, ω) dω

. (5.12)

From figure 11, it is seen that the values of Uc(kx) for the rapid, slow and total wall pressure
fluctuations all decrease monotonically as kx increases. At low wavenumbers for kxh <
10, the convection velocity of the rapid wall pressure fluctuations is larger than that of
the slow wall pressure fluctuations. For kxh > 10, the convection velocities of the rapid,
slow and total wall pressure fluctuations are close to each other. They all approach 10.0uτ
as kx increases. This value is close to the convection velocity of the total wall pressure
fluctuations at Reτ = 180 (Choi & Moin 1990). These results indicate that the convective
properties of the rapid and slow pressure are similar, and the same convection velocity can
be used to model both AS-rapid and AS-slow (Chase 1980, 1987).

Figure 12 shows the contours of CS-RS in the kx–ω plane with the positive and negative
values coloured by red and blue, respectively. It is seen that CS-RS is positive in most
regions around the convection line (denoted by the dash–dotted line), except for a small
region below the convection line at relatively low kx. Besides, since CS-RS also satisfies
the constraint φrs(kx, ω) → 0 as kx approaches zero, the isopleths show similar contracting
behaviour as φrr(kx, ω) (see figure 10a) at low streamwise wavenumbers.

Figure 13 shows the contours of the decibel-scaled error E in the kx–ω spectrum of
wall pressure fluctuations caused by neglecting CS-RS. The positively and negatively
valued regions are coloured by red and blue, respectively. It is seen that there are three
local peaks, two in the blue region with negative value of E (marked by the white cross
symbols), and one in the red region with positive value of E (marked by the black cross
symbol). The details of these peaks, including their locations and values, are given in the
figure. Specifically, there are two negative peaks, with one located in the subconvective
region and the other in the viscous region. The values of E for these two peaks are −2.0
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Figure 12. Contours of two-dimensional CS-RS in the kx–ω plane. The positive and negative values are
coloured by red and blue, respectively. The convection line kx = ω/Uc is demarcated using the dash–dotted
line. The Reynolds number is Reτ = 998.
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Figure 13. Contours of the decibel-scaled error E in the kx–ω spectrum of wall pressure fluctuations caused
by neglecting CS-RS. The local peaks in the regions with negative and positive values of E are marked using
the white and black cross symbols, respectively. The Reynolds number is Reτ = 998.

and −2.5 dB, respectively. The positive peak is located below the convection line, and its
decibel-scaled value is 1.4 dB.

In summary, neglecting CS-RS leads to a maximum decibel-scaled error of
approximately −2.5 dB at viscous scales for the kx–ω spectrum of wall pressure
fluctuations. This is still an acceptable error magnitude, though it is slightly larger than that
in the one-dimensional spectra. In § 5.4, we continue to show that for the three-dimensional
spectrum of wall pressure fluctuations, a much larger decibel-scaled error of approximately
4.7 dB in the subconvective region is induced by neglecting CS-RS.

5.4. Decomposition of the three-dimensional spectrum
Figure 14 compares the variations of φrr, φss and |φrs| with respect to kx at kz = 0 and
two given frequencies ωh/uτ = 245 and ωh/uτ = 716. The corresponding convective
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Figure 14. Absolute values of AS-rapid φrr, AS-slow φss and CS-RS |φrs| for the three-dimensional
wavenumber–frequency spectra of wall pressure fluctuations for kz = 0 and two given frequencies (a) ωh/uτ =
245 and (b) ωh/uτ = 716. The convective wavenumbers are demarcated using vertical dashed lines. The
Reynolds number is Reτ = 998.

wavenumbers demarcated by the vertical dashed lines are kxh = 15 and kxh = 48,
respectively. From these convective wavenumbers and frequencies, it can be calculated
that the convection velocities at these two frequencies are 16.3uτ and 14.9uτ , respectively.
These values are larger than the convection velocity shown in figure 11. Such a difference
is attributed to the fact that figure 14 shows the three-dimensional spectrum at a
specific spanwise wavenumber kz = 0, while in figure 11, the convection velocity of
the two-dimensional spectrum averaged over all spanwise wavenumbers is depicted. The
above comparison indicates that the convection velocity also depends on the spanwise
wavenumber. This is consistent with the results of del Álamo & Jiménez (2009).

The spectra at the two frequencies have some common features. First, in the
subconvective region (left-hand side of the vertical dashed lines), the magnitudes of |φrs|
and φrr are comparable, while that of φss is large. Second, as kx increases to the convective
wavenumber, the magnitudes of φrr and φss become close to each other gradually, while
|φrs| becomes one order of magnitude smaller than φrr and φss (shown by the horizontal
dotted lines in figure 14). Finally, the magnitudes of |φrs|, φrr and φss become close to each
other for kxh > 200.

