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A B S T R A C T   

Hunt and Crossley proposed a general expression of the contact force in 1975. The dissipative 
force term of the general expression has two exponents: the exponent of indentation depth and 
that of velocity. Because it is almost impossible to obtain an analytical solution based on the 
general expression, more than twenty continuous contact models have been developed based on 
the simplification of the general expression. In these studies, the exponent of the indentation 
depth was set as 0.25, 0.5, 0.65, 1.0 or 1.5, and the exponent of the velocity was set to 1.0. This 
paper proposes a new continuous contact force model with arbitrary values of the exponents of 
the indentation depth and velocity. The model is based on the general expression of the contact 
force. Considering the rule of energy equivalence, an approximate dynamic equation is developed 
by introducing the equivalent indentation and equivalent velocity. Subsequently, a new contin-
uous contact force model is constructed based on the system dynamic equation and approximate 
dynamic equation. The influences of the two exponents on the performance of the continuous 
contact force models are investigated by analyzing the simulation results. Moreover, the validity 
of the new model is demonstrated by comparing the simulation results with two published 
experimental datasets. The comparison also indicates that the performance of the continuous 
contact model can be enhanced by selecting appropriate values of the two exponents.   

1. Introduction 

In recent years, extensive research has been performed to examine the modeling of contact-impact phenomena [1–5], which are 
commonly found in nature and frequently occur in mechanical systems [6–9]. The compliant continuous contact force method is a 
powerful tool to simulate contact-impact problems [10,11]. More than twenty continuous contact models have been presented thus far 
[2,10–12]. Applications of such models include simulations of robots [10], vehicles, droplets [13], robotic arms [14], sand particles 
[15], clay, seeds [16], hail specimens [17], structural pounding during earthquakes, aeroengines [18] and contact processes between 
the barrel and bourrelet of projectiles [19]. Moreover, such models have been applied in simulations of the discrete element method 
and smoothed particle hydrodynamics [11]. 

Fig. 1 shows the development of the continuous contact force model. In 1880, Hertz proposed the Hertz contact model [20], which 
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defined the contact force Fc as a function of the indentation depth δ: Fc = kδn, where k represents the stiffness parameter, and the 
exponent n depends on the topological properties of the contacting surfaces [21]. Hertz derived the analytical expression for k and the 
values of n when two spheres are in static contact; this model has been widely used in many fields [13,22]. In addition, the Hertz model 
can be used to describe quasistatic contact problems of geometrical bodies other than spheres, and the corresponding n values and k 
expressions have been clarified [23]. However, the Hertz model does not consider energy dissipation, which almost inevitably occurs 
during a collision [21]. 

Nomenclature 

Fc normal contact force 
δ, δmax deformation or indentation, maximum indentation 
δ̇, δ̈ deformation velocity or indentation velocity, indentation acceleration 
k, λ contact stiffness, hysteresis damping factor 
n elastic term exponent 
m damping term exponent of indentation depth 
q damping term exponent of indentation velocity 

δ̇(− ), δ̇(+) initial indentation velocity, relative separation velocity 
t(− ), t(+), tm time of initial contact, time of separation, time of maximum indentation 
m0 mass 
δ̂ equivalent indentation depth 
̂̇δ, ̂̇δc, ̂̇δr equivalent velocity, equivalent velocity of compression phase, equivalent velocity of restitution phase 
cr coefficient of restitution 
ΔEc, ΔEr energy loss for compression or restitution phase calculating based on the system dynamic equation 
ΔE*

c , ΔE*
r energy loss for compression or restitution phase calculating based on the approximate dynamic equation 

ΔEloss energy loss 
ΔEk elastic potential energy 
x, τ non-dimensional variables 
ẋ, ẍ derivative of x with respect to τ, derivative of ẋ with respect to τ 
knon, λnon non-dimensional parameters of the system dynamic equation 
k*

non, λ
*
non non-dimensional parameters of the approximate dynamic equation  

Fig. 1. The development of the continuous contact force model.  
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By introducing a damping term λδ̇ (where δ̇ is the velocity of the indentation depth and λ is the hysteresis damping factor), the 
Kelvin–Voigt model can simulate the energy dissipation in contact-impact processes [24,25]. However, at the initial and separation 
moments of the collision, the contact force calculated using the Kelvin–Voigt model is nonzero when the deformation is zero, which is 
not consistent with the actual behavior [26]. Another drawback of this model is that it produces the wrong sign for the contact force at 
the end of the impact [27]. Moreover, the accuracy of this model is relatively low. 

In 1967, Simon proposed a nonlinear contact force model when studying the performance of golf clubs. In this model, the exponent 
n = 1.5, and the expression of contact force is Fc = kδ3/2 +λδ3/2δ̇ [27,28]. 

In 1975, Hunt and Crossley proposed a general expression of the contact force, which is expressed as Fc = kδn +λδmδ̇q [29]. In the 
case of static contact, δ̇ equals zero, and the equation is simplified to the Hertz model. In the case of impact processing, the damping 
term λδmδ̇q is used to describe the energy dissipation, and the contact force in this equation is consistent with the actual behavior. The 
research of Hunt and Crossley has inspired a large number of researchers and led to numerous methods to evaluate contact forces 
[1,2,10–12,30,31], and the crucial step in the construction of these models is the determination of the expression of λ. Notably, because 
it is almost impossible to find an analytical solution to λ based on the general expression, assumptions about the exponential values 
have been introduced to simplify the general equation, and contact force models have been developed based on the corresponding 
simplified equations. 

Based on the assumptions of m = n and q = 1.0, Hunt and Crossley simplified the general equation as Fc = kδn + λδnδ̇. The 
simplified equation is usually called the Hunt-Crossley model; in some research, it is also called the Simon-Hunt-Crossley model. In 
recent years, more than ten continuous contact models have been developed on the basis of this simplified equation [21,26,29,32–45], 
such as the influential models proposed by Lankarani and Nikravesh [36]. However, Hunt and Crossley still pointed out that “the index 
q need not be taken as unity” [29]. In 2019, based on the simplified expression Fc = kδn + λδnδ̇, an analytic solution of λ in the form of 
an infinite series was presented [46]. 

