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Buckling of Bulk Structures With
Finite Prebuckling Deformation
The prebuckling deformation of structures is neglected in most of the conventional buckling
theory (CBT) and numerical method (CNM), because it is usually very small in conventional
concepts. In the preceding paper (Su et al., 2019), we found a class of structures from the
emerging field of stretchable electronics, of which the prebuckling deformation became
large and essential for determining the critical buckling load, and developed a systematic
buckling theory for 3D beams considering the effects of finite prebuckling deformation
(FPD). For bulk structures that appear vastly in the advanced structures, a few buckling
theories consider the effects of the prebuckling deformation in constitutive equations by
energy method, which are significantly important but not straightforward and universal
enough. In this paper, a systematic and straightforward theory for the FPD buckling of
bulk structures is developed with the use of two constitutive models. The variables for the
prebuckling deformation serve as the coefficients of the incremental displacements, defor-
mation components, and stress in the buckling analysis. Four methods, including the CBT,
CNM, DLU (disturbing-loading-unloading method) method and FPD buckling theory, are
applied to the classic problems, including buckling of an elastic semi-plane solid and buck-
ling of an elastic rectangular solid, respectively. Compared with the accurate buckling load
from the DLU method, the FPD buckling theory is able to give a good prediction, while the
CBT and CNMmay yield unacceptable results (with 70% error for the buckling of an elastic
semi-plane solid). [DOI: 10.1115/1.4053726]

Keywords: buckling, finite deformation mechanics, stretchable electronics, an elastic semi-
plane solid, an elastic rectangular solid

1 Introduction
Euler and Lagrange raised the concept of buckling and estab-

lished the pioneering mechanical theory for buckling analysis in
the 18th and 19th centuries [1,2]. It plays an important role in
both of the conventional civil and mechanical engineering, and
the emerging nano and micro science and technology [3–8]. The
buckling theory was prosperously developed in the past hundred
years, focusing on beams, plates, shells and bulks, which dominate
the structure designs of the civil and mechanical engineering [7].
Structures usually undergo four regimes during the bucking
process: (1) the original regime without any load; (2) the onset of
buckling subject to the critical buckling load, with the prebuckling
deformation and the prebuckling stress/force before the bifurcation;
(3) the buckling regime subject to the critical buckling load after the
bifurcation; and (4) the postbuckling regime subject to the increas-
ing/decreasing load. In the conventional structures, however, the
prebuckling deformation is usually very small and is neglected in
most of the conventional buckling theory (CBT) and numerical
method (CNM), while the prebuckling force or stress in the
second regime serves as the coefficients of the incremental displace-
ments, deformation components, and stress. A few buckling the-
ories consider the effects of the prebuckling deformation in
constitutive equations by energy method [9–11], which are signifi-
cantly important but not straightforward and universal enough.
In recent decades, soft materials, flexible, and stretchable struc-

tures spring up like mushrooms in the fields of soft robots and flex-
ible electronics. For some of these structures, the prebuckling
deformation is found to be large and becomes essential and

indispensable in the buckling analysis [12,13]. In our preceding
paper [13], we found a class of beam structures from the emerging
field of stretchable electronics, of which the prebuckling deforma-
tion is large and essential for determining the critical buckling
load. They are called the buckling problems with finite prebuckling
deformation (FPD) buckling. Experiments, numerical simulation,
and theoretical analysis were conducted to show the importance
of prebuckling deformation on buckling analysis. A systematic
and straightforward theory (FPD buckling theory) was developed
to analyze the FPD buckling behaviors of beams and was applied
to three classic problems, including lateral buckling of a
three-point-bending beam, lateral buckling of a pure bending
beam, and Euler buckling. Our FPD buckling theory for beams
was able to give a good prediction, while the CBT (by Timoshenko
et al.) and CNM (by commercial program packages) yielded unac-
ceptable results (with 70% error for a three-point-bending beam
with h/b= 0.8, for example).
The preceding paper [13] focused on the FPD buckling behaviors

of straight beams that deformed in the three-dimensional space.
Besides that, FPD buckling exists in many more structures, such
as the buckling of semi-plane problem, the buckling of helical
springs, lateral buckling of thick arches, buckling of thin-wall struc-
tures, etc. On the buckling of bulk structures, Biot started the early
work with a mechanical theory of incremental deformation [14–17].
The theory focuses on the influence of prebuckling force or stress on
incremental stress. The effects of the rotation are considered in the
stress transformation and the buckling analysis. The theory is also
extended to the structures with incompressible materials [16] and
viscoelastic materials [15]. However, the effects of the prebuckling
deformation are not considered in the theory. Based on the founda-
tions of the nonlinear theory of elasticity [18], Kerr and Tang [19]
Brunelle [20] investigated the stability of the elastic rectangular
solid and the elastic semi-plane solid with the consideration of the
prebuckling stress, but without that of the prebuckling deformation,
respectively. Triatanfyllidis [21,23], Jiménez and Triantafyllidis
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[22], and Lee et al. [24] studied the buckling problems of various
structures, including the semi-space solids, honeycombs, tubes,
etc., with electro-mechanical material, magneto-mechanical mate-
rial, elasto-plastic material, elasto-viscoplastic material, etc.
However, the prebuckling deformation was always neglected in
the buckling analysis of these models, because it is very small in
these practical situations. For the first time, Chadwick and Ogden
[11], Ogden and Fu [25], and Ogden [26] considered the effects
of both the prebuckling stress and deformation by energy method.
The energy of prebuckling deformation in the second regime of
the clarified buckling process in the first paragraph takes effects
in constitutive equations of the buckling analysis from second to
third regime, which, to be specific, appears in the first-, second-,
and third-order tensors of instantaneous elastic moduli. Based on
this theory, Fu and Ogden [9], Fu and Rogerson [10], and Ogden
and Fu [25] investigated the buckling of thick elastic bodies sub-
jected to finite elastic deformations. However, the works of Fu
and Ogden require a holonomic constitutive model rather than arbi-
trary one and adopt the first Piola-Kirchhoff stress to avoid the
explicit effects of prebuckling deformation on the equilibrium equa-
tions. It is significant to carry out further theoretical investigation
that is more universal and straightforward for arbitrary buckling
analysis considering effects of the prebuckling deformation.
Besides, various definitions of incremental stress [18,27–29] have
been proposed considering the effects of prebuckling stress,
which, in a sense, perplex the buckling analysis.
Recently, compressive buckling of the stifffilm that is bonded on a

prestrained compliant substrate, into a wrinkling mode has become a
desirable means to generate micrometer-scale surface patterns for a
wide range of applications in flexible electronics. Vast theoretical
works have been devoted to the buckling analysis of these film-
substrate structures. In the pioneering work by Khang et al. [8],
Huang et al. [30], Huang [31], Chen and Hutchinson [32], and
Bowden et al. [33], the stiff film and the compliant substrate are
modeled as an elastic thin plate satisfying the nonlinear von
Karman plate equations and linear elastic support, respectively,
which gives a constant wavelength of the buckledfilm. Themeasure-
ments show, however, a qualitative behavior characterized by a clear
and systematic decrease inwavelengthwith increasingprestrain, con-
trary to the prediction of the theory [5,8]. To solve this question, a
buckling theory [5,34] that accounts for finite geometry change of
the substrate and the thin film is established to yield an accurate solu-
tion. In this theory, the bending energy and the membrane energy of
thefilmare integratedover the length of strain-free thinfilm insteadof
the length of the buckled film/substrate system in the previous
models. The analytical solution shows the prestrain-dependent buck-
ling wavelength and agrees well with the experiments. Besides, a
nonlinear buckling model is presented by Jiang et al. [35] for the
buckling of thin filmswith finite width on compliant substrates. Ana-
lytical solution shows that the buckling amplitude and wavelength
increase with the film width, which agrees well with experiments.
In all above theories, the buckling analysis is only applied to the
stiff film, while the compliant substrate is modeled as an elastic
support. An alternative way is to apply the buckling analysis to the
entire structure including both the stiff film and the compliant sub-
strate. In this theoretical framework, the effects of prebuckling defor-
mation should be considered, because the compliant substrate is
usually subjected to afinite prestrainwhen entirefilm-substrate struc-
ture undergoes the critical buckling process (second to third regime).
On the other hand, as applications of soft materials, such as elas-

tomers and gels, grow, there is increasing interest in the buckling of
soft films on compliant substrates [36–40]. The buckling of soft
films sensitively depends on the thickness and compressibility of
the compliant substrates, the mechanical properties of the films as
well as the sliding interface condition between the thin film and
the compliant substrate. Specifically, Holland et al. [39] examines
the buckling of soft films on compliant substrates, in which com-
pressive strains arise in both films and substrate layers when com-
pression is applied to the sides of the entire domain of the film/
substrate system. The analytical model gives the Euler-Lagrange

equations and the boundary conditions expressed in terms of the
displacement component. The effects of the prebuckling deforma-
tions of soft films and compliant substrates in a simple mode are
considered in the energetic analysis. The energy of prebuckling
deformation in the second regime of the clarified buckling
process in the first paragraph are considered in the total energy
during the buckling analysis. However, the theory is restricted to
the incompressible materials modeled by a strain-energy function
and avoids the explicit effects of prebuckling deformation on the
equilibrium equations and geometrical equations.
The finite element method, which includes the linear buckling

