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The stabilization of oblique detonation waves (ODWs) in an engine combustor is important
for the successful applications of oblique detonation engines, and comprehensively
understanding the effects of the inviscid reflection of ODWs on their stabilization and
the relevant mechanisms is imperative to overall combustor design. In this study, the
flow fields of ODW reflections in a space-confined combustor are numerically studied by
solving the two-dimensional time-dependent multispecies Euler equations in combination
with a detailed hydrogen combustion mechanism. The inviscid Mach reflections of ODWs
before an expansion corner are emphasized with different flight Mach numbers, Ma, and
different dimensionless reflection locations, ζ ≥ 0 (ζ = 0: the ODW reflects precisely at the
expansion corner; ζ > 0: the ODW reflects off the wall before the expansion corner). Two
kinds of destabilization phenomena of the inviscid Mach reflection of an ODW induced
by different mechanisms are found, namely wave-induced destabilization at large ζ > 0
for moderate (not very low) Ma and inherent destabilization at any ζ > 0 for low Ma.
Wave-induced destabilization is attributed to the incompatibility between the pressure
ratio across the Mach stem and its relative propagation speed, which is triggered by the
action of the secondary reflected shock wave or the transmitted Mach stem on the subsonic
zone behind the Mach stem. Inherent destabilization is demonstrated through an in-depth
theoretical analysis and is attributed to geometric choking of the flow behind the Mach
stem.
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1. Introduction

Detonation waves are supersonic combustion waves that can sustain themselves in a
premixed combustible mixture (Zhang, Ng & Lee 2012; Zhang et al. 2014; Shi, Uy & Wen
2020). Due to their self-ignition, fast energy release and high thermal cycle efficiency,
detonation phenomena as a combustion mode have attracted increasing attention in the
development of hypersonic propulsion systems (Kailasanath 2000; Wolański 2013; Lu
& Braun 2014). Among the different kinds of detonation-based engines (Roy et al.
2004; Higgins 2006; Ma et al. 2020), the oblique detonation engine (ODE) is expected
to have more applications in hypersonic air-breathing propulsion at high flight Mach
numbers because of the additional stabilization and reduced compression losses of oblique
detonation waves (ODWs) (Qin & Zhang 2018; Ren et al. 2019; Jiang et al. 2021). Hence,
a comprehensive understanding of ODWs is fundamental for their successful utility in
ODEs, and substantial progress in understanding ODWs has been achieved in recent
decades. For example, Li, Kailasanath & Oran (1994) conducted numerical simulations in
which wedge-induced ODWs were found to be initiated from a non-reactive oblique shock
wave (OSW), which was confirmed by subsequent experimental observations (Viguier
et al. 1996; Lin, Zhang & Zhou 2007; Han 2013). The detailed initiation structures of
ODWs were further classified into two patterns, namely smooth and abrupt OSW–ODW
transition patterns (Teng & Jiang 2012; Miao et al. 2018; Teng et al. 2021). With regard to
the initiation mechanisms of ODWs, their initiation can be controlled by chemical kinetics
or wave dynamics depending on different free-stream parameters and mixture reactivities
(Teng, Ng & Jiang 2017; Zhang et al. 2019). Moreover, similar to normal detonation
waves (NDWs), ODW surfaces are always inherently unstable and composed of multiscale
cell-like structures and moving transverse waves (Choi et al. 2007; Han, Wang & Law
2019; Yang et al. 2019b).

Among the various key techniques required for the development of an air-breathing
detonation-based engine (Schwartzentruber, Sislian & Parent 2005; Alexander, Sislian &
Parent 2006; Wolański 2013; Zhang et al. 2020b, 2022), detonation-stabilization control is
imperative to the engine’s stable operations; nevertheless, achieving such control remains
challenging because of the fast response of detonation waves to the incoming flow
conditions and the extremely high relative propagation speed (thousands of metres per
second). To stabilize an NDW in an engine combustor, the key point is to match the
detonation propagation speed (always overdriven) with the incoming flow speed. If the
propagation speed of the NDW is greater than the flow speed in the combustor, the NDW
propagates upstream; conversely, the NDW attenuates downstream if its propagation speed
is lower than that of the incoming flow. To dynamically stabilize the detonation in the
engine combustor, Cai et al. (2016, 2019, 2021) employed a cavity as a flame holder to
support an NDW in the supersonic incoming flow and used an expansion wall to attenuate
the detonation wave downstream; the opposing effects of the cavity and the expansion
wall on the propagation of the detonation wave compete and ultimately equilibrate with
each other, which facilitates the stabilization of the NDW in the combustor. Moreover,
Cai et al. (2020) further attempted to control the propagation of an NDW in a straight
channel by setting a series of suction slots behind the detonation front; their numerical
results suggested that the dynamic stabilization of the detonation wave can be achieved.

Many experiments (Sterling et al. 1998; Verreault & Higgins 2011; Maeda, Kasahara
& Matsuo 2012; Maeda et al. 2013) and simulations (Teng et al. 2017; Han et al. 2019;
Yang, Ng & Teng 2019a) have previously been conducted on the stabilization of ODWs,
suggesting that it is easy to stabilize an ODW over isolated wedges or cones, which is
one of the major advantages of ODEs. However, the stabilization of an ODW induced
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by an isolated wedge or cone is only a typical external flow problem, whereas the
stabilization of an ODW in an ODE combustor is an internal flow problem because of the
geometric constraints of the combustor’s internal walls. In particular, the additional factors
involved in internal flows, such as the reflection of OSWs/ODWs (Wang et al. 2020a,b;
Wang, Yang & Teng 2021), shock/detonation–shock/detonation interactions (Xiang et al.
2021a,b), shock/detonation–boundary layer interactions (Cai et al. 2017, 2018a,b) and
shock/detonation-induced boundary layer separation (Ess, Sislian & Allen 2005; Miao
et al. 2020), increase the flow complexity in a space-confined combustor and cannot be
overlooked in the stabilization of ODWs. These fundamental differences in detonation
stabilization between spatially confined and unconfined flow regimes were also pointed
out by Higgins (1997) through experiments, where hypervelocity blunt projectiles were
fired into detonation chambers with significantly different chamber diameters and various
detonation propagation phenomena were observed. In early experimental investigations of
ram accelerators (e.g. Knowlen et al. 1995; Higgins, Knowlen & Bruckner 1998; Yatsufusa
& Taki 2002), which share geometries similar to those of ODE combustors, it was
demonstrated that boundary layer separation induced by shock waves and/or combustion is
always responsible for the upstream motion of shock waves over the projectiles, resulting
in the unstart phenomena and, consequently, the failure of acceleration and operation.
Moreover, the effects of multiple shock reflections on the upstream propagation of ODWs
over projectiles in superdetonative ram accelerators and even unstart of the systems have
also been noted in experiments (Seiler et al. 1998, 2000). Therefore, despite the inherent
stability of ODWs in an unconfined space, their stabilization control is always necessary
in an ODE combustor; to this end, it is valuable to comprehensively understand the effects
of the aforementioned factors on the stabilization of ODWs and the relevant mechanisms.

The effects of boundary layer separation on the failures of ramjets and scramjets have
also been well documented in the literature (Curran & Murthy 2001; Im & Do 2018;
Seleznev, Surzhikov & Shang 2019). Accordingly, various techniques, such as boundary
layer blowing/bleeding and mass flow spillage, have been proposed and successfully
applied (Chang et al. 2017; Urzay 2018). Recently, these techniques have also been
employed to overcome separation-induced destabilization of ODWs in ODE combustors.
For example, Alexander & Sislian (2008) and Wang & Sislian (2010) employed an air
jet to blow down the boundary layer upstream of the ODW reflection locus to suppress
the detonation-induced separation of the boundary layer. Zhang et al. (2020b, 2021b,
2022) adopted a floor bleed structure at the combustor’s entrance to spill out the incoming
boundary layer from the inlet; as a consequence, the continuous upstream motion of the
boundary layer separation bubble, also induced by the reflection of the ODW, ceases at the
entrance because of the interruption of the boundary layer. With boundary layer separation
being addressed properly, destabilization of the flow field in the ODE combustor may still
occur under the influences of the aforementioned inviscid factors (i.e. shock/detonation
reflections, shock/detonation–shock/detonation interactions). In other words, the inviscid
stabilization of ODWs, which is related to the geometric structure of the combustor,
appears as a precondition of overall stabilization and must be considered prior to adopting
other stabilization-control measures in the design of an ODE combustor.

Wave reflection is a major feature in the inviscid ODW flow field in a space-confined
ODE combustor (Lu, Fan & Wilson 2006; Wang et al. 2021; Xiang et al. 2021b), and its
effects on ODW stabilization and the relevant mechanisms are important for the initial
geometric design of the engine combustor. Figure 1 schematically shows two typical
configurations of ODEs presented in previous literature (Schwartzentruber et al. 2005;
Alexander et al. 2006; Wolański 2013), namely the external-compression ODE and the
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Figure 1. Schematics of two typical configurations of ODEs. (a) external-compression ODE. (b)
Mixed-compression ODE.

mixed-compression ODE. These two types of ODEs have an obviously similar flow pattern
of ODW reflection in the combustor; that is, the ODW reflects over an internal wall with
an expansion corner, and the ideal reflection locus is precisely at the expansion corner.
However, due to the general unsteadiness of the high-speed fuel–air mixture flowing
into the combustor and/or the potential off-design operation of the engine (Yang et al.
2019a, 2021; Ren, Wang & Zheng 2021), it is impossible to ensure that the ODW always
reflects exactly at the expansion corner, implying that the ODW always reflects before
or behind the expansion corner. Therefore, it is imperative to investigate the effects of
the position of the reflection point relative to the expansion corner and other geometric
parameters on the ODW flow structure in the combustor and to analyse the relevant
stabilization characteristics. Because of the release of heat, a Mach reflection pattern
can appear easily when the ODW reflects off a wall, and a Mach stem (MS; which is,
in fact, an overdriven NDW) forms as a result. Due to the existence of a subsonic zone
behind the MS, downstream disturbances may propagate upstream to the detonation front
and consequently destabilize the ODW reflection pattern, eventually causing the ODE to
fail. Accordingly, this paper mainly investigates the relevant flow structures, stabilization
characteristics and inherent mechanisms of a Mach reflection occurring more easily when
the ODW reflects off the wall before the expansion corner.