On the other hand, approximately ten models have been developed based on the other simplified equation Fc = kδn + λδmδ̇, in 
which m ∕= n and q = 1.0. In these studies, the value of m was set as 0.25 [47], 0.5 [48–51], 0.65 [41], 1.0 [52–54], and 1.55 [55], with 
n equal to 1.5. Among them, Kuwabara-Kono’s model is a typical model derived from elasticity theory, and the value of m equals 0.5 
[48]; however, it has been pointed out that this model produces contact forces with erroneous signs before the end of the impact [27]. 
In 2021, Jie Zhang et al. developed a new continuous contact force model [31]. In this study, q = 1.0, and the value of m was arbitrary. 
Moreover, the authors investigated the effect of m on the accuracy of the contact force model. 

Several studies also considered the case in which q is not 1.0. Ebrahim Alizadeh et al. developed a granular normal contact force 
model for a dashpot filled with a non-Newtonian liquid; in this study, n = 1.5 and m = 1.0, q was a variable, and the values of hysteresis 
damping factor λ and q were determined by fitting experimental data [56]. Liang Ding et al. studied the foot–terrain interaction 
mechanics for legged robots based on the general expression of the contact force. However, the values of λ, m and q were identified 
according to the experimental results, and no formula for calculating λ was specified [57]. 

According to the development progress of the continuous contact force model, as shown in Fig. 1, most of the existing studies have 
been based on the simplified general expression of the contact force, and the parameter q was set as 1.0 because the general expression 
Fc = kδn +λδmδ̇q cannot be used to find an analytical solution [1,2,29]. In this regard, it is of significance to develop a contact model 
based on the general expression of the contact force with arbitrary values of parameters n, m and q. This study considers this aspect and 
proposes a new type of continuous contact force model with arbitrary exponents n, m and q. Moreover, the effects of the values of m and 
q on the performance of the continuous contact force models are discussed. 

The remaining paper is organized as illustrated in Fig. 2. The development of the new model is described in Section 2, as shown in 
the blue box in Fig. 2. Section 2.1 covers the fundamentals of the continuous contact force models. Next, in Section 2.2, an approximate 
equation is established based on the rule of energy equivalence. Then, the expression of the hysteresis damping factor λ is derived in 
Section 2.3, which is crucial for the construction of the new model. The data analysis and validation of the new model are described in 
Section 3, as shown in the red box in Fig. 2. First, a nondimensional analysis is performed in Section 3.1. Then, numerical simulations 

Fig. 2. Structure of this research.  

J. Zhang et al.                                                                                                                                                                                                          



Mechanical Systems and Signal Processing 168 (2022) 108739

4

are conducted with different values of exponents n, m, and q and restitution coefficient cr, and the evaluation of the degree of 
approximation reveals the feasibility of the approximate equation, as described in Section 3.2. In Section 3.3, the model is validated by 
comparing the simulation data with two published experimental datasets. Finally, the effects of m and q on the performance of the 
contact models are investigated in Section 3.4. 

2. Development of the new model 

2.1. General issues regarding the construction of the new model 

Fig. 3 shows the schematic diagram of the impact process and the corresponding modeling methods. As shown in Fig. 3(a), an 
impact between a solid object (with mass m0) and half space is divided into two phases: the compression phase and the restitution 

phase. At the initial time of impact t(− ), the object has initial velocity δ̇(− ); the deformation takes place in the local contact zone and 
increases until the indentation depth reaches the maximum δmax at time tm, and the object velocity becomes zero. Then, the defor-

mation begins to recover; at separation time t(+), the contact force becomes zero, and the velocity becomes δ̇(+). The period from t(− ) to 
tm is defined as the compression phase, and the period from tm to t(+) is defined as the restitution phase, as shown in Fig. 3(a). The 
impact system demonstrated in Fig. 3(a) can be treated as equivalent to the systems of most elastic contact-impact problems [21,23], as 
the contact area is much smaller than the sizes of the contacting objects. 

Fig. 3(b–d) show schematics of the continuous contact force models. Fig. 3(b) shows the Hertz model, which is a purely elastic 
model and cannot simulate the energy dissipation [20]. Fig. 3(c) shows a schematic of the continuous contact model with damping that 
can simulate the energy dissipation. The general expression of this type of contact model is Fc = kδn + λδmδ̇q; kδn is the elastic force 
term, and λδmδ̇q is the dissipative force term. As m = 0, n = 1.0 and q = 1.0, the general expression degenerates to the Kelvin–Voigt 
model [24,25]. As m = n and q = 1.0, an analytic solution of λ can be presented in the form of an infinite series [46]. It is almost 
impossible to obtain an analytical solution based on the general expression m ∕= n. Jie Zhang et al. derived the expression for λ 
considering arbitrary values for m and q = 1.0 (in this case, the general expression degenerates to Fc = kδn + λδmδ̇) based on an 
approximate contact force equation established based on the rule of energy equivalence [31]. As shown in Fig. 3(d), the approximate 
contact force equation adopts the form of a ‘‘rigid spring in compression phase + soft spring in restitution phase” to simulate the energy 
dissipation, thereby eliminating the nonlinear dissipative force term λδmδ̇q in the continuous model. The comparison between the 
simulation results and published experimental data showed that this new model achieves high accuracy (<5%) [31]. Inspired by the 
work of Jie Zhang et al. [31], this paper proposes a new type of continuous contact force model developed based on the general contact 
force equation Fc = kδn +λδmδ̇q (in this case, m does not have to equal n, and q does not have to equal 1.0). Moreover, the effects of the 
values of m and q on the performance and accuracy of the continuous contact force models are investigated. 

According to the general contact force equation Fc = kδn + λδmδ̇q, the dynamic equation for the contact-impact system, as illus-
trated in Fig. 3(a), can be obtained: 

m0δ̈+ kδn + λδmδ̇
q
= 0 (1)  

where the gravity term is ignored because it is considerably smaller than the impact force. m0 is the mass or equivalent mass of the 

Fig. 3. Schematic diagram of the contact-impact process and the continuous contact force models.  
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contact bodies [31], k represents the generalized stiffness parameter, and exponent n depends on the topological properties of the 
contacting surfaces [15]. Details regarding the determination of the values of m0, k and n for different contact-impact problems can be 
found in the relevant articles [23,31]. 