method and the nonlinear bucking method, has been used in a
variety of buckling analysis. The linear buckling method is based
on the CBT, with the consideration of the prebuckling stress/force
but without considering prebuckling deformation. It results in a
linear eigenvalue problem in mathematics. The numerical solver
for critical buckling loads and buckling modes of structures is
general/linear perturbation in commercial program package
ABAQUS (Dassault-Systèmes, 2010). It is effective to solve the
problem of critical buckling for most of the existing structures
with neglectable prebuckling deformation. Nonlinear analysis is
powerful to accurately capture the mechanical behavior of struc-
tures with the consideration of the past history of both stress and
deformation. However, in the nonlinear buckling method, the
defect or disturbance must be imported to lead the structure to the
buckling deformation mode, if the symmetricity hinders the bifurca-
tion of the structure. Using the nonlinear buckling method, Wang
et al. [41] and Bertoldi et al. [42,43] studied the buckling of the
carefully designed materials with meso-structures that leads to
novel effective behavior at the macroscale. Therefore, the existing
numerical solvers are still not enough to analyze the buckling prob-
lems with effects of the prebuckling deformation straightforwardly,
if the defects or disturbance are prohibited to apply.
In the present paper, we focus on the FPD buckling behaviors

of bulk structures. A systematic and straightforward theory for the
FPD buckling of bulk structures is developed in Sec. 2.
Different types of constitutive models significantly affect the critical
buckling load. Here, two constitutive models including the

Saint-Venant-Kirchhoff model, which is T=L:E and τ
∇
=L:d are

adopted in Secs. 3 and 4, respectively, where T is the second type of
P-K stress, L is the elastic tensor, E is the Green strain, τ is the Kirch-

hoff stress, d is the deformation rate, and ()
∇
denotes the Janmann rate.

The new developed theorywith the two types of constitutivemodels is
applied to two classic problems including buckling of an elastic semi-
plane solid and buckling of an elastic rectangular solid, respectively.
Discussion and Concluding remarks are given in Sec. 5.

2 Finite Prebuckling Deformation Buckling Theory for
Bulk Structures
2.1 Kinematics for Finite Deformation of Bulk Structures.

Let X=X(XA) (A= 1, 2, 3) be the position of a “material point”
in the reference state, where XA is the Lagrange coordinate. With
the vector displacement U, the material point X in the reference
state moves to x=X+U in the current configuration (Fig. 1). The
infinitesimal vector dx becomes

dx = dX + dU (1)

after the deformation, where dX and dU can be represented as dX=
GAdX

A, dU=GAdU
A, respectively. Here, GA (A= 1, 2, 3) are base

vectors in the reference state. Substitution of dX, dU into Eq. (1)
gives

dx = dXA δKA +
∂UK

∂XA

( )
GK (2)

where δKA is the kronecker delta. The definition of the deformation
gradient, i.e., F= ∂x/∂X, yields
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F = δKA +
∂UK

∂XA

( )
GKGA (3)

The deformation gradient F relates dx and dX by dx=F dX.
The vector of the embedded Lagrange coordinates is then
obtained as

ĝA =
∂x
∂XA

= δKA +
∂UK

∂XA

( )
GK , A = 1, 2, 3 (4)

Comparison of Eqs. (3) and (4) gives F = ĝAG
A. The Green strain

tensor is obtained

E=
1
2
(FT · F − 1) (5)

by the deformation gradient, where 1 is the unit tensor.
The present paper focuses on examples of two-dimensional prob-

lems with the reference state described by Cartesian coordinates.
The basic vectors, coordinates and displacements can be simplified
to GA=GA=EA, X

A=XA, U
A=UA, (A= 1, 2). The vector of the

embedded Lagrange coordinates and the Green strain tensor
become

ĝA = δAK +
∂UK

∂XA

( )
EK , A = 1, 2 (6)

and

E = EIJEIEJ (7)

where

E11 =
∂U1

∂X1
+
1
2

∂U1

∂X1

( )2

+
∂U2

∂X1

( )2
[ ]

E12 = E21 =
1
2

∂U1

∂X2
+
∂U2

∂X1
+
∂U1

∂X1

∂U1

∂X2
+
∂U2

∂X1

∂U2

∂X2

( )

E22 =
∂U2

∂X2
+
1
2

∂U1

∂X2

( )2

+
∂U2

∂X2

( )2
[ ]

(8)

In Secs. 2.1–2.4 for the finite deformation analysis, all the com-
ponents must be accurate to the second power of the displacements
and their derivatives, as it is the foundation of the buckling analysis.
Here, Eq. (8) for Green strain is the accurate expression, and is just
right accurate to the second power.

2.2 Constitutive Relations for Finite Deformation of Bulk
Structures. Many constitutive models approach the same behavior
for small deformation problems. However, buckling are actually
problems with the finite deformation. Therefore, the constitutive
model must be clear in the framework of finite deformation. In
this paper, we will discuss two typical constitutive models and
apply them to examples of buckling analysis with significantly dif-
ferent results. One simple constitutive model is the
Saint-Venant-Kirchhoff model that the second Piola-Kirchhoff
stress T is linearly proportional to the Green strain E, i.e.

T = L:E (9)

Here, L= (E/1+ ν)I+ [νE/(1+ ν)(1− 2ν)]11, where I is the identity
tensor, Iijkl= (δikδjl+ δjkδil)/2; 1 is the unit tensor; E is Young’s
modulus, and ν is the Poisson’s ratio. For two-dimensional prob-
lems with Cartesian coordinates, the constitutive relation (9)

becomes

T11 =
E

1 − �ν2
(E11 + �νE22)

T22 =
E

1 − �ν2
(E22 + �νE11)

T12 = T21 =
E

1 + �ν
E12 =

E

1 + �ν
E21

(10)

Here, E = E, �ν = ν for plane-stress cases, while E =
E/(1 − ν2), �ν = ν/(1 − ν) for plane-strain cases. Another common
constitutive model is that the Janmann rate of the Kirchhoff stress

τ is linearly proportional to the deformation rate d, i.e., τ
∇
=L:d,

which will be discussed in Sec. 4 separately.

2.3 Equilibrium Equations for Finite Deformation of
Bulk Structures. For two-dimensional problems with
Cartesian coordinates describing the reference state, the equilibrium
equation is

∂TIK
∂XK

+ γ̂IKATAK = 0, I = 1, 2 (11)

where γ̂IKA is second Christoffel symbol of the embedded Lagrange
coordinates in the current configuration. γ̂IKA represents the influ-
ence of the finite deformation on the equilibrium, and can be
obtained by

γ̂IKA =
1
2
gLI

∂gKL
∂XA

+
∂gAL
∂XK

−
∂gKA
∂XL

( )
, I, K, A = 1, 2 (12)

Here

ĝAK=ĝA · ĝK = δAL +
∂UL

∂XA

( )
δKL +

∂UL

∂XK

( )
, A, K = 1, 2 (13)

and ĝAK can be obtained by

[ĝAK] = [ĝAK ]
−1, K, A = 1, 2 (14)

Using Eqs. (13) and (14), the second Christoffel symbols can be
accurately obtained in terms of displacements as

Fig. 1 Schematic illustration for the kinematics of the material
point
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γ̂111 =

∂2U1

∂X2
1

+
∂U2

∂X2

∂2U1

∂X2
1

−
∂U1

∂X2

∂2U2

∂X2
1

1 +
∂U1

∂X1
+
∂U2

∂X2
+
∂U1

∂X1

∂U2

∂X2
−
∂U1

∂X2

∂U2

∂X1

γ̂112 = γ̂121 =

∂2U1

∂X1∂X2
+
∂U2

∂X2

∂2U1

∂X1∂X2
−
∂U1

∂X2

∂2U2

∂X1∂X2

1 +
∂U1

∂X1
+
∂U2

∂X2
+
∂U1

∂X1

∂U2

∂X2
−
∂U1

∂X2

∂U2

∂X1

γ̂122 =

∂2U1

∂X2
2

+
∂U2

∂X2

∂2U1

∂X2
2

−
∂U1

∂X2

∂2U2

∂X2
2

1 +
∂U1

∂X1
+
∂U2

∂X2
+
∂U1

∂X1

∂U2

∂X2
−
∂U1

∂X2

∂U2

∂X1

γ̂211 =

∂2U2

∂X2
1

+
∂U1

∂X1

∂2U2

∂X2
1

−
∂U2

∂X1

∂2U1

∂X2
1

1 +
∂U1

∂X1
+
∂U2

∂X2
+
∂U1

∂X1

∂U2

∂X2
−
∂U1

∂X2

∂U2

∂X1

γ̂212 = γ̂221 =

∂2U2

∂X1∂X2
+
∂U1

∂X1

∂2U2

∂X1∂X2
−
∂U2

∂X1

∂2U1

∂X1∂X2

1 +
∂U1

∂X1
+
∂U2

∂X2
+
∂U1

∂X1

∂U2

∂X2
−
∂U1

∂X2

∂U2

∂X1

γ̂222 =

∂2U2

∂X2
2

+
∂U1

∂X1

∂2U2

∂X2
2

−
∂U2

∂X1

∂2U1

∂X2
2

1 +
∂U1

∂X1
+
∂U2

∂X2
+
∂U1

∂X1

∂U2

∂X2
−
∂U1

∂X2

∂U2

∂X1

(15)

