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A B S T R A C T   

The classical reflection of a highly nonlinear solitary wave (HNSW) on an elastic wall has been used to determine 
the material properties of the wall, but does not work on a plate (a wall with finite thickness). In this paper, by 
coupling sphere-plate contact with chain dynamics, we revealed that: with the same initial velocity, the energy 
dissipation of multi-sphere plate impact is different from the single sphere plate impact, but the contact force on 
the plate performs similarly. Based on this fact, we then developed two universal force models considering the 
dissipative feature of the plate. These force models (reflection force on the chain and contact force on the plate) 
can universally connect the signals of the HNSW with the dissipative feature of the plate. With the obtained force 
models, we proposed a non-destructive evaluation method, which can identify both the plate material and 
thickness by measuring the two forces: the reflection force on the chain and the contact force on the plate. 
Agreement with finite element simulations suggests that non-destructive evaluation of thin-walled structure can 
be realized by using HNSW with the proposed method.   

1. Introduction 

The Newton’s Cradle experiment (Herrmann and Schmälzle, 1981; 
Herrmann and Seitz, 1982) revealed one type of dispersion-free waves. 
This type of wave, travelling on a chain of unloaded or weakly com-
pressed monodispersed elastic spheres, was categorized as highly 
nonlinear solitary waves (HNSWs). The essential feature of HNSW is that 
the wave can propagate along the chain without energy loss, so that the 
wave profile can be kept unchanged during the propagation (Lazaridi 
and Nesterenko, 1985; Nesterenko, 1984). As a result, the high propa-
gation quality of the HNSW signal can be applied widely in industry. For 
instance, studies were performed on the propagation of HNSWs through 
single granular chain (Chatterjee, 1999; Coste et al., 1997; Daraio et al., 
2005; Hasan and Nemat-Nasser, 2017; MacKay, 1999; Sen et al., 2008; 
Sen and Manciu, 2001; Sinkovits and Sen, 1995; Wang et al., 2014; 
Waymel et al., 2018), granular network (Daraio et al., 2010; Leonard 
et al., 2014; Ngo et al., 2012), a chain of cylinders (Yang et al., 2020), 
and the stability of traveling HNSWs (Liu et al., 2021; Liu et al., 2019). 
These studies laid a theoretical foundation for the mechanism of wave 
propagation in granular matter and guided the design of granular 

structure with required purposes, such as phononic crystals (Chaunsali 
et al., 2017; Kim and Yang, 2014; Kim et al., 2019), energy trapper 
(Daraio et al., 2006), and acoustic lens (Spadoni and Daraio, 2010). 

How an HNSW interacts with an elastic object or an interface was 
studied within a few decades; the obtained results can be used for 
inferring properties of the object or interface. For example, Job et al. 
studied the interaction of an HNSW against an elastic wall (Job et al., 
2005), providing an analytical solution to predict the force between the 
granular chain and the wall. The interaction of HNSW with an interface 
of two granular chains was reported experimentally by Nesterenko, et al. 
(Nesterenko et al., 2005) and numerically by Vergara (Vergara, 2005), 
showing that the interaction highly depends on the high gradient of 
particle velocity around the interface. In another study, the interaction 
of HNSW with a linear elastic medium was studied by Yang et al. (Yang 
et al., 2011) both experimentally and theoretically, revealing that the 
travel time of HNSW and force magnitudes of the primary and secondary 
reflected waves are strongly associated with the elasticity and geometry 
of target. These studies have shown the potential of the HNSW being an 
effective non-destructive evaluation tool for identification of mechani-
cal properties (Job et al., 2005; Villacreses et al., 2021; Yang et al., 
2011), detection of defects in bulk medium (Khatri et al., 2008; Sen 
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et al., 2005, 1998; Yang et al., 2013), and reconstruction of micro-
structures of the tested target (Yoon et al., 2020). In these applications, 
the tested targets were assumed to be infinitely thick. In a real situation, 
however, the tested targets have a finite thickness, so the flexural wave 
induced by the structure compliance will dissipate a large fraction of the 
energy. Therefore, it is possible to utilize the reflection feature of HNSW 
for detecting on thin-walled structures accurately/properly only when 
the exact amount of the dissipated energy is known. 

The key question remained is: how is the difference of the interaction 
of an HNSW with a thin plate from the interaction model with a wall? To 
the best of our knowledge, there is no universal interaction law for the 
reflection of an HNSW against a thin plate, except a few cases which 
attempt to apply the HNSW to detect on the thin-walled structures, such 
as composite beams (Schiffer and Kim, 2019), plate corrosions (Jalali 
and Rizzo, 2021, 2020), implant composites (Berhanu et al., 2012), 
textiles (Nasrollahi et al., 2019), and the human cornea (Nasrollahi and 

Rizzo, 2020). When the structure is thin, energy dissipation by flexural 
waves cannot be ignored (Yang et al., 2012); this fact renders the pre-
vious model (Job et al., 2005) invalid for the thin-walled structures. 
Although recent studies have highlighted the effects of compliance on 
the reflected wave (Cai et al., 2014, 2014, 2013; Nasrollahi et al., 2019; 
Nasrollahi and Rizzo, 2020; Zhang et al., 2020), these effects tended to 
be on a case-specific basis, thus requiring separate finite element sim-
ulations. These simulations were not able to provide one universal law 
describing the non-conservative interaction of an HNSW with a thin 
plate. 

In this paper, by coupling the sphere-plate contact (Zener, 1941) 
with chain dynamics, we developed two force models of HNSW reflec-
tion from a plate of finite thickness as shown in Fig. 1. With these force 
models, we proposed a non-destructive identification method to predict 
the modulus and thickness of plate by measuring the amplitude ratio of 
reflected wave (ARR) in the chain and the contact force on the plate. 