2.2. Development of the approximate dynamic equation 

In this section, an approximate dynamic equation for the impact system is developed according to the rule of energy equivalence. 
Subsequent analysis in Sections 2.2 and 3.2 reveals that it achieves a good approximation of the system dynamic equation and is an 
important basis for the construction of a new contact model. 

To develop the approximate dynamic equation, the system dynamic equation expressed by Eq. (1) can be rewritten as 

m0δ̈+
(

δn− m +
λ
k
δ̇

q
)

kδm = 0 (2) 

By introducing equivalent indentation and equivalent velocity, a primary formula of the approximate dynamic equation can be 
constructed: 

m0δ̈+
(

δ̂
n− m

+
λ
k
̂̇δ

q
)

kδm = 0 (3)  

where ̂δ is the equivalent indentation depth, which is associated with the maximum indentation depth δmax. ̂̇δ is the equivalent velocity. 
More details will be discussed in the following sections. 

As illustrated in Fig. 3(d), the energy dissipation can be simulated by setting different stiffness coefficients in the compression and 
restitution phases. The approximate dynamic equation is constructed based on the form of a “rigid spring in the compression phase +
soft spring in the restitution phase”, as shown in Eq. (4). 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m0δ̈ +
(

δ̂
n− m

+
λ
k
(
̂̇δc)

q
)

kδm = 0Compressionphase

m0δ̈ +
(

δ̂
n− m

+
λ
k
(
̂̇δr)

q
)

kδm = 0Restitutionphase
(4)  

where ̂̇δc and ̂̇δr are the equivalent velocities of the compression and restitution phases, respectively, which remain constant during the 

compression and restitution phases and are associated with δ̇(− ). 
The approximate dynamic equation of the compression phase can be expressed as 

m0
dδ̇
dt

+

(

δ̂
n− m

+
λ
k
(
̂̇δc)

q
)

kδm = m0
dδ̇
dδ

dδ
dt

+

(

δ̂
n− m

+
λ
k
(
̂̇δc)

q
)

kδm = 0 (5) 

Which can then be rewritten as 

m0δ̇dδ̇ = −

(

δ̂
n− m

+
λ
k
(
̂̇δc)

q
)

kδmdδ = 0 (6) 

By integrating Eq. (6) over the compression phase, it can be obtained that 

δ̇2
− δ̇(− )2

= −

2k
(

δ̂
n− m

+ λ
k(
̂̇δc)

q
)

m0(m + 1)
δm+1 (7) 

As the indentation depth δ reaches the maximum value δmax and the deformation velocity δ̇ = 0, it can be deduced that 

δm+1
max = −

m0(m + 1)

2k
(

δ̂
n− m

+ λ
k(
̂̇δc)q

)δ̇(− )2
(8) 

According to Eqs. (7) and (8), the function between deformation velocity δ̇ and indentation depth δ during the compression phase 
can be obtained 

δ̇ = δ̇(− )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
δ

δmax

)
m+1

√

(9) 

Based on Eq. (9), the work done by the dissipative force term λδmδ̇
q during the compression phase can be calculated: 

J. Zhang et al.                                                                                                                                                                                                          
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ΔEc =

∫ δmax

0
λδmδ̇

q
dδ =

∫ δmax

0
λδm

⎛

⎝δ̇(− )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
δ

δmax

)
m+1

√ ⎞

⎠qdδ =

∫ 1

0

λδm+1
max

(
δ̇(− ) )q

m + 1

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
δ

δmax

)
m+1

√ ⎞

⎠qd
(

δ
δmax

)
m+1

=

∫ 1

0

λδm+1
max

(
δ̇(− ) )q

m + 1

( ̅̅̅̅̅̅̅̅̅̅̅
1 − x

√ )
qdx =

λδm+1
max

m + 1
∙
2
( _δ(− )

)
q

2 + q
(10) 

In addition, as described in Eq. (4), based on the approximate dynamic equation of the compression phase, the work done by the 
dissipative force term during the compression phase is obtained 

ΔE*
c =

∫ δmax

0
λδm(

̂̇δc)
qdδ =

λδm+1
max

m + 1
(
̂̇δc)

q (11) 

Next, according to the rule of energy dissipation equivalence, the equivalent velocity during the compression phase can be 
determined based on Eqs. (10) and (11): 

̂̇δc =

(
2

2 + q

)
1
qδ̇(− ) (12) 

According to the system dynamic equation, the work done by the elastic force term kδn during the compression phase can be 
deduced: 

∫ δmax

0
kδndδ =

kδn+1
max

n + 1
(13) 

According to the approximate dynamic equation of the compression phase, the work done by the elastic force term during the 
compression phase can be calculated based on Eq. (4): 

∫ δmax

0
kδm δ̂

n− m
dδ =

kδm+1
max δ̂

n− m

m + 1
(14) 

Then, based on the rule of energy equivalence, the equivalent indentation depth can be determined according to Eqs. (13) and (14): 

δ̂
n− m

=
m + 1
n + 1

δn− m
max (15) 

Similar to the analysis for the compression phase, the integration of Eq. (7) over the restitution phase yields 

(
crδ̇

(− ) )2 − δ̇2
=

2k
(

δ̂
n− m

+ λ
k(
̂̇δr)

q
)

m0(m + 1)
δm+1 (16)  

where cr is the restitution coefficient. If δ̇ = 0, the indentation depth δ reaches the maximum value δmax, and it can be derived that 

δm+1
max = −

m0(m + 1)

2k
(

δ̂
n− m

+ λ
k(
̂̇δc)q

)
(
crδ̇

(− ) )2 (17) 

The velocities of the restitution and compression phases have opposite directions, and thus, the function between the deformation 
velocity δ̇ and indentation depth δ during the restitution phase can be described as 

δ̇ = − crδ̇
(− )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
δ

δmax

)
m+1

√

(18) 

The work done by the dissipative force term λδmδ̇
q during the restitution phase is 

ΔEr =

∫ δmax

0
λδmδ̇qdδ = −

∫ 0

δmax

λδm

⎛

⎝crδ̇
(− )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
δ

δmax

)
m+1

√ ⎞

⎠qdδ =
λδm+1

max

m + 1
∙
2
(
cr_δ(− )

)
q

2 + q
(19) 

As described in Eq. (4), based on the approximate dynamic equation of the restitution phase, the work done by the dissipative force 
term during the restitution phase is 