Next, we focus on the error in the three-dimensional spectrum of wall pressure
fluctuations caused by neglecting CS-RS. By examining the decibel-scaled error in the
kx–kz plane at various frequencies (not shown for brevity), we find that for an arbitrarily
given combination of (kx, ω), the peak of E always occurs at kz = 0. Therefore, we
focus on kz = 0 in the following error analyses. Figure 15 shows the kx-variation of the
decibel-scaled error E at kz = 0 and two frequencies ωh/uτ = 245 and ωh/uτ = 716.
Since the raw data (denoted by the grey lines in figure 15) fluctuate violently, we follow
Baars, Hutchins & Marusic (2016) to adopt a moving average filter to show the qualitative
trend. The moving average filter is expressed as

Efilt(kx) =
l∑

i=−l

1
2l + 1

E(kx + iΔkx), (5.13)

where the filter width is chosen to be l = 2. The filtered results are denoted by the black
lines in figure 15. For both frequencies, the maximum values of E (denoted by red circles
in figure 15) occur in the subconvective region. At the lower frequency ωh/uτ = 245, the
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Figure 15. Unfiltered (grey lines) and filtered (black lines) error E in the three-dimensional
wavenumber–frequency spectrum caused by neglecting CS-RS for kz = 0 and two given frequencies
(a) ωh/uτ = 245 and (b) ωh/uτ = 716. The convective wavenumbers are demarcated using vertical dashed
lines. The Reynolds number is Reτ = 998.

maximum values of unfiltered and filtered error reach 5.1 and 4.1 dB, respectively. At the
higher frequency, these two values decrease to 2.9 and 2.5 dB, respectively. The results
shown in figure 15 indicate a significant overprediction of the spectral magnitude in the
subconvective region.

While figure 15 shows the error at specific frequencies, it is also useful to find the
maximum error over all frequencies. For this purpose, we define the frequency-dependent
maximum error Emax(ω) as

Emax(ω) = max
kx

E(kx, kz = 0, ω). (5.14)

Figure 16 shows the variation of Emax with respect to the dimensionless frequency ωh/uτ .
The raw data and filtered data are denoted by the grey and red lines, respectively. The peak
of Emax occurs at a low frequency, of which the value is 4.7 and 5.2 dB with and without
the application of the filter, respectively. Such a decibel-scaled error (4.7 dB) corresponds
to a large relative error of approximately 195 % caused by neglecting CS-RS in the model
of the three-dimensional spectrum of wall pressure fluctuations.

It should be noted here that in practical applications, the total wall pressure fluctuations
are a weighted integration of their spectrum at all wavenumbers and frequencies.
Therefore, the error in the subconvective region can be attenuated. This is supported by
the fact that the errors in one- and two-dimensional spectra are smaller than those in the
three-dimensional spectrum. However, the findings of this section cast a doubt on the
conventional assumption that CS-RS is negligible compared with AS-rapid and AS-slow in
some specific applications. In particular, neglecting CS-RS induces significant errors in the
subconvective region at low frequencies. As pointed out by Graham (1997), the properties
of the wavenumber–frequency spectrum model in the subconvective region are crucial for
the prediction of noise generation in low-Mach-number flows over stiff structures. The
omission of CS-RS can be, therefore, inaccurate in corresponding applications, such as
automobiles and submarine vehicles, and a modification is expected.
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Figure 16. Unfiltered (grey line) and filtered (red line) frequency-dependent maximum error Emax in the
three-dimensional wavenumber–frequency spectrum of wall pressure fluctuations caused by neglecting CS-RS.
The Reynolds number is Reτ = 998.
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Figure 17. Variation of filtered Emax with respect to the viscous-scaled frequency ω+ for different Reynolds
numbers.

5.5. Reynolds number effects
The above analyses of the error in the spectrum of wall pressure fluctuations caused by
neglecting CS-RS are conducted at Re = 998. In this subsection, we further examine the
effect of Reynolds number. Because the errors in the one- and two-dimensional spectra
are acceptable, while those in the three-dimensional spectrum are significantly larger, we
focus on the three-dimensional spectrum in this subsection to keep the paper concise.