The remainder of this paper is organized as follows. The numerical details, including
the geometry of the simulated ODE combustor, the numerical methods and the cases
considered herein, are briefly introduced in § 2. Next, the flow fields and the relevant
stabilization characteristics of ODWs that reflect precisely at the expansion corner at
different flight Mach numbers are discussed in § 3.1. Then, the flow structures of the
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Figure 2. Detailed geometry of the combustor of an external-compression ODE.

stabilized Mach reflection of an ODW reflecting before but close to the expansion corner
and the evolutions of the relevant MS are presented in § 3.2. Thereafter, the evolutions
of the destabilized Mach reflection of an ODW reflecting far upstream of the expansion
corner and the relevant destabilization mechanism are analysed in § 3.3. In § 3.4, the
inherent destabilization phenomenon of the Mach reflection of an ODW at a low flight
Mach number is investigated, followed by a discussion of its relevant mechanism in § 3.5
with a formulation providing the stabilized locations of the MS. Finally, the conclusions
are presented in § 4.

2. Physical and mathematical models

Since the flow patterns of ODW reflection are similar in the combustors of both
configurations of ODEs (figure 1), the combustor of an external-compression ODE, whose
detailed geometry is shown in figure 2, is taken as an example in this study. As shown in
figure 2, the combustor is contained within points DCBOE, where point C is the leading
tip of the cowl and point O is the expansion corner with an expansion angle of 25°. CD or
CG represents the engine’s cowl wall. BO is one part of the combustor’s lower wall before
the expansion corner with an inclination angle of 25°, while OE (which is parallel to the
cowl wall) is the other part behind the expansion corner. EF is a part of the nozzle’s wall
with an expansion angle of 25°, while AB is a part of the inlet’s wall sharing the same
inclination angle as BO. The height (DE) of the combustor’s straight channel is H = 6 cm,
while its length (OE) is L

′ = 20 cm. The total length of the combustor L depends on the
designed reflection locus of the ODW (i.e. point R), which varies among the different
cases considered in this study. A similar ODE combustor geometry has been adopted for
previous studies by the authors (Zhang et al. 2020b, 2021b).

The effects of ODW reflection on the stabilization/destabilization characteristics of
ODWs as well as the inviscid destabilization mechanisms are emphasized in this study;
hence, viscous effects are neglected. However, the effects of viscosity on the transition
between regular and Mach reflections should be noted. It has been demonstrated that
shock-induced boundary layer separation has significant effects on the shifting of the
dual-solution regime of inert shock-wave reflections (Tao, Fan & Zhao 2014; Matheis &
Hickel 2015; Grossman & Bruce 2018; Xue, Wang & Cheng 2021). That is, it delays
the transition from regular to Mach reflection, and its effect on the transition from
Mach to regular reflection is inverse (i.e. promotion). For ODW reflection transitions,
although similar viscous effects may be expected, the specific transition criteria are not
the main focus of this study. Therefore, the complex effects of boundary layer separation
on ODW reflection transitions are not considered but, instead, will be further studied
in the future. Without considering viscous effects, two-dimensional time-dependent
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multispecies reactive Euler equations (Fang et al. 2019; Teng, Liu & Zhang 2020) are
solved. Jachimowski’s H2 combustion mechanism (Wilson & Maccormack 1992), which
involves 19 reversible elementary reactions among 9 species (H2, H, O2, O, OH, HO2,
H2O2, H2O and N2), is adopted to model the combustion rates. This detailed chemical
reaction mechanism has been demonstrated to be capable of providing experimentally
consistent laminar flame speeds, adiabatic flame temperatures and ignition delay times
(Jachimowski 1988) and has been widely applied in simulations of scramjets (Fureby et al.
2011; Chapuis et al. 2013), shock-induced combustion (Choi, Jeung & Yoon 2000; Teng
et al. 2020) and detonation (Choi, Shin & Jeung 2009; Zhang et al. 2020b, 2021b).

It should be noted that the temperature behind the detonation wave of a H2–air
mixture can reach 3000 K or higher; hence, vibration excitations of some involved
polyatomic species (i.e. O2, N2, H2O, HO2 and H2O2) with relatively low vibrational
characteristic temperatures become noticeable. To include the excited vibrational energies
and other energy modes in the internal energy of each species, in this study, the species
thermodynamic database of NASA (McBride, Gordon & Reno 1993) is employed to
evaluate the equilibrium thermodynamic properties of each species by a piecewise
fourth-order polynomial of temperature. In recent studies (Shi et al. 2017, 2020; Uy
et al. 2020), thermal non-equilibrium has been demonstrated to have non-negligible
effects on detonation instabilities and the resulting detonation cellular structures in a
multidimensional space. However, the aforementioned detonation dynamic features are
not the main focus of this study. Moreover, a comparison of the flow fields in a similar
ODE combustor under thermal equilibrium and non-equilibrium conditions (conducted in
the authors’ previous study: Zhang et al. (2021b)) showed that the overall flow structures or
their stabilization characteristics are not significantly affected by thermal non-equilibrium
effects. Therefore, thermal non-equilibrium effects are neglected in the present modelling;
that is, all simulation results discussed in this study are under the thermal equilibrium
assumption.

A quadrilateral grid-based finite-volume method (Chakravarthy 1999) is employed
to numerically solve the governing equations. A second-order upwind total variation
diminishing scheme is used to spatially discretize the equations, and the nonlinear
Harten–Lax–van Leer contact approximate Riemann solver (Toro 2013) is adopted to
evaluate the interface fluxes to satisfy the entropy and positivity conditions simultaneously.
Additionally, to suppress spurious oscillations near flow discontinuities, a minmod-type
limiter is used. In the time direction, the equations are explicitly integrated by the
fourth-order Runge–Kutta method, and an operator-splitting method (Ropp & Shadid
2009) is employed to treat the chemical source terms, which always cause stiffness
problems originating from the mismatch of the time scales between chemical reactions
and flows.

In the present study, numerical simulations are carried out with different flight
Mach numbers and different designed ODW reflection locations before or precisely at
the expansion corner, as summarized in table 1. Notably, in classic shock reflection
configurations in which an OSW generated by a finite wedge impinges on a flat surface,
the height of the MS depends on the height of the flow path (i.e. the vertical distance
from the wedge tail to the flat surface) (Li & Ben-Dor 1997; Ben-Dor 2007; Mouton &
Hornung 2007). According to shock reflection theory (Ben-Dor 2007), the formation of
a sonic throat under the interaction between the expansion fan and the slip line (SL) is
important to the stabilized location and, consequently, the stabilized height of the MS. In
such a type of shock reflection configuration, the expansion fan emits from the tail of the
finite wedge on the opposite side of the reflection locus; hence, the interaction between
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the expansion fan and the SL depends on the vertical distance from the wedge tail to the
flat surface. As a result, the height of the MS in such configurations depends on the height
of the flow path. Comparatively, in the ODW reflection configuration depicted in figure 2,
the expansion fan emits from an expansion corner on the same side of the reflection locus.
As a result, the stabilized height of the MS discussed in this study (if not influenced
by downstream wave structures) does not depend on the height of the combustor’s
straight channel (i.e. H) but on the designed reflection location of the ODW (i.e. RO).
However, destabilization of ODW Mach reflection may still be caused by downstream wave
structures that result from the multiple reflections of shock waves between the combustor’s
walls. Obviously, with the designed reflection location of ODW unchanged, the relative
locations of these downstream wave structures to the expansion corner are determined
by the channel’s height. In other words, the stabilization/destabilization characteristics
of ODWs in the combustor considered in this study depend on not only the designed
reflection location but also the geometric scale of the combustor (i.e. the height of the
combustor’s straight channel, H). Hence, to present and discuss the results in a more
general way, the non-dimensional parameter ζ is introduced in this study to describe the
relative location of the designed ODW reflection point:

ζ = RO
H

. (2.1)

A value of ζ = 0 means that the ODW reflects exactly at the expansion corner (the
dashed red line in figure 2), while ζ > 0 implies that the ODW reflects off the wall
before the expansion corner, as shown by the solid red line in figure 2. Notably, without
considering the chemical reaction characteristic length scales (i.e. in cold or chemical
equilibrium flows), the non-dimensionalization of (2.1) is justifiable. The flow field
in the combustor should depend on the non-dimensional parameter ζ , rather than the
dimensional reflection location or channel height individually. In the present study,
because chemical non-equilibrium effects are not dominant (i.e. near-equilibrium overall,
to be discussed later in § 3.1), (2.1) still approximately holds, and the overall flow fields
with the same ζ value but different channel heights should be similar.

Notably, the exact reflection locations of ODWs on the wall (i.e. RO) and the subsequent
ζ values are difficult to determine when Mach reflection occurs or the flow structures in
the combustor become destabilized because an MS forms before the ODW reflecting off
the wall, or the ODW is even non-stationary. To overcome this difficulty, a preinvestigation
simulation of a pure ODW induced only by the cowl wall (i.e. CD) is conducted for each
flight Mach number without considering the combustor’s lower wall (i.e. BOE), and the
corresponding reflection locus of the ODW (i.e. point R) is determined by its intersection
point with the location at which BOE should be. Note again that the ζ values discussed in
this study are generally smaller than one; hence, ζ values of different cases are expressed
in fractional terms with a constant denominator of 60 (i.e. the channel height of 60 mm)
in table 1 and the remainder of this paper, for intuitional comparison.

Four flight Mach numbers, namely 9, 9.5, 10 and 10.5, are taken into account, and
the flight altitude is fixed at 30 km for the ODE. Since this study focuses on the
effects of reflection on the stabilization characteristics of ODWs in a space-confined
ODE combustor and the relevant inherent mechanisms of stabilization/destabilization, the
complex processes of fuel (H2) injection and its subsequent mixing with air in the ODE
inlet are not considered here. Rather, following the simplification of the inflow of the ODE
combustor in previous studies (Ren et al. 2018; Fang et al. 2019; Xiang et al. 2019), the free
stream of the high-altitude atmosphere is assumed to be precompressed twice by two weak
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Case no. Ma Tin (K) pin (kPa) Vin (m s−1) RO (mm) ζ value

1 9 855.1 43.96 2466 0 0
2 9 855.1 43.96 2466 1 1/60
3 9 855.1 43.96 2466 3 3/60
4 9 855.1 43.96 2466 6 6/60
5 9 855.1 43.96 2466 12 12/60
6 9.5 909.2 49.52 2608 0 0
7 9.5 909.2 49.52 2608 1 1/60
8 9.5 909.2 49.52 2608 3 3/60
9 9.5 909.2 49.52 2608 5 5/60
10 9.5 909.2 49.52 2608 8 8/60
11 9.5 909.2 49.52 2608 15 15/60
12 10 965.2 55.47 2751 0 0
13 10 965.2 55.47 2751 2 2/60
14 10 965.2 55.47 2751 5 5/60
15 10 965.2 55.47 2751 10 10/60
16 10 965.2 55.47 2751 20 20/60
17 10 965.2 55.47 2751 30 30/60
18 10.5 1023.1 61.83 2893 0 0
19 10.5 1023.1 61.83 2893 5 5/60
20 10.5 1023.1 61.83 2893 10 10/60
21 10.5 1023.1 61.83 2893 20 20/60
22 10.5 1023.1 61.83 2893 30 30/60

Table 1. Summary of the flight Mach numbers, the inflow parameters of the combustor and the designed
ODW reflection locations for different cases.