ΔE*
r =

∫ 0

δmax

λδm(
̂̇δr)

qdδ = −
λδm+1

max

m + 1
(
̂̇δr)

q (20) 

According to the rule of energy dissipation equivalence, the equivalent velocity during the restitution phase can be obtained based 
on Eqs. (19) and (20), 
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̂̇δr =

(
− 2

2 + q

)
1
qcrδ̇

(− ) (21) 

According to the system dynamic equation, the work done by the elastic force term kδn during the restitution phase can be deduced: 
∫ 0

δmax

kδndδ = −
kδn+1

max

n + 1
(22) 

Furthermore, based on the approximate dynamic equation of the restitution phase, the work done by the elastic force term during 
the restitution phase can be calculated based on Eq. (4), 

∫ 0

δmax

kδm δ̂
n− m

dδ = −
kδm+1

max δ̂
n− m

m + 1
(23) 

According to the rule of energy equivalence, the equivalent indentation depth can be obtained based on Eqs. (22) and (23), which is 
the same as Eq. (15), 

δ̂
n− m

=
m + 1
n + 1

δn− m
max (24) 

Based on the above derivation, the expression for the approximate dynamic equation can be obtained by substituting Eqs. (12), 
(15), (21) and (24) into Eq. (4): 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m0δ̈ +
(

m + 1
n + 1

δn− m
max +

λ
k

(
2

2 + q

)
(
δ̇(− ) )q

)

kδm = 0 Compression phase

m0δ̈ +
(

m + 1
n + 1

δn− m
max −

λ
k

(
2

2 + q

)
(
crδ̇

(− ) )q
)

kδm = 0 Restitution phase
(25) 

Therefore, the approximate dynamic equation for the impact system can be determined based on the rule of energy equivalence. 

2.3. Expression of the hysteresis damping factor 

The determination of the expression of the hysteresis damping factor λ is a key step for the construction of the contact model. In this 
section, an analytical solution for λ is obtained based on the system dynamic equation and the approximate dynamic equation. 

According to the law of conservation of linear momentum and energy balance, the total energy loss ΔEloss can be described as in 
[58], 

ΔEloss =
1
2
m0
(
1 − cr

2)δ̇(− )2
(26) 

As described in Section 2.2, Eqs. (10) and (19) are deduced from the system dynamic equation and the function δ̇(δ) which is 
derived from the approximate dynamic equation. On the basis of both equations, it can be deduced that 

ΔEc

ΔEr
= cr

− q (27) 

Considering the total energy loss ΔEloss = ΔEc + ΔEr, substituting Eq. (27) into Eq. (26) yields 

ΔEc =
m0δ̇(− )2

(1 − cr
2)

2(1 + cr
q)

(28) 

The elastic potential energy ΔEk (the work done by the elastic force term) stored during the compression phase is 

ΔEk =

∫ δmax

0
kδndδ =

kδn+1
max

n + 1
(29) 

According to the energy balance of the compression phase, it can be deduced that 

m0δ̇(− )2

2
= ΔEk +ΔEc =

kδn+1
max

n + 1
+

m0δ̇(− )2
(1 − cr

2)

2(1 + cr
q)

(30) 

which yields 

δn+1
max =

m0(n + 1)δ̇(− )2

2k
∙
cr

2 + cr
q

1 + cr
q (31) 

Substituting Eq. (31) into Eqs. (10) and (19), we obtain 
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ΔEc =
λ

m + 1
∙
2
( _δ(− )

)
q

2 + q

(
m0(n + 1)_δ(− )2

2k
∙
cr

2 + cr
q

1 + cr
q

)
m+1
n+1 (32) 

and 

ΔEr =
λ

m + 1
∙
2
(
cr_δ(− )

)
q

2 + q

(
m0(n + 1)_δ(− )2

2k
∙
cr

2 + cr
q

1 + cr
q

)
m+1
n+1 (33) 

Considering the total energy loss ΔEloss = ΔEc + ΔEr, according to Eqs. (26), (32) and (33), it can be deduced that 
(

m0(n + 1)δ̇(− )2

2k
∙
cr

2 + cr
q

1 + cr
q

)
m+1
n+1

(
2λ
(
δ̇(− ) )q

(m + 1)(2 + q)
+

2λ
(
crδ̇

(− ) )q

(m + 1)(2 + q)

)

=
m0(1 − cr

2)δ̇
(− )2

2
(34) 

Then, the expression of the hysteresis damping factor λ can be obtained: 

λ =
m0(2 + q)(1 − cr

2)(m + 1)δ̇(− )2

4(δ̇(− )
)q(1 + cr

q)

(
m0(n + 1)δ̇(− )2

2k
∙
cr

2 + cr
q

1 + cr
q

)

− m+1
n+1 (35) 

In this manner, a new type of continuous contact force model can be proposed based on the general expression of the contact force, 
in which the values of exponents m and q can be arbitrary. When q = 1.0, the simplified expression of Eq. (35) is the same as Eq. (36) in 
article [31]. When q = 1.0 and m = n, the simplified expression of Eq. (35) is the same as Eq. (42) in article [21]. Based on Eqs. (1) and 
(35), a numerical simulation can be conducted, and the dynamic response of the impact process can be obtained. As mentioned above, 
details regarding the determination of the expression of stiffness parameter k can be found in the relevant articles [23,31]. It should be 
noted that the model proposed in this paper is only applicable to single-point impact and cannot be applied to multiple impacts. Like 

most continuous contact models, the new model includes an initial relative velocity term δ̇(− ) in the expression of the damping factor, 
and the initial relative velocity between the contacting bodies is zero in most of multiple impacts, so the simulation of multiple impacts 
based on the new model will lead to infinite damping factor and thus obvious errors. 

