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Identification of flexible local environments from a disordered medium has been a long-
standing challenge. Here, we introduce a time-relevant structural Shannon entropy as a
unique feature of the atomic-scale environment in glass, which is based on a metric of the
time-invariant, or ergodic, and Voronoi structural diversity that an atom experiences during
a sufficiently long-time thermal fluctuation. This new concept of time-relevant Shannon
entropy simultaneously integrates the static topology and the vibrational feature such that it
potentially probes all the possible configurational space in a sub-basin of the local potential
energy landscape. This structural representation is not only capable of predicting the
energy barrier of an elementary structural excitation but also demonstrates a robust
correlation with the boson peak in metallic glasses, although the physical entity is defined
from a purely structural aspect. The proposition, therefore, represents a successful
demonstration of the physics-informed structure–property relationship in amorphous
materials.

Keywords: shannon entropy, structure–property relationship, amorphous materials, potential-energy landscape,
boson peak

1 INTRODUCTION

The discipline that “structure determines property” is the cornerstone of the material science
community. In conventional crystalline alloys, such a paradigm is a consensus and has achieved great
success in virtue of well-defined structural imperfections in crystals, such as dislocation density and
its feature described by a Burgers vector that are capable of predicting and interpreting plastic
deformation, phase transformation, and other dynamic properties of crystalline materials. The
Orowan equation predicting the rate of plastic deformation, which has incorporated geometrical
features of lattice defects and the thermodynamics of defects, represents one of the most well-known
and successful demonstrations of this paradigm in material science. In the more general amorphous
materials in nature, however, the one-to-one structure-property relationship, especially at a micro-
scale, has not yet been fully established up-to-date. This constitutes one of the most challenging open
questions in modern material science. The difficulty lies in the fact that the structure of the
disordered medium does not have either translational or rotational periodicity in terms of the atomic
arrangement, causing the most intriguing unsolved problem—the lack of intuitive structural features
that can be quantitatively associated with the thermal and/or mechanical responses (Cheng and Ma,
2011; Cubuk et al., 2017; Richard et al., 2020; Xu et al., 2021).

Over the past decades, relentless efforts have been devoted to seeking out suitable structural
indicators and establishing the possible structure–property relationships in disordered materials
from different perspectives. General structural descriptors invoked in the literature can be roughly
categorized into two categories in which the first group is based on purely structural features while
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the second class refers to the physics-informed indicators. To be
more explicit, the former contains free volume (Spaepen, 1977),
local coordination number, Voronoi polyhedra (Sheng et al.,
2006; Cao et al., 2009), local five-fold symmetry (Peng et al.,
2011; Hu et al., 2015; Tian et al., 2017), inversion symmetry
breaking (Milkus and Zaccone, 2016), and two-body excess
entropy (Wallace, 1987; Yang et al., 2016; Piaggi and
Parrinello, 2017). These indicators are clearly defined and easy
to access. Still, almost all of them have their inherent limitations
in deciphering all the dynamic properties since they only furnish
the short-range structural information, which is insufficient to
govern the thermodynamic or dynamic features that are
embedded in both short- and possible medium-range
structural fingerprints (Hu et al., 2018; Wei et al., 2019). In
contrast, the physic-motivated descriptors, for example, soft spot
(Manning and Liu, 2011; Ding et al., 2014), the Debye–Waller
factor (Widmer-Cooper et al., 2004; Larini et al., 2008), local
yielding stress (Patinet et al., 2016; Barbot et al., 2018), local
thermal energy (Zylberg et al., 2017), flexibility volume (Ding
et al., 2016), and the orientational order (Yang et al., 2019) show
great capacity in predicting the properties of glasses. However,
there is sometimes a threshold in obtaining these quantities, and
it is user-friendly. Amongst these versatile descriptors, the
flexibility volume and orientational order are advantageous
due to their integration of proper static structural information.
The remaining indicators can somehow indicate the state of glass
but are not really descriptive of the particle packing.