OSWs generated by the two 12.5° ramps in the inlet (see figure 1a), and the injection of
H2 and its subsequent mixing with air are assumed to be completed downstream of these
two OSWs and before entering the ODE combustor. Consequently, a uniformly premixed
stoichiometric H2–air inflow is assumed to enter the combustor parallel to the end of the
inlet and the wall before the expansion corner (i.e. 25° with respect to the x direction),
and this serves as the inflow condition for the simulations in this study, as shown in
figure 2. The corresponding inflow parameters for the different flight Mach numbers are
summarized in table 1. Note again that the vibrational relaxation time scales of H2–air
mixture in the inlet are significantly smaller than the corresponding flow residence time
scale; hence, it is reasonable to set the inflow of the combustor (i.e. the outflow of the inlet)
to be under thermal equilibrium.

For the other boundary conditions, the slip wall condition is set at all wall boundaries
due to the assumed inviscid flow, and the supersonic outflow condition is set at all outflow
boundaries. Quadrilateral grid cells are used in this study, and the characteristic grid size
in the main combustion zone is set as 0.1 mm, which has been carefully validated by
resolution tests to exclude the grid dependence of the simulation results. One of these grid
resolution studies is presented in § 3.2 as an example.

3. Results and discussion

3.1. Stabilized reflection of ODWs with ζ = 0
The reflection patterns of ODWs in the combustor at different flight Mach numbers with
the reflection point located precisely at the expansion corner (i.e. ζ = 0) are analysed
first. The time-dependent simulation results suggest that the flow structures with ζ = 0 all
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Figure 3. Flow fields of the stabilized reflection of ODWs with ζ = 0 at Ma = 9 (left) and Ma = 10 (right):
(a) shadowgraphs, (b) temperature contours and (c) H2 mass fraction contours.

remain stabilized in the combustor at the investigated Mach numbers (9, 9.5, 10 and 10.5).
Taking Ma = 9 and 10 as examples, the stabilized flow structures are depicted in figure 3
by shadowgraphs, temperature contours, H2 mass fraction contours and pressure isolines.
When the high-speed premixed H2–air mixture flows into the combustor, an OSW first
forms over the leading tip of the cowl, inducing combustion of the mixture downstream.
Away from the cowl wall, the combustion zone approaches the OSW front and eventually
interacts with the shock-wave front over a short distance. Consequently, the flame front
is coupled tightly with the OSW front, and the shock-wave angle increases, implying
the formation of an ODW. Across this ODW, the flow temperature abruptly increases
to approximately 3000 K, and the H2 mass fraction drops to a rather low level; these
phenomena are the other two typical features of a detonation wave. Then, the ODW reflects
at the expansion corner within the combustor, forming a reflected shock wave (RfSW),
which is weak due to the parallel geometry of the flow channel behind the expansion
corner. Downstream in the combustor, the RfSW reflects repeatedly between the internal
walls and further weakens gradually before it meets another expansion fan at the outlet of
the combustor. Finally, the high-temperature combustion products exit the combustor and
expand and accelerate in the nozzle.
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A comparison of the flow structures between these two Mach numbers in figure 3
reveals that the initiation length under Ma = 10 is shorter than that under Ma = 9.
A transverse wave (TW) connecting to the OSW–ODW transition point exists in the case
of Ma = 9, implying an abrupt OSW–ODW transition pattern at this relatively low Mach
number, while no obvious TW can be observed within the initiation zone in the case of
Ma = 10, meaning the OSW–ODW transition pattern at this relatively high Mach number
is smooth. These findings regarding the ODW initiation structure coincide with those
found in previous numerical studies (Teng & Jiang 2012; Teng et al. 2017, 2021). Notably,
as compared to the geometric scales of the combustor, the OSW–ODW transition zones are
rather small, implying that the overall flow fields in the combustor are in near-equilibrium
states, although some non-equilibrium effects still occur locally. Further, a higher Mach
number leads to a smaller oblique detonation angle, and thus the leading tip of the cowl
occurs farther upstream from the expansion corner for ζ = 0 (with the same height of the
combustor). Additionally, the RfSW angles and its further reflected shocks are smaller for
higher Mach numbers. Moreover, the combustion temperature in the combustor at Ma = 10
is slightly higher than that at Ma = 9, which is attributed to the higher total temperature
but the same deflection angle of the inflow entering the combustor.

3.2. Stabilized Mach reflection of ODWs with small ζ > 0
When the ideal reflection point of the ODW is located on the wall before the expansion
corner (i.e. for ζ > 0), the Mach reflection pattern of the ODW coincides with the
formation of an MS. For small ζ > 0, the flow field under Ma = 10 and ζ = 10/60 is taken
as an example. Figure 4 depicts the evolution of the flow field in this case by shadowgraphs
overlaid with sonic lines. To quantitatively exhibit the evolution of the formed MS and the
stabilization characteristics of the Mach reflection of the ODW, the temporal evolutions
of the location and corresponding motion speed of the pressure-jump point along the wall
before the expansion corner are plotted in figure 5, where the location of the pressure-jump
point is evaluated according to its distance from the expansion corner. Obviously, this
pressure-jump point represents the location of the ODW reflection point for a regular
reflection pattern or the location of the MS for a Mach reflection pattern. Therefore,
figure 5 also presents the temporal evolutions of the formed MS when a Mach reflection
pattern appears in the late period of the evolution of the flow field. In addition, points
at different time instants corresponding to the shadowgraphs shown in figure 4 are also
marked on the motion speed curve in figure 5 for convenience.

As indicated in figure 4(a), after the ODW has formed over the cowl’s internal wall
but before it becomes fully established, its reflection point is located on the wall behind
the expansion corner, and no pressure jump occurs along the wall before the expansion
corner. At this moment, the location of the pressure-jump point and its corresponding
motion speed are simply set to zero (point ‘a’ in figure 5). Hence, when the ODW reflects
precisely at the expansion corner later in its evolution (figure 4b), the motion speed of the
pressure-jump point abruptly rises (point ‘b’ in figure 5). Next, a regular reflection pattern
occurs over the wall before the expansion corner (figure 4c) because of the relatively small
oblique detonation angle of the tail of the ODW during its evolution, and the reflection
point moves upstream along the wall continuously with a gradually decreasing motion
speed (point ‘c’ in figure 5). Then, the regular reflection pattern of the ODW transits
to a Mach reflection pattern (figure 4d), and the motion speed of the pressure-jump
point reaches another obvious peak (point ‘d’ in figure 5) during the transition process.
As depicted in figures 4(e) and 4( f ), an MS forms and grows thereafter while
continuously moving upstream along the wall, which is again accompanied by a decreasing
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Figure 4. Evolution of the flow field (shadowgraphs) of the stabilized Mach reflection of an ODW at Ma = 10
and ζ = 10/60: (a) t = 0.068 ms, (b) t = 0.101 ms, (c) t = 0.116 ms, (d) t = 0.131 ms, (e) t = 0.208 ms, ( f )
t = 0.760 ms and (g) t = 1.581 ms.

motion speed. In addition to the formation of the MS and RfSW connected to the triple
point, an SL is also emitted from the triple point in the Mach reflection pattern of the
ODW, thereby separating the flows across the ODW and MS. When the RfSW of the
ODW reflects off the cowl wall, a secondary reflected shock wave (RfSW2) forms and
reflects later over the SL, forming another reflected shock wave and, notably, a transmitted
MS (tMS) between the SL and the lower wall of the combustor. As indicated in figure 5,
after the formation of the Mach reflection pattern, the motion speed of the formed MS
rapidly drops and then gradually decreases towards zero. After a sufficiently long period,
the motion speed of the MS finally drops to zero, with the MS finally reaching its most
upstream location. As a result, all the flow structures remain stabilized in the combustor,
and the flow field reaches its steady state, as shown in figure 4(g).
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Figure 5. Evolutions of the location and corresponding motion speed of the pressure-jump point along the
wall before the expansion corner of the stabilized Mach reflection of ODWs at Ma = 10 and ζ = 10/60.

The temperature and H2 mass fraction contours along with the pressure isolines of the
final steady flow field in this case are exhibited in figure 6. As indicated in figures 4(g)
and 6, in addition to the ODW, a high temperature reaching approximately 3500 K and
a rather low H2 mass fraction are also featured just behind the MS, implying the tight
coupling between the flame front and the MS. In other words, the MS is an overdriven
NDW. According to Zhang et al. (2021b), two stabilized detonation combustion modes,
namely the oblique detonation combustion mode and the normal detonation combustion
mode, simultaneously exist in the ODE combustor in this case. Moreover, a subsonic zone
capable of propagating pressure waves upstream exists behind the MS and extends to
the expansion fan emitting from the expansion corner (figure 4g). However, no obvious
downstream pressure wave acting on or propagating in the subsonic zone is observed,
and hence the MS is not disturbed and remains stabilized at a certain position before the
expansion corner.

To exclude the dependence of the simulation results on the grid size, grid resolution
tests are carefully carried out by halving the sizes of the quadrilateral grid cells in both
directions, leading to characteristic grid sizes of 0.05 mm in the main combustion zone for
the fine grids and 0.1 mm for the coarse grids. As a result, the total number of fine grid cells
is almost four times that of coarse grid cells. Taking the case of Ma = 10 and ζ = 10/60
as an example again, comparisons of the flow fields obtained with different grid sizes are
shown in figure 6, while comparisons of the flow parameter distributions are depicted in
figure 7. Differences in the flow structures are difficult to distinguish by using different
grid sizes. Furthermore, the distribution curves of the various flow parameters obtained
with different grid sizes almost overlap with each other, especially the locations of the
jumps or drops of the flow parameters, implying that the simulations accurately capture
the locations of key flow structures such as detonation fronts and shock waves. Therefore,
a coarse grid with a characteristic grid size of 0.1 mm is sufficient to resolve the key flow
features and is adopted in this study.