Nomenclature 

Bi The i-th sphere 
Bp Plate 
Es Young’s modulus of sphere 
Ep Young’s modulus of plate 
Ess Effective modules of sphere-sphere contact 
Esp Effective modules of sphere-plate contact 
Eflx Energy dissipation by flexural wave 
Eflx Non-dimensional energy dissipation by flexural wave 
Ekin Total non-dimensional kinetic energy 
Epot

i,i+1 Potential energy between the i-th and the (i + 1)-th spheres 
Epot

p Potential energy between the N-th sphere and plate 

Epot
i,i+1 Non-dimensional potential energy between the i-th and the 

(i + 1)-th spheres 
Epot

p Non-dimensional potential energy between the N-th sphere 
and plate 

F Force 
F Non-dimensional force 
Fi,i+1 Contact force between the i-th and the (i + 1)-th spheres 
Fp Contact force between the end sphere and the plate 
F8 Force detected by the sensor embedded in the center of the 

eighth sphere 
H Thickness of plate 
kss Contact stiffness between spheres 
ksp Contact stiffness between sphere and plate 
m Mass of sphere 

N Number of spheres 
R Radius of sphere 
ri Correlation coefficients between Πi and Eflx 

si Non-dimensional position of the i-th sphere 
sp Non-dimensional position of plate 
t Time 
T Coefficient for time normalization 
V0 Initial impact velocity 
xi Position of the i-th sphere 
xp Position of plate 
yi State variables,i = 1,⋯,2N + 2 
α Material dependent coefficient 
β Fraction of potential energy before the solitary wave 

impacting on plate 
δi,i+1 Compressive displacement between the i-th sphere and the 

(i + 1)-th sphere 
δp Compressive displacement between the end sphere and 

plate 
δp Non-dimensional compressive displacement between the 

end sphere and plate 
ηA Amplitude ratio of reflected wave (ARR) 
ηF Ratio of contact force on plate to contact force on chain 
νs Poisson’s ratio of sphere 
νp Poisson’s ratio of plate 
ρs Density of sphere 
ρp Density of plate 
λ Zener’s inelastic parameter of plate 
τ Non-dimensional time  

Fig. 1. Roadmap of present study.  
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This paper is organized as follows. In Section 2, we built up the non- 
dimensional control equations for the system by coupling the Hertz- 
type contact for the chain and Zener-type contact for the plate. In Sec-
tion 3, we studied the dependencies of the non-dimensional parameters 
on the energy dissipation by flexural wave. In Section 4, we developed 
two universal force models considering the dissipative feature of the 
plate. In Section 5, based on the obtained force models, we proposed a 
non-destructive evaluation method for the identification of plate mate-
rial property and thickness. Finally, in Section 6, we summarized con-
clusions and remarked on the proposed models about their advantages 
and limitations. 

2. Coupled equation for a solitary wave against a plate 

Fig. 2 illustrates a monodispersed granular chain of N spheres 
impacting a large plate. A compactly supported HNSW is generated on 
the granular chain by the impact of the leading sphere with velocity V0. 
During the HNSW propagation, each sphere interacts with its neighbors, 
obeying the Hertz contact relationship (Heinrich Hertz, 1882). When the 
HNSW impact on the plate, the end sphere interacts with the plate, 
obeying Zener’s sphere-plate contact relationship (Zener, 1941). After 
the interaction, the HNSW reflects backward. In this section, we 
formulate the dynamics by coupling the Hertz-type interaction between 
spheres and the Zener-type interaction between sphere and plate as 
follows. 

2.1. Interaction of the chain and plate 

During the first stage, the HNSW travels forward such that kinetic 
energy is converted into potential energy and vice versa. The potential 
energy between the i-th sphere and the (i + 1)-th sphere in contact 

corresponds to the Hertzian potential, Epot
i.i+1 = 2

5kssδ
5
2
i,i+1, where δi,i+1 =

2R+xi − xi+1 is the compressive displacement between the spheres, xi is 
the position of the i-th sphere, kss is the contact stiffness between spheres 

given by kss = 4
3

̅̅̅
R
2

√

Ess, R is the radius of sphere, E− 1
ss =

2(1− ν2
s )

Es
, and Es 

and νs are the Young’s modulus and Poisson’s ratio of the sphere, 
respectively. The total potential energy of the chain can be obtained by 
summing all contact pairs, Epot

chain =
∑N− 1

i=1 Epot
i,i+1, and the total kinetic 

energy is Ekin
chain = 1

2 m
∑N

i=1ẋ2
i , where m is the mass of sphere. 

During the interaction stage, as a fraction of the energy is converted 
into the contact potential between the sphere and plate, another fraction 
is dissipated simultaneously by the flexural wave on the plate. The po-

tential energy between the end sphere and plate is Epot
p = 2

5kspδ
5
2
p, where 

δsp = R+H+xN − xp is the compressive displacement between the end 
sphere and the plate, xp is the position of the plate, H is the thickness of 

the plate, ksp = 4
3
̅̅̅̅
R

√
Esp, E− 1

sp =
1− ν2

s
Es

+
1− ν2

p
Ep

, and Ep and νp are the Young’s 
modulus and Poisson’s ratio of the plate, respectively. The dissipated 
energy on the plate has the form: Eflx =

∫
Fpdxp, where Fp is the contact 

force between the end sphere and the plate. 
To couple the chain dynamics with the plate dynamics, we need to 

find the relationship between the contact force Fp and the position of the 
plate xp. Zener used the method of modal decomposition to obtain the 
relationship between the contact force and the displacement of plate 
(Zener, 1941), briefly as follows. 