It is of note that a third route has appeared recently. The
emerging machine-learning strategies represent a great
advancement in this direction (Cubuk et al., 2015; Schoenholz
et al., 2016; Schoenholz et al., 2017; Wang and Jain, 2019; Tian
et al., 2020; Zhang et al., 2021), which have yielded an
unprecedented accuracy in predicting local structural features
and other dynamics in glasses (Fan et al., 2020; Wang et al., 2020;
Fan and Ma, 2021; Yang et al., 2021). Despite its advantage in
dealing with big data, the machine-learning model usually works
as a black box, causing some puzzles in interpreting the data-
driven results from a physically relevant perspective. To this end,
we propose a new purely structural indicator based on the
conventional knowledge-driven strategy in this study. The
time-invariant Voronoi structural diversity that an atom
experiences during a sufficiently long-time thermal fluctuation
is utilized to quantify the flexibility of local atomic environments
in metallic glasses. This structural representation, in the form of
Shannon information entropy (Shannon, 1948), extensively
integrates information from the static positional topology and
vibrational feature. It serves as a signature of long-time structural
excitations and the short-time vibrational anomaly in metallic
glasses.

2 METHODS

2.1 Molecular Dynamics
Molecular dynamics (MD) simulations were performed with the
LAMMPS code (Plimpton, 1995) for a well-studied Cu50Zr50
metallic glass. The glass sample containing 19,652 atoms was

obtained by fast quenching the equilibrated liquid from 2000 to
0 K with a cooling rate of 1010 K/s. The interatomic interactions
are described via a many-body Finnis–Sinclair–type embedded
atom potential proposed by Mendelev et al. (2009). Period
boundary conditions (PBCs) were used on the simulation box
with 3D dimensions of ~ 70,×, 70,×, 70 Å3. The temperature was
controlled through the Nosé-Hoover thermostat (Nosé, 1984)
while the external pressure in each direction is fully relaxed via
the Parrinello–Rahman barostat (Parrinello and Rahman, 1981).
The MD time step was set as 0.002 ps to numerically integrate
Newton’s equation of motion.

2.2 Single-Particle Activation Energy
Before we extract the possible activation barriers in the complex
3N (N is the total number of atoms) dimensional potential energy
landscape (PEL), the quenched glass sample was first fully relaxed
to a local potential energy minimum via the conjugate gradient
algorithm. Then, the widely adopted activation-relaxation
technique nouveau (ARTn) (Barkema and Mousseau, 1996;
Malek and Mousseau, 2000) was applied to sample possible
local hopping pathways of the structural excitations from an
initial energy sub-basin to a new neighboring minimum. The
specific workflow of ARTn is described in the following sections.
First, a small random perturbation was imposed on a central atom
and its neighbors. In this study, themagnitude of the perturbation
displacement was fixed as 0.1 Å, while the perturbation direction
was chosen randomly. Second, the system was pulled toward the
saddle point (with a high energy level) along the direction of the
weakest Hessian matrix, following the Lanczos algorithm (Cancès
et al., 2009). Finally, after convergence to the connected saddle
state, the glass sample was eventually allowed to relax to a nearby
sub-basin. In this connection, the activation energy for a specific
structural excitation is defined as the energy difference between
the saddle and the initial energy minimum states. ARTn searches
were applied to all of the atoms, each one as the central triggered
atom. After removing the failed tries, we used all 20 successful
activation events for each atom. For statistical purposes, the
average activation energy of the explored 20 events was then
used as the single-particle activation energy for each atom.

2.3 Single-Particle Intensity of the Boson
Peak
To quantify the local short-time thermodynamic property of
metallic glass, we define the intensity of the boson peak at a
single-particle level, which has been documented in Yang et al.
(2022). First of all, the vibrational density of states (VDOS) of an
inherent structure is obtained by direct diagonalizing its Hessian
matrix. The single-particle VDOS for the ith atom is then defined
as the sum contribution of ith atom over all vibrational modes. It
is formulated as (Togo and Tanaka, 2015)

gi ω( ) � 1
3N

∑
j

δ ω − ωj( ) eij
∣∣∣∣∣

∣∣∣∣∣
2
, (1)

where gi(ω) denotes the single-particle VDOS for the ith atom.ωj

and ej are the normal model frequency and the polarization vector
of the jth vibrational mode, respectively. The phenomenon of the
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boson peak, that is, the excess vibrational modes over Debye
squared law is then exhibited by the reduced VDOS (VDOS
values divided by ω2). Thereafter, the peak value of the reduced
VDOS for the ith atom, that is, IBP � max[gi(ω)/ω2], is used to
quantify the single-particle intensity of the boson peak.

3 RESULTS

3.1 Time-Invariant Shannon Entropy
To establish the correlation between the local structure and
dynamics of metallic glasses, a measure of the structural
fluctuation that quantitatively predicts the long-time structural
excitation and the short-time vibrational anomaly at a single-
particle level is necessary. To settle this issue, we propose a time-
relevant structural predictor, which is based on the diversity of
the Voronoi motifs that an atom experiences during
thermodynamic vibration and possible thermal activation.