It should be noted that, although the overall flow structures concerned in this paper
are shown to be independent of grid size approximately when a characteristic grid
size of 0.1 mm is used, this grid size is still not fine enough to precisely predict the

940 A29-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.226


Mechanisms of the destabilized Mach reflection

0.15 T(K)

0.10

0.05

0

–0.05

RfSW

1000 1500 2000 2500 3000 3500

RfSW2

tMS

ODW

SL

MS

–0.1–0.2 0 0.1 0.2 0.3

y (m)

0.15
H2

0.10

0.05

0

–0.05

0.005 0.010 0.015 0.020 0.025

Pressure isolines

ODW
MS

–0.1–0.2 0 0.1 0.2 0.3

0.15 T(K)

0.10

0.05

0

–0.05

RfSW

1000 1500 2000 2500 3000 3500

RfSW2

tMS

ODW

SL

MS

–0.1–0.2 0 0.1 0.2 0.3

y (m)

0.15
H2

0.10

0.05

0

–0.05

0.005 0.010 0.015 0.020 0.025

Pressure isolines

ODW
MS

–0.1–0.2 0 0.1 0.2 0.3

(b)(a)

(d )(c)

x (m) x (m)

Figure 6. Contours of the temperature and H2 mass fraction of the stabilized Mach reflection of an ODW
(Ma = 10, ζ = 10/60) at t = 1.581 ms with different mesh sizes: (a) temperature contour (�x = 0.1 mm), (b)
H2 mass fraction contour (�x = 0.1 mm), (c) temperature contour (�x = 0.05 mm) and (d) H2 mass fraction
contour (�x = 0.05 mm).

induction length of an ODW or capture the potential cellular structures on the detonation
surface. The grid-size requirement for predicting the aforementioned detonation features
generally needs to ensure that there are at least 20 grid points within the half reaction
zone of the corresponding Chapman–Jouguet detonation wave (Teng, Jiang & Ng 2014;
Shen & Parsani 2017; Shi et al. 2020). For example, for the inflow conditions of
Ma = 10 listed in table 1, the length of the half reaction zone is approximately 0.4
mm, implying a minimum grid-size requirement of 0.02 mm, which is significantly
smaller than that used in the present study (0.1 mm). Fortunately, the precise prediction
of the induction length of an ODW does not affect the overall flow structures in the
combustor, and the cellular characteristics of the detonation surfaces are not the main
focus of this study; hence, a much finer grid is not employed to save computational
resources.

For the other cases with small positive ζ values (i.e. ζ = 2/60 and 5/60) at Ma = 10,
the flow fields of the Mach reflection of the ODW are also stabilized, and similar flow
structures can be observed, as shown in figure 8. In other words, an MS, an SL, an RfSW
and a subsonic zone form near the reflection point of the ODW. Downstream of the ODW,
the RfSW reflects off the cowl wall to form an RfSW2, and the RfSW2 further reflects over
the SL, forming another reflected shock wave and a tMS between the SL and the lower
wall of the combustor. As ζ increases, i.e. as the designed reflection point of the ODW
moves upstream, the final stabilized location of the MS also moves upstream; additionally,
the length of the MS increases, as does the size of the subsonic zone behind the MS.
Further, the locations of the RfSW2 and tMS downstream of the subsonic zone move
farther upstream and approach the subsonic zone with increasing ζ . For Ma = 9.5 or 10.5,
the Mach reflection patterns of the ODW similarly become stabilized at small positive ζ

values, as summarized in figure 9, and stabilized flow structures similar to those discussed
in this section can be obtained.
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Figure 7. Flow parameter distributions for the stabilized Mach reflection of an ODW in the combustor
(Ma = 10, ζ = 10/60) at t = 1.581 ms with different mesh sizes: (a) along the cowl wall (y = 0.06 m), (b) along
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0.15

Ma = 1

RfSW RfSWRfSW2 RfSW2

MS MStMS tMSSL SL

SL1

1

2 SL1 2

2
ODW ODW

0.10

0.05

0

–0.05

–0.1–0.2 0 0.1 0.2 0.3

(a) (b)

y (m)

0.15

0.10

0.05

0

–0.05

x (m)
–0.1–0.2 0 0.1 0.2 0.3

x (m)

Ma = 1
1 2

Figure 8. Shadowgraphs of the stabilized Mach reflection patterns of ODWs at Ma = 10: (a) ζ = 2/60 and (b)
ζ = 5/60.

3.3. Destabilized Mach reflection of ODWs with large ζ > 0
Again, Ma = 10 is taken as an example for discussion in this section. Different from the
stable cases with small ζ , when ζ further increases to a larger value, for example ζ = 20/60
or 30/60, the flow field of the Mach reflection of the ODW becomes destabilized in the
ODE combustor, as depicted in figure 9. Similar to figure 5, the temporal evolutions of
the location of the pressure-jump point along the wall before the expansion corner and its
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Figure 9. Summary of the stabilization characteristics of the Mach reflection of ODWs at different Ma and
with different ζ values. The dashed line corresponds to the critical Mach number (i.e. Macri = 9.3) predicted
by the theory constructed in § 3.5.
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(b) ζ = 20/60.

corresponding motion speed in the cases of ζ = 20/60 and 30/60 at Ma = 10 are shown in
figure 10. According to the above discussion in § 3.2, these curves represent the evolutions
of the formed MS, where the MS forms at the time instant of the second peak in the
motion speed curve. In the early period, the motion speed of the MS, which continuously
moves upstream, is greater than zero but decreases, rapidly at first and then gradually.
Accordingly, the upstream motion of the MS approaches zero and seemingly stops at a
certain position, and the MS appears to be stabilized. However, as the flow field continues
to evolve, at a certain time instant (approximately t = 0.9 ms for ζ = 20/60 or t = 0.7 ms
for ζ = 30/60), the motion speed of the MS suddenly begins to increase, after which the
MS accelerates while moving upstream. Finally, the MS moves upstream far from the
expansion corner, indicating that the MS has moved out of the combustor, and the MS
continues moving upstream with a very large speed. In other words, the Mach reflection of
the ODW becomes destabilized in the combustor at a large value of ζ , which may lead to
the engine becoming unstart. Therefore, to help design the geometry of the combustor, it is
imperative to determine the mechanisms responsible for the destabilized Mach reflection
of ODWs as well as the relevant influencing factors.
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Figure 11. Shadowgraphs of the flow field of the destabilized Mach reflection of an ODW (Ma = 10,
ζ = 30/60) at different time instants: (a) t = 0.369 ms, (b) t = 0.534 ms, (c) t = 0.585 ms, (d) t = 0.623 ms,
(e) t = 0.665 ms, ( f ) t = 0.713 ms, (g) t = 1.080 ms, (h) t = 1.345 ms and (i) t = 1.582 ms.

Taking ζ = 30/60 as an example, the evolution of the flow field of the destabilized Mach
reflection of an ODW at Ma = 10 is illustrated in figure 11 by shadowgraphs along with
sonic lines. The time instants corresponding to the exhibited flow fields are also marked
along the motion speed curve of the pressure-jump point in figure 10 for convenience.
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Figure 12. Pressure distributions along the wall before the expansion corner of the destabilized Mach
reflection of an ODW (Ma = 10, ζ = 30/60) at different time instants.

After the Mach reflection pattern of the ODW is established (figure 11a), flow structures
similar to the stabilized structures in § 3.2, including the MS, SL, RfSW, RfSW2, tMS
and subsonic zone, also appear in the flow field of this destabilized case. In the early
period of evolution of this destabilized Mach reflection of the ODW, the tMS is located
relatively far downstream from the subsonic zone behind the MS (figure 11a). As time
proceeds, the upstream motion of the MS drives the following flow structures (e.g. the
RfSW, RfSW2 and tMS) upstream; consequently, the location of the tMS approaches the
subsonic zone behind the MS (figure 11b). As indicated in figure 10(a), the flow structures
tend to stabilize since the motion speed decreases to zero during this period. However,
at approximately t = 0.585 ms (figure 11c), the tMS acts on the subsonic zone before the
flow structures are fully stabilized. Thereafter, the pressure rise caused by the tMS rapidly
propagates upstream through this subsonic zone, as shown in figures 11(d) and 11(e). Note
that the symbol ‘tMS’ in these two figure panels is enclosed in parentheses, implying that
the pressure rise caused by the tMS is no longer as sharp as that of a shock wave due to
the diffusion effects of propagating through a subsonic zone.

The upstream propagation of the pressure rise caused by the tMS is also clearly
visualized in figure 12, showing the evolution of the pressure distributions along the
wall before the expansion corner (after the tMS acts on the subsonic zone). As shown
in figure 12, the pressure rise caused by the tMS propagates upstream through the
subsonic zone and finally arrives at the detonation front of the MS at approximately
t = 0.713 ms (see also figure 11f ), resulting in an increase in the pressure behind the MS
and consequently the pressure ratio across the MS. Notably, the pressure ratio across an
overdriven detonation wave must match its propagation speed relative to the incoming
flow, and vice versa. Therefore, this increase in the pressure ratio across the MS results in
an increase in its relative propagation speed; that is, the MS accelerates while moving
upstream, as indicated by the sudden increase in the motion speed of the MS (point
‘f’) in figure 10(a). Then, the upstream motion of the MS enters a so-called ‘positive
feedback’ period: the more upstream the MS travels, the closer the distance between the
MS and RfSW2 (figure 11g), the higher the pressure ratio across the MS induced by
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Figure 13. Shadowgraphs of the flow field of the destabilized Mach reflection of an ODW (Ma = 10,
ζ = 20/60) at different time instants: (a) t = 0.826 ms and (b) t = 0.982 ms.

the RfSW2 pressure rise and, consequently, the larger the upstream motion speed of the
MS. As depicted in figure 10(a), the motion speed of the MS increases continuously and
reaches a large value after the pressure rise produced by the tMS arrives at the detonation
front. At approximately t = 1.345 ms (figure 11h), the MS reaches the leading tip of the
cowl, and the ODW vanishes, resulting in only an NDW existing at the entrance of the
combustor. Subsequently, the detonation front moves out of the combustor; instead, a bow
detonation wave (BDW) forms and continues moving upstream, as shown in figure 11(i).
In this destabilized case of the Mach reflection of an ODW (Ma = 10, ζ = 30/60), because
the detonation front that serves as the main combustion organization structure in the ODE
moves out of the combustor and thereafter continues to move upstream with a large motion
speed, the combustor (and thus the engine) cannot work normally and may even fail.

For ζ = 20/60 at the same Ma, analyses of the instantaneous flow fields in combination
with the evolutions of the MS location and its motion speed suggest that the sudden
upstream acceleration of the MS during its apparent stabilization (figure 10b) can also
be attributed to the action of the tMS on the subsonic zone behind the MS (as shown
in figure 13), which causes a pressure rise that propagates upstream to the MS and
subsequently results in the incompatibility of the pressure ratio across the MS and its
relative propagation speed. Then, the upstream motion of the MS enters a positive feedback
period, and the detonation front moves out of the combustor. At other flight Mach numbers
(i.e. Ma = 9.5 and 10.5), destabilized Mach reflection patterns of ODWs also occur at large
ζ values, as shown in figure 9, and similar analyses suggest that the relevant destabilization
mechanisms are also similar. Since this kind of destabilization phenomenon is induced
by the action of a shock wave (the tMS in this section), this process is referred to as
wave-induced destabilization in this paper.