By modal decomposition, Zener assumed the displacement field on 
plate could be expressed as: 

U(x, y, t) =
∑

n
Cn(t)Un(x, y) (1) 

Substituting Eq. (1) to the wave equation of plate, he obtained 
(

d2

dt2 + ω2
k

)

Ck =
1

ρpH

∫

UkZdS (2)  

where ρp is the density of the plate and Z is the surface density of the 
normal force. Treating the contact force as a point force, Eq. (2) becomes 
(

d2

dt2 + ω2
k

)

Ck =
1

ρpH
Uk(0)Fp (3) 

Then, solving Ck and substituting it into Eq. (1), Zener got 

xp =
1

ρpH
∑

n
ω− 1

n U2
n(0) ×

∫ t

0
Fp(t’)sinωn(t − t’)dt’

=
1

ρpH

∫ t

0
Fp(t’)

(
∑

n
ω− 1

n U2
n(0)sinωn(t − t’)

)

dt’

(4) 

Averaging U2
n(0) in modal space admits the following identity: 

∑

n
ω− 1

n U2
n(0)sinωn(t − t’) =

1
8

(ρpH
D

)1
2  

where D = 1
12H

3 Ep
1− ν2

p
. Hence, Eq. (4) becomes 

xp = α
∫ t

0
Fp(t’)dt’ (5) 

or equivalently 

ẋp = αFp (6) 

where 

α =
1

4ρpH2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3ρp

(
1 − ν2

p

)

Ep

√
√
√
√ (7) 

is a parameter that depends on the material properties and the plate 
thickness. Eq. (5) and Eq. (6) indicate that for a large plate, the time- 
derivate of the plate deflection is proportional to the contact force on 
the plate. In the following section, the sphere-plate interaction as 
described in Eq. (6) will be used for the fully coupled formulation. 

It should be noted that Zener implied the following assumptions: 

1) Point-force assumption: the size of contact area is small in compar-
ison with the plate thickness, so that the contact force can be viewed 
as a concentrated force.  

2) Large-plate assumption: the flexural wave on plate should not return 
from the boundary during the interaction of the ending sphere and 
the plate. 

As for the point-force assumption, we can adapt the chain design and 
limit the impact speed. As long as the contact radius is smaller than the 

Fig. 2. Schematic diagram for interaction of monodispersed granular chain and 
plate. The contact forces between each neighboring pair obeys Hertz’s contact 
relationship. 
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thickness of the plate, we can treat the distributed force as a point force 
and the present model stays valid. As for the large-plate assumption, the 
boundary condition is critical for developing the present models. This 
boundary effect has been studied by Yang et al. (Yang et al., 2012), who 
conclude that the boundary will have little effect if the impact position is 
away from the boundary with a distance larger than a critical distance 
Lc. Also, they suggested that the critical distance Lc is less than ten times 
the sphere size in most of the cases. In practice, the sphere size is much 
smaller than the plate, so that the critical distance will be much smaller 
than the size of tested plate. In another words, if we locate the impact 
position away from the boundary with a distance of ten times sphere 
size, which is very small compared with the size of tested plate, we can 
treat the plate as infinitely large so that Zener’s contact for sphere-plate 
can be applied. 

2.2. Dimensional analysis on the coupled equations 

Coupling the Hertz-type interaction for the spheres and Zener-type 
interaction for the sphere and the plate, we obtain the complete equa-
tions for the system, as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

mẍi<N = kss

(

δ
3
2
i− 1,i − δ

3
2
i,i+1

)

mẍN = kssδ
3
2
N− 1,N − kspδ

3
2
p

ẍp = α dFp

dt

(8) 

with an initial condition ẋ1

⃒
⃒
⃒
⃒
t=0

= V0, where V0 is the impact velocity. 

By variable substitution: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T = m2
5k−

2
5

ss V − 1
5

0

τ =
t
T

si =
xi

TV0

(9) 

we can normalize Eq. (8) to be non-dimensional and hence mathe-
matically universal, as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s̈i<N = (2Π1 + si− 1 − si)
3
2 − (2Π1 + si − si+1)

3
2

s̈N = (2Π1 + sN− 1 − sN)
3
2 − Π3

(

Π1 +
Π1

Π2
+ sN − sp

)3
2

s̈p =
3
2
Π4Π

3
5
3

(

Π1 +
Π1

Π2
+ sN − sp

)1
2

(ṡN − ṡp)

(10) 

with initial condition ṡ1

⃒
⃒
⃒
⃒

τ=0
= 1, where 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π1 =
R

TV0

Π2 =
R
H

Π3 =
ksp

kss

Π4 = λ

(11) 

and λ is the inelastic parameter defined by Zener (Zener, 1941): 

λ =
π3

5

31
2

(
R
H

)2(V0

VW

)1
5
(

ρs

ρp

)3
5

⎛

⎝
Es/
(
1 − ν2

s

)

Es/
(
1 − ν2

s

)
+ Ep/

(
1 − ν2

p

)

⎞

⎠

2
5

(12)  

where VW =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ep/ρp

(
1 − ν2

p

)√

is the propagation velocity of quasi- 

longitudinal waves in thin plates. We can see that the entire system is 

controlled by only four non-dimensional parameters: Π1 = RV− 4
5

0 k
2
5
ssm− 2

5 

is related to the initial velocity, Π2 represent the geometrical informa-
tion, Π3 stands for the contact properties, and Π4 serves as the dissipa-
tion of the plate. 