First of all, the quenched glass sample is relaxed at 700 K (just
below the glass transition temperature) for 1 ns; such time for
thermal fluctuation is right below the α relaxation time (Yang
et al., 2021), making sure that there is only a secondary β-
relaxation process (Yu et al., 2014; Yu et al., 2017), and the
structural transformations take place only between adjacent sub-
basins (Fan et al., 2014; Fan et al., 2015). Then, the evolution of
Voronoi polyhedra around each centered atom is recorded.
Figure 1 shows the fluctuation history of possible short-range

structures centered at two representative atoms. It is intuitively
seen that the difference in atomic packing symmetry would lead
to remarkably different thermal responses during relaxation at a
thermal bath right below the glass transition temperature.
Furthermore, it is evident that the local structural diversity is
nonhomogeneous in metallic glasses since atoms are capable of
retaining their initial short-range structure as shown in
Figure 1A. Also, there are atoms experiencing completely
distinct Voronoi motifs, causing an extremely high level of
structural diversity, as evidenced by Figure 1B.

Next, we perform statistics on the distribution of Voronoi
polyhedra around each atom. Thus, the probability that each
Voronoi motif appears in the fluctuation history of the ith atom is
recorded and calculated as Pj

i (t), where j denotes the jth existing
Voronoi motif and t is the time for the thermal bath. By using the
concept of Shannon information entropy (Shannon, 1948), the
multiplicity of local structural variation is then quantified by the
value of atomic Shannon entropy that is formulated as

Si � −∑
j

Pj
i t( )ln Pj

i t( )( ). (2)

Because the distribution is, in principle, time-dependent, it is
necessary to monitor the temporal evolution of Si to understand
its physical meaning and extract a time-invariant entity. The
ensemble average time-relevant Shannon entropy is shown in
Figure 1C as a function of time. The curve of Si versus relaxation
time has a tendency to level off. It indicates that atomic Shannon

FIGURE 1 |Definition of atomic-scale Shannon entropy Si. (A,B) Representative evolution of Voronoi polyhedra with the lowest value of Si in (A) and a relatively high
degree of Si in (B).(C) Ensemble average Shannon entropy as a function of relaxation time. (D) Evolution of Si in five typical geometrically favored clusters (〈0, 2, 8, 1〉, 〈0,
1, 10, 2〉, 〈0, 3, 6, 4〉, 〈0, 2, 8, 2〉, and 〈0, 0, 12, 0〉) and GUMs.
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entropy displays a growth trend at very early stages, which is
followed by the steady state for a longer time. The critical time
appears at a timescale less than 0.1 ns. This is evidence for the
saturation of the distribution of the local coordinated polyhedral
motif. Thus, the long-time thermal fluctuation with an annealing
time of 1 ns is sufficiently long for the local glass state to
experience all the possible configurational space. In
Figure 1D, the atomic Shannon entropy as a function of
annealing time is further displayed for different atoms with
distinct initial Voronoi motifs. It shows that all types of
Voronoi clusters at the initial state become saturated with the
statistical Si at a relaxation time less than 0.1 ns. The full
icosahedra (with the Voronoi index as 〈0, 0, 12, 0〉) has the
lowest value of entropy, while the “geometrically unfavored
motifs” (GUMs) exhibits the highest level of structural
diversity. This is in line with the existing paradigm (Ma, 2015)
that atomic packing with high symmetry such as full icosahedra
(〈0, 0, 12, 0〉) constitutes the most inflexible local environments,
while those GUMs contribute preferentially to the soft sites,
acting as liquid-like regions (Ding et al., 2014). It should be
noted that the critical time for the saturation of Shannon entropy
is roughly estimated in the present work. The main scope of the
critical time is to confirm the time-invariance of our proposed
Shannon entropy. It is interesting to figure out the definition of
such critical times. Consideration of the quantitative one-to-one
correlation between the critical time and Shannon entropy or
other dynamical properties is meaningful. However, it is beyond
the scope of this article and will probably be discussed in future
research studies.