Figure 17 compares the variations of the filtered value of Emax (see (5.14) for definition)
with respect to the viscous-scaled frequency for various Reynolds numbers. It is observed
that the distributions of Emax are close to each other for 330 � Reτ � 1000 under
the viscous scaling. Specifically, the peak occurs at ω+ ≈ 0.25 and the peak value is
approximately 4.7 dB. For the lowest Reynolds number Reτ = 180, the peak is located
at a slightly lower frequency ω+ ≈ 1.5 and the peak value is approximately 6.0 dB.
The difference might be induced by the low-Reynolds-number effect. This observation
indicates that the maximum error in the wavenumber–frequency spectrum of wall pressure
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fluctuations induced by neglecting CS-RS is correlated to the property of the velocity field
in the near-wall region.

6. Conclusions

In this paper, we conduct DNS of turbulent channel flows at four Reynolds numbers
(Reτ = 179, 333, 551, 998) to study the wavenumber–frequency spectrum of wall pressure
fluctuations. The characteristics of the wavenumber–frequency spectrum of the total
wall pressure fluctuations, along with AS-rapid, AS-slow and CS-RS, are analysed with
particular focus on the assumption that CS-RS is negligibly small compared with AS-rapid
and AS-slow, which is commonly used in various models of the wavenumber–frequency
spectrum of wall pressure fluctuations. We also conduct an investigation of the time
decorrelation of wall pressure fluctuations. The main findings of this paper are summarized
as follows.

For the two-dimensional and three-dimensional spectra of the total wall pressure
fluctuations, the isopleths gradually contract to the origin as the streamwise wavenumber
kx approaches zero. This contracting behaviour is determined by the mathematical
constraint of AS-rapid limkx→0 φrr(kx, kz, ω) = 0, which is proved using the solution of
the Helmholtz equation based on the Green’s function.

In the investigation of the time decorrelation mechanisms, it is discovered that
the frequency distributions of the wavenumber–frequency spectrum of wall pressure
fluctuations at energy-containing scales follow a similar Gaussian form as those
of streamwise velocity fluctuations. The sweeping velocities are close to the r.m.s.
velocity fluctuations at the centre of the buffer layer. This indicates that the time
decorrelation of wall pressure fluctuation is also dominated by the random sweeping,
and the energy-containing part of the wavenumber–frequency spectrum of wall pressure
fluctuations can be well predicted using a random sweeping model.

In the analyses of the model error caused by neglecting CS-RS, it is found that the
assumption that CS-RS can be neglected in comparison with AS-rapid and AS-slow
is acceptable for one- and two-dimensional spectra. However, for the three-dimensional
spectrum, neglecting CS-RS leads to a significant over-prediction of the spectrum in the
subconvective region. The maximal decibel-scaled error is approximately 4.7 dB for 330 �
Reτ � 1000. Furthermore, the frequency corresponding to the maximum error is scaled by
the wall units, indicating that the error is correlated to the velocity sources in the near-wall
region. These results show that in the predictive models of the wavenumber–frequency
spectrum of wall pressure fluctuations, more efforts are needed to account for CS-RS in
the subconvective region.

As a final remark in this paper, we note that due to the influence of the artificial acoustic,
the wavenumber–frequency spectrum of wall pressure fluctuations at small wavenumbers
is not analysed thoroughly in this paper. However, the flow-induced low-wavenumber wall
pressure fluctuation plays an important role in structure vibration (Graham 1997). In future
studies, it is desired to conduct simulations using sufficiently large computational domain
to examine the corresponding theories (Kraichnan 1956; Phillips 1956) and physical
models (e.g. Chase 1980, 1987) at small wavenumbers.
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Appendix. Data convergence analysis with respect to the number of averaging
samples

In this Appendix, we examine the data convergence of the present results. As described
in § 2, M = 38 samples are used to conduct time averaging in the calculation of the
three-dimensional spectrum of wall pressure fluctuations. Since one- and two-dimensional
spectra are further averaged in the spatial or temporal direction, they are less sensitive
to the number of averaging samples. Therefore, we mainly discuss the data convergence
performance of the three-dimensional spectrum, with special focus on whether the
frequency-dependent maximum error Emax shown in figure 16 is robust as the number
of averaging samples M changes.

Figure 18 compares the frequency-dependent maximum error Emax for M = 19 (blue
lines) and 38 (red lines). Both filtered and unfiltered results are presented. Although the
results for M = 19 are more oscillatory without applying the filter, the results for M = 19
and 38 are in general consistent. Particularly, both M = 19 and 38 show a peak at ω+ ≈
0.25, and the filtered peak values are 5.0 and 4.7 dB, respectively. Figure 18 indicates that
Emax is robust to the number of averaging samples, and the uncertainty is approximately
6.4 %.
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