Additionally, by substituting Eq. (31) into Eq. (25), an exact expression of the approximate dynamic equation can be obtained: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

m0δ̈ +

⎛

⎝m + 1
n + 1

(
m0(n + 1)δ̇(− )2

2k
∙
cr

2 + cr
q

1 + cr
q

)
m+1
n+1 +

λ
k

(
2

2 + q

)
(
δ̇(− ) )q

⎞

⎠kδm = 0 Compression phasem0δ̈ 

+

⎛

⎝m + 1
n + 1

(
m0(n + 1)δ̇(− )2

2k
∙
cr

2 + cr
q

1 + cr
q

)
m+1
n+1 −

λ
k

(
2

2 + q

)
(
crδ̇

(− ) )q

⎞

⎠kδm = 0 Restitution phase (36)  

3. Data analysis and validation 

The analysis and validation of the new model are conducted in this section, including analysis of simulation data and comparison of 
numerical and published experimental results. The degree of approximation between the approximate dynamic equation and system 
dynamic equation and the effects of m and q on the model performance are both investigated. First, a nondimensional analysis is 
performed to facilitate the analysis. 

It should be pointed out that this paper primarily studies the contact-impact model. As one of the most important parts of the 
simulation of the contact-impact phenomenon, contact detection research is still a growing field but has reached some maturity, and 
several different methods have been developed [59,60]. The simulations in this paper are relatively simple, and the contact situations 
are determined by calculating the distances between the potential points and the values of indentation depth. For more complex 
problems, some contact detection algorithms for multibody simulations with a continuous contact force model have been proposed 
[59,60]. 

3.1. Nondimensional form of the system dynamic equation and the approximate dynamic equation 

A nondimensional analysis is conducted to facilitate the comparison and analysis of the simulation results. We introduce the 

nondimensional variables x = δ/δmax and τ = t/
(
δmax/δ̇(− ) ), and it can be deduced that [21,31] 

J. Zhang et al.                                                                                                                                                                                                          



Mechanical Systems and Signal Processing 168 (2022) 108739

9

dδ
dt

= δ̇(− )dx
dτ (37) 

and 

d2δ
dt2 =

(
δ̇(− ) )2

δmax

d2x
dτ2 (38) 

According to Eq. (37), the initial velocity of x is equal to 1.0. Substituting Eqs. (37) and (38) into the system dynamic equation 
shown in Eq. (1) yields 

m0
(
δ̇
(− ) )2

δmax
ẍ+ kδn

maxx
n + λδm

maxxm( δ̇(− ) )q
(

dx
dτ

)
q = 0 (39) 

The following nondimensional form of the system dynamic equation can be obtained: 

ẍ+ knonxn + λnonxm( δ̇(− ) )qẋq = 0 (40)  

where knon and λnon are the nondimensional parameters, which are described as 

knon =
kδn+1

max

m0(δ̇
(− )

)2
(41)  

λnon =
λδm+1

max

(
δ̇(− ) )q

m0(δ̇
(− )

)2
(42) 

Substituting Eq. (31) into Eqs. (41) and (42), we obtain 

knon =
(n + 1)(cr

2 + cr
q)

2(1 + cr
q)

(43)  

λnon =
λ
(
δ̇(− ) )q

m0(δ̇
(− )

)2

(
m0(n + 1)

(
δ̇(− ) )2

2k
∙
cr

2 + cr
q

1 + cr
q

)
m+1
n+1 (44) 

Substituting Eq. (35) into Eq. (44), 

λnon =
m0(2 + q)(1 − cr

2)(m + 1)
(
δ̇(− ) )2

4(δ̇(− )
)q(1 + cr

q)

(
m0(n + 1)

(
δ̇(− ) )2

2k
∙
cr

2 + cr
q

1 + cr
q

)

− m+1
n+1

(
δ̇(− ) )q

m0(δ̇
(− )

)2

(
m0(n + 1)

(
δ̇(− ) )2

2k
∙
cr

2 + cr
q

1 + cr
q

)
m+1
n+1 (45) 

Then, we obtain 

λnon =
(m + 1)(2 + q)(1 − cr

2)

4(1 + cr
q)

(46) 

Similar to the analysis for the system dynamic equation, by substituting Eqs. (35), (37) and (38) into the approximate dynamic 
equation shown in Eq. (36), we can obtain the nondimensional form of the approximate dynamic equation, 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2x
dτ2 +

(
k*

non + λ*
non

)
xm = 0 Compressionphase

d2x
dτ2 +

(
k*

non − crλ*
non

)
xm = 0 Restitution phase

(47)  

where k*
non and λ*

non are the nondimensional parameters, which are described as 

k*
non =

(m + 1)(cr
2 + cr

q)

2(1 + cr
q)

(48)  

λ*
non =

(m + 1)(2 + q)(1 − cr
2)
(
δ̇(− ) )1− q

4(1 + cr
q)

(
2

2 + q

)
1
q (49) 

It can be determined from Eqs. (43), (46), (48) and (49) that the nondimensional parameters knon, λnon, k*
non and λ*

non depend on the 

exponent n, m, q, the coefficient of restitution cr, and the initial velocity δ̇(− ). 
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3.2. Simulations of the system dynamic equation and the approximate dynamic equation 

To evaluate the degree of approximation between the approximate dynamic equation and system dynamic equation, a series of 
numerical simulations is conducted based on the nondimensional form of the approximate dynamic equation and system dynamic 
equation, as described in Eqs. (40) and (47). 

The value of n depends on the geometric properties of contacting surfaces and is set as the most commonly used value of 1.5. As 
described in Section 3.1, the initial velocity of x is equal to 1.0. The values of the restitution coefficient cr are set as 0.9, 0.6, and 0.3. 
The simulation is based on the fourth–order Runge–Kutta method, and the time steps are set as 1E-8 s. The respective numerical results 
from the nondimensional form of the system dynamic equation and approximate dynamic equation are deemed accurate and 
approximate. 

The numerical simulations are divided into two categories. In the first type of simulation, m is set equal to n to investigate the 
influence of q on the approximation degree of the two equations, as shown in Fig. 4. In the second type of simulation, n is set as 
constant, and the influences of m and q values on the approximation degree of the two equations are examined, as shown in Fig. 5. 

As shown in Fig. 4, when m = n and q varies (q is set as 0.9, 1.0, and 1.1), the two equations exhibit reasonable approximations, and 
a higher restitution coefficient corresponds to a superior approximation degree. When the restitution coefficient is high (cr = 0.9, as 
shown in Fig. 4(a)), the approximation degree is excellent, and the value of q has almost no effect on the approximation. As shown in 
Fig. 4(b), the approximation is satisfactory for the recovery factor cr = 0.6, and the change in q value does not significantly influence 
the approximation. When the restitution coefficient is low (cr = 0.3, as shown in Fig. 4(c)), the degree of approximation varies 
significantly, and the best degree of approximation is attained when q = 1.0. 