3.2 Feature of Ergodic Shannon Entropy
Figure 2 displays the probability distribution of Si for the Cu
atoms (red line), Zr atoms (blue line), and all atoms (black line),
respectively. It is intuitive that Si is distributed over a very broad
range, indicating a strong structural heterogeneity (Zhang et al.,

2015) as commonly demonstrated by other structural predictors.
This also resembles the frequently reported nonhomogeneous
distribution of the short- or long-time dynamic properties in
metallic glasses (Tanaka et al., 2010; Tong and Tanaka, 2018;
Wang et al., 2018). Furthermore, it shows that the peak position
of the Cu atoms shifts to the left when compared with that of Zr
atoms. This is ascribed to the higher coordination number of Zr
atoms than that of Cu atoms, resulting in a greater diversity in the
local atomic packing of Zr atoms.

3.3 Structure–Property Relationship Based
on Ergodic Shannon Entropy
Having characterized the level of structural diversity by Si, we can
now establish the long-sought structure-property relationship in
metallic glasses. First of all, we focus on the correlation between
ergodic Shannon entropy and the activation energy of local
structure excitation, the latter of which is the energy barrier of
the long-time transition from one local energy minimum to a
neighboring one which is usually used as a universal indicator of
the difficulty of structural excitations under external mechanical
or thermal loadings. To address this issue, the particle-level
activation energy ΔQ is calculated for each triggered atom.
The statistical correlation between Si and ΔQ is indeed seen in
Figure 3 for Cu atoms (Figure 3A) and Zr atoms (Figure 3B),
respectively. It shows a clear trend that decreasing values of ΔQ
corresponds to growth in the magnitude of Si. It further suggests
that particles centered around motifs with a higher degree of
structural diversity tend to have multiple basins with a lower
activation barrier. To demonstrate this relation more explicitly,
all Cu atoms (or Zr atoms) are sorted in terms of the value of Si
into groups, each containing 50 atoms. Then, the averaged ΔQ for
each group is calculated. As shown in Figure 3C, an inverse
scaling law between Si and ΔQ is even more remarkable after such
a numerical coarse-graining procedure. This intimate correlation
applies to both Cu and Zr atoms. Furthermore, it is evident that
Zr atoms are linked with deeper valleys in PEL, which correspond
to higher activation barriers compared with Cu atoms. This is
because Zr atoms are heavier than Cu atoms, causing the latter
more easily to be activated under external stimuli.

The next task at hand is to investigate how the structural
diversity parameter Si correlates with the short-time vibrational
feature. For this purpose, the boson peak vibrational anomaly
which is one of the most mysterious phenomena of metallic
glasses and other disordered materials is utilized to benchmark
the relation between Si and thermodynamics. Here, the boson
peak is the measure of excess vibrational density of states with
respect to the Debye-squared law in 3D. It can be represented by
the peak value of the reduced VDOS, that is, VDOS divided by ω2.
It has been extensively discussed that there is an intimate
correlation between the activation energy and intensity of the
boson peak. Thus, it is expected that there should be a strong
correlation between Si and IBP. Figure 4 shows the semi-
logarithmic plot of the single-particle boson peak intensity as
a function of ergodic Shannon entropy for Cu (Figure 4A) and Zr
atoms (Figure 4B), respectively. It shows that atoms with
different values of Si display different intensities of boson

FIGURE 2 | Distribution of atomic-scale Shannon entropy for all atoms
(black line), Cu atoms (red line), and Zr atoms (blue line), respectively.
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peaks. Mostly, atoms with a higher level of structural diversity will
make more contributions to the boson peak. As shown in
Figure 4C, this correlation is more apparent after numerical
coarse graining with a proper bin size. Here, each bin contains

0.25% of all atoms that have been sorted based on the increasing
value of Si. It points out that atoms exhibiting a high value of
ergodic Shannon entropy would indeed have an extraordinary
vibrational anomaly, and large Si does necessarily mean large

FIGURE 3 | Correlation between atomic-scale Shannon entropy Si and activation energy ΔQ of local structural excitation in Cu50Zr50 metallic glass. The color in
each plot indicates the number density of atoms, with bright areas corresponding to high density. (A) for Cu atoms and (B) for Zr atoms. (C) shows the inverse
proportionality between Si and ΔQ. Each data point denotes the average for 0.25% of all atoms, sorted by the magnitude of Si.

FIGURE 4 |Correlation between atomic-scale Shannon entropy Si and the single-particle boson peak IBP in Cu50Zr50 metallic glass. The color in each plot indicates
the number density of atoms, with bright areas corresponding to high density. (A) for Cu atoms and (B) for Zr atoms. (C) shows that Si is exponentially proportional to IBP.
Each data point denotes the average for 0.25% of all atoms, sorted by the magnitude of Si.
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intensity of boson peaks. This is indicative of the exponential
susceptibility of the boson peak intensity to the diversity of
structural environments and complexity of the PEL since Si is
proved linearly correlated with the PEL’s topology as evidenced
by Figure 3.