Assume that the displacements U1 and U2 are at the same order,
Eq. (15) can be expanded as

γ̂111 =
∂2U1

∂X2
1

−
∂U1

∂X1

∂2U1

∂X2
1

+
∂U1

∂X2

∂2U2

∂X2
1

[ ]
+ · · ·

γ̂112 = γ̂121 =
∂2U1

∂X1∂X2
−

∂U1

∂X1

∂2U1

∂X1∂X2
+
∂U1

∂X2

∂2U2

∂X1∂X2

[ ]
+ · · ·

γ̂122 =
∂2U1

∂X2
2

−
∂U1

∂X2

∂2U2

∂X2
2

+
∂U1

∂X1

∂2U1

∂X2
2

[ ]
+ · · ·

γ̂211 =
∂2U2

∂X2
1

−
∂2U2

∂X2
1

∂U2

∂X2
+
∂2U1

∂X2
1

∂U2

∂X1

[ ]
+ · · ·

γ̂212 = γ̂221 =
∂2U2

∂X1∂X2
−

∂2U2

∂X1∂X2

∂U2

∂X2
+

∂2U1

∂X1∂X2

∂U2

∂X1

[ ]
+ · · ·

γ̂222 =
∂2U2

∂X2
2

−
∂2U2

∂X2
2

∂U2

∂X2
+
∂2U1

∂X2
2

∂U2

∂X1

[ ]
+ · · ·

(16)

Substitution of Eq. (16) into Eq. (11), together with constitutive
Eq. (10), yields the equilibrium equations in terms of displacements
for finite deformation problems, as well as buckling problems.

2.4 Boundary Conditions for Finite Deformation of Bulk
Structures. It is worth to study the stress/force boundary condi-
tions for finite deformation problems. Most of boundary conditions
should be established in the current configuration, since the
structures equilibrate in this state. The traction-free boundary con-
dition is

σ · da = 0 (17)

Here σ is the Cauchy stress, which is the so-called real stress; da is
infinitesimal area of the traction-free surface in the current configu-
ration. Equation (17) can be transfer to the formulate in terms of
second type of P-K stress as

σ · da = F · T · dA = 0 (18)

which is convenient to use, considering the expression of the con-
stitutive relations and equilibrium equation in the above paragraphs.

2.5 Buckling Analysis Considering the Effect of Finite
Prebuckling Deformation. As we discussed in preceding paper
[13], the buckling process undergoes four regimes including the
original regime without any load, the onset of buckling subject to
the critical buckling load, the buckling regime subject to the critical
buckling load and postbuckling under increasing/decreasing load.
The regime at the onset of buckling should be studied before the

buckling analysis. Let U
o
, E

o
, T

o
, and γ̂◦IKA denote the displacements,

the Green strain, the second Piola-Kirchhoff stress, and the
second Christoffel symbols at the onset of buckling. Here and in
the following, “o” denotes the variables at the onset of buckling.
According to Eqs. (8), (10), (11), and (16), it is straightforward to
obtain the governing equations at the onset of buckling, including
the geometric equations

E11

◦
=
∂U1

◦

∂X1
+ · · ·

E12

◦
=E21

◦
=
1
2

∂U1

◦

∂X2
+
∂U2

◦

∂X1
+ · · ·

( )

E22

◦
=
∂U2

◦

∂X2
+ · · ·

(19)

the constitutive equations

T11
◦
=

E

1 − �ν2
E11

◦
+�νE22

◦( )

T22
◦
=

E

1 − �ν2
E22

◦
+�νE11

◦( )

T12
◦
= T21

◦
=

E

1 + �ν
E12

◦
=

E

1 + �ν
E21

◦

(20)

and the equilibrium equations

∂ TIK
◦

∂XK
+ · · · = 0, I = 1, 2 (21)

Here, Eqs. (19)–(21) are accurate to the first power of displacements
for all the components. They are actually the governing equations
for linear elastic problems.

Substitution of U = U
o
+ΔU, E = E

o
+ΔE, T = T

o
+ΔT, and γ̂IKA =

γ̂◦IKA + Δγ̂IKA into Eqs. (8), (10), (11), and (16) yield the equations
for the regime after buckling, which together with Eqs. (19)–(21),
result the governing equations for the critical buckling behaviors.
The yielded geometric equations, constitutive equations and equi-
librium equations are

ΔE11 = 1 +
∂U1

◦

∂X1

( )
∂ΔU1

∂X1
+
∂U2

◦

∂X1

∂ΔU2

∂X1
+ · · ·

ΔE12 = ΔE21 =
1
2

[(
1 +

∂U1

◦

∂X1

)
∂ΔU1

∂X2
+ 1 +

∂U2

◦

∂X2

( )
∂ΔU2

∂X1

+
∂U1

◦

∂X2

∂ΔU1

∂X1
+
∂U2

◦

∂X1

∂ΔU2

∂X2
+ · · ·

]

ΔE22 = 1 +
∂U2

◦

∂X2

( )
∂ΔU2

∂X2
+
∂U1

◦

∂X2

∂ΔU1

∂X2
+ · · ·

(22)
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ΔT11 =
E

1 − �ν2
(ΔE11 + �νΔE22)

ΔT22 =
E

1 − �ν2
(ΔE22 + �νΔE11)

ΔT12 = ΔT21 =
E

1 + �ν
ΔE12 =

E

1 + �ν
ΔE21

(23)

and

∂ΔTIK
∂XK

+ Δγ̂IKA TAK
◦

+γ̂IKA
◦
ΔTAK + · · · = 0, I = 1, 2 (24)

respectively, where

γ̂111

◦
=
∂2 U1

◦

∂X2
1

+ · · · γ̂112

◦
= γ̂121

◦
=

∂2 U1

◦

∂X1∂X2
+ · · ·

γ̂122

◦
=
∂2 U1

◦

∂X2
2

+ · · · γ̂211

◦
=
∂2 U2

◦

∂X2
1

+ · · ·

γ̂212

◦
= γ̂221

◦
=

∂2 U2

◦

∂X1∂X2
+ · · · γ̂222

◦
=
∂2 U2

◦

∂X2
2

+ · · ·

(25)

and

Δγ̂111 = 1 −
∂U1

◦

∂X1

( )
∂2ΔU1

∂X2
1

−
∂2 U1

◦

∂X2
1

∂ΔU1

∂X1
−
∂U1

◦

∂X2

∂2ΔU2

∂X2
1

−
∂2 U2

◦

∂X2
1

∂ΔU1

∂X2
+ · · ·

Δγ̂112 = γ̂121 = 1 −
∂U1

◦

∂X1

( )
∂2ΔU1

∂X1∂X2
−

∂2 U1

◦

∂X1∂X2

∂ΔU1

∂X1
−
∂U1

◦

∂X2

∂2ΔU2

∂X1∂X2
−

∂2 U2

◦

∂X1∂X2

∂ΔU1

∂X2
+ · · ·

Δγ̂122 = 1 −
∂U1

◦

∂X1

( )
∂2ΔU1

∂X2
2

−
∂U1

◦

∂X2

∂2ΔU2

∂X2
2

−
∂2 U2

◦

∂X2
2

∂ΔU1

∂X2
−
∂2 U1

◦

∂X2
2

∂ΔU1

∂X1
+ · · ·

Δγ̂211 = 1 −
∂U2

◦

∂X2

( )
∂2ΔU2

∂X2
1

−
∂2 U2

◦

∂X2
1

∂ΔU2

∂X2
−
∂U2

◦

∂X1

∂2ΔU1

∂X2
1

−
∂2 U1

◦

∂X2
1

∂ΔU2

∂X1
+ · · ·

Δγ̂212 = γ̂221 = 1 −
∂U2

◦

∂X2

( )
∂2ΔU2

∂X1∂X2
−

∂2 U2

◦

∂X1∂X2

∂ΔU2

∂X2
−
∂U2

◦

∂X1

∂2ΔU1

∂X1∂X2
−

∂2 U1

◦

∂X1∂X2

∂ΔU2

∂X1
+ · · ·

Δγ̂222 = 1 −
∂U2

◦

∂X2

( )
∂2ΔU2

∂X2
2

−
∂2 U2

◦

∂X2
2

∂ΔU2

∂X2
−
∂2 U1

◦

∂X2
2

∂ΔU2

∂X1
−
∂U2

◦

∂X1

∂2ΔU1

∂X2
2

+ · · ·

(26)

Fig. 2 Buckling analysis of the elastic semi-plane solid with the constitutive
model T=L:E. The (a) undeformed, (b) buckling modes, and (c) The curves of
the dimensionless critical buckling load α versus the Poisson’s ratio �ν for the
FPD buckling theory, the CBT and E. J. Brunelle’s result
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It is worth to point out that the critical buckling analysis needs to
account for all terms up to only the first power of displacement
(with “Δ”) in the deformation components. On the other hand,
the variables with “o” serve as the coefficients of the incremental
terms. These coefficients are also accurate to the first power of
the variables with “o”. The underlined terms in the above and fol-
lowing equations are for the effect of the prebuckling deformation,
which are neglected by the CBT and conventional numerical
method (CNM). Here, they are considered for FPD buckling
problems.