As shown in Fig. 5, when m and q vary, the two equations are well approximated, and a higher recovery coefficient corresponds to a 
better degree of approximation. The values of m and q are set as the following five pairs: m = 1.2, q = 0.9; m = 1.2, q = 1.1; m = 1.5, q =
1.0; m = 1.8, q = 0.9; and m = 1.8, q = 1.1. When the recovery coefficient is high (cr = 0.9 in Fig. 5(a)), the approximation degree is 
satisfactory. Compared with Fig. 4 (a), the q value exerts nearly no influence on the approximation degree of the equation, while the 
change in m influences the contact duration time. As shown in Fig. 5(b), when the restitution coefficient equals 0.6, the simulation 

Fig. 4. Simulation results with m = n and varying q: (a) cr = 0.9; (b) cr = 0.6; (c) cr = 0.3.  
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results obtained based on the two equations are slightly different, and the best approximation is achieved when m = 1.5, q = 1.0 and m 
= 1.8, q = 1.1. When the recovery coefficient is low (cr = 0.3, as shown in Fig. 5(c)), the system dynamic behaviors associated with the 
approximate dynamic equation and system dynamic equation are different. When m = 1.5, q = 1 and m = 1.2, q = 0.9, the approx-
imation degree is relatively high. 

In conclusion, the deviation in the system dynamic behaviors associated with the approximate dynamic equation and system 
dynamic equation is small, and the approximate dynamic equation achieves a reasonable approximation of the system dynamic 
equation. Therefore, it is feasible to derive the hysteresis damping factor based on the system dynamic equation and approximate 
dynamic equation. 

3.3. Comparisons between the simulation and experimental results 

Two published experimental datasets are utilized to validate the new contact model [61,62], involving steel balls [61] and cores of 
leather-bound sliotar ball [62], and the influences of the m and q values on the performance of the contact models are investigated by 
comparing the simulation and experimental results. The collisions in both experiments are direct central normal impacts without 
friction, and in previous studies the relevant experiment results have been utilized to validate and compare the continuous contact 
models [61,62]. In this paper, three typical continuous contact models are utilized for the comparison of the model proposed in this 
paper, including the models developed by Hunt and Crossley [29], Lankarani and Nikravesh [36] and Jie Zhang et al. (proposed in 
2020) [21]. Numerical simulations are conducted based on the system dynamic equation, as illustrated in Eq. (1). The values of n, k, cr, 

m0 and δ̇(− ) are extracted from two published studies, and the value of the hysteresis damping factor λ is calculated according to Eq. 
(35). Numerical simulations are conducted based on three typical models and the new model with various m and q values. The 
simulation is based on the fourth-order Runge–Kutta method, and the time steps are set as 1E-8 s. 

3.3.1. Impact of steel ball 
An experiment involving a spherical ball impacting cylindrical specimens were conducted by Zhang and Sharf to validate the 

Hunt–Crossley series of models [61], in this paper it is utilized to validate the new contact model. A steel ball (mass m0 = 0.54 kg) is 
released from a stationary position, and a direct central normal impact occurs between the ball and cylindrical specimen C2. The 
contact force, duration time, initial impact velocity and restitution coefficient are measured in the experiment. Details regarding the 

Fig. 5. Simulation results with varying m and q: (a) cr = 0.9; (b) cr = 0.6; (c) cr = 0.3.  
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experimental process can be found in [61]. In addition to the three previous models mentioned above, numerical simulations are 
conducted based on several groups of different m and q values pertaining to the classical parameters used in continuous contact models 
(m = 1.5, q = 1.0) and other groups of parameters (m = 1.2, q = 0.9; m = 1.2, q = 1.1; m = 1.8, q = 0.9; and m = 1.8, q = 1.1). The power 
exponent n = 1.5 and stiffness parameter k = 2.4144E10 N/Ln are set with reference to [61]. 

As shown in Table 1, when the restitution coefficient is relatively large, the simulation results obtained based on different models 
and exponential values are all consistent with the experimental results; as determined from Table 2, when the restitution coefficient is 
relatively small, the relative error in the consistency of the restitution coefficient is higher for the models proposed by Hunt and 
Crossley and by Lankarani and Nikravesh. As shown in Tables 1 and 2, the simulation results obtained using the new model are 
consistent with the experimental data, and the relative errors are less than ±5%. Notable deviation is not observed between the 
simulation results obtained using the classical parameters (m = 1.5, q = 1.0) and other groups of parameters (m = 1.2, q = 0.9; m = 1.2, 
q = 1.1; m = 1.8, q = 0.9; and m = 1.8, q = 1.1). Furthermore, compared with the duration time, the change in m and q significantly 
influence the maximum contact force. When m = 1.2 and q = 1.1, the smallest deviation is observed between the numerical and 
experimental results of the maximum contact force. 

The model proposed by Jie Zhang et al. in 2020 can be considered a special case of the model proposed in this paper (m and q are 
taken as 1.5 and 1.0, respectively), with the primary difference being that the model proposed by Jie Zhang in 2020 includes a minor 
adjustment to the equivalent velocity, resulting in very high accuracy in terms of consistency of restitution coefficients, as shown in 
Tables 1 and 2. It should be noted that when m and q are set for the model proposed in this paper, a more accurate model can be 
constructed by slightly adjusting the equivalent velocity based on the consistency of the restitution coefficients before and after the 
simulation, and thus can provide a good simulation of the velocity changes before and after a collision and the system kinematics. 
Additional details regarding this aspect can be found in the relevant articles [21,31]. Because both m and q are variable within a wide 
range of values within this paper, the optimization of the new model is not conducted in this paper. 