To solve Eq. (10), we convert governing equations into a dynamical 
system. By introducing the following state variable: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yi = si, for i = 1, 2,⋯,N
yN+1 = sp

yN+1+i = ṡi, for i = 1, 2,⋯,N
y2N+2 = ṡp

(13) 

we thus obtain a dynamical system: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏi = yN+1+i, for i = 1, 2,⋯,N + 1

ẏN+2 = − (2Π1 + y1 − y2)
3
2

ẏN+1+i = (2Π1 + yi− 1 − yi)
3
2 − (2Π1 + yi − yi+1)

3
2, for i = 2,⋯,N − 1

ẏN+1+i = (2Π1 + yN− 1 − yN)
3
2 − Π3

(

Π1 +
Π1

Π2
+ yN − yN+1

)3
2

y2N+2 =
3
2

Π4Π
3
5
3

(

Π1 +
Π1

Π2
+ yN − yN+1

)1
2

(y2N+1 − y2N+2)

(14) 

with the initial state at τ = 0: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yi = 2(i − 1)Π1, for1 ≤ i ≤ N

yN+1 = 2(N − 1)Π1 +
Π1

Π2

yN+2 = 1

yi = 0, for i ≥ N + 3

(15) 

and the dynamical system Eq. (14) and (15) can be solved with 
Runge-Kutta method. 

Fig. 3. Comparison of the present results with the simulations by Yang et al., 
2012: (a) numerical set-up, (b) plate thickness H = 2.29mm, and (c) plate 
thickness H = 4.83mm. 
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2.3. Verification of the numerical solutions to the coupled equations 

By using the Runge-Kutta method, we numerically solved Eq. (14) 
and (15) and verified the results with Yang’s simulation (Yang et al., 
2012). In their simulations, the set-up comprised a granular chain of 20 
spheres and a plate. The diameter of sphere was 9.53 mm and the 
thickness of plate was set to 2.29 mm and 4.83 mm individually to study 
the effect of plate thickness. The material of spheres was stainless steel, 
with elastic modulus 200 GPa, Poisson’s ratio 0.28, and density 7800 
kg/m3. The material of plate was aluminum, with elastic modulus 68.9 
GPa, Poisson’s ratio 0.33, and density 2360 kg/m3. The initial impact 
velocity was set to 0.31 m/s to produce the HNSW. For the case of the 
plate thickness being 2.29 mm, Π1, Π2, Π3, and Π4 are 1012.0, 2.08, 
0.743, and 1.26, respectively; for the case of the plate thickness being 
4.83 mm, Π1, Π2, Π3, and Π4 are 1012.0, 0.987, 0.743, and 0.284, 
respectively. To model the impact, Yang et al. coupled a discrete element 
model with a spectral element model to simulate both the HNSW on the 
chain and the wave propagation in the thin plate (Yang et al., 2012). 
Unlike their case-by-case model, we adopted a fully coupled dynamical 
system and thus made a non-dimensional universal formulation 
possible. Fig. 3 shows a comparison of the results between the present 
coupled dynamical model and the simulation results of Yang et al., 
where agreements can be found for both cases. In Fig. 3, we use a non- 
dimensional force defined as the following expression: 

F =
F

k
2
5
ssm

3
5V

6
5
0

(16) 

It should be noted that the simulation results of Yang et al. were 
validated by their experiments. In the experiment, they measured the 
force with a sensor embedded in the middle of the eighth sphere (Yang 
et al., 2012) as shown in Fig. 3(a); thus, by equilibrium, the detected 
force signal (F8) is the average of the forces between the 7th and the 8th 
spheres and between the 8th and the 9th spheres: F8 = 1

2

(
F7,8 +F8,9

)
. 

3. Energy dissipation by flexural wave 

To study the problem systematically, we extended the values of the 
four non-dimensional parameters to accommodate most scenarios. Π1 
varied from 10.0 to 2000.0, to cover a wide range of impact speeds. For 
example, in Yang’s study, an initial velocity of 0.31 m/s was used, 
corresponding to a Π1 value of about 1012.0 (Yang et al., 2012). Π2 
varied from 0.01 to 100.0, such that the plate thickness ranged from 
0.01R to 100R, covering most practical scenarios. For example, using the 
chain (R = 13 mm) as Job et al. did (Job et al., 2005), we can accom-
modate cases with the plate thicknesses ranging from 0.13 mm to 1300 
mm. Π3 varied from 0.05 to 2.0, such that the plate could be very soft or 
very hard. Π4 varied from 0 to 1.6, so that the system transited from one 
that was non-dissipative to one that was highly dissipative; notably, the 
inelastic coefficient λ = Π4 = 1.6 leads to a very low coefficient of 
restitution (about 0.053, corresponding to a high energy dissipation: 
99.7%) (Mueller et al., 2015; Zener, 1941). 

To find that how Π1, Π2, Π3, and Π4 affects the energy dissipation by 
flexural wave Eflx, we calculated the correlation coefficients of Π1, Π2, 
Π3, and Π4 with respect to the energy dissipation Eflx as follows: 

Fig. 4. (a) Correlation coefficient of non-dimensional parameters with respect to energy dissipation by flexural wave. (b) Non-dimensional energy dissipation by 
flexural wave as a function of Π4. Square markers represent more than 20,000 numerical results. Inset (c) shows difference between present model and previous 
model (Peng et al., 2021b). 