3 Examples With the Saint-Venant-Kirchhoff Model
3.1 Buckling of an Elastic Semi-Plane Solid Subject to

Compression. Buckling of an elastic semi-plane solid subject to
compression is a classic problem that has been studied by Brunelle
[20] and Biot and Drucker [44]. Figures 2(a) and 2(b) illustrate the
modes before and after buckling, respectively. It is easy to obtain
the stress distribution at the onset of buckling

T11
◦
= − P, T12

◦
=T21

◦
=0, T22

◦
=0 (27)

Substitution of Eq. (26) into Eq. (20), together with Eq. (19),
gives

∂U1

◦

∂X1
= −

P

E
,

∂U1

◦

∂X2
= 0,

∂U2

◦

∂X1
= 0,

∂U2

◦

∂X2
=
�νP

E
(28)

Here, it is not necessary to compute the displacements, since the
following buckling analysis requires their derivatives only.
Using Eqs. (27) and (28), Eqs. (24)–(26) give the expanded equi-

librium equations as

∂ΔT11
∂X1

+
∂ΔT12
∂X2

− P 1 −
∂U1

◦

∂X1

( )
∂2ΔU1

∂X2
1

= 0

∂ΔT22
∂X2

+
∂ΔT21
∂X1

− P 1 −
∂U2

◦

∂X2

( )
∂2ΔU2

∂X2
1

= 0

(29)

The combination of Eqs. (22), (23), and (29) yields the equilib-
rium equations in terms of the displacements

E

1 − �ν2
∂

∂X1
1 +

∂U1

◦

∂X1

( )
∂ΔU1

∂X1
+ �ν 1 +

∂U2

◦

∂X2

( )
∂ΔU2

∂X2

[ ]

+
E

1 + �ν

∂
∂X2

1
2

1 +
∂U1

◦

∂X1

( )
∂ΔU1

∂X2
+ 1 +

∂U2

◦

∂X2

( )
∂ΔU2

∂X1

[ ]

− P 1 −
∂U1

◦

∂X1

( )
∂2ΔU1

∂X2
1

= 0

E

1 + �ν

∂
∂X1

1
2

1 +
∂U1

◦

∂X1

( )
∂ΔU1

∂X2
+ 1 +

∂U2

◦

∂X2

( )
∂ΔU2

∂X1

[ ]

+
E

1 − �ν2
∂

∂X2
1 +

∂U2

◦

∂X2

( )
∂ΔU2

∂X2
+ �ν 1 +

∂U1

◦

∂X1

( )
∂ΔU1

∂X1

[ ]

− P 1 −
∂U2

◦

∂X2

( )
∂2ΔU2

∂X2
1

= 0

(30)

Let

α =
P

E
(31)

be the dimensionless critical buckling load. Using Eq. (28), the
derivatives of displacements can also be expressed in terms of α

∂U1

◦

∂X1
= −α,

∂U2

◦

∂X2
= �να (32)

Here, the same standard holds. Variables with “o”, as the coeffi-
cients in the differential equations, are accurate to the first power.
Substitution of Eqs. (31) and (32) into Eq. (30) yields

[(1 − α) − α(1 − �ν2)]
∂2ΔU1

∂X2
1

+
1 − �ν

2
(1 − α)

∂2ΔU1

∂X2
2

+
1 + �ν

2
(1 + �να)

∂2ΔU2

∂X1∂X2
= 0

1 − �ν

2
(1 + �να) − α(1 − �ν2)

[ ]
∂2ΔU2

∂X2
1

+ (1 + �να)
∂2ΔU2

∂X2
2

+
1 + �ν

2
(1 − α)

∂2ΔU1

∂X1∂X2
= 0

(33)

The general solution of Eq. (33) is

ΔU1 = sin(kX1)[C1 cosh(b1kX2) + C2 sinh(b1kX2) + C3 cosh(b2kX2) + C4 sinh(b2kX2)]

ΔU2 = cos(kX1)[D1 sinh(b1kX2) + D2 cosh(b1kX2) + D3 sinh(b2kX2) + D4 cosh(b2kX2)]
(34)

where k, b1, b2, C1 ∼ C4, and D1 ∼ D4 are the coefficients to be determined. Here, only even functions about X1 are used for ΔU2, without
the universality of the problem. Substitution of solution (34) into Eq. (33) gives

b1 =

���������������������������������������������������������������
(�v2 − 2�v − 3)α + 2+(−3�v2 − 4�v + 1)α2 + (2�v − 2)α

+
������������������������������������������������������
(�v + 1)3[(�v + 1)α2+(5�v + 1)α4 + (6 − 2�v)α3 − 4α2]

√
⎧⎨
⎩

⎫⎬
⎭

2(1−�vα2 + �vα − α)

√√√√√√√

b2 =

���������������������������������������������������������������
(�v2 − 2�v − 3)α + 2+(−3�v2 − 4�v + 1)α2 + (2�v − 2)α

−
������������������������������������������������������
(�v + 1)3[(�v + 1)α2+(5�v + 1)α4 + (6 − 2�v)α3 − 4α2]

√
⎧⎨
⎩

⎫⎬
⎭

2(1−�vα2 + �vα − α)

√√√√√√√
(35)
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The relations between the coefficients in solution (34) needs to
satisfy

D1 = N1C1, D2 = N1C2, D3 = N2C3, D4 = N2C4 (36)

where

N1 =
b1(�v + 1)(α − 1)

(2 − 2�v2)α + 2b21 + �v − 1+(2�vb21 + �v2 − �v)α

N2 =
b2(�v + 1)(α − 1)

(2 − 2�v2)α + 2b22 + �v − 1+(2�vb22 + �v2 − �v)α

(37)

The boundary condition at X2→∞ requires that

lim
X2�∞

ΔU1 = lim
X2�∞

ΔU2 = 0 (38)

which yields

C2 = −C1, C4 = −C3, D2 = −D1, D4 = −D3 (39)

Substitution of solution (36) and (39) into Eq. (34) gives

ΔU1 = sin(kX1)[C1e
−b1kX2 + C3e

−b2kX2 ]

ΔU2 = cos(kX1)[−N1C1e
−b1kX2 − N2C3e

−b2kX2 ]
(40)

The traction-free condition at X2= 0 requires

σ · da|X2=0 = F · T · (dA2E2)|X2=0 = 0 (41)

which yields

T12
◦

+ ΔT12
( )

+
∂U1

◦

∂X1
+
∂ΔU1

∂X1

( )
T12
◦

+ ΔT12
( )

+
∂U1

◦

∂X2
+
∂ΔU1

∂X2

( )
T22
◦

+ ΔT22
( )

= 0

T22
◦

+ ΔT22
( )

+
∂U2

◦

∂X2
+
∂ΔU2

∂X2

( )
T22
◦

+ ΔT22
( )

+
∂U2

◦

∂X1
+
∂ΔU2

∂X1

( )
T12
◦

+ ΔT12
( )

= 0

(42)

Using Eqs. (22), (23), (27), and (32), Eq. (42) becomes

(1 − α)
∂ΔU1

∂X2
+ (1 + �να)

∂ΔU2

∂X1
= 0

(1 + �να)
∂ΔU2

∂X2
+ �ν(1 − α)

∂ΔU1

∂X1
= 0

, at X2 = 0 (43)

The solution (40) needs to satisfy the requirements (43), i.e.

(1 + �να)N1 − (1 − α)b1 (1 + �να)N2 − (1 − α)b2
(1 + �να)N1b1 + (1 − α)�ν (1 + �να)N2b2 + (1 − α)�ν

[ ]
C1

C3

( )
= 0

(44)

The determinant of the coefficient matrix of Eq. (44) must be
zero for nontrivial solution. It requires

[(1 + �να)N1b1 + (1 − α)�ν][(1 + �να)N2 − (1 − α)b2]

− [(1 + �να)N2b2 + (1 − α)�ν][(1 + �να)N1 − (1 − α)b1] = 0
(45)

the solution of which gives the dimensionless critical buckling
load α. In Eq. (45), it is found that there is only one physical solu-
tion for α without higher-order solutions. On the other hand,
Eq. (45) is independent of the parameter k, which exists in the
expressions (34) and (40) for sinusoidal buckling modes. It
means that, for the buckling problem of the elastic semi-plane
solid, there is only one critical buckling load which corresponds
to infinite sinusoidal buckling modes. It is worth mentioning
that the postbuckling analysis reveals that sinusoidal buckling
mode may be unstable and imperfection-sensitive [45]. On one
hand, for structures with no imperfection, the sinusoidal buckling
mode may switch to the creasing mode under the external distur-
bance or the occurrence of plasticity. On the other hand, the creas-
ing mode may also appear when the initial imperfection exists in
the structure. In the present paper, we focus on the FPD buckling
behaviors for the sinusoidal buckling modes, the critical buckling
load of which can be determined by the linear buckling analysis.
The study of the buckling mode selection by FPD buckling theory
will be discussed in the future work.