3.4. Inherently destabilized Mach reflection of ODWs at low Ma
As depicted in figure 9, for a relatively large Mach number (Ma = 9.5, 10 or 10.5), when
the ζ (>0) value is small (i.e. the designed ODW reflection point is located close to the
expansion corner), the flow structures of the Mach reflection of an ODW remain stabilized
in the combustor, whereas the detonation front moves out of the combustor upstream for
large ζ values (i.e. the designed ODW reflection point is located far upstream from the
expansion corner), implying the destabilization of the Mach reflection pattern of the ODW.
However, a special phenomenon of stabilization/destabilization occurs for a relatively low
Mach number, for example Ma = 9, as shown in figure 14. For Ma = 9 and ζ = 12/60, the
Mach reflection of an ODW is destabilized in the combustor, and the evolution of the MS
is similar to the evolutionary characteristics in the destabilized cases of Ma = 10. After the
Mach reflection pattern of an ODW forms (corresponding to the first peak on the speed
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Figure 14. Evolutions of the location and corresponding motion speed of the pressure-jump point along the
inlet wall of the destabilized Mach reflection of ODWs at Ma = 9: (a) ζ = 12/60, (b) ζ = 6/60, (c) ζ = 3/60 and
(d) ζ = 1/60.

curve in figure 14a for this case), the upstream motion speed of the MS initially drops
rapidly and then decreases gradually. During the stabilization of the MS, the motion speed
of the MS suddenly rises, and the MS accelerates upstream. As a result, the MS moves
out of the combustor to a location far upstream from the expansion corner. According to
the previous analyses, one may expect to stabilize the Mach reflection of the ODW in
the combustor by decreasing the ζ value, i.e. by setting the designed ODW reflection point
closer to the expansion corner. However, while this guideline prevails for Ma = 9.5, 10 and
10.5, this solution fails for Ma = 9. By continuously decreasing the ζ value from 12/60
to 6/60, 3/60 or even 1/60, the motion speed of the MS still exhibits a sudden increase,
eventually leading to the destabilization of the flow field. One of the key differences among
the different ζ values is the time instant at which the motion speed of the MS rises; in other
words, the time instant of the turning point occurs later for smaller ζ values. Notably, the
designed reflection point is only 1 mm upstream of the expansion corner for a 6 cm high
combustor with ζ = 1/60, but the destabilization of the Mach reflection of an ODW still
occurs for this extremely small value of ζ . Remarkably, the flow structures at this low
Ma are stable with ζ = 0, where the ODW reflects precisely at the expansion corner and
the Mach reflection pattern of an ODW does not form. The above analyses suggest that
destabilization is inherent in the Mach reflection of an ODW at this low Ma, when the
ODW reflects off the wall before the expansion corner.

To determine the inherent mechanism causing the sudden increase in the motion
speed of the MS in these low-Ma cases that directly destabilizes the Mach reflection of
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ODWs, the instantaneous flow fields and pressure distributions along the wall before the
expansion corner are analysed near the turning time instant, as shown in figures 15 and 16,
respectively, taking Ma = 9 and ζ = 12/60 as an example. Figure 15(a) demonstrates that
the RfSW2 crosses the SL directly and then reflects off the lower wall at this low Ma rather
than reflecting over the SL and forming a tMS at a relatively high Ma (e.g. figure 11a).
Although slightly different flow structures are formed at this low Ma, the RfSW2 acts
on the subsonic zone behind the MS at approximately t = 0.446 ms (figure 15b) as the
MS moves upstream continuously. Thereafter, the pressure rise caused by the RfSW2
propagates upstream through this subsonic zone towards the detonation front of the MS,
as shown in figures 15(c–e) and 16. After this pressure wave arrives at the detonation front
of the MS at approximately t = 0.560 ms, the pressure behind the MS and the pressure
ratio across the MS both increase; the resulting incompatibility between the pressure ratio
across the MS and its relative propagation speed leads to a sudden increase in the motion
speed of the MS (point ‘e’ in figure 14a), ultimately causing the destabilization of the
detonation front in the combustor (figures 15f and 15g).

It is suggested that the Mach reflection of an ODW before an expansion corner (ζ > 0)
can be directly destabilized by the action of the RfSW2 or its tMS on the subsonic zone
behind the MS regardless of the flight Mach number. Indeed, this is easy to understand
with the above analyses. As the MS moves upstream, the RfSW2 and/or its tMS moves
upstream and approaches the MS, and when the MS moves sufficiently far upstream from
the expansion corner, the RfSW2 and/or its tMS acts on the subsonic zone and eventually
causes destabilization. For a relatively high Ma (e.g. Ma = 10), the stabilized distance of
the MS from the expansion corner increases as ζ increases. Consequently, a small ζ value
results in a short distance of the MS from the expansion corner, which prevents the tMS
of the RfSW2 from acting on the subsonic zone. On the other hand, a potentially long
distance of the MS from the expansion corner is implied with a large ζ value, leading to
destabilization. However, destabilization always occurs at Ma = 9, even with an extremely
small ζ value of 1/60, implying that a stabilized MS location may not exist for this low
Mach number and consequently that the MS may continuously move upstream once the
Mach reflection pattern of the ODW forms. In other words, destabilization may be inherent
in the Mach reflection of an ODW at a low Ma, and the action of the RfSW2 or its tMS
on the subsonic zone behind the MS may only accelerate the upstream motion of the MS.
Hence, this kind of destabilization phenomenon at a low Ma is referred to as inherent
destabilization in this paper, and an in-depth theoretical analysis is further conducted to
understand the relevant mechanisms.

3.5. Formulating the stabilized location of the MS
In the following formulation, the effects of the RfSW2 and its tMS are neglected since
they are found to only accelerate the inherent upstream motion of the MS at a low Ma,
as discussed in § 3.4. According to the above analyses of the instantaneous flow fields,
the SL is inclined downward relative to the incoming flow, as is schematically shown in
figure 17. Hence, the subsonic flow crossing the MS accelerates towards becoming sonic in
the contracted flow path bounded by the SL and the lower wall, and the geometric throat
is positioned at the expansion corner (point O). Assume that the MS is a straight line
perpendicular to the lower wall and that the SL is also a straight line with an inclination
angle of α relative to the incoming flow. According to the geometric relationship exhibited
in figure 17, the length of the MS can be calculated by

MS = (MO − RO) tan β, (3.1)

940 A29-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.226


Mechanisms of the destabilized Mach reflection

–0.1 0

x (m)
0.1 0.2 0.3

–0.1 0

x (m)
0.1 0.2 0.3–0.1 0

x (m)
0.1 0.2 0.3

–0.1 0 0.1 0.2 0.3–0.1 0 0.1 0.2 0.3

–0.1 0 0.1 0.2 0.3–0.1

0.15

0.10

0.05y (m)

–0.05

0

0.15

0.10

0.05y (m)

–0.05

0

0.15

0.10

0.05y (m)

–0.05

0

0.15

0.10

0.05y (m)

–0.05

0

0.15

0.10

0.05

–0.05

0

0.15

0.10

0.05

–0.05

0

0.15

0.10

0.05

–0.05

0

0 0.1 0.2 0.3

ODW

RfSW RfSW2

MS
Ma = 1

ODW

RfSW RfSW2

(RfSW2)

MS
Ma = 1

ODW

RfSW RfSW2

MS
Ma = 1

ODW

RfSW RfSW2

(RfSW2)(RfSW2)

MS
Ma = 1

ODW

RfSW RfSW2

MS Ma = 1

Ma = 1

ODW

BDW

RfSW RfSW2

MS
Ma = 1

(a) (b)

(c) (d)

(e) ( f )

(g)

Figure 15. Shadowgraphs of the flow field of the destabilized Mach reflection of an ODW (Ma = 9, ζ = 12/60)
at different time instants: (a) t = 0.396 ms, (b) t = 0.446 ms, (c) t = 0.479 ms, (d) t = 0.499 ms, (e) t = 0.560
ms, ( f ) t = 0.618 ms and (g) t = 1.110 ms.

where β is the oblique detonation angle of the ODW relative to the incoming flow. The
distance from the expansion corner to the SL, namely OL, which is considered as the width
of the geometric throat, can be expressed as

OL = ON cos α = [(MO − RO) tan β − MO tan α] cos α, (3.2)

where ON is a segment parallel to MS. Therefore, the contraction ratio of the flow path
from the MS to the geometric throat OL appears as

MS

OL
= (MO − RO) tan β

[(MO − RO) tan β − MO tan α] cos α

=
{[

1 − tan α

(1 − RO/MO) tan β

]
cos α

}−1

.

(3.3)
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Figure 16. Pressure distributions along the wall before the expansion corner of the destabilized Mach
reflection of an ODW (Ma = 9, ζ = 12/60) at different time instants.

Equation (3.3) reveals that as the S point (the triple point) of the MS moves upstream
along the ODW (i.e. the triple point is always located on the ODW), the ratio of RO/MO
(<1) decreases, and the contraction ratio of the flow path, MS/OL, decreases accordingly.
If the MS is located close to the expansion corner, the contraction ratio of the flow path
behind the MS is large enough that a sonic state may be achieved before the geometric
throat OL, as schematically shown in figure 17(a) (the location of the carmine dashed
line corresponds to the contraction ratio of the flow path of the sonic state). Notably, the
streamlines behind the MS are generally curved to adjust the flow direction to conform
to the flow path between the SL and the lower wall. Further contraction of the flow path
behind the sonic line would directly choke the flow. As a result, the MS would move
upstream to adjust the flow behind the MS to ensure that the sonic state occurs at the
geometric throat OL. Obviously, the geometric converging effects of the flow path before
the expansion corner contribute to sustaining the MS. In contrast, if the MS is located far
upstream from the expansion corner (figure 17b), the contraction ratio becomes so small
that the local Mach number at the geometric throat OL is still smaller than one. In other
words, under this circumstance, the flow behind the MS may be subsonic throughout the
flow path before and across the expansion corner. Then, the geometric diverging effects of
the flow path behind the expansion corner could propagate upstream through left-running
characteristic lines across the expansion corner and arrive at the MS, which weakens the
geometric converging effects of the flow path before the expansion corner. As a result, the
MS would be blown away by the upstream supersonic flow. It appears that the stabilized
location of the MS (i.e. MO) corresponds to a critical condition in which the local Mach
number at the geometric throat OL is equal to one, which is similar to the Kantrowitz limit
in the unstart problems of scramjet inlets (Curran & Murthy 2001). In such a problem, the
Kantrowitz-limit contraction ratio is determined by the one-dimensional isentropic area
ratio that accelerates a subsonic flow (behind a normal shock wave) to a sonic flow at
the throat. In the present problem regarding the stabilization of the Mach reflection of an
ODW, the similar Kantrowitz-limit contraction ratio, CRKantrowitz, can be evaluated for a
specific NDW, and it can be employed to determine the theoretical stabilization location
of the MS.
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Figure 17. Geometric relationship of the Mach reflection of an ODW before an expansion corner: (a)
MS/OL >CRKantrowitz and (b) MS/OL <CRKantrowitz.