Fig. 5. Examples of histories of number of spheres in contact and non-dimensional contact force on plate during interaction of solitary wave with plate in case of Π1 

and Π2 being 10.0 and 2.5, respectively. 
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ri
(
Πi,Eflx) =

Cov
(
Πi,Eflx)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(Πi)Var
(
Eflx)

√ , i = 1, 2, 3, 4 (17)  

where Cov
(
Πi,Eflx

)
is the covariance of Πi and Eflx, and Var(Πi) and 

Var
(
Eflx
)

are the variances of Πi and Eflx, respectively. 
As shown in Fig. 4(a), with more than 20,000 simulations, the cor-

relation coefficients of Π1, Π2, and Π3 with respect to the energy dissi-
pation is significantly smaller those of Π4, showing that Eflx can be 
approximated by a single variable function of Π4. The correlation co-
efficient of Π4 also indicates that Eflx increases with an increasing Π4 in a 
statistical manner. In fact, as Π4 = λ represents the inelasticity of the end 
sphere impacting the plate (Zener, 1941), we show in Fig. 4(b) that as Π4 
increases, more energy is dissipated by flexural wave. After inspecting 
all the numerical results (more than 20,000) of Eq. (10), we obtain an 
explicit expression for the energy dissipation as shown in Fig. 4: 
{

Eflx = 1 − e− αΠ4

α = 3.401
(18) 

or equivalently: 

Eflx =
1
2

mV2
0 (1 − e− αΠ4 ) (19)  

where α is a coefficient characterize the energy dissipation with respect 
to Π4. 

Notably, the energy dissipation of a chain impacting on a plate is 
different from that of a single sphere impacting on a plate. In our pre-
vious study (Peng et al., 2021b), for one sphere impacting on a large 
plate, we obtained the coefficient for energy dissipation as follows: 

αp = 2.755 (20) 

which is smaller than the present one, α = 3.401. This suggests that 
the energy dissipation of a chain versus a plate is greater than that of one 
sphere versus a plate as shown by Fig. 4(b), and the difference is shown 
in Fig. 4(c). The reason for such phenomenon is that a train of multiple 
spheres (k-train) participates in the impacting process. As shown in 
Fig. 5, we could find a 5-train or 6-train before the chain-plate inter-
action; in another word, a solitary wave supported by 5 or 6 consecutive 
spheres travels towards the plate. For the interaction with a harder plate 
(higher contact stiffness), the 5-train is shortened to a 3-train that is kept 
for most of the interaction period. While for the interaction with a softer 
plate (lower contact stiffness), the 5-train becomes single sphere for 
most of the interaction period. Different from single sphere impacting on 
a plate, a train of spheres implies higher inertia with the same energy 
and momentum, and thus results in longer impacting time. 

In our previous study, we proposed an analytical solution to the 
Zener problem of single sphere impacting plate (Peng et al., 2021b). As a 
result, the impact time Tsingle

c and the maximal impact force max(Fsingle
p )

for the single sphere case can be derived analytically. With the present 
simulation to Eq. (10), we normalize the impact time of chain-plate 
interaction Tchain

c and the maximal impact force max(Fchain
p ) by Tsingle

c 

and max(Fsingle
p ), respectively. As shown in Fig. 6, we plot all 20,000 

present numerical results to Eq. (10). Statistical distribution shows that 
the impact time of a chain on a plate Tchain

c is generally about 1.5Tsingle
c as 

shown in Fig. 6(a), while the normalized maximal force max(Fchain
p ) is 

still about 1.0max(Fsingle
p ) as shown in Fig. 6(c). Fig. 6(d) shows a typical 

comparison, almost identical contact force and distinguishable longer 
acting time suggest more momentum is transferred from the chain to the 
plate and thus higher energy is dissipated by flexural wave. 

In summary, we show that the energy dissipation of an HNSW on a 
chain with a plate obeys Eq. (18) universally. Different from the case of 
single sphere impacting on a plate, in the case of chain-plate impact, a 

Fig. 6. Scatter plot with marginal histograms for maximal contact forces on plate and contact times of present numerical results: (a) normalized distribution of 
contact times, (b) main scatter plot, and (c) normalized distribution of maximal contact forces. Inset (d) shows typical contact time histories of chain-plate interaction 
and sphere-plate interaction. 
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higher fraction of energy can be dissipated because of the longer 
impacting time by a train of multiple spheres. 

4. Two proposed force models 

4.1. Reflection force model in the chain 

Given that only Π4 affects energy dissipation in Section 3, we can 
hence obtain an expression for the amplitude ratio of reflected wave 
depending only on Π4 using the signal captured by the sensor #1, as 
shown in Fig. 7. We define such amplitude ratio as follows: 

ηA =
max

(
Fre

8,9

)

max
(

Fin
8,9

) (21) 

where max
(

Fin
8,9

)
and max

(
Fre

8,9

)
are the maximal signals of the 

incident force and reflected force, respectively, detected by sensor #1. 
By energy conservation, we derive the expression for ηA. Before and 

after the interaction of the HNSW with the plate, we have 

Etot
in = Etot

re + Eflx (22)  

where Etot
in = 1

2 mV2
0 and Etot

re are the total energy carried by the incident 

and reflected HNSWs. Substituting Eq. (19) into Eq. (22), we have 

Etot
re = Etot

in e− αΠ4 (23) 

As shown in Fig. 8, we find that the fraction of the potential energy 
over the total energy on the chain is about β = 0.44 for both the incident 
and the reflected wave; this ratio agrees with the result by Job et al. (Job 
et al., 2005). So, we have 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Etot
in =

1
β

Epot
in

Etot
re =

1
β

Epot
re

(24)  

where Epot
in and Epot

re are the potential energy carried by the incident and 
reflected HNSWs. Substituting Eq. (24) into Eq. (23), we obtain: 

Epot
re = Epot

in e− αΠ4 (25) 

Moreover, the Hertz contact admits the following identities: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
(

Fin
8,9

)
= k

2
5
ss

(
5
2
Epot

in

)3
5

max
(

Fre
8,9

)
= k

2
5
ss

(
5
2
Epot

re

)3
5

(26) 

Substituting Eq. (25) and (26) into Eq. (21), we have the expression 
for ηA: 

ηA =
max

(
Fre

8,9

)

max
(

Fin
8,9

) =

(
Epot

re

Epot
in

)3
5

= e−
3
5 αΠ4 (27)  

where α = 3.401. 
We validate Eq. (27) with the present numerical solutions to Eq. (10) 

as shown in Fig. 9; well agreement can be found with all 20,000 nu-
merical results (square markers). 