Without the consideration of the prebuckling deformation
(CBT), the terms with underlines are neglected. The equilibrium
Eq. (33) and the boundary conditions (43) become

∂2ΔU1

∂X2
1

+
1 − �ν

2
∂2ΔU1

∂X2
2

+
1 + �ν

2
∂2ΔU2

∂X1∂X2
− α(1 − �ν2)

∂2ΔU1

∂X2
1

= 0

∂2ΔU2

∂X2
2

+
1 − �ν

2
∂2ΔU2

∂X2
1

+
1 + �ν

2
∂2ΔU1

∂X1∂X2
− α(1 − �ν2)

∂2ΔU2

∂X2
1

= 0

(46)

and

∂ΔU1

∂X2
+
∂ΔU2

∂X1
= 0

∂ΔU2

∂X2
+ �ν

∂ΔU1

∂X1
= 0

, at X2 = 0 (47)

respectively. The requirement (45) for the critical buckling load is
reduced to

(N1b1 + �ν)(N2 − b2) − (N2b2 + �ν)(N1 − b1) = 0 (48)

and can be further simplified to

(�ν2 + 2�ν + 1)α3 − (4�ν + 4)α2 + (2�ν + 4)α − 1 = 0 (49)

The solution for the lowest dimensionless critical buckling load
is obtained analytically as

α =

4 − 2
�������
4 − 6�ν

√
cos

1
3
arccos

��
2

√
(45�ν − 11)

8
������������
(−3�ν + 2)3

√
( )( )

3(�ν + 1)
, for 96�ν3 + 33�ν2 + 18�ν − 15 < 0

−

12
��������������������������
96�ν3 + 33�ν2 + 18�ν − 15

√
+ 180�ν − 44

( )1/3
+ −12

��������������������������
96�ν3 + 33�ν2 + 18�ν − 15

√
+ 180�ν − 44

( )1/3
⎡
⎢⎣

⎤
⎥⎦

6(�ν + 1)
+

4
3(�ν + 1)

, for 96�ν3 + 33�ν2 + 18�ν − 15 ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)
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which agrees well with the results by Brunelle [20]. For compari-
son, Ogden’s theory [26] is applied to the buckling of an elastic
semi-plane solid with the Saint-Venant-Kirchhoff constitutive
model (the details of the derivation are shown in Appendix B). It
is found that for α≪ 1, the equilibrium equations and the boundary
condition of the Ogden’s theory are same with Eqs. (33) and (43) in
the FPD buckling theory, respectively.
While there is not any dimension parameter for the elastic

semi-plane solid, the only variable parameter is the material
property, i.e., the Poisson’s ratio �ν. Figure 2(c) shows the com-
parison of the dimensionless critical buckling load α versus the
Poisson’s ratio. The solid line shows the result from Eq. (45) by
FPD buckling theory for bulk structures. The dimensionless crit-
ical buckling load α decreases with the increase of the Poisson’s
ratio �ν. For comparison, the dashed line gives the result from
Eq. (50) by the CBT without the consideration of the effects
of finite prebuckling deformation, which is consistent with the
results by Brunelle [20]. The maximum error yielded by the
neglect of the finite prebuckling deformation is about 10%,
which occurs at �ν � 0.5.

3.2 Buckling of an Elastic Rectangular Solid Subject to
Compression. Buckling of an elastic rectangular solid subject
to compression is another classic problem [19]. It degenerates to
Euler buckling, which is the most famous buckling problem, if
the aspect ratio is large [1]. Here, our theory is also applied in
the follows. Consider an elastic rectangular solid subject to pressure
P, as depicted in Fig. 3(a). Its buckling mode shown in Fig. 3(b) is
similar to that of slender beams, but without the assumption of the
plane section.
The analysis from Eqs. (27) to (37) also works here. The bound-

ary conditions require that

ΔU1|X1=±L/2 = 0 (51)

Substitution of solution (34) into Eq. (51) yields

k =
2π
L

(52)

which, together with Eq. (36) gives

ΔU1 = sin 2π
X1

L

( )

C1 cosh 2πb1
X2

L

( )
+ C2 sinh 2πb1

X2

L

( )

+C3 cosh 2πb2
X2

L

( )
+ C4 sinh 2πb2

X2

L

( )
⎡
⎢⎢⎣

⎤
⎥⎥⎦

ΔU2 = cos 2π
X1

L

( )

N1C1 sinh 2πb1
X2

L

( )
+ N1C2 cosh 2πb1

X2

L

( )

+N2C3 sinh 2πb2
X2

L

( )
+ N2C4 cosh 2πb2

X2

L

( )
⎡
⎢⎢⎣

⎤
⎥⎥⎦

(53)

In Eq. (53), C1, C2, C3, and C4 are coefficients to be determined.
The coefficients b1, b2, N1, N2 are functions of the dimensionless
critical buckling load α. Similar to Eqs. (41)–(43), traction-free con-
dition requires

(1 − α)
∂ΔU1

∂X2
+ (1 + �να)

∂ΔU2

∂X1
= 0

(1 + �να)
∂ΔU2

∂X2
+ �ν(1 − α)

∂ΔU1

∂X1
= 0

, at X2 = ±t (54)

which yields

[(1 + �να)N1 − (1 − α)b1]sinh(b1kt)C1 + [(1 + �να)N1 − (1 − α)b1]cosh(b1kt)C2

+ [(1 + �να)N2 − (1 − α)b2]sinh(b2kt)C3 + [(1 + �να)N2 − (1 − α)b2]cosh(b2kt)C4 = 0

[(1 + �να)N1b1 + (1 − α)�ν]cosh(b1kt)C1 + [(1 + �να)N1b1 + (1 − α)�ν]sinh(b1kt)C2

+ [(1 + �να)N2b2 + (1 − α)�ν]cosh(b2kt)C3 + [(1 + �να)N2b2 + (1 − α)�ν]sinh(b2kt)C4 = 0

[(1 + �να)N1 − (1 − α)b1]sinh(b1kt)C1 − [(1 + �να)N1 − (1 − α)b1]cosh(b1kt)C2

+ [(1 + �να)N2 − (1 − α)b2]sinh(b2kt)C3 − [(1 + �να)N2 − (1 − α)b2]cosh(b2kt)C4 = 0

[(1 + �να)N1b1 + (1 − α)�ν]cosh(b1kt)C1 − [(1 + �να)N1b1 + (1 − α)�ν]sinh(b1kt)C2

+ [(1 + �να)N2b2 + (1 − α)�ν]cosh(b2kt)C3 − [(1 + �να)N2b2 + (1 − α)�ν]sinh(b2kt)C4 = 0

(55)

The determinantM of the coefficient matrix of Eq. (55) must be zero for nontrivial solution, which yields the dimensionless critical buck-
ling load α. Here, it can be shown that

M = 4M1 ·M2 = 0 (56)

where

M1 =
[(1 + �να)N2b2 + (1 − α)�ν] cosh(b1kt) [(1 + �να)N1b1 + (1 − α)�ν] cosh(b2kt)

[(1 + �να)N2 − (1 − α)b2] sinh(b1kt) [(1 + �να)N1 − (1 − α)b1] sinh(b2kt)

∣∣∣∣
∣∣∣∣

M2 =
[(1 + �να)N2 − (1 − α)b2] sinh(b2kt) [(1 + �να)N1 − (1 − α)b1] sinh(b1kt)

[(1 + �να)N2b2 + (1 − α)�ν] cosh(b2kt) [(1 + �να)N1b1 + (1 − α)�ν] cosh(b1kt)

∣∣∣∣
∣∣∣∣

(57)

The condition M1= 0 gives the lowest critical buckling load, which can be obtained from the following equation

[(1 + �να)N1b1 + (1 − α)�ν][(1 + �να)N2 − (1 − α)b2] tanh 2πb1
t

L

( )
− [(1 + �να)N2b2 + (1 − α)�ν][(1 + �να)N1 − (1 − α)b1] tanh 2πb2

t

L

( )
= 0

(58)
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Without the consideration of the prebuckling deformation before
the onset of buckling (CBT), Eq. (58) becomes

(N1b1 + �ν)(N2 − b2) tanh 2πb1
t

L

( )
− (N2b2 + �ν)(N1 − b1) tanh 2πb2

t

L

( )
= 0 (59)

which agrees well with the results by Timoshenko and Gere [7] and
Kerr and Tang [19].
For cases which justify the assumption of slender beams

α ≪ 1 and
t

L
≪ 1 (60)

both Eqs. (58) and (59) can be simplified and yield

α =
π2(2t)2

3L2
(61)

which agrees well with the classic solution of Euler buckling.
The aspect ratio L: 2t and the Poisson’s ratio �ν are the only two

parameters for the buckling analysis of the elastic rectangular solid.
Figures 3(c)–3( f ) show the comparison of the dimensionless criti-
cal buckling load α by the FPD buckling theory and the CBT. The
solid line shows the result from Eq. (58) by FPD buckling theory,
while the dashed line gives the result from Eq. (59) by the CBT
without the consideration of the effects of finite prebuckling defor-
mation, which is consistent with the results by Kerr and Tang [19].