From the above analysis, the critical condition for the stabilization of the MS appears as

Ma|OL = 1, (3.4)

or
MS

OL
= CRKantrowitz. (3.5)

Substituting (3.3) into (3.5) yields the formula for calculating the stabilized location of
the MS, expressed as

MO

RO
= (cos α − CR−1

Kantrowitz) tan β

(cos α − CR−1
Kantrowitz) tan β − sin α

. (3.6)

Obviously, with the parameters α, β and CRKantrowitz being known, the stabilized location
of MS (i.e. MO) corresponding to the designed reflection location of ODW (i.e. RO) can
be evaluated directly from (3.6).

To evaluate the oblique detonation angle of the ODW, β, the inclination angle of the
SL, α, and the Kantrowitz-limit contraction ratio behind the MS, CRKantrowitz, for different
cases, the chemical equilibrium hypothesis is employed in the present study to account for
changes in the chemical compositions and gas thermodynamic properties and to more
accurately predict the heats of chemical reactions; that is, the chemical reaction rates
are assumed to be infinitely fast, and chemical equilibrium states are assumed to be
achieved everywhere in the flow field behind the leading shock/detonation fronts (i.e.
behind the ODW and MS). Further, a two-step cyclic iterative solution method proposed
by the authors (Zhang 2020a; Zhang et al. 2021a) is adopted to solve the chemical
equilibrium solutions of different processes with high accuracy, including the chemical
equilibrium normal shock relationship, the chemical equilibrium strong and weak oblique
shock relationships (where ‘strong’ and ‘weak’ refer to the strong and weak branches
of the oblique shock solutions, respectively) and the chemical equilibrium isentropic
relationship. For clarity, the solution processes of the above chemical equilibrium
relationships are briefly presented in Appendices A–E; for the detailed derivations and
evaluations of the solution accuracy, the reader may refer to Zhang (2020a) and Zhang
et al. (2021a). Specifically, for different cases, the oblique detonation angle of the ODW,
β, can be directly evaluated by the chemical equilibrium weak oblique shock relationship;
the predicted values of β in different cases agree well with those observed in the numerical
simulations in the present study. For the evaluation of the Kantrowitz-limit contraction
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Figure 18. Illustration of the flows in the neighbourhood of the triple point of a Mach reflection pattern.

ratio behind the MS, CRKantrowitz, the flow state behind the MS is first obtained through the
chemical equilibrium normal shock relationship; then, to evaluate the MS–throat area ratio
through the chemical equilibrium isentropic relationship, the subsonic flow state needs to
accelerate to the sonic state in the contracted flow path between the SL and the lower wall,
during which the chemical compositions change due to shifts in chemical equilibrium.
Moreover, to determine the inclination angle of the SL, α, the three-shock theory (Ben-Dor
2007) is applied to the neighbourhood of the triple point, as schematically shown in
figure 18. The MS is slightly inclined with respect to the perpendicular direction of the
incoming flow in the neighbourhood of the triple point S, and hence the flow state behind
this small segment of the MS needs to be evaluated through the chemical equilibrium
strong oblique shock relationship, while the change in the flow state across the RfSW (from
region 2 to region 3, also based on the assumption of chemical equilibrium) is calculated
by the chemical equilibrium weak oblique shock relationship. Thereafter, to determine the
inclination angle of the SL, α, the pressure balance between both sides of the SL, namely
between region 3 behind the RfSW that deflects the flow by an angle of θ − α (θ = 25°
in this paper) and region 4 behind the inclined MS that deflects the flow by an angle of
α, i.e. p3 = p4 (figure 18), needs to be satisfied. With the chemical equilibrium strong and
weak shock relationships, this pressure-balanced state can be solved by utilizing a simple
dichotomizing search algorithm.

From the above analyses, the parameters α, β and CRKantrowitz can be uniquely
determined (based on the assumption of chemical equilibrium) according to the inflow
conditions before the combustor, which depend uniquely on Ma, as shown in figure 19. The
specific values of these parameters for the stabilized flight Mach numbers (i.e. Ma = 9.5,
10 and 10.5) are summarized in table 2. As Ma decreases, both the chemical equilibrium
inclination angle of the SL, α, and the chemical equilibrium oblique detonation angle
of the ODW, β, increase, whereas the chemical equilibrium Kantrowitz-limit contraction
ratio behind the MS, CRKantrowitz, decreases. Because the flow Mach number behind the
chemical equilibrium MS is closer to one at a lower Ma, it is easier for this subsonic flow
to accelerate to the sonic state, leading to a smaller limiting contraction ratio. Substituting
these parameters into (3.6), the predicted stabilized locations of the MS (i.e. MO) at
Ma = 9.5, 10 and 10.5 as a function of the designed ODW reflection location (i.e. RO)
are plotted as the dashed lines in figure 20. For comparison, the real values of MO
observed in the numerical simulations are also presented in figure 20, revealing that (3.6)
underestimates the stabilized locations of the MS to a large extent compared with the
numerical simulations.

These discrepancies in the stabilized locations of the MS between the theoretical
predictions by (3.6) and the real observations via numerical simulations result from the
following factors. First, the real SL between the triple point and the geometric throat is
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Figure 20. Changes in the stabilized location of the MS (i.e. MO) as a function of the designed ODW
reflection location (i.e. RO).

not strictly straight, as shown in figure 21(a) (taking the case of Ma = 10 and ζ = 5/60 as
an example). Due to the limited space in the neighbourhood of the triple point compared
with the chemical reaction characteristic length, the chemical equilibrium state is not fully
achieved near the triple point, resulting in the local inclination angle of the SL being larger
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Ma ζ RO (mm) MO (mm) α (deg.) β (deg.) CRKantrowitz κ

9.5 1/60 1 11.64 9.38 51.59 1.4511 1.2267
9.5 3/60 3 17.26 9.38 51.59 1.4511 1.2049
9.5 5/60 5 22.60 9.38 51.59 1.4511 1.1911
10 2/60 2 8.73 6.97 48.72 1.5191 1.2980
10 5/60 5 15.00 6.97 48.72 1.5191 1.2651
10 10/60 10 24.84 6.97 48.72 1.5191 1.2370
10.5 5/60 5 11.60 5.40 46.42 1.5835 1.3272
10.5 10/60 10 19.97 5.40 46.42 1.5835 1.2924
10.5 20/60 20 36.18 5.40 46.42 1.5835 1.2594

Table 2. Summary of the geometric parameters in the stabilized Mach reflection of ODWs.
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Figure 21. Numerical shadowgraph of the flow field near the reflection point of the ODW (a) and the spatial
distribution of the local inclination angle of the SL (b) in the case of Ma = 10 and ζ = 5/60.

than the corresponding chemical equilibrium value, as depicted in figure 21(b). As the
fluid flows downstream, the flow state varies to the chemical equilibrium state, and hence
the local inclination angle of the SL decreases gradually to the corresponding chemical
equilibrium value. However, the segment of the SL close to the geometric throat OL
becomes increasingly inclined downward under the effects of the expansion fan emitted
from the expansion corner (figure 21a), leading to an increase in the local inclination
angle of the SL and another deviation from its chemical equilibrium value (figure 21b).
Influenced by these two effects, the average inclination angle of the SL from the triple
point to the geometric throat is undoubtedly larger than that predicted by the chemical
equilibrium theory. Second, due to the local chemical non-equilibrium effects of the flow
behind the MS, the change in the flow from the MS to the throat does not exactly follow
the chemical equilibrium isentropic process. Furthermore, due to the special one-sided
expansion geometry of the expansion corner and the finite-length contracted flow path in
the present problem, the one-dimensional assumption in the traditional Kantrowitz limit
is no longer satisfied (Curran & Murthy 2001), and hence the flow at the geometric throat
OL is not exactly at the sonic state; in fact, the Mach number of this flow is smaller than
one and varies along OL, as shown, for example, in figures 4(g) and 8. As a result, the real
contraction ratio from the MS to the geometric throat OL, i.e. MS/OL, deviates slightly
from the chemical equilibrium Kantrowitz-limit contraction ratio, CRKantrowitz.
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Figure 22. Changes in the corrected parameter, κ , as a function of the dimensionless reflection location, ζ .

To consider the above factors causing the discrepancies in the theoretical predictions
of the stabilized locations of the MS compared to the numerical observations, a corrected
parameter, κ , is introduced to the present theoretical formulation, and the critical condition
for the stabilization of the MS, i.e. (3.5), is rewritten as

κ
MS

OL
= CRKantrowitz. (3.7)

Then, a corrected formula for calculating the stabilized location of the MS is obtained by
substituting (3.3) into (3.7), expressed as

MO

RO
= (cos α − κCR−1

Kantrowitz) tan β

(cos α − κCR−1
Kantrowitz) tan β − sin α

. (3.8)

To evaluate the corrected parameter, κ , (3.8) is rearranged into

κ =
[

cos α − sin α

(1 − RO/MO) tan β

]
CRKantrowitz, (3.9)

which is substituted with the numerical values of MO in the stabilized cases at Ma = 9.5,
10 and 10.5 summarized in table 2. The value of κ ranges from approximately 1.19 to
1.33 for these stabilized Mach reflection cases. Although the corrected parameter, κ , does
not change much between different cases, it appears to be a function of the flight Mach
number, Ma, and the dimensionless reflection location, ζ , i.e. κ = κ(Ma, ζ ), as depicted in
figure 22.

One purpose of this section is to provide theoretical predictions of the stabilized
locations of the MS at Ma = 9 and small ζ values, especially its asymptotic behaviour
as ζ goes to zero at this relatively low Ma. Since the values of Ma and ζ do not change
much compared to those in the stabilized cases summarized in table 2, a second-order
Taylor expansion approximation of the function of f (Ma, ζ ) ≡ (κ–1)−1 can be applied to
fit the corrected parameter, κ , as follows:

(κ − 1)−1 = f (Ma, ζ ) ≈ f0 + ∂f
∂Ma

(Ma − Ma0) + ∂f
∂ζ

(ζ − ζ0) + ∂2f
∂Ma2 (Ma − Ma0)

2

+ ∂2f
∂ζ 2 (ζ − ζ0)

2 + ∂2f
∂Ma∂ζ

(Ma − Ma0)(ζ − ζ0).