3.3.2. Impact of the cores of leather-bound sliotar ball 
Relative to the steel ball impact experiment, an impact experiment with more complex materials, faster impact velocities and lower 

restitution coefficients is used to validate the new model and investigate the effects of m and q values on the model accuracy, this 
experiment was previously conducted to investigate the Hunt and Crossley model and modified Kelvin-Voigt model [62]. The collision 
in the experiment occurs between sliotar cores and fixed rigid steel impact plate. The sliotar, a small leather-bound ball consisting of 
leather skin and a solid core, is used in the Irish sport of hurling. Four sliotar cores (labeled A, B, C and D) with different materials were 
selected in [62]. Table 3 quantifies the dimensions, masses, compositions and k and cr values of these cores. The power exponent n =
1.5, and the initial impact velocity is 15 m/s. More details regarding the experiment can be found in [62]. A series of numerical 
simulations is conducted based on the three previous models mentioned above and various m and q values of the new model of this 
paper. As shown in Table 3, the parameters in the numerical simulations are set with reference to [62]. The comparison between the 
simulation and experimental results shows that the optimal parameters are m = 1.1 and q = 1.25. Fig. 6 shows plots of the indentation 
depth vs. contact force for each ball type, as recorded experimentally and predicted by the models. Except for the three previous 
models, numerical simulations are conducted based on the new model with two sets of parameters: the classical parameters used in 
continuous contact models (m = 1.5, q = 1.0) and optimal parameters in this numerical example (m = 1.1, q = 1.25). A detailed 
analysis is conducted to evaluate the influences of the m and q values on the performance of the continuous contact force models. 

The comparison between the simulation and experimental results shows that the performance of the continuous contact model can 
be improved by selecting appropriate values of m and q. As illustrated in Fig. 6, the simulation results obtained based on the Hunt and 
Crossley model and the Lankarani and Nikravesh model significantly deviate from the experimental values. As for the maximum 
contact force, the relative errors of balls A, B, C and D are about 15.5%, 10.5%, 10.3% and 7.8%, respectively, and for the maximum 
indentation depth, the relative errors are about 17.5%, 13.3%, 14.0% and 11.4%, respectively. 

Fig. 6 also shows that the simulation results obtained based on the new model with classical parameters (m = 1.5, q = 1.0) and the 
model proposed by Jie Zhang in 2020 deviate from the experimental values in the simulation of the maximum contact force, and the 
relative errors of the maximum contact forces of balls A, B, C and D are about 17.9%, 12.5%, 12.3% and 9.5%, respectively. In contrast, 

Table 1 
Comparison of the numerical and experimental results with initial impact velocity 0.15 m/s.   

cr Relative error 
[%] 

Duration time (10E-4 
s) 

Relative error 
[%] 

Maximum contact force 
(N) 

Relative error 
[%] 

Experiment results [61]  0.8892   2.52   1076.6  
The model in this paper: 
m = 1.5, q = 1.0  0.8891  − 0.02  2.620  3.97  1089.8  1.23 
m = 1.2, q = 0.9  0.8886  − 0.07  2.618  3.89  1088.9  1.15 
m = 1.2, q = 1.1  0.8880  − 0.13  2.618  3.89  1080.6  0.37 
m = 1.8, q = 0.9  0.8945  0.60  2.618  3.89  1100.9  2.26 
m = 1.8, q = 1.1  0.8950  0.66  2.616  3.81  1090.6  1.30 
Hunt and Crossley [29]  0.9002  1.23  2.614  3.71  1095.0  1.71 
Lankarani and Nikravesh  

[36]  
0.9052  1.80  2.612  3.65  1097.4  1.93 

Jie Zhang et al. (2020) [21]  0.8892  − 0.00  2.618  3.87  1089.9  1.23  
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Table 2 
Comparison of the numerical and experimental results with initial impact velocity 0.5 m/s.   

cr Relative error 
[%] 

Duration time (10E-4 
s) 

Relative error 
[%] 

Maximum contact force 
(N) 

Relative error 
[%] 

Experiment results [61]  0.7568   2.07   4364.6  
The model in this paper:       
m = 1.5, q = 1.0  0.7553  − 0.19  2.106  1.74  4447.0  1.89 
m = 1.2, q = 0.9  0.7548  − 0.26  2.104  1.64  4419.2  1.25 
m = 1.2, q = 1.1  0.7540  − 0.38  2.102  1.55  4322.2  − 0.97 
m = 1.8, q = 0.9  0.7665  1.29  2.102  1.55  4581.7  4.97 
m = 1.8, q = 1.1  0.7673  1.39  2.098  1.35  4474.2  2.51 
Hunt and Crossley [29]  0.8036  6.19  2.085  0.72  4491.3  2.90 
Lankarani and Nikravesh  

[36]  
0.8234  8.80  2.078  0.38  4515.5  3.46 

Jie Zhang et al. (2020) [21]  0.7564  − 0.05  2.103  1.60  4447.7  1.90  

Table 3 
The basic parameters of the experiment [62].  

Ball ID Diameter (mm) Mass m0 (g) Material mass composition Contact stiffness k (N/m1.5 × 106)  Restitution coefficient cr 

A 66.2 ± 0.1  89.6 ± 0.4  100% polyurethane-based polymer  3.50  0.527 
B 66.8 ± 0.2  89.9 ± 3.1  100% polyurethane-based polymer  2.85  0.535 
C 65.6 ± 0.1  89.1 ± 0.9  Cork (81%), yarn (19%)  5.65  0.533 
D 68.2 ± 0.4  83.1 ± 0.3  Cork (38%), polyester (38%), yarn (24%)  3.70  0.546  

Fig. 6. Comparison between the numerical and experimental results for the impacts of four leather-bound sliotar balls.  
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the simulations of the maximum indentation depth were relatively accurate, with relative errors of about 5.7%, 2.4%, 2.9%, and 0.7%, 
respectively. 

When the optimal parameters (m = 1.1, q = 1.25) are used for the new model, a certain deviation remains between the simulation 
and experimental results; however, the relative errors of the maximum contact force are reduced to 6.3%, 1.6%, 1.4% and − 0.9%, 
respectively. And the relative errors of the maximum indentation depths are about 3.4%, 0.2%, 0.7% and − 1.9%, respectively. 

Therefore, by selecting appropriate values of m and q, the performance of the continuous contact model can be improved, and the 
simulation results can approach the experimental results. Notably, a certain deviation remains between the experimental results and 
the shape of the indentation depth vs. contact force curve obtained in the simulation based on the optimal parameters. The series of 
simulations shows that it is difficult to find a set of parameters for which the simulation results match the experimental results in all 
aspects. This shows the limitation of the contact force model constructed based on the general contact force expression. 