Similar to the buckling of the elastic semi-plane solid, the dimen-
sionless critical buckling load α decreases with the increase of
the Poisson’s ratio �ν (Figs. 3(c) and 3(d )). For L: 2t= 3:1, the
maximum error yielded by the neglect of the finite prebuckling
deformation is about 6% (Fig. 3(c)), which occurs at �ν � 0.5.
For larger aspect ratio (Fig. 3(d )), e.g., L: 2t= 10:1, the elastic rec-
tangular solid approaches the Euler beam and the error becomes
very small, as indicated in the analytic derivation of Eqs.
(58)–(61). Figures 3(e) and 3( f ) show the effects of the aspect
ratio L: 2t with �ν � 0 and �ν � 0.4, respectively. For L: 2t≤ 3:1,
the error yielded by the neglect of the finite prebuckling deforma-
tion is considerable, while for large aspect ratio, both results by
FPD buckling theory and the CBT approach the Euler buckling.

4 Examples With the Constitutive Model τ
∇
=L:d

4.1 The Analysis of the Constitutive Model. Another widely
used constitutive model is that the Janmann rate of the Kirchhoff
stress τ, i.e.

τ
∇
= τ̇ − w · τ + τ · w (62)

is linearly proportional to the deformation rate d

τ
∇
=L:d (63)

where w is the spin rate. Equation (63) should be converted to the
expression in terms of the second Piola-Kirchhoff stress T and the

Fig. 3 Buckling analysis of the elastic rectangular solid with the constitutive model T=L:E.
The (a) undeformed and (b) buckling modes. The curves of the dimensionless critical buckling
load α versus the Poisson’s ratio �ν for (c) L:2t=3:1 and (d ) L:2t=10:1. The curves of the dimen-
sionless critical buckling load α versus the aspect ratio L:2t for (e) �ν= 0 and ( f ) �ν= 0.4.
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Green strain E, for the convenience of the derivation here. Accord-
ing to the relations among different types of stresses and strains (or
stress and strain rates)

τ = F · T · FT (64)

and

d = F−T · Ė · F−1 (65)

Equation (63) is converted to

Ṫ = [(F−1F−1F−1F−1)
∗
∗∗∗
L]:Ė − F−1 · F−T · Ė · T − T · Ė

· F−1 · F−T (66)

According to the rule of derivation for FPD buckling theory, con-
stitutive model (66) can be simplified to

ΔT = F
◦ −1

F
◦ −1

F
◦ −1

F
◦ −1( )

∗
∗∗∗
L

[ ]
:ΔE − F

◦ −1
· F
◦ −T

· ΔE · T
◦

− T
◦
·ΔE · F

◦ −1
· F
◦ −T

(67)

For uniaxial compression, only stress T11
◦

is nonzero before the
onset of buckling as shown in Eq. (27). The deformation gradient
before the onset of buckling is

F
◦
= 1 +

∂U1

◦

∂X1

( )
E1E1 + 1 +

∂U2

◦

∂X2

( )
E2E2

F
◦ −1

= 1 −
∂U1

◦

∂X1

( )
E1E1 + 1 −

∂U2

◦

∂X2

( )
E2E2 + · · ·

F
◦ −T

= 1 −
∂U1

◦

∂X1

( )
E1E1 + 1 −

∂U2

◦

∂X2

( )
E2E2 + · · ·

(68)

Substitution of Eqs. (27) and (68) into Eq. (67) yields the
expanded constitutive model for the critical buckling analysis

ΔT11 =
E

1 − �ν2

1 − 4
∂U1

◦

∂X1

( )
ΔE11 + 1 − 2

∂U1

◦

∂X1
− 2

∂U2

◦

∂X2

( )
�νΔE22

[ ]

− 2 1 − 2
∂U1

◦

∂X1

( )
T
◦
11
ΔE11

ΔT22 =
E

1 − �ν2

1 − 4
∂U2

◦

∂X2

( )
ΔE22 + 1 − 2

∂U1

◦

∂X1
− 2

∂U2

◦

∂X2

( )
�νΔE11

[ ]

ΔT12 = ΔT21 =
E

1 + �ν
1 − 2

∂U1

◦

∂X1
− 2

∂U2

◦

∂X2

( )

ΔE12 − 1 − 2
∂U2

◦

∂X2

( )
T
◦
11
ΔE12

(69)

which will be used in the following examples.

4.2 Buckling of an Elastic Semi-Plane Solid Subject to
Compression. The solving process for buckling of an elastic semi-
plane solid subject to compression is the same with Sec. 3.1. Sub-
stitution of the constitutive model Eq. (69) into the equilibrium

relations Eq. (29) yields

E

1 − �ν2
∂

∂X1
1 − 3

∂U1

◦

∂X1

( )
∂ΔU1

∂X1
+ 1 − 2

∂U1

◦

∂X1
−
∂U2

◦

∂X2

( )
�ν
∂ΔU2

∂X2

[ ]

+
E

1 + �ν

∂
∂X2

1
2

1 −
∂U1

◦

∂X1
− 2

∂U2

◦

∂X2

( )
∂ΔU1

∂X2
+ 1 − 2

∂U1

◦

∂X1
−
∂U2

◦

∂X2

( )
∂ΔU2

∂X1

[ ]

+ P

{
∂

∂X1
1 −

∂U1

◦

∂X1

( )
∂ΔU1

∂X1
+

∂
∂X2

1
2

[
1 − 2

∂U2

◦

∂X2
+
∂U1

◦

∂X1

( )

∂ΔU1

∂X2
+ 1 −

∂U2

◦

∂X2

( )
∂ΔU2

∂X1

]}
= 0

E

1 + �ν

∂
∂X1

1
2

1 −
∂U1

◦

∂X1
− 2

∂U2

◦

∂X2

( )
∂ΔU1

∂X2
+ 1 − 2

∂U1

◦

∂X1
−
∂U2

◦

∂X2

( )
∂ΔU2

∂X1

[ ]

+
E

1 − �ν2
∂

∂X2

1 − 3
∂U2

◦

∂X2

( )
∂ΔU2

∂X2
+ 1 −

∂U1

◦

∂X1
− 2

∂U2

◦

∂X2

( )
�ν
∂ΔU1

∂X1

[ ]

+ P
∂

∂X1

1
2

1 +
∂U1

◦

∂X1
− 2

∂U2

◦

∂X2

( )
∂ΔU1

∂X2
− 1 −

∂U2

◦

∂X2

( )
∂ΔU2

∂X1

[ ]
= 0 (70)

The underlined terms in Eq. (70) are for the effects of
the prebuckling deformation while the prebuckling stress/force
P is the critical buckling load to be obtained. Using the
definition of dimensionless critical buckling load α = P/E, Eq.
(70) becomes

[1 + 3α + α(1 − �ν2)]
∂2ΔU1

∂X2
1

+
1
2
[(1 + α − 2�να)(1 − �ν) + α(1 − �ν2)]

∂2ΔU1

∂X2
2

+
1
2
[(1 + 2α − �να)(1 + �ν) + α(1 − �ν2)]

∂2ΔU2

∂X1∂X2
= 0

(1 − 3�να)
∂2ΔU2

∂X2
2

+
1
2
[(1 + 2α − �να)(1 − �ν) − α(1 − �ν2)]

∂2ΔU2

∂X2
1

+
1
2
[(1 + α − 2�να)(1 + �ν) + α(1 − �ν2)]

∂2ΔU1

∂X1∂X2
= 0 (71)

Equation (71) is the same type equation with Eq. (33), but with
different coefficients. The general solution (34) and the relations
(36) also work for Eq. (71). The coefficients b1, b2, N1, and N2 in
Eqs. (35) and (37) become
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b1 =

��������������������������������������������������������������������������
−(�v + 1)2(�v − 1)2α2 + (�v + 1)(�v − 1)2α − 2�v + 2

+(−�v4 + 2�v3 + 12�v2 − 28�v − 1)α2 + 6(�v − 1)2α

+

�����������������������������������������������������������������
(�v + 1)3α2

(�v + 1)(�v − 1)2(α�v − α − 1)2

+(3�v5 − 41�v4 + 174�v3 − 306�v2 + 199�v + 3)α2

−2(�v2 − 16�v + 31)(�v − 1)2α − 8(�v − 1)(�v − 2)

⎡
⎢⎣

⎤
⎥⎦

√√√√√√

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

2(1 − �v)[�vα + α + 1 + (3�v2 − 6�v)α2 + (1 − 5�v)α]

√√√√√√√√√√√√√√√

b2 =

��������������������������������������������������������������������������
−(�v + 1)2(�v − 1)2α2 + (�v + 1)(�v − 1)2α − 2�v + 2

+(−�v4 + 2�v3 + 12�v2 − 28�v − 1)α2 + 6(�v − 1)2α

−

�����������������������������������������������������������������
(�v + 1)3α2

(�v + 1)(�v − 1)2(α�v − α − 1)2

+(3�v5 − 41�v4 + 174�v3 − 306�v2 + 199�v + 3)α2

−2(�v2 − 16�v + 31)(�v − 1)2α − 8(�v − 1)(�v − 2)

⎡
⎢⎣

⎤
⎥⎦

√√√√√√

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

2(1 − �v)[�vα + α + 1 + (3�v2 − 6�v)α2 + (1 − 5�v)α]

√√√√√√√√√√√√√√√

(72)

and

N1 =
b1(�v + 1)(�vα − α − 1 + 2�vα − α)

(1 − �v2)α + 2b21 + �v − 1+(−6�vb21 − �v2 + 3�v − 2)α

N2 =
b2(�v + 1)(�vα − α − 1 + 2�vα − α)

(1 − �v2)α + 2b22 + �v − 1+(−6�vb22 − �v2 + 3�v − 2)α

(73)

which are functions of the dimensionless critical buckling load α, while �v is the Poisson’s ratio. The derivations (38)–(42) also work here.
Using Eqs. (22), (69), (27), and (32), Eq. (43) becomes

(1 + α − 2�να)
∂ΔU1

∂X2
+ (1 + 2α − �να)

∂ΔU2

∂X1
+ α(1 + �ν)

∂ΔU1

∂X2
+
∂ΔU2

∂X1

( )
= 0

(1 − 3�να)
∂ΔU2

∂X2
+ (1 + α − 2�να)�ν

∂ΔU1

∂X1
= 0

, at X2 = 0 (74)

The solution (40) needs to satisfy the requirements (74), i.e.