The strong correlation among Si − ΔQ − IBP can also be
verified in terms of their spatial nature. The contour maps of Si,
ΔQ, and the IBP field are shown in Figure 5. It is noticeable that all
of these parameters are distributed in nonhomogeneous manners
with atoms having high/low values of Si (or ΔQ or IBP) tend to
aggregate spatially into clusters, which cover regions spanning
nearly nanometers in diameter or ~ 5 Å in radius, which is
corresponding to the second valley of the radial distribution
function (RDF) of Cu50Zr50 MG. This is a direct piece of
evidence that local structural diversity, local structural
excitation, and vibrational anomalies share the same physical

origin embedded in both short- andmedium-range order of glass.
This characteristic length scale is also commensurate with the
critical size of soft regions that are responsible for triggering
plastic shear transformations under thermal and/or mechanical
stimuli. This is expected since the robust correlation between ΔQ
and shear transformation has been well reported in the literature
Kosiba et al. (2020), Han et al. (2020), and Wei et al. (2019). In
this connection, local regions with a high level of Si can be
identified as potential glassy defects. Furthermore, it is evident
in Figure 5 that high-Si clusters are in striking overlap with the
low-barrier and high-IBP regions. It underpins the concept that
ergodic Shannon entropy that conceives the information about
the flexibility of the local structural packing can quantitatively
correlate with both short-time and long-time dynamic features at
a particle-level resolution.

4 DISCUSSION

In this section, we explain the underlying physics of the strong
correction found in Si − ΔQ − IBP by tracing back the structural
origin of ergodic Shannon entropy. Figure 6 shows the
polyhedral makeups for the atoms with different values of Si.
The makeup for each atom is obtained by recording all Voronoi
motifs that a specific atom has experienced during the relaxation
process. In Figure 6, ergodic Shannon entropy is arranged in
ascending order from left to right, with each solid bar containing
10% of all atoms. Remarkably, atoms with high levels of Si
preferentially experienced local environments stacking from
GUMs, while those with low Si values were mostly composed
of geometrically favored clusters.

It is even more striking when the statistics for atoms with
extremely highest and lowest 1% Si are presented for
comparison (the two narrow bars in Figure 6). This
observation is nontrivial since it is well reported that GUMs
tend to contribute to the soft modes that are strongly in favor
of low energy barriers for structural excitations, whereas the
geometrically stable clusters barely participate in such soft
modes and thus behave like hard regions that make up the
mechanical rigidity of the glass sample Ding et al. (2014) and

FIGURE 5 | Heat maps showing the correspondence among (A) atomic-scale Shannon entropy Si, (B) atomic-scale activation barriers, and (C) single-particle
boson peaks, respectively. Each map has a thickness of 5 Å.

FIGURE 6 | Structural diversity acts as the origin of atomic-scale
Shannon entropy. The polyhedron makeups, averaged over all the snapshots
during the relaxation process, of atoms with different values of Si. The color
bars, from left to right, are ordered by the value of Si, with each bar
containing 10% of all atoms. The two narrow bars on the left-most and right
areas denote the results for atoms with the highest 1% and lowest 1% Si,
respectively.
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Fan et al. (2021). Therefore, it suggests that this ergodic
Shannon entropy, as a numerical metric of the local
structural diversity, hinting at the manifestation of the
possibility that an atom will experience GUMs, or equally,
the probability to participate in quasi-localized soft modes that
are easy to lose mechanical stability.

5 CONCLUSION

In summary, we have identified a new physics-informed structural
fingerprint based on an approximate expression for Shannon
information entropy projected onto an individual atom. This
atomic-scale Shannon entropy is time-invariant that extensively
integrates both the static topology and the vibrational features. It
presents a quantitative representation of the diversity of Voronoi
polyhedra that an atom in a unique local atomic packing environment
will explore during a substantial long-time relaxation process. On the
basis of this innovative indictor, we partially establish the long-sought
structure–property relation in the sense that Si is shown to be an
exceptional metric for both short-time vibrational anomalies and
long-time structural excitations—both of which are critical and
general dynamic properties in amorphous materials. Since ergodic
Shannon entropy is clearly defined via the widely accepted Voronoi
motifs in the community, the uncovered structure–property relation

is interpretable and is also of interest in exploring nonhomogeneous
dynamic features caused by the intricate local packing order in other
disordered materials.
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