(3.10)

940 A29-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.226


Z. Zhang, Y. Liu and C. Wen

After rearranging the above equation, it can be rewritten as

κ(Ma, ζ ) = 1 + (a1 + a2Ma + a3ζ + a4Ma2 + a5ζ
2 + a6Maζ )−1, (3.11)

where a1 = 187.3, a2 = −35.23, a3 = 67.63, a4 = 1.680, a5 =−5.364 and a6 = −5.937, as
determined by the least squares method using the data of κ given in table 2. The fitting
curves of κ = κ(Ma, ζ ) by (3.11) are presented in figure 22. The fitting curves and the
numerical data of the stabilized cases exhibit good agreement. Further, the corrected
theoretical predictions of the stabilized locations of the MS (i.e. MO) using (3.8) and (3.11)
are also presented in figure 20 as the solid lines, demonstrating good consistency between
the corrected theoretical predictions and the numerical observations of the stabilized cases.

For Ma = 9, the chemical equilibrium oblique detonation angle of the ODW and
the inclination angle of the SL are β = 55.34° and α = 13.16°, respectively, while the
corresponding chemical equilibrium Kantrowitz-limit contraction ratio of the subsonic
flow behind the MS is CRKantrowitz = 1.3790. For ζ = 1/60 (i.e. RO = 1 mm), the predicted
value of the corrected parameter using (3.11) is κ = 1.151. Substituting all the above
parameters into (3.8), the theoretical prediction of the ratio of MO/RO is equal to −7.454,
which is smaller than zero. This result obviously contradicts the geometric relationship
depicted in figure 17, i.e. MO/RO > 1 > 0, implying that a stabilized location of the MS
(i.e. MO) cannot be achieved in this low-Ma case. Figure 23 shows the changes in the
value of κMS/OL–CRKantrowitz as the MS moves upstream at ζ = 1/60 (i.e. RO = 1 mm)
for different Ma, revealing that the value of κMS/OL–CRKantrowitz is greater than zero
when MO is small for all Ma. According to the previous analysis of figure 17 but with the
corrected critical condition of (3.7), when κMS/OL–CRKantrowitz > 0, the flow becomes
choked in the contracted flow path bounded by the SL and the lower wall, resulting in
the MS moving upstream. In the cases of Ma = 9.5, 10 and 10.5, κMS/OL–CRKantrowitz
approaches its zero point as MO increases, and, finally, the MS remains stabilized at
the corresponding location. In contrast, if the change in κMS/OL–CRKantrowitz passes
through its zero point to a negative value in the cases of low Ma (Ma = 9.5, 10 and
10.5), the MS becomes attenuated downstream under the geometric diverging effects of
the expansion corner; as a result, κMS/OL–CRKantrowitz returns to its zero point, and the
MS remains stabilized. Therefore, the existence of zero points of κMS/OL–CRKantrowitz
for these Ma values implies the potential stabilization of the MS at a specific location.
However, the value of κMS/OL–CRKantrowitz is always greater than zero, and there is no
zero point in the evolution of MO in the case of Ma = 9. Therefore, the MS grows and
moves upstream continuously after it forms, leading to the destabilization of the Mach
reflection of the ODW in this low-Ma case. Further, as depicted in figure 20, the predicted
stabilized location of the MS at Ma = 9 is always negative for ζ > 0, implying that the
Mach reflection of ODWs is inherently destabilized at this low Ma due to flow choking,
when the ODW reflects before an expansion corner, i.e. ζ > 0, as discussed in § 3.4.

According to the previous analyses, the stabilization of the Mach reflection of an ODW
before an expansion corner is feasible at small ζ because destabilization would be directly
triggered by the action of the RfSW2 or its tMS on the subsonic zone behind the MS at
large ζ . Due to the limited spatial resolution of numerical simulations, it is impossible to
infinitely decrease ζ to check whether the Mach reflection of ODWs before an expansion
corner at a specific Ma is inherently destabilized. However, the inherent stabilization
or destabilization characteristics at a specific Ma can be confirmed by the asymptotic
behaviour of MO/RO when ζ → 0+, as shown in figure 24. The limit of MO/RO is
greater than zero when Ma is greater than approximately 9.3, implying that when ζ is
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Figure 24. Asymptotic change in the value of MO/RO as a function of Ma when RO → 0+ (or ζ → 0+).

small enough that the RfSW2 or its tMS does not act on the subsonic zone behind the
MS, the Mach reflection of an ODW before the expansion corner can be stabilized. For
Ma smaller than approximately 9.3, the limit of MO/RO is smaller than zero, implying
that the Mach reflection of an ODW before an expansion corner is inherently destabilized
regardless of how small ζ (>0) is. In other words, the critical Mach number of inherently
stabilized/destabilized Mach reflection of ODWs before an expansion corner, Macri,
predicted by the present theory, is approximately 9.3. The present theoretical prediction
is consistent with the numerical observations summarized in figure 9, in which the Mach
reflections of ODWs can be stabilized with a small ζ at Ma ≥ 9.5 but exhibit destabilization
with all ζ > 0 at Ma = 9. The numerical prediction of Macri appears between 9 and 9.5.

Further, figure 19 shows that as Ma decreases, the inclination angle of the SL, α,
increases, resulting in an increase in the real contraction extent of the flow path bounded by
the SL and the lower wall, whereas the corresponding Kantrowitz-limit contraction ratio
of the subsonic flow behind the MS decreases. Hence, the subsonic flow behind the MS
is easily choked before the expansion corner at a low Ma. In other words, this subsonic
flow may accelerate to the sonic state before the expansion corner and be choked by
further area contraction, resulting in the MS continuously moving upstream and inherent
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destabilization, as shown in figure 17(a). In summary, the theoretical results presented
in this section demonstrate that the inherent destabilization of the Mach reflection of an
ODW before an expansion corner at a low Ma is attributed to the geometric flow choking
phenomenon caused by the large flow path contraction behind the MS.

4. Conclusions

In this paper, the inviscid Mach reflection patterns of ODWs before an expansion corner in
a space-confined ODE combustor are numerically studied by solving the two-dimensional
time-dependent multispecies reactive Euler equations in combination with a detailed
hydrogen combustion mechanism. The effects of different flight Mach numbers (Ma)
and different dimensionless reflection locations (ζ ≥ 0) on the stabilization/destabilization
characteristics of the flow structures in the combustor and the relevant mechanisms are
emphasized. The results suggest that a stabilized regular reflection pattern occurs at all
Ma values when the ODW reflects precisely at the expansion corner, i.e. ζ = 0. However,
if the ODW reflects upstream of the expansion corner, i.e. ζ > 0, a Mach reflection
pattern emerges, and complex flow structures, such as the MS, SL, RfSW, RfSW2 and
subsonic zone behind the MS, form in the combustor. The stabilization/destabilization
characteristics of these formed flow structures in the Mach reflection pattern of the ODW
depend on the values of Ma and ζ .

When Ma is not very low, e.g. Ma = 9.5, 10 and 10.5, and the ζ value is small (>0), the
flow structures of the Mach reflection of the ODW remain stabilized in the combustor.
Under this circumstance, the stabilized location of the MS and the downstream flow
structures move upstream as ζ increases. In particular, the distance between the RfSW2 or
its tMS and the subsonic zone behind the MS closes with increasing ζ . Further, when ζ

increases beyond a specific value, wave-induced destabilization emerges. The RfSW2 or
its tMS acts on the subsonic zone behind the MS, and the relevant pressure rise propagates
through this subsonic zone towards the detonation front of the MS, leading to sudden
increases in the pressure behind the MS and the pressure ratio across the MS. Although
the upstream motion of the MS is seemingly stabilized initially, the incompatibility of the
pressure ratio across the MS and its propagation speed relative to the incoming flow causes
the MS to suddenly accelerate upstream. Then, the upstream motion of the MS enters a
positive feedback stage, and its upstream motion speed continuously increases. Finally, the
detonation front of the ODW vanishes, and the MS moves out of the combustor, resulting
in the destabilization of the Mach reflection of the ODW at this large ζ value.

For a low Ma, for example Ma = 9, the Mach reflection patterns of ODWs are
destabilized at any ζ > 0 (even as small as ζ = 1/60), implying inherent destabilization,
although the reflection flow field of an ODW is stabilized at ζ = 0 at this low Ma or at small
ζ > 0 at a higher Ma. Analyses of the evolution of the flow fields and pressure distributions
reveal that the inherent destabilization of the Mach reflection of an ODW at a low Ma is
also directly induced by the action of the RfSW2 or its tMS on the subsonic zone behind
the MS during the inherently continuous upstream movement of the MS. Further analyses
conducted by theoretically formulating the stabilized location of the MS suggest that its
inherently continuous upstream motion and consequently the inherent destabilization of
the flow field are attributed to choking of the flow in the contracted flow path between the
SL and the lower wall at low Ma values, where the inclination angle of the SL relative to
the incoming flow is large and hence the geometric contraction of the flow path is large.

The above results imply that inviscid destabilization of the flow field occurs easily
when the ODW reflects off the wall before the expansion corner of the combustor,
causing a Mach reflection pattern to form, which is unfavourable to the operation of an

940 A29-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.226


Mechanisms of the destabilized Mach reflection

ODE combustor because failure of the engine may occur. Therefore, this study clearly
demonstrates that, to avoid the potential destabilization of the Mach reflection patterns of
ODWs, the reflection point of the ODW should not be designed to be located before the
expansion corner. Instead, the reflection point of the ODW should be designed downstream
of the expansion corner, as suggested by the authors’ previous research (Zhang et al.
2020b, 2021b), where the stabilized viscous flow fields of ODWs or ODW reflections
were obtained, even for a low Ma (i.e. Ma = 9). Moreover, future studies can focus on (1)
the effects of viscous factors, especially boundary layers and shock/detonation-induced
boundary layer separations, on the stabilization characteristics of an ODW when the
ODW is designed to reflect downstream of the expansion corner, (2) the relevant flow
mechanisms and (3) the stabilization-control strategies in the engine combustor.
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Appendix A. Two-step cyclic iterative solution method for different chemical
equilibrium relationships

Problem description: the pressure p1, temperature T1, velocity u1 and chemical
compositions χ i1 (in molar fraction, i = 1, . . . , nSp, where nSp is the number of species
considered in the mixture) are known before a reactive normal shock wave or OSW or
before starting an isentropic process; additionally, the deflection angle θ is known for
the reactive oblique shock problem, or the target pressure p2 is known for the isentropic
process. By assuming infinite chemical reaction rates (i.e. chemical equilibrium), the
pressure p2 (except for the isentropic process), temperature T2, velocity u2, chemical
compositions χ i2 and oblique shock angle β (only for an oblique shock) behind the
reactive normal shock wave or OSW or after the isentropic process need to be solved.