4.2. Contact force model on the plate 

The purpose of this section is to show how the contact force on the 
plate is affected by the plate properties: thickness and stiffness. The main 
difference between the reflections of HNSW against a plate and a wall is 
that the energy carried by the HNSW can be dissipated by the flexural 
wave on the plate. Unlike the reflection of the HNSW against a wall (Job 
et al., 2005), we show that energy dissipation by flexural wave cannot be 

Fig. 7. Force histories of incident and reflected solitary waves and contact force 
histories on plate. Inset shows the set-up for the detection of force signals. 

Fig. 8. History of fraction of potential energy carried by HNSW under condi-
tions of various Π4. 

Fig. 9. Comparison of present reflection force model with present numerical 
solutions. Square markers represent all 20,000 numerical results. 
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ignored for most cases. Here, we develop a new force model for the 
reflection of HNSW against a plate, making the former model (Job et al., 
2005) a special case of the present force model. 

4.2.1. Why the approach of energy partition fails 
With all numerical solutions to Eq. (10), we check the energy vari-

ations during the propagation of HNSW on the chain and the interaction 
with the plate, and find that such energy variation in the case with a 
plate is very distinct from the case with a wall. 

Before the HNSW hits the plate (τ ≈ 22), as shown in Fig. 10, the 
potential energy is about 44% of the total energy and the kinetic energy 
is about 56%, agreeing with the results of Job et al. (Job et al., 2005). In 
their study, this idea of energy partition is used to obtain contact force 

between the end sphere and tested medium. For a wall (Π4 = 0), it can 
be found that the all energy that the HNSW carried is converted into 
potential energy between the end sphere and wall (Job et al., 2005), as 
shown in Fig. 10(a): both the kinetic energy and the potential energy on 
the chain decrease to near zero when the potential energy on the wall 
reaches the maximum. By energy conservation, a force model was 
developed (Job et al., 2005), assuming the ratio of the maximal potential 
energy on the plate to that on the chain is about 2, which was approx-

imated by: max
(

Epot
plate

)/
max

(
Epot

chain
)
= 1/0.44 ≈ 2. 

However, for a plate (Π4 > 0), this approach of derivation cannot be 
applied because the relationship for the energy ratio cannot hold up 
when the dissipation by the flexural wave emerges. The effects of such 
dissipation are following:  

• First, as Π4 increases, the dissipation becomes more significant, such 
that the energy ratio is less than 2 at the maximal compression of 
contact, as shown in Fig. 10(b)-(d).  

• Second, the compliance of the plate results in incomplete conversion 
of the kinetic energy of the chain into the potential energy between 
the end sphere and plate; unlike the case with a wall (Π4 = 0), the 
kinetic energy of the chain is greater than zero at the maximal 
compression in the cases with large Π4, as shown in Fig. 10(c) and 
Fig. 10(d). 

As a result, to find a correct contact force model considering the 
energy dissipation, we must employ a completely different approach 
from the one used for an elastic wall (Job et al., 2005). 

4.2.2. The approach of contact force 
In Section 2, we already show that the maximal contact force of a 

chain impacting on a plate is almost the same as the one of a single 
sphere. Thus, instead of using the idea of energy partition (Job et al., 
2005), we can formulate the maximal contact force on the plate directly 
using the maximal compression max(δp), where δ = δ/TV0 is the non- 
dimensional compressive displacement. We have shown in our previ-
ous study that max(δp) can be approximated by 

max(δp) =

(

Π4 +

(
5
4

)− 3
5
)− 2

3

(28) 

with an error less than 5% (Peng et al., 2021b). With Eq. (28), we can 
predict the maximal contact force on the plate by 

max
(
Fp
)
=

(

Π4 +

(
5
4

)− 3
5
)− 1

k
2
5
spm

3
5V

6
5
0 (29) 

Fig. 10. Evolution of non-dimensional energy, E = E/(1
2 mV2

0 ), during the 
interaction between the HNSW and plate under in the cases of (a) Π4 = 0, a 
wall, (b) Π4 = 0.2, (c) Π4 = 0. 8, and (d) Π4 = 1.2. For Π4 = 0, the system is 
non-dissipative, so we omit the line for the energy dissipation by the flexural 
wave. In all subfigures, the middle vertical broken line marks the time when the 
potential energy on the plate reaches a maximum. Also, the kinetic energy and 
flexural dissipation are marked as a square and circle, respectively. 

Fig. 11. (a) Comparison between present contact force model with present numerical solutions for systems with Π4 ∈ [0, 1.6]. (b) Model verification of present 
contact force model with present numerical solution to Eq. (10), Job’s model, and Job’s experiments (Job et al., 2005) for wall (Π4 = 0). 
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On the other hand, the maximal contact force between the spheres, 
can be derived based on the fraction of potential energy: 

max(Fchain) = k
2
5
ss

(

β
5
4

mV2
0

)3
5

(30)  

where β ≈ 0.44 is the fraction of potential energy before the HNSW 
impact on the plate. As a result, we have a model for the contact force 
ratio (denoted as ηF) considering the compliance of the plate, as follows: 

ηF =
max

(
Fp
)

max(Fchain)
=

(
5
4

β
)− 3

5

Π
2
5
3

(

Π4 +

(
5
4

)− 3
5
)− 1

(31) 

To check the proposed model Eq. (31) with the present numerical 
solutions to Eq. (10) and the results by Job et al. (Job et al., 2005), we 
computed the contact force ratio ηF by two contact forces: the force 
between the eighth and the ninth spheres and the one between the end 
sphere and plate (locations of these force sensors are shown in Fig. 7). 