(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
(1 − 3�να)N1b1 + (1 + α − 2�να)�ν (1 − 3�να)N2b2 + (1 + α − 2�να)�ν

⎡
⎣

⎤
⎦ C1

C3

( )
= 0 (75)

The determinant of the coefficient matrix of Eq. (75) must be zero for nontrivial solution. It requires

(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
[(1 − 3�να)N2b2 + (1 + α − 2�να)�ν]

−
(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
[(1 − 3�να)N1b1 + (1 + α − 2�να)�ν] = 0

(76)

the solution of which gives the dimensionless critical buckling load α. Similar to the results in Sec. 3.1, there is only one critical buckling
load which corresponds to infinite buckling modes for the elastic semi-plane solid.
Without the consideration of the prebuckling deformation (CBT), the equilibrium Eq. (70) and the boundary conditions (74) become

E

1 − �ν2
∂2ΔU1

∂X2
1

+
E

2(1 + �ν)
∂2ΔU1

∂X2
2

+
E

2(1 − �ν)
∂2ΔU2

∂X1∂X2
+ P

∂2ΔU1

∂X2
1

+
P

2
∂2ΔU1

∂X2
2

+
∂2ΔU2

∂X1∂X2

( )
= 0

E

1 − �ν2
∂2ΔU2

∂X2
2

+
E

2(1 + �ν)
∂2ΔU2

∂X2
1

+
E

2(1 − �ν)
∂2ΔU1

∂X1∂X2
−
P

2
∂2ΔU2

∂X2
1

−
∂2ΔU1

∂X1∂X2

( )
= 0

(77)
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and

∂ΔU1

∂X2
+
∂ΔU2

∂X1
= 0

∂ΔU2

∂X2
+ �ν

∂ΔU1

∂X1
= 0

, at X2 = 0 (78)

The general solution (34) and the relations (36) also work here.
The coefficients b1, b2, N1, and N2 in Eqs. (35) and (37) become

b1 = 1, b2 =

����������������������������
(�v2α − α − 1)(�vα + α − 1)

(�vα + α + 1)

√
(79)

and

N1 =
b1(�v + 1)(�vα − α − 1)

(1 − �v2)α + 2b21 + �v − 1
, N2

=
b2(�v + 1)(�vα − α − 1)

(1 − �v2)α + 2b22 + �v − 1
(80)

Equation (76) for the dimensionless critical buckling load degen-
erates to

(N1b1 + �ν)(N2 − b2) − (N2b2 + �ν)(N1 − b1) = 0 (81)

substitution of Eqs. (79) and (80) into which yield the algebraic
equation

(�ν2 + 2�ν + 1)α3 + (2�ν + 2)α2 − 1 = 0 (82)

The solution for the lowest dimensionless critical buckling
load is

α =
12

�������������������
3(27�ν − 5)(�ν + 1)

√
+ 108�ν + 44

( )1/3
6(�ν + 1)

+
8

3(�ν + 1) 12
�������������������
3(27�ν − 5)(�ν + 1)

√
+ 108�ν + 44

( )1/3 − 2
3(�ν + 1)

(83)

It is worth to point out that α is a real number for both
3(27�ν − 5)(�ν + 1) ≥ 0 and 3(27�ν − 5)(�ν + 1) < 0.
The comparison of results from various methods is shown in

Fig. 4(a). The solid line shows the dimensionless critical buckling
load α by the FPD buckling theory (Eqs. (72), (73), and (76)). It
decreases with the increase of the Poisson’s ratio. Without the
consideration of the effects of the prebuckling deformation
(CBT), Eq. (83) gives a significantly reduced α as denoted by the
dashed line, which agrees well with the CNM. The disturbing-
loading-unloading method (DLU) method [13], the detail of
which will be given in the next paragraph, is adopted to obtain
the accurate critical buckling load. The predictions of the CBT
and the CNM result an unacceptable error (as large as 70% for
�ν = 0), while our FPD buckling theory can give a better result
(the error decreases to 20% for �ν = 0). It is obvious that the pre-
buckling deformation becomes significantly important and non-
negligible. Nevertheless, the critical buckling load obtained by
FPD buckling theory approaches to the CBT and the CNM result
with the increasing Poisson’s ratio and results in an inaccuracy as
large as 58% for �ν = 0.5. The inaccuracy is because that the DLU
method is a nonlinear analysis which is powerful to accurately
capture the mechanical behavior of structures with the consider-
ation of both prebuckling stress and deformation, while in the
FPD buckling theory, the prebuckling analysis is accurate to the
first power of displacements for all the components.
The disturbing-loading-unloading (DLU) method, which is valid

only for simple elastic structures, is first developed for the investi-
gation of the FPD behaviors of 3D beams [13]. For the elastic semi-
plane solid, two curves of compression stress versus compression

strain are obtained, as shown in Fig. 4(b) for �ν = 0.5, i.e., the
curve for nonbuckling (uniform compression) and the curve for
the real deformation mode with both nonbuckling at the beginning
and buckling at the following. By the comparison of the two curves,
the critical buckling load is obtained at the bifurcation, beyond
which the applied compression stress and the elastic energy in
the buckling regime are lower than those in the nonbuckling
regime. The real buckling point is far beyond that obtained by
the CNM and CBT.

4.3 Buckling of an Elastic Rectangular Solid Subject to
Compression. For the buckling of a rectangular elastic solid
subject to compression, the derivation from Eqs. (51) to (53) also
work here, but the coefficients b1, b2, N1, N2 become the expression
given in Eqs. (72) and (73). The Eqs. (54), (55), (57), and (58)
become

(1 + α − 2�να)
∂ΔU1

∂X2
+ (1 + 2α − �να)

∂ΔU2

∂X1

+α(1 + �ν)
∂ΔU1

∂X2
+
∂ΔU2

∂X1

( )
= 0(1 − 3�να)

∂ΔU2

∂X2

+(1 + α − 2�να) �ν
∂ΔU1

∂X1
= 0, at X2 = ±t, (84)

Fig. 4 Buckling analysis of the elastic semi-plane solid with the
constitutive model τ

∇
=L:d. (a) The curves of the dimensionless

critical buckling load α versus the Poisson’s ratio �ν for the FPD
buckling theory, the CBT, the CNM, and the DLU method and
(b) Compress stress–strain curves for nonbuckling (uniform
compression) and the real deformationmodewith both nonbuck-
ling at the beginning and buckling at the following.
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(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
sinh(b1kt)C1 +

(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
cosh(b1kt)C2

+
(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
sinh(b2kt)C3 +

(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
cosh(b2kt)C4 = 0

[(1 − 3�να)N1b1 + (1 + α − 2�να)�ν]cosh(b1kt)C1 + [(1 − 3�να)N1b1 + (1 + α − 2�να)�ν]sinh(b1kt)C2

+ [(1 − 3�να)N2b2 + (1 + α − 2�να)�ν]cosh(b2kt)C3 + [(1 − 3�να)N2b2 + (1 + α − 2�να)�ν]sinh(b2kt)C4 = 0

(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
sinh(b1kt)C1 −

(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
cosh(b1kt)C2

+
(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
sinh(b2kt)C3 −

(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
cosh(b2kt)C4 = 0

[(1 − 3�να)N1b1 + (1 + α − 2�να)�ν]cosh(b1kt)C1 − [(1 − 3�να)N1b1 + (1 + α − 2�να)�ν]sinh(b1kt)C2

+ [(1 − 3�να)N2b2 + (1 + α − 2�να)�ν]cosh(b2kt)C3 − [(1 − 3�να)N2b2 + (1 + α − 2�να)�ν]sinh(b2kt)C4 = 0

(85)

M1 =

[(1 − 3�να)N2b2 + (1 + α − 2�να)�ν]sinh (b2kt) [(1 − 3�να)N1b1 + (1 + α − 2�να)�ν]sinh (b1kt)
(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
cosh (b2kt)

(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
cosh(b1kt)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

M2 =
(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
sinh (b2kt)

(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
sinh (b1kt)

[(1 − 3�να)N2b2 + (1 + α − 2�να)�ν]cosh (b2kt) [(1 − 3�να)N1b1 + (1 + α − 2�να)�ν]cosh (b1kt)