The method adopted to solve the above chemical equilibrium relationships, namely
the chemical equilibrium normal shock relationship, the chemical equilibrium strong or
weak normal shock relationship and the chemical equilibrium isentropic relationship,
is the two-step cyclic iterative solution method, which was previously proposed by the
authors (Zhang 2020a; Zhang et al. 2021a). A flow diagram illustrating the solution
process is presented in figure 25, where λ= 0.4 is a relaxation factor to ensure stability
and convergence in the iteration process and k is an index of the iteration step. Moreover,
the convergence criteria in figure 25 can be chosen as follows:

Error = max

{
|p(k+1)

2 − p(k)
2 |

p(k+1)
2

,
|T(k+1)

2 − T(k)
2 |

T(k+1)
2

, |χ(∗)
i2 − χ

(k)
i2 |
}

< 10−7. (A1)

For the calculation of the chemical equilibrium normal shock relationship, Step 1 in
figure 25 is specified as the calculation of the multispecies normal shock relationship
by giving p1, T1, u1, χ i1 and χ i2, and the detailed calculation process is given in
Appendix B.

For the calculation of the chemical equilibrium strong or weak normal shock
relationship, Step 1 in figure 25 is specified as the calculation of the multispecies strong
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Giving p1, T1, ρ1, u1, χi1 and θ (only for oblique

shock) or p2 (only for isentropic process)

p2, T2, ρ2, u2, χi2 and β (only for oblique shock)

χi2  = χi1
(0)

Step 1: calculation of normal shock or oblique shock or

             isentropic relationships with specific χi1 and χi2
(k)

Calculation of normal shock or oblique shock or

isentropic relationships with specific χi1 and χi2

Convergence?k = k + 1
Yes

No

Step 2: calculation of equilibrium compositions at specific

             p2
(k + 1), T2

(k + 1)

p2
(k + 1), T2

(k + 1)

(∗)χi2

χi2 = χi2
(∗)

 = λ · χi2
(k + 1) χi2

(k)χi2
(∗)

– + 
(k)χi2

Figure 25. Diagram of the solution process of the two-step cyclic iterative solution method.

or weak oblique shock relationship by giving p1, T1, u1, θ , χ i1 and χ i2, and the detailed
calculation process is given in Appendix C.

For the calculation of the chemical equilibrium isentropic relationship, Step 1 in
figure 25 is specified as the calculation of the multispecies isentropic relationship by giving
p1, T1, u1, χ i1, χ i2 and p2, and the detailed calculation process is given in Appendix D.

For the calculations of all the above chemical equilibrium relationships, the
determination of the chemical equilibrium compositions, χ i2, at the given p2 and T2, i.e.
Step 2 in figure 25, is given in Appendix E in detail.

Appendix B. Calculation of the normal shock relationship with varying
compositions

Problem description: the pressure p1, temperature T1, velocity u1 and chemical
compositions χ i1 before a normal shock wave are known. Additionally, the chemical
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compositions χ i2 behind the normal shock are also known, but they do not need to be
the same as χ i1 to account for chemical reactions. Then, the post-shock pressure p2,
temperature T2 and velocity u2 are solved. A single-variable Newton iteration method
derived from the governing equations of a normal shock wave is adopted here to solve the
post-shock velocity u2 (the iteration variable). The iteration function fNSW (u2) is expressed
as

fNSW(u2) = fNSW(u2, T2) = h2(T2) + 1
2

u2
2 − h1(T1) − 1

2
u2

1 = 0,

T2(u2) = u2

R2

(
R1T1

u1
+ u1 − u2

)
,

⎫⎪⎪⎬
⎪⎪⎭ (B1)

where R1 and R2 are the gas constants of the mixtures before and behind the normal
shock wave, respectively, and they can be easily calculated from the relevant chemical
compositions of mixtures. Moreover, h1 and h2 are the specific enthalpies of the mixtures
before and behind the normal shock wave, respectively, and they can be evaluated at
the given temperature from a species thermodynamic database with known mixture
compositions, for example, the piecewise fourth-order temperature polynomial fitting of
NASA (McBride, Gordon & Reno 1993). The Newton iteration formula appears as

u2,k+1 = u2,k − fNSW(u2,k)

f ′
NSW(u2,k)

, (B2)

where the initial iteration value can be set as u2,0 = 0. In (B2), the derivative of the iteration
function, f ′

NSW(u2), is expressed as

f ′
NSW(u2) = cp2(T2)

R2

(
R1T1

u1
+ u1 − 2u2

)
+ u2,

dT2

du2
= 1

R2

(
R1T1

u1
+ u1 − 2u2

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B3)

where cp2 is the specific heat at constant pressure of the mixture behind the normal shock
wave. After calculating u2, other unknown post-shock parameters can be obtained directly
by substituting u2 into the normal shock governing equations.

Appendix C. Calculation of the strong or weak oblique shock relationship with
varying compositions

Problem description: the pressure p1, temperature T1, velocity u1 and chemical
compositions χ i1 before an OSW and the flow deflection angle θ across the oblique shock
are known. Additionally, the chemical compositions χ i2 behind the oblique shock are also
known, but they do not need to be the same as χ i1 to account for chemical reactions.
Then, the post-shock pressure p2, temperature T2 and velocity u2 and the oblique shock
angle β are solved. A similar single-variable Newton iteration method derived from the
governing equations of an oblique shock wave is also adopted. Here, the iteration variable
is the oblique shock angle β, and the iteration function fOSW (β) appears as

fOSW(β) = fOSW(β, u2n, T2) = h2(T2) + 1
2

u2
2n − h1(T1) + 1

2
u2

1sin2β = 0,

T2(β, u2n) = u2n

R2

(
R1T1

u1 sin β
+ u1 sin β − u2n

)
,

u2n(β) = u1 cos β tan(β − θ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C1)
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Then, the Newton iteration formula is

βk+1 = βk − fOSW(βk)

f ′
OSW(βk)

, (C2)

with the derivative of the iteration function, f ′
OSW(β), expressed as

f ′
OSW(β) = dfOSW

dβ
= ∂fOSW

∂β
+ ∂fOSW

∂u2n
· du2n

dβ
+ ∂fOSW

∂T2

(
∂T2

∂β
+ ∂T2

∂u2n
· du2n

dβ

)
,

∂fOSW

∂β
= −u2

1 sin β cos β,
∂fOSW

∂u2n
= u2n,

∂fOSW

∂T2
= dh2(T2)

dT2
= cp2(T2),

du2n

dβ
= u1

[
cos β

cos2(β − θ)
− sin β tan(β − θ)

]
,

∂T2

∂β
= u2n

R2

(
u1 cos β − RT1

u1
· cos β

sin2β

)
,

∂T2

∂u2n
= 1

R2

(
RT1

u1 sin β
+ u1 sin β − 2u2n

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C3)

In general, there are two branches of oblique shock solutions, namely the strong and the
weak oblique shock solutions. To ensure that the iteration process converges to the different
solution branches of OSWs exactly, different iteration initial values are used as follows:

β0 =
{

max(arcsin Ma−1
1 , θ) + 0.1◦ for a weak oblique shock,

89.9◦ for a strong oblique shock,
(C4)

where Ma1 is the Mach number before the oblique shock. After β is known, other unknown
post-shock parameters can be obtained directly by substituting β into the oblique shock
governing equations.

Appendix D. Calculation of the isentropic relationship with varying compositions
Problem description: the pressure p1, temperature T1, velocity u1 and chemical
compositions xi1 (moles of species per unit mass of the mixture) before starting an
isentropic process are known. Notably, the mixture must be in chemical equilibrium
before starting an isentropic process with varying compositions. Additionally, the chemical
compositions xi2 (they also do not need to be the same as xi1 to account for shifts
in chemical equilibrium during the isentropic process) and the pressure p2 after the
isentropic process are known. Then, the temperature T2 and velocity u2 after the isentropic
process are solved. A single-variable Newton iteration method is employed again, which
is directly derived from the isentropic condition of the mixture. The iteration variable is
the temperature T2, and the iteration function fisen(T2) is expressed as

fisen(T2) =
nSp∑
i=1

[xi2S0
i (T2)] −

nSp∑
i=1

[xi1S0
i (T1)] − Ru ln p2

nSp∑
i=1

xi2 + Ru ln p1

nSp∑
i=1

xi1

+ Ru

⎡
⎣ln patm

nSp∑
i=1

xi2 −
nSp∑
i=1

(xi2 ln xi2)

⎤
⎦− Ru

⎡
⎣ln patm

nSp∑
i=1

xi1 −
nSp∑
i=1

(xi1 ln xi1)

⎤
⎦ = 0,

(D1)
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where S0
i (T) is the species standard molar entropy at temperature T and can also be

obtained from a species thermodynamic database; Ru = 8.314 J mol−1 K−1 is the universal
gas constant; and patm = 1.01325 × 105 Pa is the pressure value defined under standard
conditions. The Newton iteration formula appears as

T2,k+1 = T2,k − fisen(T2,k)

f ′
isen(T2,k)

, (D2)

with the derivative of the iteration function, f ′
isen(T2), given by

f ′
isen(T2) =

nSp∑
i=1

[
xi

dS0
i (T2)

dT2

]
=

nSp∑
i=1

[
xi

1
T2

C0
pi(T2)

]
. (D3)

In (D3), C0
pi(T) is the species constant-pressure molar heat capacity at temperature T.

After T2 is known, u2 can be obtained directly through the energy conservation equation.
Furthermore, if an area ratio of the isentropic process is needed, it can be obtained easily
by substituting p2, T2 and u2 into the equation of state of the mixture and the mass
conservation equation.

Appendix E. Calculation of chemical equilibrium compositions at a specific
temperature and pressure

Problem description: the initial compositions of the mixture are known, i.e. the total moles
of atoms of element j, bj (j = 1, . . . , nEl, where nEl is the number of elements involved in
the mixture), and the number of atoms of element j in species i, aij, are known. Then,
the equilibrium compositions at a specific temperature T and pressure p are solved. The
minimization of free energy method of NASA (Gordon & Mcbride 1994) is used. Let
yi (moles of species per unit mass of the mixture) be an estimate of the equilibrium
compositions; then, the new estimate xi can be evaluated by

xi = −di + yi

⎛
⎝∑ xi∑

yi
+

nEl∑
j=1

λjaij

⎞
⎠ , for i = 1 . . . nSp, (E1)

where di is defined as

di ≡ yi

(
G0

i
RT

+ ln
yi∑

yi
+ ln p

)
, for i = 1 . . . nSp. (E2)

In (E2), G0
i is the species standard molar Gibbs free energy. Moreover, the unknowns∑

xi/
∑

yi and λj in (E1) are the solutions of the following linear equations:

nEl∑
j=1
λj

nSp∑
i=1

yiaij =
nSp∑
i=1

di,

nSp∑
i=1

(−aijdi) +
∑

xi∑
yi

nSp∑
i=1

yiaij +
nEl∑
k=1
λk

nSp∑
i=1

aikaijyi − bj = 0, for j = 1, . . . , nEl.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(E3)

After xi has been solved, it serves as the new yi in an iterative process until convergence is
achieved.
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