For cases with Π4 ranging from 0 to 1.6, the present contact force 
model Eq. (31) agrees with the numerical solution of Eq. (10) as shown 
in Fig. 11(a). In particular, when Π4 vanishes for a non-dissipative sys-
tem (a wall), the present contact force can degrade to Job’s model as 
shown in Fig. 11(b). As a result, the present model fits not only the case 
with a non-dissipative wall (Π4 = 0), but also the cases with plates 
having a large variation in compliance. 

To summarize, in Section 4, by substituting the constant α = 3.401 
and β = 0.44, we obtain the two force models as follows: 
⎧
⎨

⎩

ηA = e− 2Π4

ηF = 1.431Π
2
5
3(Π4 + 0.875)− 1

(32)  

5. Identification method for the plate thickness and modulus 

5.1. Method description 

In Section 4, we have developed two force models: the amplitude 
ratio of reflected wave ηA and the ratio of the maximal contact force on 
the plate to the one on the chain ηF. In practice, ηA and ηF can be 
measured directly by the embedded sensors as shown in Fig. 7. With Eq. 
(27) and Eq. (31), we can solve for Π3 and Π4 simultaneously using the 
measured force signal ηF and ηA: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Π3 = η
5
2
F

(
5
4

β
)3

2
(

−
5

3α lnηA +

(
5
4

)− 3
5
)5

2

Π4 = −
5

3α lnηA

(33)  

where α = 3.401 and β = 0.44. Using Π3 =
ksp
kss 

and the expression for 
Π4 = λ by Zener (Zener, 1941), we obtain the expression for the Young’s 
modulus and plate thickness: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ep =

(
2
̅̅̅
2

√

Π3
− 1
)− 1(1 − ν2

p

1 − ν2
s

)

Es

H =
(π

2

) 3
103− 1

4V
1
10
0 ρ

1
20
p

(
Es

1 − ν2
s

)− 1
20
(

ρs

ρp

) 3
10
(

2
̅̅̅
2

√

Π3
− 1
)1

4

Π
1
5
3Π− 1

2
4 R

(34) 

Combining Eq. (33) and Eq. (34), we can identify the plate thickness 
and Young’s modulus simultaneously by measuring the contact forces 
between the spheres and on the plate as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ep =

(
41.247

η
5
2
F(lnη− 1

A + 1.785)
5
2
− 1

)− 1(
1 − ν2

p

1 − ν2
s

)

Es

H = 0.727V
1

10
0

(
Es

1 − ν2
s

)− 1
20

ρ− 1
4

p ρ
3

10
s

(
41.247

η
5
2
F(lnη− 1

A + 1.785)
5
2
− 1

)1
4

×

η
1
2
F
(
lnη− 1

A + 1.785
)1

2
(
lnη− 1

A

)− 1
2R

(35) 

To verify the present identification method, we conducted finite 
element method (FEM) analysis using ABAQUS/Explicit, similar to the 
methods used by previous studies (Nasrollahi and Rizzo, 2020; Schiffer 
and Kim, 2019).We briefly introduce the simulation parameters here, 
and the details can be found in Appendix. The granular chain comprised 
20 SiC ceramic spheres and a large plate of various combinations of 
material and thickness. Eight types of common materials were set for the 
plate separately: high density polyethylene (HDPE), acrylonitrile buta-
diene styrene plastic (ABS), wood, magnesium, aluminum, bronze, and 
steel. The thicknesses of plate varied from 2 mm to 10 mm. To model the 
20-sphere granular chain, we used 19 point-mass elements and the end 
sphere meshed with solid elements. The interaction of spheres was 
presented by nonlinear connectors (compression-only), while the 
interaction between the end sphere and the plate was established using 

Fig. 12. Identification of Young’s modulus using present method. Markers 
represent all simulated cases (about 70 cases). 

Fig. 13. Identification of Plate thickness using present method. Markers 
represent all simulated cases (about 70 cases). 
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the surface contact. The normal behavior was set to ‘Hard’ contact and 
the tangent behavior was set to frictional with coefficient 0.1. We also 
studied the contact without friction, and results show that the friction 
has a negligible effect. To generate a travelling HNSW, an initial velocity 
of 0.8 m/s was imposed on the leading point-mass. By requesting output 
for the force histories of the connectors and the contact of the end sphere 
and the plate, we computed ηA and ηF , and further calculated the 
Young’s modulus of the plate ETest

p and the plate thickness HTest
p using Eq. 

(35). 
Fig. 12 plots the tested Young’s modulus versus the real values for 

various combinations of material and thickness, exhibiting the feasi-
bility of the proposed method of identification for the Young’s modulus 
of plate. Also, Fig. 13 plots the tested plate thickness versus the real 
values, where good agreement can also be found. We also plots the 
thicknesses range used by Yang et al. (Yang et al., 2012) and Schiffer and 
Kim (Schiffer and Kim, 2019), showing that the present identification is 
also applicable for the previously studied cases. 

5.2. Error analysis 

In this section, we check the error transfer relationship from the non- 
dimensional parameters to the Young’s modulus and plate thickness. 
Differentiating Eq. (34), we obtain: 

ΔEp

Ep
=

2
̅̅̅
2

√

(2
̅̅̅
2

√
− Π3)

ΔΠ3

Π3
(36) 

and 

ΔH
H

=

(
2Π3 +

̅̅̅
2

√ )

10
(
2
̅̅̅
2

√
− Π3

)
ΔΠ3

Π3
−

1
2

ΔΠ4

Π4
(37) 

On the one hand, both Eq. (36) and Eq. (37) mean that to minimize 
the relative error of tested Young’s modulus and plate thickness, we can 
use a chain with high modulus such as ceramics to keep Π3 small. In the 
present study, we used a chain of SiC spheres, which have a modulus of 
410 GPa, significantly larger than those of most common materials. On 
the other hand, Eq. (37) also shows that the relative error transfer 
relationship from Π4 to the plate thickness is constant. 