∣∣∣∣∣∣
∣∣∣∣∣∣

(86)

Fig. 5 Buckling analysis of the elastic rectangular solid with the constitutive model
τ
∇
=L:d. The curves of the dimensionless critical buckling load α versus the Poisson’s

ratio �ν for (a) L:2t=3:1, (b) L:2t=5:1, (c) L:2t=10:1, and (d ) L:2t=15:1. The curves of
the dimensionless critical buckling load α versus the aspect ratio L:2t for (e) �ν= 0 and
(f ) �ν = 0.4.
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and

[(1 − 3�να)N1b1 + (1 + α − 2�να)�ν]
(1 + 2α − �να + α + �να)N2

−(1 + α − 2�να + α + �να)b2

[ ]
tanh 2πb1

t

L

( )
−

[(1 − 3�να)N2b2 + (1 + α − 2�να)�ν]
(1 + 2α − �να + α + �να)N1

−(1 + α − 2�να + α + �να)b1

[ ]
tanh 2πb2

t

L

( )
= 0,

(87)

respectively. From Eq. (87), the exact solution for the dimension-
less critical buckling load can be obtained.
Equation (59) holds here for the case without the consideration of

finite prebuckling deformation. The coefficients b1, b2, N1, N2 can
be found from Eqs. (72) and (73).
For cases which justify the assumption of the slender beams

α ≪ 1 and
t

L
≪ 1 (88)

Both Eqs. (87) and (59) can be simplified and yield

α =
π2(2t)2

3L2
(89)

which agrees well with the classic solution of Euler buckling.
Figure 5 shows the comparison of the dimensionless critical

buckling load α obtained by various methods. For L: 2t= 3:1, the
consistent result from the CNM and the CBT can yield more than
50% error compared with the accurate solution by the DLU
method, while the FPD buckling theory is able to give a better pre-
diction (the inaccuracy of the FPD decreases from 50% for �ν = 0 to
5% for �ν = 0.5). For larger aspect ratio L: 2t= 5:1, 10:1, and 15:1,
the elastic rectangular solid approaches the Euler beam and the
error becomes very small, as indicated Figs. 5(b)–5(d ), respec-
tively. However, the result obtained by FPD buckling theory is
always closer, than that of the CNM and the CBT, to the accurate
solution by the DLU method. Figures 5(e) and 5( f ) give the
curves of the dimensionless critical buckling load and the aspect
ratio and confirm the above analysis. The result of all the four
methods approaches that of the Euler buckling.

5 Discussion and Concluding Remarks

(i) In the conventional buckling problems, the prebuckling defor-
mation is usually very small and is neglected in most of the
CBT and CNM. In this paper, we find that the FPD buckling
behaviors also exist in bulk structures, while we have focused
on that of 3D beams in the preceding paper [13].

(ii) On the basis of the theory of the finite deformation, a sys-
tematic and straightforward FPD buckling theory is devel-
oped for bulk structures by considering the effects of
finite prebuckling deformation. It accounts for all terms
up to the first power of displacement (with “Δ”) in the
deformation components for critical buckling analysis,
and the variables with “o”, serve as the coefficients of the
incremental terms, also accurate to the first power.

(iii) Two constitutive models including the Saint-Venant-

Kirchhoff model, which is T=L:E and τ
∇
=L:d are

adopted in the FPD buckling analysis, and give much differ-
ent results.

(iv) Four methods, including the CBT, CNM, DLU method, and
FPD buckling theory, are applied to the classic problems,
including buckling of an elastic semi-plane solid and buck-
ling of an elastic rectangular solid, respectively. Compared
with the accurate buckling load from the DLU method, the
FPD buckling theory is able to give a better prediction,
while the CBT and CNM may yield unacceptable results
(with 70% error for the buckling of an elastic semi-plane
solid).

Finally, it is significant to further discuss the applicability of the
FPD buckling theory. When the prebuckling deformation becomes
non-negligible, the CBT and the CNM may yield an unacceptable
error for the critical buckling load, while our FPD buckling theory
is able to give a better result. For example, the CBT yields more
than 40% error compared with the accurate solution for the buck-
ling of an elastic rectangular solid with aspect ratio of L: 2t= 5:1,
while the results obtained by the FPD buckling theory is much
better. For larger aspect ratio L: 2t, the difference between the
CBT, CNM, FPD, and DLU becomes smaller. Therefore, the crite-
rion of L: 2t< 5:1 for the elastic rectangular solid is suggested for
considering the effect of the prebuckling deformation. Usually,
the FPD buckling theory is significant to the analysis of the soft
materials, flexible, and stretchable structures such as human skin,
soft robots, and compliant substrate for flexible electronics. In the
future work, the FPD buckling theory will apply to the film-
substrate structure that has attracted much attention.
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Appendix A: Conventional Numerical Method (CNM)
for Critical Buckling

The finite element method for critical buckling in commercial
program package ABAQUS [46] is based on the CBT, with the
consideration of the prebuckling stress/force but without consider-
ing prebuckling deformation. The numerical solver for critical
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buckling loads and buckling modes of structures is general/linear
perturbation in ABAQUS CAE/input file. It is also called the
solver for linear buckling. It results in a linear eigenvalue
problem in mathematics.

Appendix B: Buckling Analysis of an Elastic Semi-Plane
Solid by Ogden’s Theory
To compare the FPD buckling theory and the work given by

Ogden, Ogden’s theory [26] is applied to the buckling of an
elastic semi-plane solid with the Saint-Venant-Kirchhoff constitu-
tive model. The equilibrium equation described in the reference
state is

DivS = 0 (B1)

where S is the first Piola-Kirchhoff stress. The constitutive model is
expressed as

S = ΛF (B2)

where Λ is the instantaneous elastic moduli, which, in component
form, is given by

ΛAiBj = LAkBlFikF jl + TABδij (B3)

Here, LAkBl is the component of the elastic tensor L, which is same
with it in the Saint-Venant-Kirchhoff model, Fik the component of
the deformation gradient F, TAB the component of the second type
of P-K stress, respectively.
The equilibrium equation for the critical buckling behaviors is

DivΔS = 0 (B4)

and the component of the first Piola-Kirchhoff stress is

ΔSiA = ΛAiBjΔUj,B (B5)

where ΔU denotes the incremental displacement. The constitutive
equation becomes

ΛAiBj = LAkBl F
◦
ik
F
◦
jl
+ TAB

◦
δij (B6)

From the brebuckling analysis, we can obtain F
◦
11 = 1 − α,

F
◦
12 = F

◦
21 = 0, F

◦
22 = 1 + vα, and T

◦
11 = α�E. Equation (B6) gives

the components of the instantaneous elastic moduli

Λ1111 = (λ − 2μ)(1 − α)2 − α�E

Λ1122 = Λ2211 = λ(1 − α)(1 + να)

Λ2121 = μ(1 − α)2

Λ1212 = μ(1 + να)2 − α�E

Λ1221 = Λ2112 = μ(1 + να)(1 − α)

Λ2222 = (λ − 2μ)(1 + να)2

(B7)

The underlined terms in the above and following equations are
for the effect of the prebuckling deformation. Substitution of Eq.
(B7) into Eq. (B5) gives the components of the first Piola-Kirchhoff
stress:

ΔS11 =
E

1 − �ν2
(1 − α)2 − α�E

[ ]
∂ΔU1

∂X1
+

�νE

1 − �ν2
(1 − α)(1 + �να)

∂ΔU2

∂X2

ΔS12 =
E

2(1 + �ν)
(1 − α)2

∂ΔU1

∂X2
+

E

2(1 + �ν)
(1 + �να)(1 − α)

∂ΔU2

∂X1

ΔS21 =
E

2(1 + �ν)
(1 + �να)2 − α�E

[ ]
∂ΔU2

∂X1
+

E

2(1 + �ν)
(1 + �να)(1 − α)

∂ΔU1

∂X2

ΔS22 =
�νE

1 − �ν2
(1 − α)(1 + �να)

∂ΔU1

∂X1
+

E

1 − �ν2
(1 + �να)2

∂ΔU2

∂X2

(B8)

The combination of Eqs. (B4) and (B8) yields the equilibrium equations in terms of the displacements

[(1 − α)2 − α(1 − �ν2)]
∂2ΔU1

∂X2
1

+
1 − �ν

2
(1 − α)2

∂2ΔU1

∂X2
2

+
1 + �ν

2
(1 − α)(1 + �να)

∂2ΔU2

∂X1∂X2

∂2ΔU1

∂X2
1

= 0

1 − �ν

2
(1 + �να)2 − α(1 − �ν2)

[ ]
∂2ΔU2

∂X2
1

+ (1 + �να)2
∂2ΔU2

∂X2
2

+
1 + �ν

2
(1 + �να)(1 − α)

∂2ΔU1

∂X1∂X2
= 0

(B9)

The traction-free boundary condition is

σ · da = S · dA = 0 (B10)

which yields

(1 − α)2
∂ΔU1

∂X2
+ (1 + �να)(1 − α)

∂ΔU2

∂X1
= 0

(1 + �να)2
∂ΔU2

∂X2
+ �ν(1 − α)(1 + �να)

∂ΔU1

∂X1
= 0

, at X2 = 0 (B11)
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