The comparison between the simulation and two sets of published experimental results demonstrates the validity and potential of 
the new model. In the case of the impact of steel balls, the simulation results obtained using the new model are consistent with the 
experimental data, and the relative errors of the simulation results obtained based on different m and q values are less than ±5%. The 
comparison between the simulation and experimental results for the case of the cores of leather-bound sliotar ball shows that the new 
model proposed in this paper has better simulation accuracy than the previous models, it also reveals that the performance of the 
continuous contact model can be improved by selecting appropriate values of m and q. 

3.4. Influences of the values of exponents on the contact models 

To evaluate the influences of the m and q values on the performance of the continuous contact force models, a series of numerical 
simulations is conducted based on the nondimensional form of the system dynamic equation, as described in Eq. (40). 

Fig. 7. Simulation results with different parameters (a) m = n = 1.5, cr = 0.6, q varies; (b) n = 1.5, q = 1.0, cr = 0.6, m varies; (c) n = 1.5, cr = 0.6, m 
and q vary; (d) n = 1.0, cr = 0.6, m and q vary; (e) n = 2.0, cr = 0.6, m and q vary; (f) n = 1.5, cr = 0.9, m and q vary; (g) n = 1.5, cr = 0.3, m and 
q vary. 
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The simulation is based on the fourth-order Runge–Kutta method, and the time steps are set as 1E-8 s. According to the analysis in 
Section 3.1, the initial velocity of x is equal to 1.0. Based on the simulation results of five sets of parameters, plots of the indentation 
depth vs. contact force are obtained, and detailed analyses are conducted. The corresponding specific parameter values and simulation 
results are shown in Fig. 7. 

In the first set of parameters, the values of m, n and cr are set to study the influence of q on the performance of the contact model, as 
shown in Fig. 7(a) (m = n = 1.5, cr = 0.6 and q = 0.6, 0.9, 1.0, 1.1 or 1.5). A smaller q corresponds to a larger maximum contact force 
obtained in the simulation. The influence of q on the maximum indentation depth is almost negligible. In addition, the variation in q 
value exerts a certain effect on the shape of the indentation depth–contact force curve. 

In the second set of parameters, the values of n, q and cr are set to study the influence of m on the performance of the contact model, 
as shown in Fig. 7(b) (n = 1.5, q = 1.0, cr = 0.6 and m = 0.8, 1.2, 1.5, 1.8 or 2.2). A smaller m value corresponds to a larger maximum 
contact force obtained in the simulation. The influence of m on the maximum indentation depth is almost negligible. In addition, the 
variation in the m value exerts a certain effect on the shape of the indentation depth–contact force curve. 

In the third set of parameters, the values of n and cr are set to study the influence of m and q on the performance of the contact 
model, as shown in Fig. 7(c) (n = 1.5, cr = 0.6, and the values of m and q are set in five pairs: m = 1.2, q = 0.9; m = 1.2, q = 1.1; m = 1.5, 
q = 1.0; m = 1.8, q = 0.9; and m = 1.8, q = 1.1). Larger m and smaller q correspond to a larger maximum contact force. The influences of 
m and q on the maximum indentation depth are almost negligible. In addition, the variations in m and q have a certain effect on the 
shape of the indentation depth–contact force curve. 

In the fourth set of parameters, for different values of n, the value of cr is set to study the influence of m and q on the performance of 
the contact model, as shown in Fig. 7(d) (n = 1.0, cr = 0.6, the values of m and q are set in five pairs: m = 0.8, q = 0.9; m = 0.8, q = 1.1; 
m = 1.0, q = 1.0; m = 1.5, q = 0.9; and m = 1.5, q = 1.1) and Fig. 7(e) (n = 2.0, cr = 0.6, and the values of m and q are set in five pairs: m 
= 1.5, q = 0.9; m = 1.5, q = 1.1; m = 2.0, q = 1.0; m = 2.5, q = 0.9; and m = 2.5, q = 1.1). A larger n corresponds to a larger maximum 
contact force. The effect of m and q on the model performance is similar to that in the third set of parameters. Moreover, the variation in 
n exerts a certain effect on the shape of the indentation depth–contact force curve. 

In the fifth set of parameters, for different values of cr, the value of n is set to study the influence of m and q on the performance of 

Fig. 7. (continued). 
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the contact model, as shown in Fig. 7(f-g) (n = 1.5, cr = 0.9 or 0.3, and the values of m and q are set in five pairs: m = 1.2, q = 0.9; m =
1.2, q = 1.1; m = 1.5, q = 1.0; m = 1.8, q = 0.9; and m = 1.8, q = 1.1). According to Fig. 7(f-g), a smaller restitution coefficient exerts 
more significant effects of m and q on the contact model performance. Moreover, a larger m and smaller q correspond to a larger 
maximum contact force. The influences of m and q on the maximum indentation depth are almost negligible. 

Overall, the values of m and q influence the maximum contact force obtained in the simulation, while the effect on the indentation 
depth is almost negligible. A larger m and smaller q correspond to a larger maximum contact force. In addition, the variation in m and q 
influences the shape of the indentation depth–contact force diagram. A smaller restitution coefficient corresponds to more significant 
effects of m and q on the contact model performance. 

4. Conclusions 

A general expression of the contact force, Fc = kδn + λδmδ̇q, was proposed by Hunt and Crossley in 1975. Because this expression 
cannot be used to find an analytical solution, more than twenty continuous contact force models have been developed based on the 
simplification of the general expression of the contact force. In these studies, the parameter q is set as 1.0. It is of significance to develop 
a contact model based on the general expression with arbitrary values of parameters m and q. 

Based on the rule of energy equivalence, an approximate dynamic equation is developed, and a new continuous contact force model 
with arbitrary exponents n, m and q is constructed based on the general expression of the contact force. The new model is validated by 
comparing the simulation results and two published experimental datasets. The analysis of simulation results shows that m and q exert 
nonnegligible influences on the performance of the continuous contact force models. Larger m and smaller q correspond to a larger 
maximum contact force. Moreover, with a smaller restitution coefficient, the effects of m and q on the contact model performance are 
more significant. The comparison between the simulation and experimental results indicates that the performance of the continuous 
contact model can be improved by selecting appropriate values of m and q. 
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