In summary, for better identification, we recommend using a chain 
comprising spheres with higher Young’s modulus and tune the impact 
velocity to obtain a clear signal of contact forces. 

6. Conclusion and remarks 

In this paper, we solved interaction between an HNSW and a large 
elastic plate by coupling sphere-plate contact with chain dynamics and 
presented how such interaction is controlled by the two non- 
dimensional parameters (contact stiffness ratio Π3 and plate’s inelastic 
parameter Π4). What is more, we developed an energy dissipation model 
and two force models which can quantitively connect the effect of 

interaction on the reflected HNSW to the material and thickness of plate. 
As a result, we can use these two force models to identify the material 
and thickness of plate by measuring the amplitude ratio of reflected 
wave on the chain and the contact force on the plate. 

Our work provides a theoretical foundation for the non-destructive 
evaluation on thin-walled structures using HNSWs. The advantages 
can be shown in two folds. On the one hand, compared with previous 
studies on the interaction of an HNSW and a wall (Job et al., 2005; Yang 
et al., 2011), the present contact force model, Eq.(27) and (31), as well 
as the present energy dissipation model, Eq. (18), quantitively show that 
the energy dissipation by flexural wave can be significantly larger than 
Hunter loss (generally about 5%) and alters the reflection of the HNSW 
drastically. On the other hand, compared with the studies on the inter-
action of an HNSW and a dissipative medium (Nasrollahi et al., 2019; 
Nasrollahi and Rizzo, 2020; Yang et al., 2012), the present model, Eq. 
(35), provides an explicit and universal formulation of the plate thick-
ness and the mechanical properties from the maximal forces on the chain 
and on the plate, enabling a wider application of non-destructive eval-
uation using HNSWs. 

In practice, the contact between spheres may introduce some other 
factors, such as contact plasticity (Peng et al., 2021a; Wang et al., 2017), 
viscosity (Carretero-González et al., 2009; Liang et al., 2019; Rosas et al., 
2007; Vergara, 2010), and adhesion (Thornton et al., 2017). For 
example, dissipation by viscosity on a chain may alter the profile of the 
HNSW drastically (Rosas et al., 2007) and hence renders the present 
method inapplicable. However, these effects can be avoided by using 
high strength chains with smooth surfaces and moderate impact veloc-
ity. In another aspect of practice, we must make sure that the point-force 
assumption and the large-plate assumption are valid. For the point-force 
assumption, distinguishable deviation may be expected for the detection 
of very thin plates if the contact area on plate is comparable to the plate 
thickness. For such plates, we can choose a granular chain of small 
spheres and low impact velocity to limit the evaluation error. For the 
large-plate assumption, we must consider whether the boundary 
assumption of Zener is valid for a real test. As stated in Section 2.1, if we 
locate the impact position away from the boundary with a distance of 
ten times sphere size, we can treat the plate as infinitely large so that the 
present non-destructive evaluation method can be applied. 
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Appendix:. FEM model 

FEM simulations were conducted using ABAQUS commercial software (Dassualt Systèmes, Vélizy-Villacoublay, France) with a dynamic solver 
(ABAQUS/Explicit). Due to the symmetry, only an axisymmetric model was necessary, shown in Fig. 14. The granular chain comprised nineteen point- 
masses and one meshed sphere (the 20th sphere). We used connectors to simulate the interaction between neighboring spheres, as well as the 
interaction between the 19th and 20th spheres. The behavior of the connectors was defined as follows: 

Fconn =

{
− kss|δ|

3
2 if δ < 0

0 if δ ≥ 0  

where Fconn is the connector force (being negative means compression), and δ is the relative displacement. 
The diameter of the end sphere 2R was set to 9.53 mm. The radius of the plate was set to 500 mm, sufficiently large to eliminate boundary effects 
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(possible wave reflection). A contact pair was established between the sphere and the plate: the penalty method of constraint enforcement was applied 
on the normal direction for the pressure-overclosure relationship (‘Hard’ contact in ABAQUS), and the friction coefficient was set to 0.1. The material 
for the elastic sphere was SiC, of which the Young’s modulus is 410 GPa, the Poisson’s ratio 0.14, and the density 3100 kg/m3. Also, we set the material 
of the elastic plate to a variety of common materials: high density polyethylene (HDPE), acrylonitrile butadiene styrene plastic (ABS), wood, mag-
nesium, aluminum, bronze, and steel. Detailed material parameters are listed in the inset of Fig. 14. 

The element (CAX4R) count in this model varied from 30,000 to 60,000 depending on the plate thickness, with the finest element size at the 
contact region being 0.01R. We parametrically studied the cases with various plate thicknesses: H = 2, 3,⋯, 10 mm for each type of material. To 
generate an HNSW, we set the initial impact velocity for the first point-mass with V0 = 0.8 m/s. To check the force ratios, ηF and ηA, force histories of 
all the connectors and the contact pair were requested for result output. Using the set material constants as references and calculating the counterparts 
from force ratios, we could thus validate the proposed identification method for the plate thickness and Young’s modulus. Fig. 15 illustrates typical 
force histories on the chain and on the plate by FEM simulation and how they were used to calculate the force ratios. 

Fig. 14. FEM model for interaction of solitary wave on granular chain with large plate.  

Fig. 15. Typical force histories by FEM simulation: interaction of a chain comprised of 20 SiC spheres with a 
steel plate with thickness of 3 mm (the diameter of spheres in 9.53 mm and the impact speed is 0.8 m/s). 
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